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We derive the spin-wave dynamics of a magnetic material from the time-dependent spin-density-
functional theory in the linear response regime. The equation of motion for the magnetization includes,
besides the static spin stiffness, a “Berry curvature” correction and a damping term. A gradient expansion
scheme based on the homogeneous spin-polarized electron gas is proposed for the latter two quantities,
and the first few coefficients of the expansion are calculated to second order in the Coulomb interaction.
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The study of the ground-state properties of magnetic
materials within the framework of spin-density-functional
theory (SDFT) is by now a mature field [1-3]. By com-
parison, the study of excited-state properties is still in its
infancy. There has been great interest in recent years
in deriving a closed equation of motion for the magne-
tization starting from a first-principles description of the
electrons as itinerant particles [4—8], rather than from the
time-honored Heisenberg model of interacting local mo-
ments [9—-11]. An alternative approach is to calculate the
spectrum of spin excitations from the imaginary part of
the linear spin-spin response function [12]. Our objective
in this Letter is to unify the two approaches within the
framework of the time-dependent SDFT. We emphasize
new aspects of the physics beyond the adiabatic approxi-
mation (namely, dissipation), as well as a practically work-
able computational scheme.

Elementary spin excitations in itinerant-electron mag-
nets fall into two groups (i) Stoner excitations—in
which a single electron quasiparticle is spin reversed
and (ii) spin waves. Both types of excitations can be
computed from the linear spin-spin response function
xijr,rsw) = iB? [gdi e ([Si(r, 1), 5;(cN] [Si(r) is
the i component of the spin-density operator, with 8 =
ge/(2mc) and ki = 1], which determines the magneti-
zation m;(r, w) = — B(S;(r, w)) induced by an external
magnetic field B(r/, w) at a frequency w:

mmm=2[mmﬂmwﬂmwt<n
J

Stoner excitations are distributed along branch cuts of this
response function, while collective modes show up as iso-
lated poles in the complex frequency plane.

A time-dependent SDFT is ideally suited for calculat-
ing x;; [13]. As a first step in this direction one solves the
static Kohn-Sham equation [14], whose eigenfunctions and
eigenvalues determine the exact equilibrium density and
magnetization. One then constructs the linear spin-spin
response function yks;;(r,r’; w) of the Kohn-Sham (KS)
system. Because this is a stationary noninteracting sys-
tem, the calculation can be carried out exactly [15]. Fi-
nally, the response of the physical system is calculated
as the response of the KS system to an effective time-
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dependent field Berr which includes, in addition to the ex-
ternal field B, a many-body ‘“exchange-correlation” field
B... When these ideas are cast in formulas one obtains
the well-known mathematical relation between the matrix
inverses of the exact response function and the KS response
function, namely,

Iy ' o) = [vgsliers0) — foii(tr's o),

@)

where f.;;(r, r’; ) is the tensor that connects B, to the
induced magnetization

&Mmﬁ=2[ﬂmmﬂmWWmMﬂ 3)
J

Collective spin excitations can then be obtained from the
solution of the eigenvalue problem

Z[ [x i, r; 0)m;(x', w)dr' = 0, 4)
J

where m;(r, w) is the magnetization profile in the spin
wave. The problem is to find the frequencies w for which
this equation has nonvanishing solutions. Because y has
both real and imaginary parts these eigenfrequencies will
be complex in general and will determine both the disper-
sion (Rew) and the linewidth (Imw) of spin waves.

To appreciate the power of Egs. (2) and (4) we now use
them to derive both the adiabatic spin dynamics [4—6] and
the Landau-Lifshitz (LL) equation [16] in the linear re-
sponse regime. First of all, we choose to focus on the
transverse part of the response function, namely, the part
that describes the response to a magnetic field perpendicu-
lar to the ground-state magnetization. It turns out that in a
collinear magnet the transverse response function is rigor-
ously decoupled from the longitudinal one in the absence
of spin-orbit interactions. In general, this decoupling is
justified by the difference between the time scales of the
longitudinal and transverse spin dynamics. Our key as-
sumption is that both yg & and f. canbe Taylor expanded,
at low frequency, in powers of w. Keeping only the first or-

der term in the low-frequency expansion of y ~! we come
to

[y 'ty 0) = aj(r,1") + iwQ;i(e,r),  (5)
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where a;;(r,r') = [y '];;(r,r'; = 0) is the (symmet-
ric) spin stiffness tensor, given by the second derivative of
the ground-state energy with respect to the magnetization,
and

oIm[y 1 (r,r’; ®)

Q,-j(r,r') = })lil’}) EP 5 (6)
with the derivative taken along the real frequency axis.
(£);; is purely real because the derivative of Rey vanishes

at o = 0.) Notice that, by definition,
SE[m]

[ aj(r,x')m;(x') dr’ = Sm;(r)’

where E[m] is the ground-state energy regarded as a func-
tional of m(r) [17]. The tensor );; can be split into anti-
symmetric and symmetric components as follows:

Q. r') = Q;(r,x') + yi(r,r'), (8)

where Qij(l',l’l) = _le‘ (I'/,I’) and y,‘j(r, I’l) = yﬁ(r’,r).
Therefore, substituting (5) into (4), and switching to a real
time representation with the substitution —iw — 9/9¢, we
obtain the equation of motion

(N

! ! 1q 0m;i( " 1)
;f dr'[Q;j(r,r’) + y;(r,r )]%
_ OE[m]
B Bm,-(r, t) ) (9)

This equation reduces to the Niu-Kleinman adiabatic
equation of motion [4] if the symmetric tensor ;; is ne-
glected and the antisymmetric tensor ();; is identified with
the “Berry curvature.” Indeed, after a lengthy but straight-
forward calculation we can show that

dip[m]
8mi(r) 8mj(r’)

where (y[m] is the ground-state wave function regarded as
a functional of m [17,18]. Thus, the antisymmetric part of
Eq. (6) is equivalent to Eq. (10): the former is, however,
more amenable to approximation and computation.

The symmetric part of Eq. (6), v;;, is responsible for
dissipation as one can immediately verify by calculating
the rate of entropy production at temperature 7"

ds _ [ SE[m] om(r,1)
’ a fﬁm(r,t) ot

dt
(") i N (:) i l,t
= —Zfdr[dr’ m(x, 1) yii(r,r’) 7m](r ).
- ot ot
(11)

Not surprisingly, this term is absent in a purely adiabatic
theory such as that of Ref. [4].

We now turn to the task of approximating the right-
hand side of Eq. (6). A classic approximation scheme is
provided by the gradient expansion [19]. In this scheme
one assumes that the two-point function ﬂ,-j(r,r’ ) is a
short ranged function of the distance |r — r/|. It is then

Qij(l', I’l) = —ZIm<

dr

056404-2

permissible, if the density and magnetization are slowly
varying, to expand () as

ﬁij(l',l’/) = ﬂo,ij["(l’),m(r)]é(r -1
+ Qoi[n(0),m(O)]V, 8 — 1) - Vo + ...,
(12)

where ﬁo,,-j[n, m] and ﬁz,ﬁ[n, m] are the coefficients
of ¢° and ¢?, respectively, in the small-g expansion
of O™ (q) = [QI™(x — r)e ™ dr in a ho-
mogeneous electron gas of density n and magnetiza-
tion m.

We are now in a position to prove that the standard LL
equation [16] is simply the zero-order approximation (i.e.,
the local density approximation) in the gradient expan-
sion for the Berry curvature. To this end, we consider
a homogeneous spin-polarized electron gas with the same
ground-state density » and magnetization mg as those of
the real system at point r. The homogeneous magnetiza-
tion is maintained by an external fictitious magnetic field
By parallel to my,

By — <86(n,m)> . (13)

am

where e(n, m) is the energy density of the homogeneous
electron gas of density n and magnetization m [20]. The
transverse spin-spin response function of this system at
g =0is
wOBij + iwfij
Bmy '
where wy = BBj and ¢€;; is the two-dimensional Levi-
Civita tensor with the Cartesian indices i, j being orthogo-
nal to the direction of my. Thus, for the homogeneous
electron gas, ;j(g = 0) = €;;/Bmo [see Eq. (6)], and
then, from Eqgs. (8) and (12), we see that the local density
approximation takes the form

[x (g =0,0) = (14)

Q;(r,r') = -r). (15)

1
€;———0(r
7 Bmo(r)
With this approximation Eq. (9) reduces to the linearized
LL equation,

am;(r,t) ) dE[m]
ot - ;Bmoé,./ 8m(,-(r) . (16)

Notice that the dissipative v;; is exactly zero at this order
of approximation. Thus, the gradient expansion for y;;
begins with a second-order term

yii(e,v') = y2,;;(0)Ve8@ — 1) - Ve + ... (17)

This makes physical sense because a global rotation of
the spins must be rigorously undamped in the absence of
spin-orbit interactions.

The remainder of this Letter is devoted to the calcu-
lation of the leading gradient corrections to the LL equa-
tion. After lengthy calculations, which will be described in
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detail elsewhere, we obtain the small-g expansion of the transverse spin-spin response function of the homogeneous

spin-polarized electron gas:

2
_ _ n
Lx l]ij(q,w) =[x l]ij(ovw) + 7 0ij
dmmy

2

(2mmy)*

[4m<71 — T} wodij — iwey; N 27n*[2g(0) — 1] < 8ij — i€ ij + i€ >
k1% w? — w% 3mag (w — wp)? (w + wg)?
F-i(w)(6i; — i€jj) Fi-(w)(8;; + i€jj) } (18)
(0 — wo)? (w + wo)? ’

where V is the volume and ag is the Bohr radius, 7} and |

T) are the kinetic energy operators associated with up-spin
and down-spin electrons, respectively, the angular brack-
ets denote the ground-state or thermal ensemble average,
g(0) is the pair correlation function at zero separation, and
F+_(w) is a four-point response function, defined as

Fi(w) = Fi+(—a))

o5 Y wuk - K
VP e

X (84 (= K)p(K); S—(K")p (=K, -

S+(k) = 8.(k) = iS,(k) are spin-density fluctuation op-
erators, v(k) = 4me®/k?, and p(k) is the density fluc-
tuation operator. The ‘“Zubarev product” is defined as
(A;BY), = —i [y dt e!'([A(t), B]). Taking the small w
limit of this expression we obtain the coefficients of the
gradient expansion for () and vy as follows:

19)

Q 1 [m(ﬂ - T)  2mn*2g(0) — 1]
ij = €ij
2iJ ! (mmowy)? 3V 3magwg
+ ReF+_(0) . l 8ReF+_(w) i| (20)
Wy 2 dw =0
and
0ij . ImF, _(w)
Y2ij 2(7’)’”’}10(0())2 wlir}] @ ( )

Since the long wavelength spin-wave frequency in a ferro-
magnet is proportional to g2, the above results indicate that
the gradient corrections to {) and y will affect the disper-
sion and damping of ferromagnetic spin waves beginning
at order ¢*.

Equations (20) and (21) contain both ground-state (ther-
mal ensemble) averages, such as (Tt — T}) and g(0), and
the dynamical response function F4_(w), which depends
on the spectrum of excited states. The former can be cal-
culated to a high degree of accuracy by variational and
diffusion Monte Carlo techniques [21]; the major chal-
lenge lies therefore in the calculation of F1_(w). The
form of Eq. (19) suggests that we evaluate Fy —(w) to sec-
ond order in the Coulomb interaction: this is accomplished
by substituting the noninteracting expression for the four
point response function ({5 (—k)p(k); S_(k")p(—k')))q.
Even such an approximate calculation turns out to be very
difficult, but we have been able to establish analytically the
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limiting forms of the imaginary part of F4_(w) for high
and low frequency. At low frequency (v < Er; — EF|,
where Ery is the larger of the two Fermi energies) we find

m*Tw(w? + 472k3T?)

36773]{1710%
where kg is the Boltzmann constant and 7 is the tempera-
ture. The dimensionless coefficient I" is the sum of “di-
rect” and “exchange” terms: I' = I'® + T'®) which we
report separately for reasons that will become clear in the
following:

ImF+_(w) = —

, (22)

o) _ 2 (3L — 1) (31 — 1)
- A & ,
1—2 2M(1 — A) @3
pEe _ L 1HA 8GA—1  2) ’
2 1-A 2) 1—2

where A = (1 — OY3/(1 + )3, and ¢ = (ny — ny)/n
is the degree of spin polarization, and 6 is the step func-
tion. Equation (22) yields the damping tensor according
to Eq. (21):

r
Y 2mkr1(3mowoap)?

Note that the dissipation vanishes as T? for T — 0 [22].

To calculate the correction to the Berry curvature we
also need the real part of F1_(w). To this end, we make
use of the Kramers-Kronig dispersion relation

1 [~ ImF;_(w’
ReF, (w) = _f dw,ml+7(60)
T J)-w o —w

and use for ImF,_(w) at finite frequency the mode-
decoupling approximation of Ref. [23]:

5 (S (k) (K); 5-(K)p (KM

(kgT)?.

Y2ij = 6 (24)

(25)

Ok k'
= —g,——
a

Imy,(k,w — o)
0

X Imy—(—k, o) do’, (26)
where yu.(k, w) = V 1{p(k); p(—Kk))), is the density-
density response function, and the factor g, = (I'® +
I'E)/T®) s used to include the exchange contribution
and assure the correct behavior in the most important low-
frequency limit.

Carrying out the calculations, we find that the last two
terms on the right-hand side of Eq. (20) are
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ki Ery
ReF (0) = —g, ——3 P({). 27)
3m%ag
and
IReF_(w) kpy®
R = e 5 00). (28
R P T L SE

P({) and Q(¢) can be very accurately parametrized as
P({) = 1.9606 — 3.5 — 1.47%*In{ + 2.08%, and
0(,) = 1187 — 0.186¢% — 0.842% — (0.045¢ —
1.49.%)In{.

Finally, we need practical approximate expressions
for the ground-state averages appearing in Eq. (20). The
zero-separation pair-correlation function g(0) of a spin-
polarized electron gas has recently been calculated by
Gori-Giorgi and Perdew, and an explicit expression is
given in Eqgs. (47) and (22)—(30) of their paper [24].

As for (T; — T)), in the absence of detailed calcula-
tions, we propose a linear interpolation for the correlation
contribution:

d(rse.)

T, — T) = (T; — T})y — N =252
(Tt = T)) =Ty — Tp)o — N ar.

((=D¢, 29

where €. is the correlation energy per particle, r, is the
Wigner radius, and (T} — T))o = (kFT5 - kFls)/ZOﬂ'zm
is the difference of kinetic energies of the noninteracting
systems.

The spin dynamics equation (9) is the central result of
this Letter. It includes both the adiabatic spin dynamics
and the conventional Landau-Lifshitz equation as special
cases. It reduces to the adiabatic spin dynamics if the
damping tensor 7 is neglected. It further reduces to a con-
ventional Landau-Lifshitz equation if the gradient correc-
tions to () are neglected. In addition, we have developed
a density-functional scheme for the systematic calculation
of () and . The analytical expressions for the damping
tensor and the Berry curvature make the application of the
new equation of motion to spin dynamics of ferromagnetic
and antiferromagnetic systems quite promising. If greater
accuracy is required, one can revert to the full-fledged lin-
ear response formalism, in which XKS is treated exactly
and only f,. is approximated.
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