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We study a simple class of time-dependent rotating Ricci-flat cylindrically symmetric spacetime
manifolds whose geodesics admit gravitomagnetic jets. The helical paths of free test particles in
these jets up and down parallel to the rotation axis are analogous to those of charged particles in a
magnetic field. The jets are attractors. The jet speed asymptotically approaches the speed of light.
In effect, such source-free spacetime regions act as “gravitomagnetic accelerators.”

PACS numbers: 04.20.Cv

The purpose of this Letter is to point out that general
relativity in principle permits the existence of dynamic
source-free spacetime regions in which the speed of free
test particles can rapidly increase so as to approach the
speed of light.

Mechanisms for the acceleration of particles to ultra-
relativistic speeds are important for the explanation of
high-energy astrophysical phenomena [1, 2]. Most of
the known acceleration processes involve charged parti-
cles and are electromagnetic in origin [3]. Gravitational
mechanisms involving arbitrary test particles have been
the subject of recent investigations [4–8]. We adopt a
different approach here and present a simple explicit so-
lution of Einstein’s vacuum field equations for which the
geodesic equation has exact analytic solutions that repre-
sent gravitomagnetic jets. The jets are attractors and the
speed of a free test particle in such a jet asymptotically
approaches the speed of light.

Consider a warped product spacetime with a metric of
the form

ds2 = etdΣ2 + e−tdz2, (1)

where dΣ2 is a 3D stationary metric given by

dΣ2 =
Xr

X
(−X2dt2 +

1

r3
dr2) +

1

r
(−Xdt+ dφ)2 (2)

and we use units such that c = 1 throughout. Here Xr =
dX/dr and X is the solution of the differential equation

r2X2Xrr +Xr = 0. (3)

The spacetime metric (1) has signature +2 and is Ricci-
flat, namely, Rµν = 0 [9]. The cylindrical coordinates
xµ = (t, r, φ, z) are dimensionless. To transform them
to physical coordinates x̃µ = (λ′t, λ−1r, φ, λz), we need

arbitrary lengthscales λ′ and λ; then, X̃ = λ1/2X and
s̃ = λs. The conformal factor exp(t), the warping func-
tion exp(−t) and the gravitomagnetic potential X lead
to interesting aspects of the gravitational field under con-
sideration here.

The cylindrical coordinates in the spacetime domain
of interest must be admissible. It follows from the Lich-
nerowicz conditions [10] that the principal minors of the

metric tensor and its inverse must be negative. Hence,
XXr > 0 and XQ > 0, where Q = rXr − X. The
first of these conditions is satisfied if X2 is a monotoni-
cally increasing function of r. It turns out that Eq. (3)
is a special case of the generalized Emden-Fowler equa-
tion. Of the two known explicit solutions of this equa-
tion, X = constant is not acceptable as metric (1) would
then degenerate into a 3D metric and X = ±(3r/2)−1/2

is such that X2 is monotonically decreasing with r. In
fact, with r ≥ 0 taken as radial coordinate, the solutions
of Eq. (3) other than X = constant fall into two classes:
either X2 is monotonically increasing or decreasing. In
this work we focus on the former class, since the latter
class involves rotating gravitational waves and was inves-
tigated in detail in Ref. [9].

The solutions of Eq. (3) with X2 monotonically in-
creasing all have the general form depicted in Figure 1.
If X is a solution of Eq. (3), then so is −X; henceforth,
we consider only the X ≥ 0 branch. It is possible to
show that there is an open set of initial conditions cor-
responding to admissible solutions X; each exists on a
radial interval (rb,∞), where rb > 0 with limiting val-
ues X(rb) = 0 and Xr(rb) = ∞ such that XXr = r−2b
at rb. Furthermore, X2 increases, X2

r decreases and X2

approaches infinity as r → ∞. Indeed, r = ∞ at the
axis of cylindrical symmetry and r = rb at the exterior
boundary cylinder. The physical region of interest S is
the open hollow expanding cylindrical domain with inner
boundary around the axis r =∞ and outer boundary at
the null hypersurface r = rb. The cylindrical coordinates
are not admissible at these boundaries, since gtt vanishes
at r =∞ and (−g)−1/2 vanishes at r = rb.

With admissible cylindrical coordinates in S, we have
an algebraically general Petrov type I solution of Ein-
stein’s source-free equations with two commuting space-
like Killing vector fields ∂φ and ∂z associated with cylin-
drical symmetry. The two-parameter isometry group is
not orthogonally transitive. While ∂z is hypersurface or-
thogonal, ∂φ is not; moreover, the other two coordinates
(t, r) can be invariantly defined via the magnitudes of
these Killing vector fields. The t = constant hypersur-
faces are spacelike, while r = constant hypersurfaces are
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timelike in the physical domain (rb,∞). Near the axis
(r →∞),

X(r) ∼ ar − α− 1

6ar2
− α

6a2r3
+O(

1

r4
), (4)

where a > 0 and α > 0 are constants. Near the boundary
(r → r+b ),

X(r) =
21/2

rb
(r− rb)1/2 +A(r− rb) +O((r− rb)3/2), (5)

where A is a constant. We note that solutions of Ein-
stein’s gravitational field equations with cylindrical sym-
metry have been the subject of numerous investigations
(see [11–15] and the references cited therein).

The proper radial distance from the axis to an event
with r = r0 is given by

et/2
∫ ∞
r0

( Xr

r3X

)1/2
dr. (6)

At a finite instant of time t, the proper radial distance
from the axis to the boundary is finite. It is possible
to show that the condition of elementary flatness is not
satisfied near the axis [16]. Within the spacetime region
of interest S, however, there are no curvature singulari-
ties. To illustrate this fact, we note that there are four
algebraically independent scalar polynomial curvature in-
variants in a Ricci-flat spacetime that can be represented
as [12]

I1 = RµνρσR
µνρσ − iRµνρσR∗µνρσ, (7)

I2 = RµνρσR
ρσαβR µν

αβ + iRµνρσR
ρσαβR∗ µν

αβ . (8)

These turn out to be real in this case and can be ex-
pressed as

I1 = − e−2t

rX4X2
r

(F 2 − rX2(F + 4)), (9)

I2 = − 3e−3t

4rX5X3
r

F (F + 2rX2), (10)

where F = r2XXr−1. These invariants are well behaved
in the interior of the physical region (rb,∞) and have
proper limits at the boundaries. Let us note that I1 and
I2 both diverge in the infinite past (t→ −∞), a situation
that is consistent with the emergence of the universe from
a singular state as in the standard cosmological models.

The spacetime domain S rotates about the axis of
cylindrical symmetry. To elucidate the gravitomagnetic
aspects of S, imagine the class of fundamental observers
in S. They are spatially at rest by definition, with spatial
frames that we can choose to be along the natural direc-
tions of the cylindrical coordinate system. A unit gyro
carried by these observers precesses about the z axis with
frequency (2XQ)−1, indicating the presence of a gravit-
omagnetic field parallel to the z axis [17]. There is ex-
perimental evidence for gravitomagnetism; indeed, GP-B
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FIG. 1. Left panel: Plot of the solution ±X versus r for
the differential Eq. (3). The initial data are X(1) = 1/2 and
Xr(1) = 2. The left endpoint occurs at rb ≈ 0.88. This is
an admissible solution of Eq. (3) that allows a jet at rJ = 1.
Right panel: Starting from rest at r0 = 0.94, halfway between
rb and rJ , the geodesic equation is integrated for a free test
particle as in Fig. 2. For 0 ≤ Cφ ≤ 1.65, the particle is
attracted to the jet at rJ (right arrow), while for Cφ ≥ 1.7
the particle moves to rb and exits S (left arrow). Similarly,
for −5 ≤ Cφ ≤ 0 the particle is attracted to the jet, while for
Cφ ≤ −6 the particle exits via rb.

has recently measured the exterior gravitomagnetic field
of the Earth [18].

We now turn to the motion of free test particles in this
gravitational field. Let uµ = dxµ/dτ be the four-velocity
vector of the test particle, where τ is the proper time
along its world line. The components of uµ along the
Killing vector fields will be constants of geodesic motion.
Thus Cz = gzαu

α is the constant linear momentum (per
unit mass) of the test particle parallel to the z axis, while
Cφ = gφαu

α is the constant angular momentum (per unit
mass) of the test particle about the z axis. That is,

dz

dτ
= Cze

t,
dφ

dτ
−X dt

dτ
= Cφre

−t. (11)

It then follows from uαuα = −1 that dt/dτ = V/X,
where

V =
[ 1

r3
U2 +

X

Xr
(e−t + C2

z + C2
φre
−2t)

]1/2
. (12)

Here U = dr/dτ and we have assumed that t monotoni-
cally increases with τ along the geodesic world line. Thus
the geodesic equation reduces in this way to the radial
equation given by

dU

dτ
= −Γrαβu

αuβ . (13)

In practice, Eq. (3) must also be solved simultaneously
with respect to the particle’s proper time.

In analogy with the motion of a charged particle in a
magnetic field, we look for geodesics that are confined to
a cylinder of fixed radius r ∈ (rb,∞). Thus we set U = 0
and dU/dτ = 0. Equations (11) and (12) yield

dt

dφ
=

V

X(V + Cφre−t)
, (14)

while it follows from Eq. (13) that

dt

dφ
= − 1

Q± (Xr/X)1/2
. (15)
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FIG. 2. The result of integration of the geodesic equation for
timelike geodesics attracted to the jet associated with X given
in Fig. 1. The initial data at τ0 = 0 are t0 = 0, r0 = 0.94,
U0 = 0, φ0 = 0, z0 = 0, X(r0) ≈ 0.36 and Xr(r0) ≈ 2.84.
In the left-hand plot the parameters are Cφ = −5 and Cz =
1. The right-hand plot is for Cφ = 1.65 and Cz = 1. The
coordinates are (x, y, ẑ), where x = ρ cosφ, y = ρ sinφ and

ρ = r−1/2; moreover, ẑ = ln | ln z|. We use ẑ instead of z for
the sake of clarity.

These are compatible, the latter with the lower sign only,
if and only if Cφ = 0 and there is a radial coordinate
rJ ∈ (rb,∞) such that r2XXr = 1 for r = rJ . In this
case, the geodesic equation can be solved explicitly for
a special three-parameter set of geodesics parameterized
by the initial values of (t, φ, z) such that r remains con-
stant at rJ . The geodesics in this class exhibit helical
motions up (Cz > 0) and down (Cz < 0) on the cylinder
r = rJ parallel to the z axis except for the measure zero
subset (Cz = 0) whose motions remain bounded on cir-
cular orbits about the z axis. It can be shown that for a
given X, either there is a unique rJ , F (rJ) = 0, or there
is none; moreover, there is a non-empty open subset of
admissible solutions of Eq. (3), corresponding to A < 0
in Eq. (5), that allow these special geodesics. For a so-
lution of Eq. (3) in this class, we call the set of special
geodesics a gravitomagnetic jet.

Numerical experiments reveal that gravitomagnetic
jets are attractors, see Figs. 1 and 2. That is, the union
of special geodesics with a given X and rJ is a non-
compact connected invariant manifold that attracts all
nearby geodesics. Figure 2 highlights the helical motion
of a gravitomagnetic jet. We note that these helical mo-
tions up and down within a double-jet configuration have
the same orientation; the helical sense is positive in our
case due to our choice of the X ≥ 0 branch. For recent
studies of helical motions in astrophysical jets, see [19].

Null geodesics can be treated similarly in S and it turns
out that they have special helical solutions confined to
r = rJ just as in the case of timelike geodesics. Moreover,
for t → ∞, special timelike geodesics go over to special
null geodesics as a simple consequence of the dynamical
equations of motion.

To explore this important aspect of gravitomagnetic
jets further, we consider the speed of jets with respect to
the fundamental observers. These are endowed with an

orthonormal tetrad λµ(α) such that in (t, r, φ, z) coordi-
nates

λµ(t) = ((−gtt)−1/2, 0, 0, 0) (16)

and we can choose the spatial frame λµ(i) to be along

the standard cylindrical coordinate axes. Then uµ =
u(α)λµ(α), where u(α) = γ(1,v) is the jet four-velocity

measured by the fundamental observers. Hence, γ =
−uµλµ(t) and a straightforward calculation reveals that

γ = γ0(1 + C2
ze
t)1/2. (17)

Here γ0 is the Lorentz factor corresponding to circular
motion with Cz = 0; that is, γ0 = (1 − β2

0)−1/2, where
β2
0 = rJX

2(rJ). For Cz 6= 0 and t → ∞, γ diverges
exponentially with time; that is, the jet speed rapidly
approaches the speed of light. The gravitational influ-
ence of the test particle on the spacetime geometry has
been neglected in our work; clearly, this approximation
eventually breaks down for the gravitomagnetic jets.

Equation (3) is invariant under the scale transforma-

tion (r,X) 7→ (r̂, X̂), where r̂ = σr and X̂ = σ−1/2X
for σ ∈ (0,∞). This scale invariance can be used to
reduce Eq. (3) to a first order system of autonomous
equations. For instance, let θ = − lnX and consider
scale-invariant variables p and q, where p(θ) = X/(rXr)
and q(θ) = (F +1)−1; then, Eq. (3) reduces to the Lotka-
Volterra system

dp

dθ
= p(p− q − 1),

dq

dθ
= q(2p− q + 1). (18)

A solution X is admissible when 0 < p < 1 for all θ;
similarly, an admissible solution allows jets when q(θ) = 1
for some θ > 0, where θ = −∞ at the symmetry axis and
θ = ∞ at the outer boundary. A detailed investigation
of system (18)—for admissible solutions that allow jets—
reveals that p/q = rX2 for q = 1 lies in the interval
(0, j), where j ≈ 0.4. This means that β0, the speed of
the free test particle on a circle of radius rJ , is such that
β0 ∈ (0, j1/2), where j1/2 ≈ 0.63.

It follows from these results that free test particles in a
gravitomagnetic jet can in principle start out with speeds
near zero, but they then inevitably undergo rapid “accel-
eration” to almost the speed of light. Similarly, one can
study the motion of other geodesics in S with respect to
the fundamental observers. In the simple numerical ex-
periments whose results are presented in Figs. 1 and 2, we
followed the variation of the Lorentz factor from the ini-
tial point to late times. There is indeed a vast difference
between the geodesics that leave S via rb and those that
are attracted to the jet—see the right panel of Fig. 1. In
the former case, the Lorentz factor initially decreases but
then increases as the geodesic exists S, remaining within
about an order of magnitude of unity. In the latter case,
the Lorentz factor quickly diverges to infinity—starting
from ≈ 3.5 (for the left-hand plot) and ≈ 2.9 (for the
right-hand plot) in Fig. 2.
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The existence of a jet is a scale-invariant property; that
is, for every admissible solution with a jet, scaling leads
to a one-parameter family of solutions of the same kind,
where the jet now occurs at σrJ . One can use this prop-
erty to set rJ = 1 for every jet solution. Thus Eq. (3)
can be integrated with initial conditions that at rJ = 1,
X(1) = ϑ−1 and Xr(1) = ϑ; in this case, rb ≈ 1− ϑ−2/2
for ϑ� 1. The solution is admissible once β2

0 = ϑ−2 < j;
that is, ϑ > j−1/2 ≈ 1.6. For example, in Fig. 1 we have
ϑ = 2 and hence β0 = 0.5 for the corresponding jet de-

picted in Fig. 2. A detailed treatment of gravitomagnetic
jets is contained in Ref. [20].

Our treatment has been greatly simplified by the as-
sumption of cylindrical symmetry; nevertheless, we hope
that in the context of general relativity similar gravito-
magnetic accelerators may emerge under physically more
realistic circumstances. In any case, this appears to be a
promising approach in the search for the origin of high-
energy astrophysical jets.

The work of CC was supported in part by the NSF
grant DMS 0604331.
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