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Density-functional theory of the phase diagram of maximum-density droplets
in two-dimensional quantum dots in a magnetic field
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We present a density-functional thedFT) approach to the study of the phase diagram of the maximum-
density drople{MDD) in two-dimensional quantum dots in a magnetic field. Within the lowest Landau level
(LLL) approximation, analytical expressions are derived for the values of the pararietgnsmber of
electron$ and B (magnetic fieldl at which the transition from the MDD to a “reconstructed” phase takes
place. The results are then compared with those of full Kohn-Sham calculations, giving thus information about
both correlation and Landau level mixing effects. Our results are also contrasted with those of Hartree-Fock
(HF) calculations, showing that DFT predicts a phase diagram, which is in better agreement with the experi-
mental results and the result of exact diagonalizations in the LLL than the HF calculations.
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Two-dimensional quantum dot systems, at high magnetiof the electrons costs too much electrostatic energy. The
fields, have been recently studied by various authdfee  electrostatic stress is released through a rearrangement of the
theoretical interest in these systems arises largely from thelectrons leading to a state of higher angular momentum. If,
fact that they provide a few-electron realization of physicalon the other hand, the magnetic field is too weak, the con-
states that, in the macroscopic limit, are responsible for thgnement energy will cause the external electrons in the
occurrence of the quantum Hall effécfThe simplest ex- MDD to be transferred to the center of the quantum dot, even
ample of such a state is the so-called maximum-density dropgtough, in so doing, a higher Landau level becomes popu-
let (MDD), which, in the limit of a high magnetic field, can |ateq at the center of the dot. The conclusion of these argu-
be written as a Slater determinant of lowest Landau level,ants is that there will exist. at most. a “window” of mag-
§\II‘L_L) r(])rbltals t;N'th z]:mg:ular rrgglmer;]ta lQl ' ';Ia 1, Whﬁ_re netic fields in which the MDD is stable. The window shrinks

Is the number of electronsin the limit of N—c this ith increasing electron numbér and closes up completely
coincides with the incompressible state of the quantum Hal t a critical valueN.. of N of the order of 100. Note that this
effect at filling factorv=1. Because, within the LLL, the . . G . . . .

is not in contradiction with the existence of incompressible

MDD is the only N-electron state of angular momentum hases in the macroscopic limit: It is only telling us that such
N(N—1)/2 (and there is none with lower angular momen- P . pic fimit. y 9
phases will have compressible edges.

tum) it follows that it must be an exact eigenstate of the - N .
Hamiltonian The problem of determining quantitatively the region of

stability of the MDD has been studied both theoretically and
experimentally’=® There exists a disagreement between the

He E 1 ( - EAi 2+ Em* wgrzl experimental results and theoretical predictions regarding the
i=1|2m* c 2 window of values of the magnetic field for which the MDD
, N N N is the ground stat® Correlation effects have been indicated
n e D 1 +9* usBS o 1 asa possible cause for this disagreement since they were not
2k &1 i iyl atar—d accounted for in the theoretical analysis, which was based on

the Hartree-Fock approximation. The importance of correla-
if the small Coulomb coupling between different Landau lev-tions has been demonstrated for the case of small quantum
els is neglected. Herey is the frequency of the external dots>
parabolic potentialA; is the external vector potentidt, is Here we present an analytic treatment based on density-
the dielectric constantn* is the electron effective masgg ~ functional theory, which includes both exchange and corre-
is the Bohr magnetong* is the effectiveg factor for the lation effects. We shall calculate the values of the magnetic
Zeeman splitting, andr; is the spin component along the field at which the transition from the MDD to a new phase
axis perpendicular to the plane of the electrons. The questioi@kes place, as well as the angular momentum of the new
is whether this exact eigenstair rather its continuation to phase, supposed to lie entirely within the lowest Landau
a finite magnetic fielfcan actually be thground stateof the  level. Within this treatment the transition from one state to
quantum dot in some range of magnetic fields. The basithe other can be entirely described by means of a single
physics is simple: If the magnetic field is too large, the MDD dimensionless parametera=m* w3k\%/e? giving the
cannot be the ground state because the compact arrangemstiength of the parabolic potential in terms of ratio between
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the confining energy and the electrostatic energy existing awithin a local-density approximation AE,.~ €,.(1)

the typical length scale of a magnetic lengthk- A c/eB. =€f(1)(e’/k\), where we have neglected variations in the
We also perform a numerical evaluation, based on the solutail of the MDD and we have again replaced the orbital den-
tion of the Kohn-Sham equation, wheat Landau levels are  sities with § functions. €,.(1) is the exchange-correlation
included, showing that their inclusion shrinks the magnetic-energy per particle of a uniform electron gas for filling factor
field window of stability of the MDD. As a by-product of our v=27n(r)I?=1. We then arrive at

approach we determine the maximum number of electrons

for which the MDD can be the ground state. E[Nvpp ., N]—E[n,,a,N]
Density-functional theory has already been applied suc-
cessfully to systems in the presence of a magnetic field, e’ 2V2N _[h+1| 2y2(N+1)
thus establishing it as a useful tool for studying such sys- ~ x| ¢ h=N) . E N | -
tems. The total energy of a quantum dot is
JPR.LLL el [l s
e n(ryn(r — | = 1- -
E[n]=fdrV(r)n(r)+ﬂJ' drﬁJrEXC[n]. N+1 N+1/ \N+1/] 272(h+1)
r—r
: . L 1
In this expression we have assumed that the system is within w|qiro 2(h+ 1)1—- ————In[2V2(N+ 1
the lowest Landau level, thus omitting the constant kinetic- [ ( )] 272(N+1) [ ( )]
energy termi w./2, wherew.=eB/m* ¢ is the cyclotron fre-
quency. V(r) represents the parabolic confining potential 2 h+1 N
1k, 2,2 2(a2/1y 3 ; - + K +€c(1) 1, ©)
V(r)=3m* wir?=(a/2)r?(e’/kx®). The dimensionless pa- my2(N+1) \N+1

rameter « gives the strength of the parabolic potential.

E,Jn] is the exchange-correlation energy functional. NowWhereK(x) andE(x) are the complete elliptic integrals of
let nypp(r) be the density of the MDD amal (r) the density ~ the first and the second kind, respectively.

of the reconstructed edge obtained immediately after the By equating the left-hand side of E() to zero, namely,
transition from the MDD takes place, for example, by anby looking at the transition from the MDD to the recon-
increase of the magnetic field. In the lowest Landau leveptructed edge, one gets the value ®@¥ a;(N;h), which
picture the MDD is obtained by filling the orbitals with an- characterizes this transition. The reconstructed phase occurs
gular momentum from =0 to I=N—1, the system being Whena<a;(N;h), for a given value oth. Therefore, the
fully spin polarized. The reconstructed edge can be viewedposition of the first hole in the reconstructed edge is obtained
as being generated from the MDD by removing one electrody maximizinga;(N;h) with respect tch. This permits also
from an orbital ¢, with angular momentum €h<N-1  one to derive the maximum possible valug(N) for which

and putting it in the single-particle orbitaty with angular ~ a transition from the MDD to the reconstructed edge is pos-
momentum N. Therefore, n,(r)=nypp(r)—|®n(r)|?>  sible. If N is sufficiently large and~N, we have

+|én(r)|2. The transition from one state to the other for a

given number of electrons tstally determined by the value 2@[ h+1 .
of the parametew. Its critical valuea; is obtained by solv- ay(N;h)~ N-h| = | N | Ht+edDf. 4
ing E[Nypp @1, N]=E[n,,a1,N]. The energy difference
between the two states can then be written as Differentiation with respect td gives
E[nMDD,a,N]—E[nr,a,N]=fdr V(D[] n(r)|2 day 1 [ 2\2N [E(hﬂ exo(1)

sh ~ N=h|a(N=h)| "\ N N—h

—|n(r)?]+AEL+AE,.

2 1 (3 1 h+1

. 22N 1272 N ]
We are now going to evaluate separately each term on the

right-hand side of Eq(2). The first term is easily obtaingd with ,F(a,b:c;z) the hypergeometric function. Under the
f“;m the2 secogd moment of the Landau orbitalsyhesis which we shall show is valid, &N, the ratio
R =Jdr ré[¢y(r)[*=27*(I[ +1). ) (h+1)/N is a number smaller than one, but close to unity.
_In order to proceed we approximate the MDD as a systeMherefore, in order to find an expression for the change
with uniform density, having th&\ electrons in a disk of = f angular momentum associated with the reconstruction
radiusRypp= V2N\. The densities associated with the or- of the edge, it makes sense to use an expansion of the
bitals ¢(r) and ¢y(r) are treated as properly normalized hypergeometric function in terms of -1z,° as well
delta functiong ¢ (r)|*~&(r—R)/27R,, in the terms that a5 the approximatid E[z]~1+(1—2z)[a;—b,In(1-2)]
involve the interaction of any of these two orbitals with the(a1:0_443 251 414 63 anth, =0.249 983 683 10) and re-
MDD and with each other. The self-interaction of the orbit- 15in the lowest-order terms in (z), obtaining thus

als ¢, is treated as that of rings whose electrostatic energy is

e?/2kC, with the capacitance of the ring

Ci=7R//[In(2R/\)]. The variation of the exchange- %N 1 IZ\/E N_h[aﬁ bﬂn(i
correlation energy between the two states can be evaluated?h (N—h)zl T N [ N—h

+ ffc(l)]
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———————— 1 [2@[1_E(|+1”

3.20 a=ay(N;l)~— —— —_
200 N (|+1)[ T | N
2.80 In(2y2N) In{2[y2(1+1)]}
2.60 - -
240 22N 2my2(1+1)
£ 22 2 (l1+1
' + —K(— +e(1)f. 8
Z 2,00 ﬂ_\/m N xe(1) 8
1.80
1.60 . .
1.40 1 In Eq. (8), the last term accounts for the change in exchange-
’ correlation energy, while the remaining ones are purely elec-
1.20 ) trostatic and represent the energy required for moving a
100 = a0 50 80 100 120 140 160 180 200 charge distribution located arouri®l,_, to a neighborhood
N of R,. We see that this region of the phase diagram is domi-

nated by electrostatics, exchange-correlation effect being of

FIG. 1. Change of angular momentuiit-h in going from the  piahar order in 1fN. The expression for EG8) has to be
MDD to the reconstructed edge scaled Y, as obtained by maxi-  piimized with respect td in order to obtain the first con-

mizing a;(N; ) with respect toh. The dashed line represents the o ration that gives the ground state when the MDD is lost
asymptotic value of Eq(7). for an increase ofx. Considering the terms with leading
order inN, we find that the resulting expression is monotoni-

1 V2 oln2—1 | cally increasing withl. Hencel=0 is the angular momen-
N—h 7N ne=1+5n8n) | ©  tum that minimizesa,. Therefore,
Application of the conditioma,/dh=0 to Eq.(6) results in 7—2 €(1)
a3 (N)=~\2—=——"T—. ©
/N N
mex (1)
N—h~— » W, M
2\/§[a1—§(2In2—1)] From the previous analysis we conclude that the MDD is a

ground state whenever; <a<aj . Since the expressions

where we have used b4~1. The value of for a; and a3 dependonly on the number of electron,
€.(1)=—0.701%%/kl gives N—h~3.115/N. The same the maximum valu&\ for which the MDD is a ground state
scaling behavior was found numerically by Oakminal,'*  for some values of is obtained fromy; (N) = a7 (N¢). By
with the only difference in the value of the prefactor, which solving the previous equation by means of E@g.and(9),
was 2 in their case. The difference between our and theiwe getN.=222. If instead we use the expressions for the
results might be a consequence of the fact that the latter have*'s as obtained by equating to zero H) and from Eq.
been obtained for systems smaller than those in which théB), finding then their maximum with respect toand mini-
asymptotic behavior of E(7) applies. We also notice that mum with respect td, respectively, we obtail,=160.
introducing the result of Eq7) in Eq. (4), the latter agrees The above discussion was limited to the lowest Landau
with the behavior for? predicted by de Chamon and Wén, level. We now turn to considering the effects coming from
except for the value of the numerical factors. The differencghe inclusion of higher Landau levels. In this case the full
in the prefactors is due to the fact that while in our case weKohn-Sham equations for the quantum dot must be solved.
obtain it from an asymptotic behavior, de Chamon and Werin Fig. 2 we present the results for tBeN phase diagram of
determined it in terms of a fitting procedure. In Fig. 1 wethe MDD, where we have used for the parabolic potential the
present the increase of angular momentum with respect t¢alue obtained by Kleiret al.® from the fit of their data via
the MDD after the edge reconstruction takes place, scaled by Hartree-FockHF) calculation, namelys wo=2.1meV.
the square root of the number of electrons, as a function of The most prominent featurén comparison to the LLL
the number of electrons in the dot, obtained by numericallygpproximation is a narrowing of the window of magnetic
finding the maximum with respect to of a;(N;h) as ob- fields for which the MDD is the ground state. In particular,
tained by equating to zero the left-hand side of B). The  N.~37 for the particular value chosen for the parabolic po-
asymptotic value of Eq(7) for large dots, represented by a tential. If we denote by;(N) andB,(N) the minimum and
dashed line in Fig. 1, is approached very slowly, basically formaximum values of magnetic field that can support the MDD
values much larger than those considered in the figure.  for the numbeiN of electrons at the given value of the para-

The other boundary of the MDD region of the phase dia-bolic potential, we find that the slopes of the phase bound-
gram is derived in an analogous fashion. Here the new phasaies x;(N) =[B;(N)—B;(N—1)]"! (i=1,r) have the val-
is described by flipping the spin of one electron in the MDD ues of x,(27)=2.6x 103G and x,(27)=4.3x10 3G 1,
and putting it into a state with angular momentumcompared to the experimental values of(27)=(3
0=<I<N-2. The transition between the two phases occurs-1)x 10 3G~ ! and,(27)=(8+1.5)x10 3G L. By con-
when trast HF results give x,(27)=2.2x103G™! and
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x:(27)=3.2x10°G™*. This shows that density-functional - 00000008651’
theory (DFT_) pr(;vides a significant improvement upon the 7370 . . L
HF calculations: 0 5 o 15 20

Our calculations show that Landau level mixing is essen-
tial to an accurate determination of the phase Qiggram ofthe £ 3. Evolution of the energy for the MDD and the “one-
MDD. Correlation effects are manifested by giving a morepgje” states as a function of the magnetic field for a 20 electron
compact quantum dot with respect to what is given byguantum dotw,=3 meV.

Hartree-Fock theory, which includes only exchange. More-

over, the values of the angular momentum of the reconthe states are not made by a single hole but rather by more
structed edge as predicted by DFT are in better agreemefftan one. Of course these states do not affecBiie phase
than HF calculations with exact diagonalization calculationsdiagram for the MDD. ,

This is represented in Fig. 3, where we give the values of the !N conclusion, we have shown that correlation effects that
energy of a MDD with a hole in ifi.c., a MDD on the verge &re incorporated in DFT give rise to a more compact recon-
of reconstruction as a function of the position of the hole, StrUctéd edge than the one predicted by HF theory. These

for three different values of the magnetic fields, as evaluate&esUItS are in better agreement with those of exact diagonal-

by numerical diagonalization within the LLL, by DFT, and |zatiqn stud.ies.. A simplified model rgproduces the main
by HF calculationsAM is the increase of angular momen- physical traits involved in the phase diagram of the MDD,

tum for “one-hole” states with respect to the angular mo- Which is determined, within the model, by means of analyti-
mentum of the MDD. The fact that DFT departs from the cal expressions.

exact diagonalization results for largeM is not surprising M.F. acknowledges financial support from ONR under
since those states correspond to excited states, where DFT@ant No. 00014-96-1-1042. G.V. acknowledges financial
not applicable. Furthermore, for these large valued\ f support from NSF under Grant No. DMR-9403908.
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