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Collective modes and electronic spectral function in smooth edges of quantum hall systems
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We present a microscopic theory of the collective modes of a “smooth” edge of a quantum Hall system,
showing under what conditions these modes can be described as a set of independent bosons. We then calculate
the electronic spectral function in an independent-boson model—a procedure that reduces to standard
bosonization in the limit of “sharp” edge. The V tunneling characteristics deduced from this model exhibit,
for low voltage, a power-law behavior, with exponents that differ significantly from those of the sharp edge
model.[S0163-18206)51744-3

Understanding the character of edge excitations is cruciahe classical approach of AGre phononlike and lower in
to the theory of the transport properties of two-dimensionaenergy than the magnetoplasmon. We shall show that, under
systems in the presence of a strong perpendicular magnetige assumption of smooth density variation, only a finite
field, such as quantum Hall bars, quantum wires, and dotsnhumber of these phononlike modes are correctly described as
An effective theory of edge excitations was first derived byindependent bosons. . .
Wen2 He showed that a “sharp” edgesee belowis a re- In order to calculate the electronic spectral function we
alization of the one-dimensional chiral Luttinger liquid rely on the strong analogy between this problem and that of

. X ..~ a uniform electron gas in the partially filled lowest Landau
.(CLL) model,where.the electroplc spect_ral function exh'b'ts’level (LLL). The similarity between these two problems
in general, a nontrivial behavior, leading to a density of

. arises from the fact that, in both cases, in a mean field ap-
states that vanishes, at low energy, as a power law. This,,yimation, the self-consistent potential is uniform, so that
theory has been well confirmed by detailed microscopiGne glectrons are distributed among a large number of degen-
calculations and by recent experimertts. The effect of the  erate orbitals at the Fermi energy. In a smooth edge this
long range of the Coulomb interaction, which was initially gccurs because the nonuniform electronic density perfectly
ignored, has been recently included by lizke and screens the field due to the external confinement potétitial.
MacDonald® Recently, Johansson and Kindfdhave shown that a quali-
All the above papers assumed the validity of the so-calledatively correct description of the spectral functidof the
“sharp edge” model, in which the density of the system uniform electron gas in the LLL at general filling factor is
drops sharply from the bulk valug, to zero within a few given by an independent boson madgliBM) in which a
magnetic lengths= (#c/eB)Y2. There are numerous indica- single localized electron interacts with the density fluctua-
tions that this is not always the correct model for the edgetions of the system. An essentially equivalent procedure has
On one hand, Hartree-Fock calculatibrier strongly con-  been applied by Aleiner, Baranger, and Glazfiao study
fined systems predict that, at sufficiently strong magnetidhe spectral function of the two-dimensional electron liquid
field, the edge undergoes a reconstruction, taking up a mof8 a weak magnetic flelq. Finally, a formal justification of the
extended shape. On the other hand, in the casemufoth |BM from diagrammatic many-body theory has been pro-
confinement, such as can be realized by gate electrodes, tMisled by Haussmanff. Encouraged by these successes, here
electronic density is expected to have a smoothly varyingVe apply the independent boson model to the problem of the
profile (on the scale of), determined by classical electro- Smooth edge. The resulting theory reduces to standard
static equilibrium®® Detailed calculations using density bosonization in the limit of a sharp edge, ie., when there is
functional theory, Thomas-Fermi theory, and otheronly one branch of edge waves. When multlplg branches are
methods®~2* have confirmed the theoretical validity of this Present, our results for the low energy behavior of the tun-
“smooth edge” picture. Edge imaging experimefithave neling density of states are significantly different from those
confirmed the relevancy of this description for gate-confinef the sharp edge model. The actual number of modes that
Hall bars. must be included depends on the width of the edge, as ex-
In this paper we want to investigate the spectral propertieflained below. N _ _ _
of the smooth edge model described above. The mapping to Let us begin by writing down the microscopic Hamil-
a one-dimensional chiral electron liquid is not justified in thistonian, within the lowest Landau level, in terms of density
case. In fact, a recent study by Aleiner and Glazr®),'® fluctuations relative to the equilibrium density profile
based on the classical hydrodynamics approach, has shova(Y):

that a smooth edge, in contrast to a sharp edge, supports 1 2
multiple brancheof edge waves. Of these, one is the usual H= _f ;5p(F)5p(F’)d2rd2r’, (1)
edge magnetoplasmdnh,and the othersinfinitely many in 2 Jedge|r —r"|
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where the density operatgprojected in the LLL has been ez L

written as [Spnk:Opm-kl=¢€ 2 ; (Nh—ki2= Nh+kr2)
p(r)=po(y)+8p(r). ¥ X £, (h12)f o (h1?)

The integral in Eq(1) extends over the edge region, which KIZp

we take to be &cx<L, 0<y<d, with L>d>1, and trans- =——3 (8

L nm:

lationally invariant alongx [ pg(y)=0 for y<<0]. The pro-

jected density fluctuation operator is given by in agreement with the commutation rules for bosons. In ar-

riving at Eq. (8) we have assumekl <1, and we have re-
1 2 Clchei(h—k)xe— [(y—yk)2+(y—yh)2]/2lz1 placed the occupation number operators by their ground-state
JmlL AZk expectation valueg,, which amounts to a linearization of
(3)  the equations of motion around the equilibrium state. For the
commutator{ Spnk,dpm—« 1, With k#k’, we find, at the
same level of approximation, zero. This is because the com-
mutator in question contains terms of the fomjc,, with
h#h’, which vanish upon averaging in a translationally in-
variant(alongx) state. Recently, Han and Thoulgssmpub-
lished have argued that the Hamiltoni&6é) should include
an additional term describing the dynamics of the boundary
incompressible. The terms linear ¥p have vanished be- between th? compressiplg edge anq the incomp_ressible k.
I iy - - -, However, since the additional term is quadratic in the boson
cause of the equilibrium conditiorf po(r)v(r—r")d"r operators, the modified Hamiltonian can be redaster a
+ Vex{(r) = const whereV,,(r) is the confinement potential. unitary transformationin the form of Eq.(6), with modified,
Therefore the problem is formally similar to that of a trans-put qualitatively similar, eigenfrequencies.
lationally invariant electron gas: the nonuniformity enters Having thus completed the bosonization of the Hamil-
only through the restricted region of integration in Eg). tonian, we proceed to the calculation of the spectral function
The normal mode operato@p, are now introduced ac- within the independent boson mod&f° The model de-

cording to the definition scribes a single electron, localized at painelectrostatically
coupled to density fluctuations:

Sp(r)=

wherey,=hl?, h andk are integral multiples of 2/L, and

cl is the creation operator of a Landau gauge orbital centere
aty, with wave vectoik in the x direction. Note the restric-
tion h#k, which excludes the equilibrium component of the
density. The kinetic energy is absent in Ed)) due to pro-
jection on the LLL, and we have assumed that density fluc
tuations vanish in the bulk of the system, i.e., the bulk is

Ldx . _(d
Spnk= fO Teilkxfo dyfo(y)dp(X,y), (4)

_ , Hiew= X fionubhba
wheref,(y) are the solutions of the equation nk>0

d A 1 TOENI(E T aikx —ikx
| Koty =y Dty p(’,()—y) dy' =5 faly), HOUD) 2 MoV [0+ by
whereKy(y) is the modified Bessel function. They satisfy ©
the orthonormality conditionfgfnk(y)fmk(y)[p(’)(y)/ﬂdy where the matrix elemerl . (y) is given by
= 6,m, and vanish outside the intenjd,d]. Equation(5) is
the eigenvalue problem solved by AG. T eigenfunction 2e? kl<p
hasn nodes in they direction. In terms of the normal modes, Mni(y) = }\_nkfnk(y) N1 (10

the Hamiltonian(1) takes the form
and z//T(F) is the field operator that creates an electron in the

H= > fionb! bk, (6)  LLL coherent state(Gaussiah orbital centered at. The
nk>0 Hamiltonian(9) can be solved by standard methd8syithin

where the operators,, are defined viaspy,= kI p/Lb:ﬂk the one-electron Hilbert space. The fermionic Green'’s func-

and the eigenfrequencies, are given bykve?/\ 7, and tion is obtained as

v=2mxl%p is the usual filling factor in the bulk.

It remains to be determined under what conditions the G=(Yit)=—i(s(r,t)y'(r,0))

operatord,, are good boson operators. To this end we sub- M2 (y)

stitute Eq.(3) in Eq. (4), noting that whem<d/| the Gauss- =[1— Vo(y)]exp< > ﬁnk_[e_i“’nkt—l] ,
ian factors in the integral can be replaced &functions on nk>0  @npg

the scale of variation of ;.. We obtain (11)

wherevg(y)=2ml%py(y), and the sum oven andk in the
exponent is restricted by the conditionscd/l andk<1/,
which define the regime of validity of the hydrodynamic
The commutator of two density fluctuations can now beapproximation. This result can also be obtained from direct
easily calculated to be . bosonization of the electron field operator, as in Ref. 21. The

1
_ K22
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Fourier transform ofG(y,t)/27 is the spectral function

A-(y,») and gives the local density of states, which con-
trols the tunneling current from a point contact located at

position y into the edge. From Eq(1l) it can be easily
showrf® that A_ (y,w) satisfies the integral equation

WA (Y, w) = fowg<mA><y.w—mdQ, (12
where
M(y)?
g(y,mE% C:(Z) (= wpy). (13

Equation(12), together with the condition&- (y,w)=0 for
w<0 and [jA-(Y,0)dw=1-vy(y), completely deter-

mines the spectral function. This equation further implies

that, at sufficiently smalls, A~ (y,) will have a power-law
behavior

A(Y,w)~ w901 (14

if and only if the functiong(y,Q)) has a finite limit for
0 —0. The tunneling currerit, as a function of voltag®/,
will then behave a®&9%:9 for sufficiently low voltage. No-
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FIG. 1. Electronic spectral functioA.(w) as a function of
ol vy, wherewy=ve?/l, for edges of ay=1 quantum Hall sys-
tem with 1, 2, 3, 4, 6, and 10 modes. Logarithmic corrections to the
edge magnetoplasmon dispersion are neglected. The dependence on

1.5 2

tice that this conclusion is completely general, and does nat and po(y) have been eliminated neglecting the constant

depend on the specifibydrodynami¢ model that led to the
definition of g(y,Q)) in Eqg. (13). In the general case,

g(y,Q) could be computed from the microscopic density-

density response functio,ﬂ(F,F’,Q) of the edge as follows:

g(y,Q)=J d?r'd2ru (r=r")u(r—r")Imy(r',r",Q)/Q,
(15)

where v(r—r’) has the Fourier transformu (k)
= (2me?/k)exp(— (kl)%4).?2 An important advantage of this

1—wo(y) and usingB,=1/v, w,= ve®k/=n. The integral ovek
has been cut off as explained in the text.

an average value of #/in a way dependent on the form of
the equilibrium density profile of the edge. This can be con-
firmed by explicit calculation in the special case
po(y)=(2/m)p arctan/y/d considered by AG for a gate-
confined electron gas, leading to the result
Ba(Y) = (1) T3, [ JdI(y+d)](2— 8,0), whereT,(y) is the

nth Chebyschev polynomial. We conclude that the exponent
in Eq. (14) increases linearly witld and therefore that in the

microscopic formulation is that the finite lifetime of the col- limit d—o (limit of infinitely smooth edgg the tunneling
lective modegwhich is assumed to be infinite in the hydro- density of states vanishes at low energy faster than any
dynamic model would be taken into account through the power law, that is, a “hard” gap develops. However, it is

width of the peaks in In.

The calculation of the exponerg(y,0) is easily per-
formed within the hydrodynamic model.
weak nonlinearity of the n=0 modé* we obtain

g(YvO):Enﬂn(y), where
1 2
B(Y)==Fro(¥)- (16)

Although the cutoff ah=d/l introduces an uncertainty in
the evaluation of the exponent at any givetnve emphasize

easy to see that the power-law behavior of Etd) only
holds for w<ve?/dw—an interval that shrinks to zero for

Neglecting the d— .

In Fig. 1 we present our numerical results for the full

electronic spectral function, calculated from E#j2) within

the hydrodynamic model for different edge widthsin con-
trast to the analysis of the low-frequency behavior, this cal-
culation depends on the detailed form of the eigenfunctions
fo(y) and eigenfrequencies,. From a detailed study of
the solutions of the eigenvalue equati(® we have found
that thef,,’'s can be treated as being independenk a&nd

that there would be no uncertainty if one used the microthe w,’s to be linear functions ok up to a maximum wave

scopic formula(15) for g(y,{). Our approximate hydrody-

vector k.=n/d for which the wavelength along the edge

namic evaluation of the exponent should be in good qualitaequals the wavelength perpendicular to the edge.kEek,
tive agreement with the results of the more accuratehe mode dispersion becomes approximately constant, and

microscopic calculation.

the wave functiorf,,, becomes localized near the boundaries

We observe that independently of the shape of the densityf the edge region, giving negligible contribution to the spec-

profile Bo(y) = 1/v, with negligible corrections arising from
the weak nonlinearity of the dispersion of the=0 mode.

tral function. The results presented in Fig. 1 have been ob-
tained using the double cutoff<d/l andk<k.: the results

Therefore in the sharp edge limit, when only one branch otre found to be largely independent of the details of the
edge waves exists, we recover the familiar result of Wen'sutoff procedure.

theory A~ (w)~ w1 Forn>1 B,(y) fluctuates around

Figure 1 shows clearly how the low energy pseudogap
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becomes more and more pronounced with increagifand,  frequency as a power, with an exponent that differs signifi-
therefore, increasing number of branches of edge wa#es  cantly from the one found in the sharp edge case. Recent
very larged the spectral function is found to converge to aexperiments by Chaighave apparently confirmed the pre-
8 function centered ab,=v€®/ ml, which coincides with the  dictions of the CLL for the exponent of the tunneling density
simplest estimate of the potential energy cost for the inserof states in a sharp edge. It should be interesting to extend
tion of an electron into a frozen liqufd. these studies to see if and how the exponents change as the
Our results ford—c are in qualitative agreement with smoothness of the edge is varied.
those obtained in Refs. 18 and 22 for the spectral function of
the homogeneous electron gas, except that the latter is found We gratefully acknowledge support from NSF Grant No.
to have a finite width. This happens because our hydrodyPMR-9403908. One of u$S.C) acknowledges travel sup-
namic approach is unable to give the gapful collective modegort from Scuola Normale Superiore. We thank Allan Mac-
of the homogeneous fluid phaSeand hence our spectral Donald and Ulrich Zlicke for discussions and for sharing
function does not reduce to that of the homogeneous phas#ie results of their work prior to publication. One of us
In conclusion, we have performed an independent bosofiG.V.) acknowledges very useful discussions with I. L.
model calculation of the tunneling density of states for aAleiner and L. I. Glazman and the hospitality of the Aspen
smooth edge, and we have found that it vanishes at lowCenter of Physics where part of the work has been done.
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