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The components of the exchange-correlation kernel tensor of an isotropic electron liquid in the spin channel

have the structuref xc,2
L,T (q,v) →

q→0
A(v)/q21BL,T(v), whereL denotes the longitudinal component andT the

transverse component relative to the direction of the wave vectorq. In this paper we calculate analytically the
high- and low-frequency limits ofA(v) and BL,T(v) and combine these limiting forms with the Kramers-
Krönig dispersion relations to obtain approximations forA(v) andBL,T(v) at all frequencies.
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I. INTRODUCTION

The spin-resolved local field factorGss8(q,v) has often
been used to describe exchange-correlation~xc! effects in the
electron liquid.1,2 These effects arise from the antisymme
of the many-body wave function~exchange! and from the
Coulomb repulsion between the electrons~correlation!. The
equivalent concept of exchange-correlation kernel, define

f xc,ss8~q,v!52v~q!Gss8~q,v!, ~1!

wherev(q) is the Fourier transform of the Coulomb pote
tial, is more frequently used in time dependent~spin! density
functional theory.3–6 f xc,ss8(q,v) determines the xc poten
tial Vxc,s(q,v) created by a small density fluctuatio
dns8(q,v) according to the formula

Vxc,s~q,v!5(
s8

f xc,ss8~q,v!dns8~q,v!. ~2!

It is customary in density functional theory to replace t
nonlocal relation~2! by the local density approximation

Vxc,s~r ,v!.(
s8

f xc,ss8~q50,v!dns8~r ,v!, ~3!

where theq50 kernel f xc,ss8(q50,v) is evaluated at the
local equilibrium density. Unfortunately, this cannot be do
for the spin-resolvedf xc,ss8(q,v), for the simple reason tha
the q→0 limit of this function does not exist. In fact, on
has7

f xc,ss8~q,v!.
A~v!

q2

ss8n2

4nsns8

1Bss8~v!1O~q2!, ~4!

where ns is the density ofs-spin electrons (s511 for
↑-spin ands521 for ↓-spin!, and n5n↑1n↓ is the total
density.A(v) andBss8(v) are finite functions of frequency
The small-q divergence cancels out in the density chann
i.e., when one sums over the spin indices, but not in
other combination of the matrix elementsf xc,ss8(q,v).

It has recently been pointed out,7 that this difficulty can be
avoided by switching to a more complete description
which the basic variables are the longitudinal and transve
components of the spin-resolved current density. In the s
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current density functional theory the xc potential is a vec
potentialAxc,s , which is related to the spin-resolved curre
density by the following relation:

Axc,s
i ~q,v!5

q2

v2 (
j ,s8

f xc,ss8
i j

~q,v!d j s8
j

~q,v!, ~5!

wherei and j are Cartesian indices. In isotropic electron li
uid, the tensor kernelf xc,ss8

i j (q,v) can be described by its
longitudinal ~L! and transverse ~T! components
f xc,ss8

L,T (q,v), defined by the relation

Axc,s
L,T ~q,v!5

q2

v2 (
s8

f xc,ss8
L,T

~q,v!d j s8
L,T

~q,v!, ~6!

whereL and T denote the longitudinal and transverse co
ponent relative to the direction ofq.

It is easy to verify thatf xc,ss8
L (q,v) coincides with the

usualf xc,ss8(q,v) of the standard density functional forma
ism, but f xc,ss8

T (q,v) is new. Both f xc,ss8
L (q,v) and

f xc,ss8
T (q,v) have a small-q expansion of the form~4!,

f xc,ss8
L,T

~q,v! →
q→0A~v!

q2

ss8n2

4nsns8

1Bss8
L,T

~v!1O~q2!, ~7!

and for this reason the connection~6! betweenAxc,s
L,T (q,v)

and d j s
L,T(q,v) is well-behaved in the small-q limit, i.e.,

local, as we wanted.
Against this background, the importance of having re

able expressions forA(v) and Bss8
L,T (v) is self-evident.

These functions are also needed for a consistent descrip
of effective interaction, including exchange of sp
fluctuations.8–11

It is convenient to consider separately the density-den
and the spin-spin ‘‘channels.’’ In the density-density chan
the small-q singularity cancels out and one is left with

f xc
L,T~v!5(

ss8
Bss8

L,T
~v!

nsns8

n2
. ~8!

Approximate expressions forf xc
L,T(v) have been obtained b

the present authors12 and, earlier, by several others.10,13,14

These formulas are extremely useful in time-depend
©2003 The American Physical Society13-1
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current-density functional theory,15–17 which has recently
found interesting applications to the calculations of the o
cal spectra of solid18 and the polarizability of long polyme
chains.19

In this paper we address the remaining part of the pr
lem, namely, the calculation of the spin-spin channel qua
ties A(v) and

BL,T~v!5(
ss8

Bss8
L,T

~v!ss8
nsns8

n2
. ~9!

ConcerningA(v), we mainly build on the work briefly
reported in Ref. 7: we supply detailed derivations of the
sults presented there without proof, and derive an exac
lationship between the low-frequency behavior of ReA(v)
and the Landau parameters. We also evaluate the low
quency behavior of ImA(v) within the mode-decoupling
approximation,13,14 which is supposed to be exact in th
high-density limit. The main part of this paper, however,
devoted to the study ofBL,T(v).

First of all, we derive the high and low frequency limits
Im BL,T(v). To this end, we express the small-q limit of
Im f xc,ss8

i j (q,v) in terms of four-point response function
which are then treated perturbatively. The expansion is ac
rate to second order in the Coulomb interaction, yet we
lieve that it yields the exact asymptotic behavior at hi
frequency because in that limit the four-point response fu
tion of the interacting system reduces to that of the nonin
acting one. In this way ImBL,T(v) is found to decrease a
(1/v3/2), which is the same behavior that was previou
established for Imf xc

L,T(v) in the density-density
channel.13,14,20

The same small wavevector expansion is applied to
calculation of the low frequency behavior of ImBL,T(v),
but, in this case, the results are only valid in the high-den
limit. We find that, in this limit, the difference betwee
Im BL,T(v) and Imf xc

L,T(v), vanishes to first order inv. We
also show that ImBT(v)5(3/4)ImBL(v) at smallv. Fur-
thermore, we establish a relation between ReBL,T(0) and the
Landau parameters parallel to the one obtained by Conti
Vignale21 in the density-density channel.

We then construct approximate interpolation formulas
Im BL,T(v) based on the above results. The philosophy is
same as that in Ref. 12. Basically, we attempt to improve
Gross-Kohn interpolation formula22,23 by introducing a peak
at intermediate frequency. The position of the peak at ab
vm53vpl/2 ~where vpl is the plasmon frequency! is sug-
gested by the mode-decoupling theory, while the strengt
the peak is fixed~via dispersion relations! by the low-
frequency behavior of the real part ofBL,T(v).

It turns out that the same type of interpolation f
Im A(v) does not work well at ‘‘metallic densities.’’ There
fore, we resort to the mode-decoupling approximation~al-
ready discussed in Ref. 7! to describe this function. The re
sults obtained in this paper should be useful in curr
implementations of the spin-current-density function
theory, which aim at calculating the energy of spi
dependent excitations in complex electronic systems.
19511
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The paper is organized as follows. In Sec. II, we summ
rize the exact properties ofA(v) andBL,T(v) . In Sec. III,
we present the derivations of these exact properties. In
IV, we present our interpolation formulas forBL,T(v) in
paramagnetic state. Further technical details are present
the two Appendixes.

II. EXACT PROPERTIES

We begin by listing, for ease of reference, the exact pr
erties ofA(v) andBL,T(v). The derivations are very tech
nical and will be presented in the next section.

First of all, we note that bothA(v) andBL,T(v) satisfy
the Kramers-Kro¨nig ~KK ! relations. For example, we have

ReA~v!2A~`!5PE
2`

` dv8

p

Im A~v8!

v82v
, ~10!

whereP is the principal part, and similarly forBL,T(v).

A. Exact properties for A„v…

The high-frequency behavior of ImA(v) is7

Im A~v! →
v→`

2
16pe2

3

n↑n↓
n2

me2

Amv
. ~11!

The infinite frequency limit of ReA(v) is given by the
third-moment sum rule24,25

ReA~`!5 lim
q→0

S m

nqD 2

M3~q!52
16pe2

3

n↑n↓
n2

@g↑↓~0!21#,

~12!

whereM3(q)52(1/pV)*2`
` v3Im xs(q,v)dv is the third-

moment of the spin-spin response function, withV the vol-
ume, and g↑↓(0)5g↑↓(r 50), with gss8(r ) the spin-
resolved pair correlation function.

In addition, ReA(v) and ImA(v) vanish at zero fre-
quency asv2 andv3, respectively. It will be shown that

lim
v→0

A~v!50, ~13!

12 lim
v→0

nA~v!

mv2
5

11F1
s/3

11F1
a/3

, ~14!

whereFl
s andFl

a are spin-symmetric and spin-antisymmetr
Landau parameters, respectively26 and

lim
v→0

Im A~v!

v3
52

m4e4

18p3n2ks
Fp

2
2

2kFks

4kF
21ks

2
2tan21

ks

2kF
G ,

~15!

where ks is the screening wave vectorks5A4kF /pa0, kF
the Fermi wave vector, anda0 is the Bohr radius. The las
two equations above are specialized to the paramagn
case, and Eq.~15! is exact only in the high density limit.
3-2
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B. Exact properties for BL ,T
„v…

The high-frequency behavior of ImBL,T(v) is

Im BL,T~v! →
v→`

2cL,T
pme4

~mv!3/2
, ~16!

wherecL541/30, cT517/30.
The infinite frequency limit ofBL,T(v) is

BL,T~`!5aL,T
tc

n
1

bL,T

2 E drv~r !g2~r !, ~17!

whereaL52, aT52/3, bL54/15, bT522/15, andg2(r )
5(ss8(nsns8 /n2)ss8gss8(r ).

The zero-frequency limits ofBL,T(v) are related to the
Landau parameters as follows:

BL~0!5
2EF

n

4F2
a/751F0

a/32F1
s/5

11F1
s/3

~18!

and

BT~0!5
2EF

n

F2
a/252F1

s/15

11F1
s/3

, ~19!

where EF5kF
2/2m is the Fermi energy. The low-frequenc

behavior of ImBL,T(v) is determined by

lim
v→0

Im BL,T~v!

v
52S me2

np D 2

kFSL,T, ~20!

where the dimensionless constantsSL,T are given by

SL52
1

45p H 52~l15/l!tan21l2
2

l
sin21

l

A11l2

1
2

lA21l2 Fp

2
2tan21

1

lA21l2G J ~21!

and

ST5
3

4
SL. ~22!

In the above expressionl[2kF /ks .
While Eq.~21! is perturbative, and therefore strictly vali

only in the high density limit, the relation

lim
v→0

Im BT~v!

v
5

3

4
lim
v→0

Im BL~v!

v
~23!

is nonperturbative and, as such, is expected to hold a
densities. The results listed in this subsection are special
to the paramagnetic case, except for Eq.~17!, which holds in
general.
19511
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III. DERIVATIONS

A. Small wave vector expansion for imaginary part of the xc
kernel tensor Im f xc,ss8

i j
„q,v…

To derive the exact results forA(v) andBL,T(v) listed in
Sec. II, we first establish the small-q expansion of
Im f xc,ss8

i j (q,v) in terms of four-point response function
We begin with the exact expression

Im f xc,ss8
i j

~q,v!5
m2

Vnsns8

v2

q2 Im^^ j s
i ~q,t !; j s8

j
~2q!&&v ,

~24!

wherejs(q) is the spin-resolved current-density operator

js~q!5 (
m51

N

Qmsjm~q!, ~25!

whereQms5(11ssmz)/2 ~with smz the z-component Pauli
matrix for themth particle! picks thes-spin component of
the state of themth particle and

jm~q![
1

2m
@Pmrm~q!1rm~q!Pm#. ~26!

Pm andrm(q) are the momentum and density operators
the mth particle.

The Zubarev product is defined aŝ^A;B&&v[
2 i *0

`dteivt^@A(t),B(0)#&. ~The frequency argument will be
omitted, for brevity, from now on.! Making use of this defi-
nition, one can show that Eq.~24! can be rewritten as

Im f xc,ss8
i j

~q,v!5
m2

Vnsns8

1

q2v2 Im^^ j̈ s
i ~q,t !; j̈ s8

j
~2q!&&,

~27!

where j̈s(q,t) is the second time derivative ofjs(q,t). Op-
erators without an explicit time argument are assumed to
evaluated att50. Since

Ṗm5
i

V (
k

kr~2k!rm~k!v~k!, ~28!

commutes with the density fluctuations and

ṙm~q!52 iq• jm~q!, ~29!

where r(2k)5(m51
N rm(k) and N is the electron number

we see that

j̇m~q!5
1

2m
@2Ṗmrm~q!1 ṙm~q!Pm1Pmṙm~q!# ~30!

and

j̈ m
i ~q!5

1

2m F2i

V (
k

kiv~k!
]

]t
$r~2k!rm~k1q!%

2 iq•$Ṗmi ,jm~q!%2 iq•$Pmi , j̇m~q!%G , ~31!
3-3
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where$A,B%5AB1BA is the anticommutator ofA and B.
By using Eqs.~28!, ~29!, and~30! in the above equation, we
obtain

j̈ m
i ~q!5

1

2mV (
k

v~k!

3F2ik i

]

]t
@r~2k!rm~k1q!#

1ki$r~2k!rm~k!,q• jm~q!%

1
k•q

m
$Pmi ,r~2k!rm~k1q!%G

2
i

2m2V
$Pmi ,$q•Pm ,q• jm~q!%%. ~32!

Up to this point, the derivation is exact. The last term
the right-hand side~RHS! of Eq. ~32! makes a contribution
of higher order thanO(q0) to Im f xc,ss8

i j (q,v), and is there-
fore dropped from now on.
qu

19511
Expanding the anticommutators in Eq.~32!, one obtains

j̈ m
i ~q!5

1

mV (
k

v~k!F ik i

]

]t
@r~2k!rm~k1q!#1r~2k!

3$q• jm~k1q!ki1k•qj mi~k1q!%

1
1

m
kik•qrm~q!G , ~33!

and the substitution of Eq.~33! into Eq. ~25! yields

j̈ s
i ~q!5

1

mV (
k

v~k!

3F ik i

]

]t
@r~2k!rs~k1q!#1kir~2k!q• js~k1q!

1k•qj s
i ~k1q!r~2k!G . ~34!

Therefore we finally arrive at
Im f xc,ss8
i j

~q,v!52
1

V3nsns8

1

q2v2 (
k,k8

v~k!v~k8!Im@v2kikj8^^r~2k!rs~k1q!;r~2k8!rs8~k82q!&&

1vkj8„kiql^^r~2k! j s
l ~k1q!;r~2k8!rs8~k82q!&&1k•qd i l ^^ j s

l ~k1q!r~2k!;r~2k8!rs8~k82q!&&…

1vki„kj8ql^^r~2k!rs~k1q!;r~2k8! j s8
l

~k82q!&&1k8•qd j l ^^r~2k!rs~k1q!; j s8
l

~k82q!r~2k8!&&…

2^^kiqlr~2k! j s
l ~k1q!1k•qd i l j s

l ~k1q!r~2k!;kj8ql 8r~2k8! j s8
l 8 ~k82q!

1k8•qd j l 8 j s8
l 8 ~k82q!r~2k8!&&#. ~35!

In Eq. ~35! and in the following formulas, a summation over the repeated indicesl and l 8 is understood.
Equation~35! is accurate to the order ofO(q0). The singular term of Imf xc,ss8

L,T (q,v) arises from the first term of the RHS
of Eq. ~35!, which, to orderO(q22), yields

Im f xc,ss8
L,T

~q,v!52
1

V3nsns8

1

q2 (
k,k8

v~k!v~k8!
k•k8

3
Im^^r~2k!rs~k!;r~2k8!rs8~k8!&&. ~36!
ar-
Based on simple symmetry considerations, the above e
tion can be rewritten as

Im f xc,ss8
L,T

~q,v!5
ss8

V3nsns8

1

q2 (
k,k8

v~k!v~k8!
k•k8

3

3Im^^r↑~2k!r↓~k!;r↑~k8!r↓~2k8!&&.

~37!

The structure off xc,ss8
L,T (q,v) displayed in Eq.~7! is thus

confirmed, and an explicit expression for ImA(v) is ob-
tained:
a-
Im A~v!5

4

3V3n2 (
k,k8

v~k!v~k8!k•k8

3Im^^r↑~2k!r↓~k!;r↑~k8!r↓~2k8!&&.

~38!

The results in this subsection hold for arbitrary spin pol
ization.

B. High-frequency limit of Im A„v…

Because ImA(v) is antisymmetric with respect tov, we
only need to consider positivev for which
3-4
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Im^^r↑~2k!r↓~k!;r↑~k8!r↓~2k8!&&

52p(
n

^0ur↑~2k!r↓~k!un&^nur↑~k8!

3r↓~2k8!u0&d~v2vn0!. ~39!

Herevn05En2E0 is an exact excitation energy of the sy
tem, with En , E0 the excited and ground state energies,
spectively: the sum extends to all the excited states that
coupled to the ground state by two density fluctuation ope
tors.

At high frequency, the four-point response functio
should coincide with that of a noninteracting electron g
which is given by

Im^^r↑~2k!r↓~k!;r↑~k8!r↓~2k8!&& (0)

→
v→`

2pd~v2k2/m!dk,k8N↑N↓ . ~40!
ke

r-

r

19511
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Therefore, from Eq.~38!, one has

Im A~v! →
v→`

2
4pn↑n↓
3Vn2 (

k
d~v2k2/m!k2v2~k!. ~41!

Carrying out the summation overk yields the result in Eq.
~11!, which holds for arbitrary spin polarization.

C. High-frequency limit of Im BL ,T
„v…

The high-frequency limit of Imf xc
L (v) was first estab-

lished by Glick and Long.20 The extension to Imf xc
T (v) was

carried out by Nifosı`, Conti, and Tosi.13,14 In this subsection,
we report the corresponding calculation for ImBL,T(v). We
limit ourselves to the paramagnetic case.

At high frequency, Eq.~35! reduces to
Im f xc,ss8
i j

~q,v!52
1

V3nsns8

1

q2v2 (
k•k8

v~k!v~k8!Im@v2kikj8^^r~2k!rs~k1q!;r~2k8!rs8~k82q!&&1vkj8~kiql1k•qd i l !

3^^r~2k! j s
l ~k1q!;r~2k8!rs8~k82q!&&1vki~kj8ql1k8•qd j l !^^r~2k!rs~k1q!;r~2k8!

3 j s8
l

~k82q!&&1~kiql1k•qd i l !~kj8ql 81k8•qd j l 8!^^r~2k! j s
l ~k1q!;r~2k8! j s8

l 8 ~k82q!&&#. ~42!
act-
The last term in the above equation can be shown to ma
contribution of orderv25/2 to ImBL,T(v), whereas the first
three terms contribute to the leading order ofv23/2.

We begin with the first term, which gives the leading o
der contribution to both ImA(v) and ImBL,T(v). We de-
note it as the ‘‘a’’ term in the derivations that follows. The
four point response function can be rewritten as

Im^^r~2k!rs~k1q!;r~2k8!rs8~k82q!&&

52p (
p1p2

(
p3p4

(
ab

(
n

d~v2ep12k2q2ep31k

1ep1
1ep3

!^0uap1s
1 ap3a

1 ap12k2qsap31kaun&

3^nuap21k82qs8
1 ap42k8b

1 ap2s8ap4bu0&, ~43!

whereep1
5p1

2/2m, etc. Obviously,up1u, up2u, up3u, andup4u
are all smaller thankF . Therefore, to the leading order fo
largev, we have

Im^^r~2k!rs~k1q!;r~2k8!rs8~k82q!&&

→
v→`

2p (
p1p2

(
p3p4

(
ab

(
n

d~v2ek1q2ek!

3^0uap1s
1 ap3a

1 a2k2qsakaun&

3^nuak82qs8
1 a2k8b

1 ap2s8ap4bu0&. ~44!
aCarrying out the sum over the eigenstates of the noninter
ing system~only double electron-hole pairs contribute!, we
get

Im^^r~2k!rs~k1q!;r~2k8!rs8~k82q!&&

→
v→`

2
pN2

4
d~v2k2/m2q2/2m2k•q/m!

3$dk1q,k81dk,2k8dss82dk1q,k8dss8%. ~45!

Substituting this result into Eq.~42!, we come to

Im f xc,2
i j ,a ~q,v!52

p

2q4V
(

k
d~v2k2/m2q2/4m!

3v~k2q/2!~ki2qi /2!@v~k2q/2!

3~kj2qj /2!1v~k1q/2!~kj1qj /2!#,

~46!

where

f xc,2
i j ~q,v![

1

4 (
ss8

ss8 f xc,ss8
i j

~q,v!. ~47!

Therefore,
3-5
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Im f xc,2
L,a ~q,v!52

p

2q4V
(

k
d~v2k2/m2q2/4m!

3v2~k!
1

k4
@2~k•q!2k414~k•q!4

23~k•q!2q2k2#, ~48!

where we have ignored terms that vanish forq→0. After
carrying out the sum overk in Eq. ~48!, we obtain

Im f xc,2
L,a ~q,v!52

pe4

m1/2v3/2

1

q2 F4

3
mv2

7

30
q2G . ~49!

For the transverse component, we need to evaluate
tensor product

d i j Im f xc,2
i j ,a ~q,v!52

p

2q2V
(

k
d~v2k2/m2q2/4m!

3v~k2q/2!@v~k2q/2!~k2q/2!2

1v~k1q/2!~k22q2/4!# ~50!

or

d i j Im f xc,2
i j ,a ~q,v!52

p

2q2V
(

k
d~v2k2/m2q2/4m!v2~k!

3@2k22q212~k•q!2/k2#, ~51!

to the order ofO(q0). Equation~51! can be further simpli-
fied to

d i j Im f xc,2
i j ,a ~q,v!52

pe4

m1/2v3/2

1

q2 F4mv2
q2

6 G . ~52!

Thus, finally

Im f xc,2
T,a ~q,v!52

pe4

m1/2v3/2

1

q2 F4mv

3
1

q2

30G . ~53!

Next we evaluate the contribution due to the second
third terms in Eq.~42!. We denote them together as the ‘‘b’’
term. At largev, the four point response functions are eva
ated as

Im^^r~2k! j s
l ~k1q!;r~2k8!rs8~k82q!&&

52
pN2

8m
~kl1ql !d~v2k2/m2q2/2m2k•q/m!

3$dk1q,k81dk,2k8dss82dk1q,k8dss8% ~54!

and
19511
he

d

-

Im^^r~2k!rs~k1q!;r~2k8! j s8
l

~k82q!&&

52
pN2

8m
~2kl81ql !d~v2k2/m2q2/2m2k•q/m!

3$dk1q,k81dk,2k8dss82dk1q,k8dss8%. ~55!

Substituting the above results into Eq.~42! leads to

Im f xc,2
i j ,b ~q,v!5

p

2Vmq2

1

v (
k

d~v2k2/m!v~k2q/2!k•q

3$@dss̄8v~k1q/2!1dss8v~k2q/2!#

3@kiqj1kjqi #24dss8v~k2q/2!kikj%,

~56!

wheres̄852s8. Therefore,

Im f xc,2
i j ,b ~q,v!52

2p

Vmq2

1

v

3(
k

v2~k!d~v2k2/m!
~k•q!2

k2
kikj . ~57!

The longitudinal and transverse components can be fur
evaluated as

Im f xc,2
L,b ~v!52

8pe4

5m1/2v3/2
~58!

and

Im f xc,2
T,b ~v!52

8pe4

15m1/2v3/2
, ~59!

respectively.
Combining Eqs.~49!, ~53! and~58!, ~59! yields our com-

plete results

Im f xc,2
L ~q,v!52

pe4

m1/2v3/2

1

q2 F4mv

3
1

41q2

30 G ~60!

and

Im f xc,2
T ~q,v!52

pe4

m1/2v3/2

1

q2 F4mv

3
1

17q2

30 G . ~61!

Thus we have the final results for ImBL,T(v) as shown in
Eq. ~16!. The singular term in the above equations
Im A(v), which is a special case of Eq.~11! for the para-
magnetic state.

D. High frequency limit of the real part xc kernel
Re f xc,ss8

L ,T
„q,v…

The third moment sum rule for Ref xc,ss8
L (q,`) was

first established by Goodman and Sjo¨lander,24 and later
rederived by Liu.25 Here we give derivations for both
Ref xc,ss8

L (q,`) and Ref xc,ss8
T (q,`). We start from a rela-
3-6
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tion between Ref xc,ss8
a (q,`) and the first moment of the

spin-current spin-current response functionMss8
a (q)

va~q!1 f xc,ss8
a

~q,`!5
m2

nsns8

Mss8
a

~q!2Mss8
a(0)

~q!

q2
,

~62!

wherea5L,T, andvL(q)5v(q), andvT(q)50, Mss8
a(0)(q)

is the noninteracting version ofMss8
a (q). The first moment

of the spin-current spin-current response function in Eq.~62!
is defined as

Mss8
a

~q!52
1

pVE2`

`

dvv Im^^ j s
a~q,t !, j s8

a
~2q!&&,

~63!

which can also be rewritten as

Mss8
a

~q!5
i

V
^@ j̇ s

a~q!, j s8
a

~2q!#&. ~64!

Note that the longitudinal component ofMss8
a (q) is related

to the third moment of the spin-density spin-density respo
function via

Mss8
L

~q!5M3,ss8~q!/q2. ~65!

By using Eq.~30!, we have

@ j̇ s
i ~q!, j s8

j
~2q!#

5
i

2m H F 2

V (
k

kir~2k!rs~k1q!v~k!, j s8
j

~2q!G
2

1

m (
n

qlQns@Pni j nl~q!1 j nl~q!Pni , j s8
j

~2q!#J .

~66!

The commutators on the RHS of the above equation can
carried out straightforwardly, though tediously, and one
rives at

@ j̇ s
i ~q!, j s8

j
~2q!#

5
i

m2V
(

k
kiv~k!r@~2k!~kj1qj !rs~k!dss8

2kjrs8~2k2q!rs~k1q!#

2
i

m3 (
n

dss8Qns@qiq•PnPn j1qj Pniq•Pn

1q2PniPn j#. ~67!

We denote the contribution toMss8
a (q) from the first term of

the RHS of the above equation as@Mss8
a (q)# int and that from

the second term as@Mss8
a (q)#kin . They can be calculated a
19511
e

be
r-

@Mss8
a

~q!# int5
1

m2
qa

2v~q!nsns8

1
1

m2 Fdss8(
t

Gst
a ~0!2Gss8

a
~q!G ~68!

and

@Mss8
a

~q!#kin5
2

3V

1

m2
dss8~2qa

21q2!^Ts&, ~69!

where

Gss8
a

~q!52
1

V2 (
k5” q

ka
2v~k!^rs~q2k!rs8~k2q!&,

~70!

and ^Ts& is the spin-resolved kinetic energy. Substitutin
Eqs.~68!, ~69! into Eq. ~62!, one obtains

f xc,ss8
L,T

~`!5
1

ns8
FaL,Tdss8tcs1

1

q2ns

3H dss8(
t

Gst
a ~0!2Gss8

a
~q!J G . ~71!

At small wave vector, it can be shown that

Gss8
a

~q!52
4pe2nsns8

3
@gss8~0!21#

2
1

2
bansns8q

2E drv~r !@gss8~r !21#,

~72!

to the accuracy ofO(q2). After some straightforward alge
bra, one obtains the following result:7

f xc,ss8
L,T

~q,`! →
q→0

2
4pe2

3q2

n↑n↓
nsns8

@g↑↓~0!21#ss8

1aL,T
tcs

ns
dss81

1

2
bL,T

3E dr
e2

r
@gss8~r !21#. ~73!

The results in this subsection are valid for arbitrary spin p
larization.

E. Proof of ReA„0…Ä0

The vanishing of ReA(0) follows from the fact that
(1/p)*2`

` @ Im A(v)/v#dv is equal to~minus! the first mo-
ment of the spin-current spin-current response function in
spin channel, which, by gauge invariance and the contin
equation, coincides with the third moment of the spin cha
nel of the spin-density spin-density response function, i.
2A(`). More explicitly, from Eq.~7!, one has
3-7



n

n

ty
lat
w

-
at

is
n
w

q.
pin

sed
in
cur-

l-

ZHIXIN QIAN AND GIOVANNI VIGNALE PHYSICAL REVIEW B 68, 195113 ~2003!
1

pE2`

` Im A~v!

v
dv5

1

p
lim
q→0

E
2`

`

dv
q2

v
Im f xc,2

L ~q,v!.

~74!

The above equation can be rewritten, making use of Eq.~24!,
as

1

pE2`

` Im A~v!

v
dv5

m2

pNn
lim
q→0

E
2`

`

dvv

3(
ss8

ss8Im^^ j s
L~q,t !; j s8

L
~2q!&&.

~75!

As can be seen from Eq.~63!, the RHS of the above equatio
is 2(m/n)2(ss8ss8Mss8

L (q), which coincides, for smallq,
with 2A(`) according to Eqs.~65! and ~12!. Thus, A(0)
50, and this conclusion holds for arbitrary spin polarizatio

F. Low frequency limit of Re BL ,T
„v…

The low frequency limit of the xc kernel for the densi
channel in the case of a paramagnetic state was first re
to the Landau parameters in Ref. 21. In this subsection,
extend the results of Ref. 21 to the spin channel.

The quasiclassical quasiparticle Hamiltonian is

Hqp~r ,p,s!5ep1As(r ,t),s1 (
p8s8

f ps,p8s8

3@np8s82n0~ep81As8(r ,t),s8!#, ~76!

where eps is the energy of a quasiparticle of spins,
“peps[vps5p/ms* is the quasiparticle velocity,ms* is the
effective mass, andf ps,p8s8 are the Landau interaction func
tions. HereAs(r ,t) is a spin-resolved vector potential th
couples only tos-spin particles. We assume thatAs(r ,t) is
small. Linearizing with respect toAs(r ,t) we get

Hqp~r ,p,s!5eps1 (
p8s8

f ps,p8s8n1p8s8

1(
s8

As8•Fvps8dss8

2(
p8

vp8s8n08~ep8s! f ps,p8s8G , ~77!

where n1ps(r ,t)5nps(r ,t)2n0(eps). The Liouville equa-
tion of motion for the quasiparticle distribution function
governed by the above Hamiltonian. After linearization a
Fourier transformation with respect to space and time
obtain
19511
.

ed
e

d
e

~q•vps2v!n1ps~q,v!2q•vpsn08~eps!

3F(
s8

As8~q,v!•H vps8dss82(
p8

“p8np8s8 f ps,p8s8J
1 (

p8s8
f ps,p8s8n1p8s8~q,v!G50. ~78!

In a paramagnetic system this equation reduces to

~q•vp2v!n1ps~q,v!2q•vpn08~ep!

3F(
s8

As8~q,v!•H vpdss82(
p8

“p8np8 f ps,p8s8J
1 (

p8s8
f ps,p8s8n1p8s8~q,v!G50, ~79!

which can be further simplified to

~q•vp2v!n1p
a ~q,v!

22q•vpn08~ep!F(
p8

f p•p8
a n1p8

a
~q,v!

1
1

ms
p•Aa~q,v!G50, ~80!

wheren1p
a 5n1p↑2n1p↓ , and f p•p8

a is the spin-antisymmetric
component of the Landau interaction function. In writing E
~80!, we have introduced two new objects, namely, the s
massms ,

1

ms
5

1

m* F11
1

3
F1

aG , ~81!

and the ‘‘spin-channel vector potential’’

Aa~q,v!5
1

2
@A↑~q,v!2A↓~q,v!#. ~82!

The physical significance of the spin mass is discus
extensively in Ref. 27. In brief, it turns out that the sp
current, defined as the difference between spin-resolved
rents

ja~q,v!5 j ↑~q,v!2 j ↓~q,v!, ~83!

is related to the quasiparticle distribution function in the fo
lowing manner:

ja~q,v!5(
p

p

ms
n1p

a ~q,v!1
n

ms
Aa~q,v!. ~84!

The response ofja(q,v) due to the perturbationAa(q,v)
is given by

j a
L,T~q,v!5xs

L,T~q,v!Aa
L,T~q,v!. ~85!

Combining Eqs.~80! and ~84!, we can compute the small-q
limit of the response function with the following results:
3-8
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xs
L~q,v!2

n

ms
→

q→0 nq2kF
2

ms
2m* v2 F3

5
1

4F2
a

75
1

F0
a

3 G ~86!

and

xs
T~q,v!2

n

ms
→

q→0 nq2kF
2

ms
2m* v2 F1

5
1

F2
a

25G . ~87!

On the other hand, we also have

xs
L,T~q,v!5

x0
L,T~q,v!

12BL,T~q,v!x0
L,T~q,v!q2/v2

, ~88!

which implies

x0
L,T~q,v! →

q→0 n

mF11gL,T
EFq2

mv2 G , ~89!

wheregL56/5 andgT52/5. Comparing theO(q0) term of
xs

L,T(q,v) in Eqs.~86!, ~87! with the corresponding term in
Eq. ~89!, we find

ms

m
512

nA~v!

mv2
. ~90!

Substituting Eq.~90! back into Eq.~88! yields

xs
L,T~q,v! →

q→0 n

ms
F11gL,T

eFq2

msv
2

1
nq2

msv
2

BL,T~v!G .

~91!

Comparison of Eq.~91! with Eqs.~86! and~87!, respectively,
leads to Eqs.~18! and ~19!, and to the further relation

BL~0!2
4

3
BT~0!5

1

n

]2

]z2
exc~z!uz50 , ~92!

whereexc(z) is the xc energy for per particle at spin pola
ization z. Notice that to obtain Eq.~92! we have used the
relation

]2

]z2
exc~z!uz505

2EF

3

F0
a2F1

s/3

11F1
s/3

, ~93!

which can be deduced from the well known relation betwe
the spin susceptibility and the Landau parametersF1

s andF1
a

in Fermi liquid theory.26 Equation~92! combined with the
corresponding relation for the density channel28 yields

lim
v→0

f xc
L ~v!24 f xc

T ~v!/32]2~nexc!/]n2

v
50, ~94!

thus confirming the exact identity

lim
v→0

f ss8
L

~v!24 f ss8
T

~v!/32]2~nexc!/]ns]ns8

v
50,

~95!

which was first reported in Ref. 7.
19511
n

G. Low frequency limit of Im A„v…

Equation~15!—the low frequency limit of ImA(v)—is
established within the mode-decoupling approximatio
which is exact only in the high density limit. The analyt
form of this approximation is given by Eq.~14! of Ref. 7,
which, in the paramagnetic case, reduces to

Im A~v!52
4

3n2V
(

q
vq

2q2

3E
0

vdv8

p

Im x0↑~q,v2v8!Im x0↑~q,v8!

ue~q,v2v8!u2ue~q,v8!u2

3$@11Q~q,v2v8!#@11Q~q,v8!#

2Q~q,v2v8!Q~q,v8!%, ~96!

whereQ(q,v)52v(q)@2Rex0↑(q,v)1v(q) ux0↑(q,v)u2].
To leading order inv, for smallv, Eq. ~96! simplifies to

Im A~v!52
4

3n2V
(

q
vq

2q2
1

ue~q,0!u2

3E
0

vdv8

p
Im x0↑~q,v2v8!Im x0↑~q,v8!,

~97!

wherex0↑(q,v) is the Lindhard function for just one spi
component. At small frequency the limiting form
Im x0↑(q,v).m2v/4pq for q<2kF can be applied, and
thus we get

Im A~v! →
v→0

2
1

3n2V
S m2

2p D 2 1

6p
v3(

q
v~q!2

3
1

ue~q,0!u2
u~2kF2q!. ~98!

Making use of the RPA for the static dielectric function, o
obtains, after some straightforward calculations, the resu
Eq. ~15!.

H. Low frequency limit of Im BL ,T
„v…

Again, we restrict our attention to the paramagnetic c
in this subsection. At smallv, Eq. ~35! reduces to

Im f xc,ss8
i j

~q,v!

52
1

V3nsns8

1

q2v2(
k,k8

v~k!v~k8!

3~kiql1k•qd i l !~kj8ql 81k8•qd j l 8!

3^^r~2k! j s
l ~k1q!;r~2k8! j s8

l
~k82q!&&. ~99!
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As discussed in our previous analysis of the dens
channel,12 two types of processes contribute to the four-po

correlation function ^^r(2k) j s
l (k1q);r(2k8) j s8

l 8 (k8
2q)&& in this limit: direct processes, and exchange p
cesses. We first evaluate the contribution of direct proce
@denoted by~D! below#, for which
ti

t

19511
y
t

-
es

Im^^AB;CD&&v52
1

pE0

v

dv8@ Im^^A;C&&v8

3Im^^B;D&&v2v8
1Im^^A;D&&v8Im^^B;C&&v2v8# . ~100!

Their contribution is therefore
nsverse
Im f xc,ss8
i j (D)

~q,v!5
1

V3nsns8

1

q2v2 (
k,k8

v~k!v~k8!~kiql1k•qd i l !~kj8ql 81k8•qd j l 8!E
0

vdv8

p F Im x~2k,v2v8!

3Im xss8
l l 8 ~k,v8!dk,2k82

klkl 8

k4
v8~v2v8!Im xss~k,v8!Im xs8s8~2k,v2v8!dk,k8G , ~101!

where x(2k,v8), etc., are proper linear response functions. In a paramagnetic system, the longitudinal and tra
components of the xc kernel can be obtained as

Im f xc,ss8
L,T(D)

~v!52
8

5N2v2 (
k

v2~k!E
0

vdv8

p
@k2Im x~2k,v2v8!$l1

L,TIm xss8
L

~k,v8!1l2
L,TIm xss8

T
~k,v8!%

1l3
L,TIm xss~k,v8!Im xs8s8~2k,v2v8!v8~v2v8!#, ~102!
ults

m-
the
e

l. In

e of
ap-
where l1
L52, l1

T52/3, l2
L54/3, l2

T51, l3
L52, and l3

T

52/3. The leading order contribution at smallv is

Im BL,T(D)~v!52
2

5N2
l2

L,T 1

v2 (
k

v2~k!

3E
0

vdv8

p
Im x~2k,v2v8!

3Im xs
T~k,v8!k2. ~103!

We note that, in RPA

xT~k,v!5xs
T~k,v!5x0

T~k,v! ~104!

and

xL~k,v!5
x0

L~k,v!

e~k,v!
, ~105!

wheree(k,v)512v(k)x0(k,v) is the RPA dielectric func-
tion. Therefore,12

Im BL,T(D)~v!5Im f xc
L,T(D)~v!. ~106!

It should be evident from the above argument that Eq.~106!
holds only within the RPA.

Under the same RPA for the screened Coulomb poten
one can show that exchange processes only contribute to
spin-diagonal termsf xc,ss and therefore make equivalen
contributions to the density and the spin channel@see Eqs.
~8! and ~9!#. We conclude that

Im BL,T~v!5Im f xc
L,T~v!. ~107!
al
the

The low frequency limit of Imf xc
L,T(v) is given by Eq.~15!

in Ref. 12. Combining that result with Eq.~107! leads to the
expression of Eq.~20!.

IV. INTERPOLATION FORMULAS

We now present our interpolation formula for ImBL,T(v)
in paramagnetic state, which incorporates all the exact res
listed in Sec. II,

Im BL,T~v!52
2vpl

n
ṽF aL,T

~11bL,Tṽ2!5/4

1ṽ2e2(uṽu2VL,T)2/GL,TG , ~108!

where ṽ5v/vm , with vm the position of the ‘‘collective
peak’’ discussed below. The form of the interpolation is co
pletely analogous to the one we recently proposed for
density channel.12 However, there is a difference in the valu
of vm between the density channel and the spin channe
the density channel,vm52vpl , wherevpl is the plasmon
frequency. But, in the spin channel case, a simple estimat
the position of the peak, based on the mode-decoupling
proximation, suggestsvm.3vpl/2 ~see Appendix A!.

Requiring that Eq.~108! has a peak atvm yields the re-
lation

VL,T512
3GL,T

2
. ~109!

The low frequency limit of Eq.~20! fixes aL,T as
3-10
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aL,T5
1

pa
r s

2SL,T, ~110!

where a5(4/9p)1/3. The high frequency limit of Eq.~16!
fixes bL,T as

bL,T516S 4

3D 7/5

r s
23/5FaL,T

cL,TG 4/5

. ~111!

Finally, from Eq.~10!, we have the sum rule

2X 4A2paL,T

@G~1/4!#2AbL,T
1

1

2pH 2VL,TGL,Te2(VL,T)2/GL,T

1~pGL,T!1/2@GL,T12~VL,T!2#F11erfS VL,T

AGL,TD G J C
3

2vpl

n
5BL,T~0!2BL,T~`!, ~112!

where

erf~x!5
2

Ap
E

0

x

e2y2
dy. ~113!

GL,T and VL,T are further determined from Eqs.~109! and
~112!. This completes the determination of the paramet
appearing in Eq.~108!.

Next we present some numerical results at typical de
ties. Before doing this, however, we must choose input v
ues forBL,T(0) andBL,T(`). We use the Landau paramete
calculated by Yasuhara and Ousaka29 to determineBL,T(0)
via Eqs.~18! and~19!. On the other hand,BL,T(`) is calcu-
lated from Eq.~17!. We make use of the approximate corr
lation energyec proposed by Vosko, Wilk, and Nusair,30

which is based on the results of Monte Carlo calculation,31 to
calculatetc via the relation

tc52ec13n
dec

dn
. ~114!

TABLE I. The parameters forBL(v) @Eq. ~108!#.

r s 102aL bL GL VL

1 0.3769 0.2145 1.831 21.747
3 0.8191 0.2065 1.526 21.289
5 1.069 0.1881 1.393 21.090

TABLE II. The parameters forBT(v) @Eq. ~108!#.

r s 102aT bT GT VT

1 0.2827 0.3447 1.935 21.903
3 0.6143 0.3318 1.511 21.267
5 0.8020 0.3022 1.375 21.063
19511
rs
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For the spin-resolved pair correlation functiongss8(r ), we
use the values obtained by diffusion Monte Carlo~Table
VIII ! in Ref. 32.

The values of the parameters of Eq.~108! are presented
for three values of the Wigner-Seitz radiusr s51, 3, and 5 in
Table I. We note that, although ImBL,T(v).Im f xc

L,T(v) at
low frequency, the parametersaL,T differ from the corre-
sponding ones in the density channel~reported in our Table
II and Table III of Ref. 12!, because of the difference be
tweenvm and 2vpl . Plots of ImBL,T(v) and ReBL,T(v) are
presented in Figs. 1–6.

Given the exact results forA(v) listed in Sec. II, it would
be natural to use for ImA(v) the same form of interpolation
that we are proposing for ImBL,T(v). Unfortunately this can
only be done at very smallr s . At r s. 1, the low-frequency
and high-frequency limits are such that the integ
(1/p)*0

`@ Im A(v)/v#dv calculated from this type of inter
polation always exceeds2A(`). For this reason we are
forced to take a different approach, already described in R
7: we first calculate ImA(v) in the mode-decoupling
approximation,13,14 and then correct the low-frequency b
havior by a frequency-dependent factorg(v),7 chosen in
such way that the exact high frequency behavior is ma
tained and the sum rule

FIG. 1. Imaginary part ofBL(v) andBT(v) at r s51 in units of
2vpl /n, as functions ofv.

FIG. 2. Real part ofBL(v) andBT(v) at r s51. Notations and
units are as in Fig. 1.
3-11
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FIG. 3. Imaginary part ofBL(v) andBT(v) at r s53. Notations
and units are as in Fig. 1.

FIG. 4. Real part ofBL(v) andBT(v) at r s53. Notations and
units are as in Fig. 1.

FIG. 5. Imaginary part ofBL(v) andBT(v) at r s55. Notations
and units are as in Fig. 1.
19511
ReA~0!2ReA~`!5PE
2`

` dv8

p

Im A~v8!

v8
~115!

is satisfied. This approach has the merit of producing a p
at approximately the same frequency as the mode-decoup
approximation, which we feel is physically justified.

V. SUMMARY

Several exact results for the singular and regular com
nents A(v) and BL,T(v), respectively, of the exchange
correlation kernel of an electron liquid in the spin chann
have been obtained. Based on these results, we have
posed an interpolation formula for ImBL,T(v) in the para-
magnetic state at any frequencyv.

The results obtained in this paper constitute progress
the study of the many-body local field factors in the electr
liquid. These and the proposed interpolation formulas will
useful in applications of the time dependent spin dens
function theory.
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APPENDIX A: POSITION OF THE COLLECTIVE PEAK OF
Im BL ,T

„v…

This appendix is devoted to explaining why the positi
of the peak in ImBL,T(v) vs frequency is at about 3vpl/
2 ~in paramagnetic case! and not at 2vpl as in the dens-
ity channel. To this end, we denote theO(q0) term
of f ss8

i j (q,v) as Bss8
i j (q,v), and define Bi j (q,v)

5(ss8(nsns8 /n2)Bss8
i j (q,v).

In the RPA-based mode-decoupling approximation
imaginary part of the xc kernel is given by

FIG. 6. Real part ofBL(v) andBT(v) at r s55. Notations and
units are as in Fig. 1.
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Im Bi j ~v!52
1

VN2v2

1

p
lim
q→0

1

q2E
0

v

dv8(
k

v2~k!FvH vkikj1~v2v8!
1

~k1q!2
@2kikj~2k1q!•q1k•q~kjqi1kiqj !#J

3Im x (RPA)~2k,v8!Im xs
(RPA)~k1q,v2v8!1~kiql1k•qd i l !~kjql 81k•qd j l 8!Im x (RPA)~2k,v8!

3Im xs
ll 8(RPA)~k1q,v2v8!G . ~A1!
t
m

y

n
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y
s-

s:

an-
ef.

r in

pin
In the plasmon pole approximation Imx (RPA)(2k,v8) is
proportional tod@v82Vpl(k)# whereVpl(k) is the disper-
sion of the plasmon. Noticing thatv>v8 in Eq. ~A1! and
recalling thatVpl(k)>vpl , we see that ImBi j (v) can be
different from zero only for

v>vpl . ~A2!

As we pointed out in Sec. III H, in RPA one has

xs
L,T~q,v!5x0

L,T~q,v!. ~A3!

Therefore Imxs
ll 8(RPA)(k1q,v2v8) differs from zero

xs
L,T(k1q,v2v8) only when the condition

v2v8,@kFuk1qu1uk1qu2/2#/m ~A4!

is satisfied. Going to theq→0 limit, and using the fact tha
v85Vpl(k), we can recast the above condition in the for

v,Vpl~k!1
1

m
@kFk1k2/2#. ~A5!

In order to get a rough estimate of the value ofv beyond
which the plasmon contribution to ImBi j (v) drops to zero
we now restrict the sum overk to wave vectors that satisf
the conditionk,kc , wherekc is the wave vector at which
the plasmon enters the electron-hole continuum@i.e.,
vpl(kc)5kFkc /m1kc

2/2m]. Assuming also that the plasmo
is nearly dispersionless, i.e., thatVpl(k).vpl for k<kc , we
see that Eq.~A5! becomes

v,2vpl . ~A6!

Combining Eqs.~A2! and ~A6! we see that the collective
contribution to ImBi j (v) is significant only in the range
vpl<v,2vpl , and therefore its peak value can be expec
to occur at about midrange, i.e., atv53vpl/2.

APPENDIX B: PROOF OF Eq. „23…

In Ref. 12 we proved that in a paramagnetic electron s
tem the low frequency limits of the longitudinal and tran
19511
d

s-

verse kernels in the density channel are related as follow

lim
v→0

Im f xc
T ~v!

v
5

3

4
lim
v→0

Im f xc
L ~v!

v
. ~B1!

We now show that this relation also holds in the spin ch
nel. The proof is completely similar to the one given in R
12 for the density channel and depends on the fact that

Im Bss8
i j

~q,v!52
4

N2Vv2

1

V3
lim
q→0

1

q2

3(
k,k8

Im^^ j s
l ~k!r~2k!; j s8

l 8 ~k8!

3r~2k8!&&v~k!v~k8!Ti jl l 8~k,k8,q!,

~B2!

where

Ti jl l 8~k,k8,q!5~kiql1d i l q•k!~kj8ql 81d j l 8k8•q!.
~B3!

Here again the summation over the repeated indicesl and l 8
is assumed. It was shown in Ref. 12 that, to leading orde
v,

E dVq(
i j

d i j q
2Ti jl l 8~k,k8,q!

5
5

2E dVq(
i j

qiqjTi j l l 8~k,k8,q!. ~B4!

The key point is that this identity does not depend on s
indices. Therefore its substitution into Eq.~B2! yields

(
i j

d i j Im Bss8
i j

~q,v!/q25
5

2 (
i j

Im Bss8
i j

~q,v!qiqj /q4,

~B5!

which implies Eq.~23!.
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