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We present a microscopic theory of the collective modes of a ‘‘smooth’’ edge of a quantum Hall system,
showing under what conditions these modes can be described as a set of independent bosons. We then calculate
the electronic spectral function in an independent-boson model—a procedure that reduces to standard
bosonization in the limit of ‘‘sharp’’ edge. TheI -V tunneling characteristics deduced from this model exhibit,
for low voltage, a power-law behavior, with exponents that differ significantly from those of the sharp edge
model.@S0163-1829~96!51744-3#

Understanding the character of edge excitations is crucial
to the theory of the transport properties of two-dimensional
systems in the presence of a strong perpendicular magnetic
field, such as quantum Hall bars, quantum wires, and dots.1

An effective theory of edge excitations was first derived by
Wen.2 He showed that a ‘‘sharp’’ edge~see below! is a re-
alization of the one-dimensional chiral Luttinger liquid
~CLL! model, where the electronic spectral function exhibits,
in general, a nontrivial behavior, leading to a density of
states that vanishes, at low energy, as a power law. This
theory has been well confirmed by detailed microscopic
calculations3 and by recent experiments.4,5 The effect of the
long range of the Coulomb interaction, which was initially
ignored, has been recently included by Zu¨licke and
MacDonald.6

All the above papers assumed the validity of the so-called
‘‘sharp edge’’ model, in which the density of the system
drops sharply from the bulk valuer0 to zero within a few
magnetic lengthsl5(\c/eB)1/2. There are numerous indica-
tions that this is not always the correct model for the edge.
On one hand, Hartree-Fock calculations7 for strongly con-
fined systems predict that, at sufficiently strong magnetic
field, the edge undergoes a reconstruction, taking up a more
extended shape. On the other hand, in the case ofsmooth
confinement, such as can be realized by gate electrodes, the
electronic density is expected to have a smoothly varying
profile ~on the scale ofl ), determined by classical electro-
static equilibrium.8,9 Detailed calculations using density
functional theory, Thomas-Fermi theory, and other
methods10–14 have confirmed the theoretical validity of this
‘‘smooth edge’’ picture. Edge imaging experiments15 have
confirmed the relevancy of this description for gate-confined
Hall bars.

In this paper we want to investigate the spectral properties
of the smooth edge model described above. The mapping to
a one-dimensional chiral electron liquid is not justified in this
case. In fact, a recent study by Aleiner and Glazman~AG!,16

based on the classical hydrodynamics approach, has shown
that a smooth edge, in contrast to a sharp edge, supports
multiple branchesof edge waves. Of these, one is the usual
edge magnetoplasmon,17 and the others~infinitely many in

the classical approach of AG! are phononlike and lower in
energy than the magnetoplasmon. We shall show that, under
the assumption of smooth density variation, only a finite
number of these phononlike modes are correctly described as
independent bosons.

In order to calculate the electronic spectral function we
rely on the strong analogy between this problem and that of
a uniform electron gas in the partially filled lowest Landau
level ~LLL !. The similarity between these two problems
arises from the fact that, in both cases, in a mean field ap-
proximation, the self-consistent potential is uniform, so that
the electrons are distributed among a large number of degen-
erate orbitals at the Fermi energy. In a smooth edge this
occurs because the nonuniform electronic density perfectly
screens the field due to the external confinement potential.8,9

Recently, Johansson and Kinaret18 have shown that a quali-
tatively correct description of the spectral function19 of the
uniform electron gas in the LLL at general filling factor is
given by an independent boson model20 ~IBM ! in which a
single localized electron interacts with the density fluctua-
tions of the system. An essentially equivalent procedure has
been applied by Aleiner, Baranger, and Glazman21 to study
the spectral function of the two-dimensional electron liquid
in a weak magnetic field. Finally, a formal justification of the
IBM from diagrammatic many-body theory has been pro-
vided by Haussmann.22 Encouraged by these successes, here
we apply the independent boson model to the problem of the
smooth edge. The resulting theory reduces to standard
bosonization in the limit of a sharp edge, i.e., when there is
only one branch of edge waves. When multiple branches are
present, our results for the low energy behavior of the tun-
neling density of states are significantly different from those
of the sharp edge model. The actual number of modes that
must be included depends on the width of the edge, as ex-
plained below.

Let us begin by writing down the microscopic Hamil-
tonian, within the lowest Landau level, in terms of density
fluctuations relative to the equilibrium density profile
r0(y):

H5
1

2Eedge
e2

urW2rW8u
dr~rW !dr~rW8!d2rd2r 8, ~1!
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where the density operator~projected in the LLL! has been
written as

r~rW !5r0~y!1dr~rW !. ~2!

The integral in Eq.~1! extends over the edge region, which
we take to be 0,x,L, 0,y,d, with L@d@ l , and trans-
lationally invariant alongx @r0(y)50 for y,0]. The pro-
jected density fluctuation operator is given by

dr~rW !5
1

Ap lL
(
hÞk

ck
†che

i ~h2k!xe2 @~y2yk!21~y2yh!2#/2l2,

~3!

whereyh5hl2, h andk are integral multiples of 2p/L, and
ck
† is the creation operator of a Landau gauge orbital centered
at yk with wave vectork in thex direction. Note the restric-
tion hÞk, which excludes the equilibrium component of the
density. The kinetic energy is absent in Eq.~1! due to pro-
jection on the LLL, and we have assumed that density fluc-
tuations vanish in the bulk of the system, i.e., the bulk is
incompressible. The terms linear indr have vanished be-
cause of the equilibrium condition*r0(rW)v(rW2rW8)d2r 8
1Vext(rW)5const whereVext(rW) is the confinement potential.
Therefore the problem is formally similar to that of a trans-
lationally invariant electron gas: the nonuniformity enters
only through the restricted region of integration in Eq.~1!.

The normal mode operatorsdrnk are now introduced ac-
cording to the definition

drnk5E
0

L dx

L
e2 ikxE

0

d

dy fnk~y!dr~x,y!, ~4!

where f nk(y) are the solutions of the equation

E
0

d

K0~kuy2y8u! f nk~y8!
r08~y!

r̄
dy85

1

lnk
f nk~y!, ~5!

whereK0(y) is the modified Bessel function. They satisfy
the orthonormality condition*0

df nk(y) f mk(y)@r08(y)/ r̄ #dy
5dnm , and vanish outside the interval@0,d#. Equation~5! is
the eigenvalue problem solved by AG. Thenth eigenfunction
hasn nodes in they direction. In terms of the normal modes,
the Hamiltonian~1! takes the form

H5 (
nk.0

\vnkbnk
† bnk , ~6!

where the operatorsbnk are defined viadrnk[Akl2r̄/Lbnk
†

and the eigenfrequenciesvnk are given bykn̄e2/lnkp, and
n̄52p l 2r̄ is the usual filling factor in the bulk.
It remains to be determined under what conditions the

operatorsbnk are good boson operators. To this end we sub-
stitute Eq.~3! in Eq. ~4!, noting that whenn!d/ l the Gauss-
ian factors in the integral can be replaced byd functions on
the scale of variation off nk . We obtain

drnk.e2k2l2/4
1

L(h ch2k/2
† ch1k/2f nk~hl

2! ~n!d/ l !. ~7!

The commutator of two density fluctuations can now be
easily calculated to be .

@drnk ,drm2k#5e2k2l2/2
1

L2 (
h

~nh2k/22nh1k/2!

3 f nk~hl
2! f mk~hl

2!

.2
kl2r̄

L
dnm , ~8!

in agreement with the commutation rules for bosons. In ar-
riving at Eq. ~8! we have assumedkl!1, and we have re-
placed the occupation number operators by their ground-state
expectation valuesnk , which amounts to a linearization of
the equations of motion around the equilibrium state. For the
commutator @drnk ,drm2k8#, with kÞk8, we find, at the
same level of approximation, zero. This is because the com-
mutator in question contains terms of the formch

†ch8 with
hÞh8, which vanish upon averaging in a translationally in-
variant~alongx) state. Recently, Han and Thouless~unpub-
lished! have argued that the Hamiltonian~6! should include
an additional term describing the dynamics of the boundary
between the compressible edge and the incompressible bulk.
However, since the additional term is quadratic in the boson
operators, the modified Hamiltonian can be recast~after a
unitary transformation! in the form of Eq.~6!, with modified,
but qualitatively similar, eigenfrequencies.

Having thus completed the bosonization of the Hamil-
tonian, we proceed to the calculation of the spectral function
within the independent boson model.18,20 The model de-
scribes a single electron, localized at pointrW, electrostatically
coupled to density fluctuations:

H IBM5 (
nk.0

\vnkbnk
† bnk

1c†~rW !c~rW ! (
nk.0

Mnk~y!@bnk
† eikx1bnke

2 ikx#,

~9!

where the matrix elementMnk(y) is given by

Mnk~y!5
2e2

lnk
f nk~y!Akl2r̄

L
, ~10!

andc†(rW) is the field operator that creates an electron in the
LLL coherent state~Gaussian! orbital centered atrW. The
Hamiltonian~9! can be solved by standard methods,20 within
the one-electron Hilbert space. The fermionic Green’s func-
tion is obtained as

G.~y;t ![2 i ^c~rW,t !c†~rW,0!&

5@12n0~y!#expS (
nk.0

Mnk
2 ~y!

vnk
2 @e2 ivnkt21# D ,

~11!

wheren0(y)[2p l 2r0(y), and the sum overn andk in the
exponent is restricted by the conditionsn!d/ l and k!1/l ,
which define the regime of validity of the hydrodynamic
approximation. This result can also be obtained from direct
bosonization of the electron field operator, as in Ref. 21. The
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Fourier transform ofG(y,t)/2p is the spectral function
A.(y,v) and gives the local density of states, which con-
trols the tunneling current from a point contact located at
position y into the edge. From Eq.~11! it can be easily
shown23 thatA.(y,v) satisfies the integral equation

vA.~y,v!5E
0

v

g~V!A.~y,v2V!dV, ~12!

where

g~y,V![(
nk

Mnk~y!2

vnk
d~V2vnk!. ~13!

Equation~12!, together with the conditionsA.(y,v)50 for
v,0 and *0

`A.(y,v)dv512n0(y), completely deter-
mines the spectral function. This equation further implies
that, at sufficiently smallv, A.(y,v) will have a power-law
behavior

A~y,v!;vg~y,0!21 ~14!

if and only if the functiong(y,V) has a finite limit for
V→0. The tunneling currentI , as a function of voltageV,
will then behave asVg(y,0) for sufficiently low voltage. No-
tice that this conclusion is completely general, and does not
depend on the specific~hydrodynamic! model that led to the
definition of g(y,V) in Eq. ~13!. In the general case,
g(y,V) could be computed from the microscopic density-
density response functionx(rW,rW8,V) of the edge as follows:

g~y,V!5E d2r 8d2r 9v~rW2rW8!v~rW2rW9!Imx~rW8,rW9,V!/V,

~15!

where v(rW2rW8) has the Fourier transform v(kW )
5(2pe2/k)exp(2(kl)2/4).22 An important advantage of this
microscopic formulation is that the finite lifetime of the col-
lective modes~which is assumed to be infinite in the hydro-
dynamic model! would be taken into account through the
width of the peaks in Imx.

The calculation of the exponentg(y,0) is easily per-
formed within the hydrodynamic model. Neglecting the
weak nonlinearity of the n50 mode24 we obtain
g(y,0)5(nbn(y), where

bn~y!5
1

n̄
f n0
2 ~y!. ~16!

Although the cutoff atn5d/ l introduces an uncertainty in
the evaluation of the exponent at any givend, we emphasize
that there would be no uncertainty if one used the micro-
scopic formula~15! for g(y,V). Our approximate hydrody-
namic evaluation of the exponent should be in good qualita-
tive agreement with the results of the more accurate
microscopic calculation.

We observe that independently of the shape of the density
profile b0(y)51/n̄, with negligible corrections arising from
the weak nonlinearity of the dispersion of then50 mode.
Therefore in the sharp edge limit, when only one branch of
edge waves exists, we recover the familiar result of Wen’s
theory A.(v);v1/n̄ 21. For n.1 bn(y) fluctuates around

an average value of 1/n̄ in a way dependent on the form of
the equilibrium density profile of the edge. This can be con-
firmed by explicit calculation in the special case
r0(y)5(2/p) r̄ arctanAy/d considered by AG for a gate-
confined electron gas, leading to the result
bn(y)5(1/n̄)T2n

2 @Ad/(y1d)#(22dn0), whereTn(y) is the
nth Chebyschev polynomial. We conclude that the exponent
in Eq. ~14! increases linearly withd and therefore that in the
limit d→` ~limit of infinitely smooth edge! the tunneling
density of states vanishes at low energy faster than any
power law, that is, a ‘‘hard’’ gap develops. However, it is
easy to see that the power-law behavior of Eq.~14! only
holds forv! n̄e2/dp—an interval that shrinks to zero for
d→`.

In Fig. 1 we present our numerical results for the full
electronic spectral function, calculated from Eq.~12! within
the hydrodynamic model for different edge widthsd. In con-
trast to the analysis of the low-frequency behavior, this cal-
culation depends on the detailed form of the eigenfunctions
f nk(y) and eigenfrequenciesvnk . From a detailed study of
the solutions of the eigenvalue equation~5! we have found
that the f nk’s can be treated as being independent ofk and
thevnk’s to be linear functions ofk up to a maximum wave
vector kc5n/d for which the wavelength along the edge
equals the wavelength perpendicular to the edge. Fork.kc
the mode dispersion becomes approximately constant, and
the wave functionf nk becomes localized near the boundaries
of the edge region, giving negligible contribution to the spec-
tral function. The results presented in Fig. 1 have been ob-
tained using the double cutoffn,d/ l andk,kc : the results
are found to be largely independent of the details of the
cutoff procedure.

Figure 1 shows clearly how the low energy pseudogap

FIG. 1. Electronic spectral functionA.(v) as a function of
v/v0, wherev05 n̄e2/p l , for edges of an̄51 quantum Hall sys-
tem with 1, 2, 3, 4, 6, and 10 modes. Logarithmic corrections to the
edge magnetoplasmon dispersion are neglected. The dependence on
y and r0(y) have been eliminated neglecting the constant
12n0(y) and usingbn51/n̄, vnk5 n̄e2k/pn. The integral overk
has been cut off as explained in the text.
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becomes more and more pronounced with increasingd ~and,
therefore, increasing number of branches of edge waves!. For
very larged the spectral function is found to converge to a
d function centered atv05 n̄e2/p l , which coincides with the
simplest estimate of the potential energy cost for the inser-
tion of an electron into a frozen liquid.22

Our results ford→` are in qualitative agreement with
those obtained in Refs. 18 and 22 for the spectral function of
the homogeneous electron gas, except that the latter is found
to have a finite width. This happens because our hydrody-
namic approach is unable to give the gapful collective modes
of the homogeneous fluid phase,25 and hence our spectral
function does not reduce to that of the homogeneous phase.

In conclusion, we have performed an independent boson
model calculation of the tunneling density of states for a
smooth edge, and we have found that it vanishes at low

frequency as a power, with an exponent that differs signifi-
cantly from the one found in the sharp edge case. Recent
experiments by Chang5 have apparently confirmed the pre-
dictions of the CLL for the exponent of the tunneling density
of states in a sharp edge. It should be interesting to extend
these studies to see if and how the exponents change as the
smoothness of the edge is varied.
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