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Dynamical exchange-correlation potentials for the electron liquid in the spin channel
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The components of the exchange -correlation kernel tensor of an isotropic electron liquid in the spin channel

have the structure’aL " (q, w) — A(w)/q2+ B“T(w), whereL denotes the longitudinal component ahdhe
transverse component relative to the direction of the wave vectbr this paper we calculate analytically the
high- and low-frequency limits oA(w) and B-T(w) and combine these limiting forms with the Kramers-
Kronig dispersion relations to obtain approximations Agw) andB-T(w) at all frequencies.
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[. INTRODUCTION current density functional theory the xc potential is a vector
potentialA, ,, which is related to the spin-resolved current
The spin-resolved local field fact@,, (q,) has often density by the following relation:
been used to describe exchange-correlatxaheffects in the
electron liquid:? These effects arise from the antisymmetry .
of the many-body wave functiofexchangg and from the Al o(0,0) = w_ 2 fxc eo(4:®) 8], (q ), (5
Coulomb repulsion between the electrgasrrelation. The ho!
equivalent concept of exchange-correlation kernel, defined agherei andj are Cartesian indices. In isotropic electron lig-
uid, the tensor kerneﬂx’c »o(0,@) can be described by its
oo (A@0)=—v(q) Gy (q, @), (D longitudinal (L) and transverse (T) components

wherev(q) is the Fourier transform of the Coulomb poten- figTUU,(q,w), defined by the relation

tial, is more frequently used in time dependé&syin) density

functional theory™® f,. ,,+(q,») determines the xc poten- LT LT

tial Vyc,(q,w) created by a small density fluctuation A, o’(qvw)_ E frot o (0.)8)5 T (q,0),  (6)

on,(q,w) according to the formula
whereL and T denote the longitudinal and transverse com-

v _2 ; s 2 ponent relative to the direction af.
xeo0 @)= < xc.ro!(4,@) 0Ny (0, ). @) It is easy to verify than‘xc +o(0,®) coincides with the
usualfyc ;o (q w) of the standard density functional formal-

It is customary in density functional theory to replace the|sm but fxC so(d,0) is new. Both fXC »or(d,@) and
local relation2) by the local densit ti
nonlocal relation(2) by the local density approximation f1.,0+(d,®) have a smal expansion of the forntd),
Vieo10) =2 Ty ror(A=0,0)N,(r0),  (3) 4-0A(w) go'n?
- Frarer (0 @) — & ann 7 B (@) +0(@), ()

where theq=0 kernelf,;,, (0=0,0) is evaluated at the LT

local equilibrium density. Unfortunately, this cannot be done@nd for this reason the connectiod) betweenA,; ,(q,®)
for the spin-resolved, ,,(q,), for the simple reason that and 8 7(q,») is well-behaved in the smadl-limit, i.e.,
the g—0 limit of this function does not exist. In fact, one local, as we wanted.

had Against this background, the importance of having reli-
able expressions foA(w) and BI;’J,(w) is self-evident.
A(w) oo'n? ) These functions are also needed for a consistent description
fxeoo (0, 0)= 2 B (0)+0(a%), (4) of effective interaction, including exchange of spin
q° 4n,n, iond-11
fluctuations:
where n, is the density ofo-spin electrons ¢=+1 for It is convenient to consider separately the density-density

T-spin ando=—1 for |-spin), andn=n;+n, is the total and the spin-spin “channels.” In the density-density channel
density.A(w) andB,,, (w) are finite functions of frequency. the small-q singularity cancels out and one is left with
The smallg divergence cancels out in the density channel,
i.e., when one sums over the spin indices, but not in any LT LT, NoNor
other combination of the matrix eIemen‘t,& vor (0, 0). ¢ (@)= E B n2 (8)

It has recently been pointed olithat this d|ff|culty can be
avoided by switching to a more complete description inApproximate expressions fcitc (w) have been obtained by
which the basic variables are the longitudinal and transversthe present authors and, earlier, by several othefs!314
components of the spin-resolved current density. In the spinfhese formulas are extremely useful in time-dependent
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current-density functional theofy; '’ which has recently The paper is organized as follows. In Sec. Il, we summa-
found interesting applications to the calculations of the opti+ize the exact properties @(w) andB-T(w) . In Sec. I,
cal spectra of solitf and the polarizability of long polymer we present the derivations of these exact properties. In Sec.
chains'® IV, we present our interpolation formulas f@“"(w) in

In this paper we address the remaining part of the probparamagnetic state. Further technical details are presented in
lem, namely, the calculation of the spin-spin channel quantithe two Appendixes.
tiesA(w) and

Il. EXACT PROPERTIES

oo

BLT(w)=, B;'T,(w)(m'n _ (9) We begin by listing, for ease of reference, the exact prop-
oo’ n® erties of A(w) andB“"(w). The derivations are very tech-
nical and will be presented in the next section.
ConcerningA(w), we mainly build on the work briefly First of all, we note that bottA(w) andB“T(w) satisfy

reported in Ref. 7: we supply detailed derivations of the rethe Kramers-Kraig (KK) relations. For example, we have
sults presented there without proof, and derive an exact re-

lationship between the low-frequency behavior of Re) » do' IMA(w’)

and the Landau parameters. We also evaluate the low fre- ReA(w)—A(oo)sz B (10
quency behavior of IM(w) within the mode-decoupling o w -
approximation;>** which is supposed to be exact in the yherep is the principal part, and similarly f" ().
high-density limit. The main part of this paper, however, is
devoted to the study @ T(w).

First of all, we derive the high and low frequency limits of A. Exact properties for A(w)

ImB"“T(w). To this end, we express the smallimit of The high-frequency behavior of 1A w) is’
Im f'xjcvw,(q,w) in terms of four-point response functions,
which are then treated perturbatively. The expansion is accu- ©=*  16me” n;n; mé
IMA(w) — — 1D

rate to second order in the Coulomb interaction, yet we be- 3 n2 Jme

lieve that it yields the exact asymptotic behavior at high

frequency because in that limit the four-point response func-  The infinite frequency limit of RA(w) is given by the
tion of the interacting system reduces to that of the noninterihird-moment sum rufé2®

acting one. In this way IB“T(w) is found to decrease as

(1/»®?), which is the same behavior that was previously m\ 2 16m€2 n.n
established for Ini%"(w) in the density-density ReA(x)= Iim(—) Ma(q)= — —g;,(0)-1],
channeft314.20 a-o0\Nd 3 n

The same small wavevector expansion is applied to the (12

calculation of the low frequency behavior of BY (@),  \hereMa(a) = — (L) [~ w3Im de is the third-
but, in this case, the results are only valid in the high-densit oment3<§19?che sé)inqjsp)ii_r:(suponsxeS(fﬁ,naéiio(r: Withihe vol-
limit. We find that, in this limit, the difference between ume. and 0)= -0 ith \ h .
LT LT . . . , g:,(0)=g;,(r=0), with g,,(r) the spin-
ImB~"(w) and Imf%(C (w), vamshe:i to first order im. We resolved pair correlation function.
also show that InB (w) =(3/4)ImB"(«v) at smallw. Fur- In addition, ReA(w) and ImA(w) vanish at zero fre-
thermore, we establish a relation betweerER_é(O) and the_ quency asw? and »°, respectively. It will be shown that
Landau parameters parallel to the one obtained by Conti and

Vignalé’! in the density-density channel. lim A(w)=0 (13)
We then construct approximate interpolation formulas for 0—0 ’

ImB-T(w) based on the above results. The philosophy is the

same as that in Ref. 12. Basically, we attempt to improve the nA(w) 1+FS/3

Gross-Kohn interpolation formua?3 by introducing a peak 1— Iim - e (14)

at intermediate frequency. The position of the peak at about w—0 Mw?  1+F3/3

op=3wyl2 (Where wy, is the plasmon frequentys sug- s a . ) ) ) .
gested by the mode-decoupling theory, while the strength of/hereF| andFj" are spin-symmetric and spin-antisymmetric
the peak is fixed(via dispersion relationsby the low- Landau parameters, respectivéipnd

frequency behavior of the real part Bf ().

It turns out that the same type of interpolation for imlm Alw)  mle* |7 2keks an,lﬁ
Im A(w) does not work well at “metallic densities.” There- = = 3 187°n%ks| 2 4kZ+k2 2Kg |
fore, we resort to the mode-decoupling approximatiah s (15)

ready discussed in Ref) To describe this function. The re-

sults obtained in this paper should be useful in currentwhereks is the screening wave vectég=4kg/may, kg
implementations of the spin-current-density functionalthe Fermi wave vector, and, is the Bohr radius. The last
theory, which aim at calculating the energy of spin-two equations above are specialized to the paramagnetic
dependent excitations in complex electronic systems. case, and Eq.15) is exact only in the high density limit.
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B. Exact properties for BT (w) Il. DERIVATIONS
The high-frequency behavior of IBHT(w) is A. Small wave vector expansion for imaginary part of the xc
kernel tensor Imf'>£c vor (0, @)
w00 4 . . .
LT L7 T™me To derive the exact results fé{w) andB“T(w) listed in
IMB™(w) = —c¢ (Mmw)32’ (16) Sec. Il, we first establish the smajl- expansion of
ImfXC »o (0, @) in terms of four-point response functions.
wherec"=41/30, ¢"=17/30. We begin with the exact expression
The infinite frequency limit oBYT(w) is
2 2
LT My . Q)= — IM((j (a0 (D))o,
BLT() = ab T '8 dro(ng-(n, (17 - o @
n’ (24)

whereat=2, a"=2/3, p-=4/15, BT=—2/15, andg_(r)  wherej,(q) is the spin-resolved current-density operator

S o (NoNyr INY) oo’ g, . ().
The zero-frequency limits oB“T(w) are related to the

Landau parameters as follows: Jo(a)= mZJl Qmoim(Q), (25
2E¢ AF3/75+F3/3—F3/5 whereQ,,= (1+ ooy,)/2 (with o, the Zcomponent Pauli
B-(0)=— S (19 matrix for themth particle picks theo-spin component of
n 1+F3/3 the state of thenth particle and
and . 1
Im(@)= ﬁ[Pum(Q) +pm(Q) Pl (26)

. 2E¢ F3/25-F3$/15 _
B'(0)=————, (19 P, andp,(q) are the momentum and density operators for
n 1+Fy3 :
1 the mth particle.

The Zubarev product is defined ag(A;B)),=
—i[pdte“[A(t),B(0)]). (The frequency argument will be
omitted, for brevity, from now on.Making use of this defi-
nition, one can show that E§24) can be rewritten as

where EF=k§/2m is the Fermi energy. The low-frequency
behavior of IMB“T(w) is determined by

ImB-T me?
jim (@) ( ) keS-T, (20 ,
©—0 w n i m 1
Mo (@ 0)=C P Im((J4(a,0:1 (),
where the dimensionless constasts’ are given by o' @7
. . .\ wherej,(q,t) is the second time derivative ¢f(q,t). Op-
S == 75,1 5~ (A+5Mtan "X — =sin” e erators without an explicit time argument are assumed to be
evaluated at=0. Since
P (U 21) i
M2+N2[ 2 2+ )2 Prm=y; 2 kp(=K)pm(K)v(K), (28)
and commutes with the density fluctuations and
ST:;SL_ (22) Pm(@)=—i0:jm(), (29
wherep(—k)zEanzlpm(k) and N is the electron number,
In the above expressian=2kg /K. we see that

While Eq.(21) is perturbative, and therefore strictly valid

only in the high density limit, the relation : 1 . . .
y g vy Im(@)= %[mepm(Q)_FPm(Q)Pm"_Pmpm(q)] (30)

ImB"(w) 3. ImBY(w)

im——— = —lim—— (23 and
w—0 w 4w~>0 w
1
is nonperturbative and, as such, is expected to hold at all m(q) E kv(k)—{p( K)pm(k+a)}

densities. The results listed in this subsection are specialized
to the paramagnetic case, except for E¢), which holds in . .
general. —ig-{PmiJm(@}=iq-{Pmi.jm(@}|,  (31)
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where{A,B}=AB+BA is the anticommutator of and B. Expanding the anticommutators in E2), one obtains
By using Eqs(28), (29), and(30) in the above equation, we
obtain a1 wli d K K K
| Ly (@ =y 2 k)| iki 2 p(=K)pm(k+ )]+ p(—k)
In@)==— 2 v(k . .
Inl@)= 2my & 01 X{0-jm(k+a)ki+K-ajmi(k+a)}
9 1
x| 2iki[p(—K)pm(k+a)] + o kik-apm(@) |, (33
+Ki{p(=K)pm(K),q-jm(a)} and the substitution of Eq33) into Eq. (25) yields

+k'_q{Pmin(—k)Pm(k+Q)} i )_i (K)
m 1,9)= mv < v

_ Q. . 0 .
omey P mirAd P @ In(@H- (32 x| iki 22 Lp(—KDp,(k+ Q)]+ kip(~K)-j(k+a)
Up to this point, the derivation is exact. The last term on r

the right-hand sidéRHS) of Eq. (32) makes a contribution +k-qj,(k+g)p(—K)|. (34
of higher order thar0(q°) to Imf .(q,®), and is there-
fore dropped from now on. Therefore we finally arrive at

ij 1 1 ’ 2 ’ ’ ’
IM flie g (A 0) = = > 2 v(Ko (k) IM[w?kik{ ((p(—K)p,(k+a);p(—k')pyr (K —=a)))

Ven,n, g?w? Kk

+ ok (A ((p(— K)oy (K+a);p( =K ) por (K" =) +K-a8i((J (K + Q) p(—K);p(—K")pyr (K =0))))
+ ki (K qi{{p(—K)po(k+a); p( =k, (K =a)) +K - a8 ((p(—K)po(k+ )y, (K —a)p(—k"))))
—((kiaip(— k)i (k+a)+k- a8, (k+a)p(—k)ik/arp(—k" )i (k' =)

K a8y b (K= a)p(—k )], (39)
In Eq. (35) and in the following formulas, a summation over the repeated indieesl|’ is understood.
Equation(35) is accurate to the order @(q°). The singular term of Inhhgmr,(q,w) arises from the first term of the RHS
of Eq. (35), which, to orderO(q~?), yields
1 , kK’ , ,
3 — 2 v(ko(k )5 IM{{p(=K)pa(K);p(=K")per(K'))). (36)
V N, Ng 9° k k'

Im f)IZ(;,TUU’(q’w): -

Based on simple symmetry considerations, the above equa-

4
tion can be rewritten as ImMA(w)= 2 v(k)v(k')k-k’
3V3I’12 K, k'
oo’ 1 k-k’' XIm{(pi(=K)p (K);py(K")p (—K"))).

Imf-’ (q,0)= — v(k)v(k")—%—

oo (00) =G5 = 5 2 vk -

XIm{(p;(—=K)p (K);pr(K)p (—K"))). The results in this subsection hold for arbitrary spin polar-
37) ization.

The structure off ;" ,(q,) displayed in Eq.(7) is thus B. High-frequency limit of Im A(w)
confirmed, and an explicit expression for Afw) is ob- Because Ini\(w) is antisymmetric with respect to, we
tained: only need to consider positive for which
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IM{(p;(—=K)p (K);pi(K")p (—K")))

=2 (0lp(=K)p (K)In)(nlp; (k')

Xpy(—k"[0)8(w—wno). (39
Here w,o=E,,— Ej is an exact excitation energy of the sys-

PHYSICAL REVIEW B 68, 195113 (2003

Therefore, from Eq(38), one has

w—

47TnTnl
IMA(w) — —

3vn?

; S(w—k3m)k% (k). (41)

tem, withE,,, E, the excited and ground state energies, re-Carrying out the summation ovér yields the result in Eq.
spectively: the sum extends to all the excited states that argd1), which holds for arbitrary spin polarization.
coupled to the ground state by two density fluctuation opera-

tors.

At high frequency, the four-point response function

C. High-frequency limit of Im B-T(w)

should coincide with that of a noninteracting electron gas, The high-frequency limit of Infl (w) was first estab-

which is given by
IM((p;(—k)p, (K):p(K')p (—k')))©

Ww—®

— — 78 (w—k3Im) &, NN, . (40)

Imf'X'C]W,(q,w)=— 5

V3n(,n(,, qu K-k’

lished by Glick and Long® The extension to Infi,(») was
carried out by NifosiConti, and Tost>*In this subsection,
we report the corresponding calculation for B "(w). We
limit ourselves to the paramagnetic case.

At high frequency, Eq(35) reduces to

2 v(K)o (k)M w?kik! ((p(—K)po(k+a);p(—K')pgr (K = a))) + wk] (kg +k-q8)

X{p(=K)ip(k+a)ip(—K)pgr (K =)+ wki(kj o+ K -a8;){(p(—K)py(k+a);ip(—k')

X b, (K" = a)))+ (kg + k- ady) (K] o+ K- a5 ) {(p(—K) L (k+a);p(— k), (K = a)))].

(42

The last term in the above equation can be shown to make @arrying out the sum over the eigenstates of the noninteract-

contribution of orderw 2 to ImB“T(w), whereas the first
three terms contribute to the leading ordereof®.

We begin with the first term, which gives the leading or-

der contribution to both IM\(w) and ImB-T(w). We de-
note it as the &” term in the derivations that follows. The
four point response function can be rewritten as

IM{(p(=K)po(k+a);p(—k")pyr (k' =a)))

_772 E E 2 5(w_€plfqu_€p3+k

P1P2 P3P4 @B N

+ epl + €p3)<0| a;loa;3aapl— k— qoap3+ ka| n>

+ +
X<n|apz+k’*QU’ap4*k'ﬁap2‘71ap4lB|O>' (43)

wheree, = p3/2m, etc. Obviously)p.|, |pal, |3, and|py|
are all smaller tharkg . Therefore, to the leading order for
large w, we have

IM{(p(=K)po(k+a);p(—k")pyr (k' =a)))

— w2 2 D - €iq— €

P1P2 P3P4 @B N

X <O|a;10a;3aa*k*q0'aka| n>

+ +
X(N[ay, _ o8 s gBp,0ap,sl0)- (44)

ing system(only double electron-hole pairs contribyteve
get

IM{(p(—K)p,(k+a);p(—K")pgr (K" —0)))

w— % 2

a
- - Tﬁ(w—kzlm—qZ/Zm—k-q/m)

X{Sk+qk'+ Ok, —k Oso' — Ok+qk' Osorf- (45)

Substituting this result into Eq42), we come to

i, ___7 L2 2
Im e (g,0)= 2q4V; 8(w—k2/m—q?/4m)
Xv(k—a/2)(ki—qi/2)[v(k—q/2)
X (k;—0;/2) + v (k+q/2) (k;+q;/2)],
(46)
where
ij _1 7 £
fxcv*(q’w)=z 2, oo fxc,aa'(qvw)- (47)
Therefore,
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| —K)po(k+a);p(—k)j! (k=
ML (qo)— i M{(p(~K)py(k+a)ip(—ki,, (K’ =a)))
29%V ¥ 2

N
=— 8—m(—k|’+q|)5(w—kz/m—q2/2m—k~q/m)

sz(k)%[Z(k- 9)%k*+4(k-q)*

X{ 8+ q k' T Ok, —k Oao' — Ok+qk' Ooar} (59
—3(k-q)2q2K?] (48) Substituting the above results into H42) leads to
where we have ignored terms that vanish épr-0. After Imf" b _ - 5 K2/m)o (k—a/2
carrying out the sum ovet in Eq. (48), we obtain (@)= 2Vm q2 2 (= Jo(k=ai2)k-q
ot 104 . X{[ 8550 (K+q/2) + 6,00 (k—0/2)]
L,a _ o
M fe= (@)= =535 qz[gmw od } (49) X [kig; +K; 01— 48,400 (k— /2 kikj},
(56)
For the transverse component, we need to evaluate the _ ,
Wheres’ = — ¢’'. Therefore,
tensor product
27 1
Imfile (qw)=——— =
S;Imfil2 (q,0)= Sty — K2/m— q/4m) vme
q k
(k q)2
X v(k—a/2)[v(k—q/2)(k—q/2)? XE (k) 8(w—k2/m)———kik;. (57)
2 2
+u(k+al2)(k"~q74)] (50 The longitudinal and transverse components can be further
evaluated as
or
L b 8met
Imfye’ (0)=——7—=5 (58
Siim k2 (q,0)= —q?4m)v?(k) Sm™*w
29%V
and
X[2k?—q?+2(k-q)%/k?], (51)
T b 8met
to the order of0(q°). Equation(51) can be further simpli- Imfye - (@)=— 15m24,32" (59)
fied to
respectively.
el o Combining Eqgs(49), (53) and(58), (59) yields our com-
8;Im fu 2 (q,w)=— s q2 AMew— E}' (52)  plete results
. me* 1[4me 419?
Thus, finally Im fy —(q,0)=— M2 g2| 3 +t—>5o| (60
me* 1[4me ¢ and
mf? (q,0)= — + —}. (53
m2%2¢? 330 . me'  1[4mw  17¢7
Next we evaluate the contribution due to the second and

third terms in Eq(42). We denote them together as the’*  Thus we have the final results for BY"(w) as shown in
term. At largew, the four point response functions are evalu-Eq. (16). The singular term in the above equations is

ated as Im A(w), which is a special case of EqLl) for the para-
magnetic state.

IM({(p(—K)jL(k+a);p(—K)pgr (K —a)))

D. High frequency limit of the real part xc kernel
7N? ) 5 Ref"" (g o)
=—8—m(k|+q|)5(w—k Im—q/2m—k-g/m) xeoo!
The third moment sum rule for Fié .(0,%) was
X{ St qk' T Ok k' Ooar— Ok qc’ O} (54) first established by Goodman and’ lﬁmjerz“ and later

rederlved by Lil”®> Here we give derivations for both
Ref'. (qg,») and Ra‘xC »or(0,). We start from a rela-

xc,oo’

and
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tion between Ré)’j‘cyw,(q,w) and the first moment of the " 1,
spin-current spin-current response functidj_, () [Mw’(q)]im:ﬁqav(q)n”n‘f’
m* Mj,.(a)—Mg(a) ! « (o)
v(Q)+fg o0 (0,0) = . , + | 8,02 T50)=T5 (q)| (68)
n, N, m 7
(62) and
wherea=L,T, andv"(q)=0v(q), andvT(q)=0, M*(q) -
is the noninteracting version dmfjo,(q). The first moment [MZ,,r(Q)]kiﬁ— —500'(2(ﬁ+ a®(T,), (69)
of the spin-current spin-current response function in(68) 3V m?
is defined as where
« 1 Ca oy e 1
MG (@)=~ Wﬁwdww Im((j5(a,t), i (=), Lo (== > KoK {p,(q—K)pyr (k—a)),
KL
(63 ’ (70)
which can also be rewritten as and (T,) is the spin-resolved kinetic energy. Substituting
i Eqgs.(68), (69) into Eq.(62), one obtains
4% I Sa -
Moo (@)= (i) ] (= a)]). (64) 1
f)lz(’:-,r()'o"(oo): — aL’T50'o"tCO'+ 2
Note that the longitudinal component M ,(q) is related Mo o
to the third moment of the spin-density spin-density response
function via x{ Spgr 2 FﬁT(O)—Fgg,(q)H. (71)
L
M ;o (@) =Mg,, ()02 (65 At small wave vector, it can be shown that
By using Eq.(30), we have " _ 4mePn,n,
Fg—gf(q)_ 3 [goa"(o) 1]

()i (—a)]

1
2 z ) ——2 Bangng,qu drv(r)[gw,(r)—1],
ZmHV kip(=K)p,(k Q)U(k),ljgr( Q)}
k

(72)
1 i ) o to the accuracy 0D(q?). After some straightforward alge-
j
“m zn: 1 Qnol Prilni(@) +jni(q) Py 'Ja'(_q”]- bra, one obtains the following result:
(66) LT q—0 47762 nTnl ,
. fxé,m,/(q,w) - - 2 [9,(0)—1]oc
The commutators on the RHS of the above equation can be 39° n,ng,
carried out straightforwardly, though tediously, and one ar-
rives at N aL'TtnC—U@mf N %B'—'T
L)), ()] ,
e
XJ drT[gw,(r)—l]. (73

i
=—— > kip(K)p[(=K)(K;j+0)) po(K) 8,5 o . . , _
mV -k The results in this subsection are valid for arbitrary spin po-

larization.
—Kip (—k=q)p,(k+)] arization

E. Proof of ReA(0)=0

The vanishing of R&(0) follows from the fact that
5 (Um) [ [ImA(w)/w]dw is equal to(minug the first mo-
+q°PniPnjl. (67 ment of the spin-current spin-current response function in the

N « i spin channel, which, by gauge invariance and the continuity
We denote the contribution ® ., (0) from the first term of equation, coincides with the third moment of the spin chan-

the RHS of the above equation[dd ., ()l and that from  npe| of the spin-density spin-density response function, i.e.,
the second term gV _,(q)lxin- They can be calculated as —A(«). More explicitly, from Eq.(7), one has

[
- E ; 50-0’Qn(r[qiq' PnPnj+qj Pniq' Pn

195113-7
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1> ImA(w) 1. (=, o9 |
do=—lim do—Imf, (q,w).
T)-w @ Tyood —= w '

(q Vpo'_ w)nlpa'(qlw) —-q- Vpan(,)(epo-)

(74 X

E[ Ao.r(q,(l)) . [ Vpo” 50.0.7 - 2 Vp’np’a’fpa,p’o’]
o p

The above equation can be rewritten, making use of &4,
as + 2 fpoprarNipror(Q,0) | =0. (79)
p!O_!
1 ImA(w) m? " In a paramagnetic system this equation reduces to
— do= lim dow ,
TS @ N nqHO - (Q'Vp_w)nlpa(qiw)_Q'Vpno(ep)

X >, oo’ Im{(j5(a,t);i5. (—q))). x| > A(,,(q,w)-[vpé(w/—z: Vp,np,fpmp,a,]
oo’ o' p’
(75
+ 2 fp(,’p/(,/nlp/[,/(q,w)

p/(r/

=0, (79

As can be seen from E¢63), the RHS of the above equation
is —(m/n)?2,, a0’ M"_,(q), which coincides, for smati, ~ which can be further simplified to
with —A() according to Egs(65) and (12). Thus, A(0) a

=0, and this conclusion holds for arbitrary spin polarization. (9-Vp~ @)ngp(0, @)

—2g-Vvynh(e 2 n? (g,
F. Low frequency limit of Re B> T(w) g-Vphol P)[g p-pN1p (G @)

The low frequency limit of the xc kernel for the density 1
channel in the case of a paramagnetic state was first related +—p-A,(Q,0)
to the Landau parameters in Ref. 21. In this subsection, we ms
extend the results of Ref. 21 to the spin channel. a a . ) ) .
The quasiclassical quasiparticle Hamiltonian is whereni, =N, —nyp , andf ), is the spin-antisymmetric
component of the Landau interaction function. In writing Eq.
(80), we have introduced two new objects, namely, the spin
massmg,

=0, (80)

qu(r,p,O')Z €p+A(’_(r,t),a'+ 2 fpa,p’o”
plo,l 1 1

X[np'(r’_nO(ep’+AUr(r,t),U’)]! (76) E_ F

1
1+ §Fi‘}, (81

_ o . and the “spin-channel vector potential”
where €, is the energy of a quasiparticle of spim,

V,€,,=V,,=p/m* is the quasiparticle velocityn? is the 1
pCpo po o o _ = _
effective mass, anél,, ,, are the Landau interaction func- Aa(G,0) = 5[A1(0,0)=A(0,0)]. (82)
tions. HereA,(r,t) is a spin-resolved vector potential that
couples only taor-spin particles. We assume that(r,t) is The physical significance of the spin mass is discussed
small. Linearizing with respect t8,(r,t) we get extensively in Ref. 27. In brief, it turns out that the spin
current, defined as the difference between spin-resolved cur-
rents
== + r ot I’ ot H H H
Hao(r:P,0) = €p p% fpop o Nipr o ja(@w)=ji(d0) = (q0), (83
is related to the quasiparticle distribution function in the fol-

Vo' Ogor lowing manner:

+2 Aa’"

. P . n
,w)=2, —n$ (q,0)+—A,(q,0). 84
-> Vp’a’né(fp’o)fpa,p’vr}’ (77 Jal@0) Ep ms 1(0) Ms (0.0) (89
p/
The response df,(q,w) due to the perturbatioA,(q, w)

where Ny, (1) = np, (1)~ No(€y,.). The Liowville equa- 'S 9VeN BY

tion of motion for the quasiparticle distribution function is LT _ LT ALT 85
governed by the above Hamiltonian. After linearization and Ja (4,0 =xs" (0, 0)A (4 0). ®9
Fourier transformation with respect to space and time weéCombining Eqs(80) and(84), we can compute the smajl-
obtain limit of the response function with the following results:

195113-8



DYNAMICAL EXCHANGE-CORRELATION POTENTIALS . .. PHYSICAL REVIEW B 68, 195113 (2003

-0 21,2 a a G. Low frequency limit of Im A(w)
na% ng°kyg |3 4F; Fy
xs(a, w)= —m u—n st=5t3| (89 Equation(15—the low frequency limit of ImMA(w)—is
s s @ established within the mode-decoupling approximation,
and which is exact only in the high density limit. The analytic
form of this approximation is given by Eql4) of Ref. 7,
n a—o0 nqzkﬁ 1 F3 which, in the paramagnetic case, reduces to
Xs(d, w)——sﬂm T (87)
On the other hand, we also have ImA(w)=- a2 > vig?
n<v q
LT
LT Xo' (q’w) ’ ' ’
(g,w)= , (89 edw’ IM xo(g,0—o')IM xo,(q,0")
X 1-B""(q,0) x5 (4,0)q% w? x| — = N ET
. . . o7 |E(q,(1)_(1) )| |E(q,(1) )|
which implies
o X{[1+0(g,0— ") ][1+0(q,0")]
n Fq
_ LT
@) 1 mel' (89 ~0(q.0-0)0 (g0}, (96

where y, =6/5 andy;=2/5. Comparing the(q°) term of ~ Where®(q,w)=2v(a)[ —Rexo;(q,®)+v(a)|x0;(q,)|?].
x-7(q,w) in Egs.(86), (87) with the corresponding term in To leading order inw, for smallw, Eq. (96) simplifies to
Eq. (89), we find

1

ImA(w)=— Vet ———

ms_ ., nAe) (90) ) 3n%V Eq a |e(q,0)|?
m mo? do’
00w

Substituting Eq(90) back into Eq.(89) yields X . Tlm Xo1(Q,0—")IM xo,(q,@"),
XET(Q ) — —| 1y e 2 ZBL%)]. o7
M Msw” Msw where xo;(d, ) is the Lindhard function for just one spin

(9)  component. At small frequency the limiting form
Comparison of Eq(91) with Egs.(86) and(87), respectively, Im xo1(0,w)=mw/4mq for g=2ke can be applied, and

leads to Eqs(18) and (19), and to the further relation thus we get
4 1 @ w0 ] 1

BL _ T S 2

B'(0)~ 3BT(0)= 1~z &l Olio. (92 ImA(@) =~ V(Zw) 672 (@
where e, () is the xc energy for per particle at spin polar- 1
ization . Notice that to obtain Eq(92) we have used the X———0(2kg—q). (99
relation le(q,0)|

52 2E. FA—F%/3 Making use of the RPA for the static dielectric function, one

_EXC(§)|§:0:_F —1, (93) obtains, after some straightforward calculations, the result of

aL? 3 1+F3 Eq. (15).
which can be deduced from the well known relation between
the spin susceptibility and the Landau paramekgrand F$ o 1
in Fermi liquid theory?® Equation(92) combined with the H. Low frequency limit of Im B™"(w)
corresponding relation for the density charfigields Again, we restrict our attention to the paramagnetic case

in this subsection. At smalb, Eq. (35) reduces to

. fl(w)—4f](0)/3— d*(ney)/on?

=0, (99
0—0 @ Imf;(jc oo’ (q’w)
thus confirming the exact identity 1
=- K)o (K’
- fo ()= 4f] (0)/3—d*(ne)lan,dn, . Voo, ot v(Kv(k’)
1) ’ , ,

o0 (95) X (kg +k-qoy)(kjq- +k'-qdj 1)

which was first reported in Ref. 7. X{({p(—K) i (k+a);p(—kjL.(K'=a))). (99
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As discussed in our previous analysis of the density 1 (o
channelt? two types of processes contribute to the four-pointM{((AB;CD)),= — ;fo do'[IM((A;C)),

correlation  function ((p(—k)j '(,(kﬂL a);p(—k")j 'U (k'

—q))) in this limit: direct processes, and exchange pro-
cesses. We first evaluate the contribution of direct processes

[denoted by(D) below], for which

1

Vnoarqw Kk’

Imf1°) (g, 0)=—

| klkl'
X1imy,.

where y(—k,w'), etc., are proper linear response functions. In a paramagnetic system, the longitudinal and transverse

components of the xc kernel can be obtained as

£L.T(D)
xc oo’ ( )_

522

+ )\Ié’TIm Xoo(K,0")IM x g1 o

where \[=2, \]=2/3, \5=4/3, \)J=1, A\5=2, and )]
=2/3. The leading order contribution at smallis

2

Im BL,T(D) w)= )\LT
(@)= =gt

1
= E v2(k)

xfwdw’I k '
OTm)(( , W a))

X1m x2(k, o )k?. (103
We note that, in RPA
X"(k,0) = xi(K,0) = xo(k, ) (104
and
) Xo(k,)
X (k,w)Zm, (109

wheree(k,w) =1—v (k) xo(k,w) is the RPA dielectric func-
tion. Therefore'?

ImB-TO®) (@) =1m f5.7®)(w).

(106)

It should be evident from the above argument that Q6
holds only within the RPA.

v(kv (k") (kigi+k-qd) (ko +k'- 0|5J|/)f

(K@) B~ @ (@= @) (Ko )Im

(=k,o—o')w

XIM((B:D))o_ o

+1Im((A;D)),/Im{(B;C)),—_,]. (100
Their contribution is therefore
IMmy(—k,o—w")
(—kw— ') S|, (101)

odw’
E Uz(k)f T[kzlm X(—k,w—w’){)\li’Tlm X(I;U,(k,w’)-l-)\lé’Tlm XZU,(k,w’)}
0

(o-ow')], (102

The low frequency limit of Inf:."(w) is given by Eq.(15)
in Ref. 12. Combining that result with E¢LO7) leads to the
expression of Eq(20).

IV. INTERPOLATION FORMULAS

We now present our interpolation formula for Bh'T(w)
in paramagnetic state, which incorporates all the exact results
listed in Sec. I,

2wp|~ aL’T

LT —
ImB (w) n w (1+bL’T:02)5/4

+ Z)Ze(folﬂL'TV’FL’Tl , (108

where o= w/w,,, With w,, the position of the “collective
peak” discussed below. The form of the interpolation is com-
pletely analogous to the one we recently proposed for the
density channel? However, there is a difference in the value
of w,, between the density channel and the spin channel. In
the density channeky,=2w,, where w, is the plasmon
frequency. But, in the spin channel case, a simple estimate of
the position of the peak, based on the mode-decoupling ap-
proximation, suggest® ,=3w/2 (see Appendix A

Under the same RPA for the screened Coulomb potential Requiring that Eq(108 has a peak ab,, yields the re-
one can show that exchange processes only contribute to th&ion

spin-diagonal termd,. ,, and therefore make equivalent

contributions to the density and the spin chansele Egs.
(8) and(9)]. We conclude that
ImB-T(w)=

mfe (o). (107

31’*L,T

LT—1_
Q 1 5

(109

The low frequency limit of Eq(20) fixesa-T as

195113-10
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TABLE I. The parameters foB"(w) [Eq. (108)].

rs 107" bt rt Qb
1 0.3769 0.2145 1.831 —-1.747
3 0.8191 0.2065 1.526 —1.289
5 1.069 0.1881 1.393 —1.090
LT 1 2aL, T
a'=—rS, (110

T

where o= (4/97). The high frequency limit of Eq(16)

fixesb™T as
bt T= 16(

Finally, from Eq.(10), we have the sum rule

4/5

4 715 aL,T
—3/5
3) b (112

LT
B 4.\2m7a +i ZQL'TFL’Te_(QLYT)Z/FLYT
[T(1/4)]%btT 27

+(al" YT T+ 2(Q5T)?]| 1+ erf

aall)

2
x =22 BLT(0)~B1 (), (112
where
2 X
erf(x)= \/—_J e‘yzdy. (113
mJ0

T and QYT are further determined from Eqé109 and

PHYSICAL REVIEW B 68, 195113 (2003
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=
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0016 [ L b
0.018 [ A
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©/ o

FIG. 1. Imaginary part oB"(w) andBT(w) atr,=1 in units of
2wy /n, as functions ofw.

For the spin-resolved pair correlation functigp,.(r), we
use the values obtained by diffusion Monte Cafl@able
VIIl) in Ref. 32.

The values of the parameters of E4G08) are presented
for three values of the Wigner-Seitz radius=1, 3, and 5 in
Table I. We note that, although IBtT(w)=Imf:."(w) at
low frequency, the parametees—" differ from the corre-
sponding ones in the density chaniedported in our Table
Il and Table Il of Ref. 12, because of the difference be-
tweenwy, and 2w, . Plots of ImB-T(w) and ReB-T(w) are
presented in Figs. 1-6.

Given the exact results f&k(w) listed in Sec. Il, it would
be natural to use for IA(w) the same form of interpolation
that we are proposing for IB""(w). Unfortunately this can
only be done at very smail. At rg> 1, the low-frequency
and high-frequency limits are such that the integral
(Um) [{[ImA(w)/w]dw calculated from this type of inter-
polation always exceeds A(«). For this reason we are
forced to take a different approach, already described in Ref.

(112. This completes the determination of the parameterg: we first calculate IM\(w) in the mode-decoupling

appearing in Eq(108).

approximation:>** and then correct the low-frequency be-

Next we present some numerical results at typical densihavior by a frequency-dependent facip(w),” chosen in
ties. Before doing this, however, we must choose input valsuch way that the exact high frequency behavior is main-

ues forB-T(0) andB"T(x). We use the Landau parameters
calculated by Yasuhara and OusZke determineB-"(0)
via Egs.(18) and(19). On the other handB“ T(=) is calcu-
lated from Eq.(17). We make use of the approximate corre-
lation energye. proposed by Vosko, Wilk, and Nusaf,
which is based on the results of Monte Carlo calculaffoto,
calculatet. via the relation

de.
tC:—€C+3nﬁ. (114)
TABLE Il. The parameters foB'(w) [Eq. (108)].
re 10%a" bT rT QT
1 0.2827 0.3447 1.935 —1.903
3 0.6143 0.3318 1.511 —1.267
5 0.8020 0.3022 1.375 —1.063

tained and the sum rule

0.03 T T T T

0.02

0.01

()

0

LT

-0.01

Re B

-0.02

-0.03

-0.04
©/ 0

FIG. 2. Real part oB'(w) andB"(w) atrs=1. Notations and
units are as in Fig. 1.
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0 T T T T
0005 [ T -~
001 [0

-0.015

(®)

002 [

LT

-0.025 -

ImB

003 [

-0.035 -

-0.04

©/ o0y

FIG. 3. Imaginary part oB-(w) andB™(w) atr =3.

and units are as in Fig. 1.

Notations

0.06 T T T T

0.04 [ T

003 [

Re B" )

0 1 2 3 4
0/ 0y

FIG. 4. Real part 0B“(w) andB'(w) atr.=3. Notations and

units are as in Fig. 1.

-0.01 [0

()

LT

-0.03 [0

ImB

-0.05 [0

-0.06

0/ o

FIG. 5. Imaginary part oB-(w) andB™(w) atr¢=5
and units are as in Fig. 1.

. Notations
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0.08 T T T T

LT
Re B "(w)

O/ ®p

FIG. 6. Real part oB-(w) andBT(w) atr,=5. Notations and
units are as in Fig. 1.

*» do' IMA(w")

ReA(0)— ReA(»)= Pf (1195

—oo T (,(),

is satisfied. This approach has the merit of producing a peak
at approximately the same frequency as the mode-decoupling
approximation, which we feel is physically justified.

V. SUMMARY

Several exact results for the singular and regular compo-
nents A(w) and B-T(w), respectively, of the exchange-
correlation kernel of an electron liquid in the spin channel
have been obtained. Based on these results, we have pro-
posed an interpolation formula for IBt'"(w) in the para-
magnetic state at any frequeney

The results obtained in this paper constitute progress in
the study of the many-body local field factors in the electron
liquid. These and the proposed interpolation formulas will be
useful in applications of the time dependent spin density
function theory.
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APPENDIX A: POSITION OF THE COLLECTIVE PEAK OF
Im BT (w)

This appendix is devoted to explaining why the position
of the peak in IMB-T(w) vs frequency is at aboutd,/
2 (in paramagnetic caseand not at 2 as in the dens-
ity channel. To this end, we denote th®(q®) term
of f! .(qw) as B! .(qw), and define B'(q,0)
:EUU’(nUnU’/nz)Blgl—g—’(q1w)'

In the RPA-based mode-decoupling approximation the
imaginary part of the xc kernel is given by
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20? qﬂoq (k+Qq)?

X|mX(RPA)(—k,w’)lmngPA)(k‘*'q.w—w')+(kiQ|+k‘q5i|)(ka|'+k'q5j|f)'mX(RPA)(—k,w')

xIm y! RPAK+q0—w')|. (A1)

In the plasmon pole approximation RP)(—k,»’) is  verse kernels in the density channel are related as follows:
proportional todf w’ —Q (k)] where Q (k) is the disper- L

sion of the plasmon. Noticing thai=w’ in Eq. (A1) and i Im (@) —Elim Im fy(w) ®1)
recalling thatQ,(k)=w,, we see that IB"(w») can be 1) 4 ®w

different from zero only for

w—0 w—0

We now show that this relation also holds in the spin chan-
0= wp) . (A2) nel. The proof is completely similar to the one given in Ref.
As we pointed out in Sec. Il H, in RPA one has 12 for the density channel and depends on the fact that

xs T (d,0)=x5(0,). (A3) ; 4 1 1

ImB,,,(q,0)=— ——— —lim—
Therefore  Imyd ™ (k+q,0—w’) differs from zero N*Vo® Viq-0q
x5 T(k+q,0—w") only when the condition | .
X 2 (L, (K)p(—k);jh, (k')
w— o' <[kelk+q|+|k+q|?/2]/m (A4) Kk’
is satisfied. Going to thg—O0 limit, and using the fact that Xp(=K)Nv(Kv (k)T (k,k',q),
o'=Q,(k), we can recast the above condition in the form
" (82)
where

w<Qp|(k)+%[k,:k+ k?/2]. (A5)
, Tiji (kK" q) = (kg + &;9- k) (kj gy + 8-k - ).

In order to get a rough estimate of the valuewobeyond (B3)
which the plasmon contribution to IBi’(w) drops to zero
we now restrict the sum ovér to wave vectors that satisfy
the conditionk<<k., wherek, is the wave vector at which

Here again the summation over the repeated indicesl |’
is assumed. It was shown in Ref. 12 that, to leading order in

the plasmon enters the electron-hole continugire.,,
wpi(Ke) =Keke/m+ k2/2m]. Assuming also that the plasmon
is nearly dispersionless, i.e., that,(k) =w, for k<k., we j quZ 5ijq2Tij,, (k,K",q)
see that Eq(A5) becomes "
5
< . ,
w prl (AG) = EJ qu; qiquij“ r(k,k ,q) (84)

Combining Egs.(A2) and (A6) we see that the collective
contribution to ImB"(w) is significant only in the range The key point is that this identity does not depend on spin

wp<=w<2wy, and therefore its peak value can be expectedndices. Therefore its substitution into E@2) yields
to occur at about midrange, i.e., @t=3w/2.

i ij P
APPENDIX B: PROOF OF Eq. (23) E 3;Im By, (0, 0)/q*= ; ImB,,(d,0)ai9;/a",

In Ref. 12 we proved that in a paramagnetic electron sys- (BS)
tem the low frequency limits of the longitudinal and trans- which implies Eq.(23).
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