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We show that in order to calculate correctly the spin current carried by a quasiparticle in an electron
liquid one must use an effective ‘‘spin mass’’ ms that is larger than both the band mass mb, which
determines the charge current, and the quasiparticle effective mass m�, which determines the heat
capacity. We present two independent estimates of the spin mass enhancement, ms=mb, in two- and
three-dimensional electron liquids, based on (i) previously calculated values of the Landau parameters
and (ii) a recent theory of the dynamical local field factor in the spin channel. Both methods yield a
significant spin mass enhancement, which is larger in two dimensions than in three.
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The recent explosion of interest in metal and semicon-
ductor spintronics [1,2] has brought into sharp focus the
basic problem of calculating the spin current carried by a
nonequilibrium electronic system. The standard approach
is to solve the Boltzmann equation for the nonequilibrium
distribution function; but this is not sufficient when
many-body effects due to electron-electron interactions
need to be taken into account. In fact, electronic correla-
tions are particularly strong in low-dimensional systems,
such as magnetic semiconductor films and wires, which
are currently being considered for the realization of spin
transistors [3]. One might hope to take care of the many-
body effects by solving, instead of the Boltzmann equa-
tion, the Landau-Silin transport equation for quasipar-
ticles [4]. But even this is not sufficient, since the
transport equation per se does not tell us how to connect
the quasiparticle distribution function to the spin current.
The key question, which seems to have been overlooked
so far in the growing literature on spin transport [5], is
also a very basic one; namely, what is the spin current
carried by a single quasiparticle of momentum ~p and spin
� [6]? Without knowing the answer to this question it is
not possible to calculate the spin current from first prin-
ciples. In this Letter we show that, in order to calculate
the spin current correctly, one must recognize that the
effective spin mass ms, which determines the relation
between the spin current and the quasiparticle momen-
tum, is neither the band mass mb (which controls the
charge current), nor the quasiparticle mass m� (which
controls the heat capacity), but rather a new many-body
quantity, controlled by spin correlations. Our calculations
show that the spin mass, in spite of uncertainties due to
the approximate character of the many-body theory, can
be considerably larger than the bare band mass in a two-
dimensional electron gas (by contrast, the quasiparticle
effective mass is typically very close to the band mass).
Hence, the spin mass will have to be taken into account
0031-9007=04=93(10)=106601(4)$22.50 
whenever a quantitative comparison between theory and
experiment is desired.

Let us begin by describing the physical origin of the
spin mass. The spin current ~js � ~j" � ~j# is defined as the
difference of the up-spin and down-spin currents, ~j" and
~j#, which in turn are defined as the expectation values of
the operators

~̂j � �
XN
i�1

~̂pi
mb

1� ��̂z;i
2

(1)

in the appropriate nonequilibrium state. Here � � 1 for "
spins and� � �1 for # spins,mb is the bare band mass, ~̂pi
is the canonical momentum operator of the ith electron,
�̂z;i is the Pauli matrix of the z component of the spin of
the ith electron, 1���̂i;z

2 is the projector on the �-spin
component of the ith electron, and N is the number of
electrons. Let us consider a many-body state, denoted by
j ~p�i, which contains a single quasiparticle of momentum
~p and spin �. This state carries a total current ~j � ~p

mb
,

whether or not interactions are taken into account. The
reason why this is so is simply that the state j ~p�i, which
contains a quasiparticle of momentum ~p and spin �, is an

eigenstate of the current operator ~̂j �
PN
i�1

~̂pi
mb

with ei-

genvalue ~p
mb

. As a consequence, the current density asso-
ciated with the distribution n�	 ~r; ~p; t
 is given by [4]

~j	~r; t
 �
X
~p�

~p
mb

n�	~r; ~p; t
: (2)

The difficulty in calculating the spin current arises
from the fact that the state j ~p�i is not an eigenstate of
~̂j" or ~̂j#; thus, we cannot automatically say that in this
state ~j� � ~p

mb
and ~j�� � 0, even though these expectation

values would be consistent with the total value of ~j. All
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we can say, a priori, is that the expectation values of ~̂j"
and ~̂j# in the state j ~p�i must be proportional to ~p and add
up to ~p

mb
. Thus, we write

h ~p�j ~̂j�j ~p�i � ���
~p
mb

; (3)

where ��� is a 2� 2 matrix whose columns add up to 1,
so that the total current is ~p

mb
. Notice that in a paramag-

netic system �"" � �##, and, therefore, �"# � �#": for sim-
plicity’s sake, we focus on just this case from now on. The
above Eq. (3) implies that the spin current carried by an
up-spin quasiparticle of momentum ~p is

~j s	 ~p "
 � 	�"" � �#"

~p
mb


~p
ms
; (4)

and, similarly, the spin current carried by a down-spin
quasiparticle is

~j s	 ~p #
 � 	�"# � �##

~p
mb

 �
~p
ms
; (5)

since �"" � �##. These equations define a spin mass ms,
which controls the spin current in much the same way as
mb controls the charge current [7].

Combining Eqs. (4) and (5) we see that the correct
expression for the spin current density carried by a non-
equilibrium quasiparticle distribution n�	 ~r; ~p; t
 is

~j s	 ~r; t
 �
X
~p

~p
ms

�n"	 ~r; ~p; t
 � n#	~r; ~p; t
�: (6)

It is clear that ms must be larger than mb since �"" and
�"# are positive numbers that add up to 1, implying that
�"" � �#" < 1. The positivity of �"" and �"# can be intui-
tively grasped by considering the physical picture illus-
trated in Fig. 1. We start from an exact eigenstate of the
noninteracting system with full Fermi spheres of up and
down spins and an additional single particle of momen-
tum ~p and spin " out of the Fermi sphere. In this state ~j" �
FIG. 1. Spin-momentum separation in a Fermi liquid: the
momentum of an up-spin quasiparticle resides, in part, with
down-spin particles. The solid lines represent the Fermi sur-
faces, and the dashed lines indicated the collective shifts in the
momentum distribution of up and down spins.
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~p
mb

and ~j# � 0. The quasiparticle state is now obtained by
slowly turning on the electron-electron interaction. The
total momentum and spin do not change in the process,
but some momentum is transferred from the up- to the
down-spin component of the liquid: one may say that the
up-spin quasiparticle drags along some down-spin elec-
trons as part of its ‘‘screening cloud.’’ As a result, the
magnitude of ~j" is smaller than ~p

mb
by an amount equal to

~j#. The magnitude of the spin current is a fortiori smaller
than ~p

mb
, which implies ms > mb. Notice that the ‘‘spin-

momentum separation’’ described above is entirely due to
correlations between electrons of opposite spin orienta-
tion. Interactions between same-spin electrons do not
contribute to this effect.

Having thus clarified the general concept of the spin
mass we now proceed to (i) relate ms to the quasiparticle
effective mass and the Landau Fermi liquid parameters,
(ii) relate ms to the small wave vector and low frequency
limit of the spin local field factor G�	q;!
, and
(iii) present approximate microscopic calculations of ms
in a paramagnetic electron liquid in three and two
dimensions.

Let us start from the quasiparticle state j ~p�i and apply
to it the unitary transformation Û � exp�i

P
i;� ~q� �

~ri
1���̂z;i

2 �, which boosts the momenta of the �-spin elec-
trons by ~q�. By applying Û to the fundamental
Hamiltonian of the electron liquid one can straightfor-
wardly show that the change in energy of any state, to first
order in ~q�, is

�E �
X
�

~j� � ~q�: (7)

On the other hand, for the quasiparticle state under con-
sideration, we know that ~j� � ���

~p
mb

. Substituting this
into Eq. (7) we get

�E �
X
�

���
~p � ~q�
mb

: (8)

The energy change under this transformation can also be
calculated with the help of the Landau theory of Fermi
liquids. There are two contributions: one from the boost in
the momentum of the quasiparticle and the other from the
collective displacement of the Fermi surfaces by ~q�. A
standard calculation gives

�E �
X
�

�
~p
m�

��� �
X
~p0

f ~p�; ~p0�
~r ~p0n0;�	 ~p

0


�
� ~q�; (9)

where n0;�	 ~p
 � 		pF � p
 is the momentum distribu-
tion in the ground state and pF is the Fermi momentum.

Comparing Eqs. (8) and (9), we arrive at the identifi-
cations
106601-2
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�"" �
mb

m�

�
1�

F""
1

2d

�
; �"# �

mb

m�

F"#
1

2d
; (10)

where d is the number of spatial dimensions and F��‘ 

N�	0

R d


4� f ~p�; ~p0�P‘	cos!
 is the angular average of the
interaction function, weighted with the Legendre poly-
nomial P‘	cos!
 (or just cos‘! in two dimensions) and
multiplied by the density of states at the Fermi surface,
N�	0
. Notice that the sum rule

P
���� � 1 is satisfied by

virtue of the well-known Fermi liquid relation [4]

mb

m� �
1

1� Fs1=d
; (11)

where Fs	a
‘ � 1
2 �F

""
‘ � 	�
F"#

‘ � are the standard dimen-
sionless Landau parameters defined, for example, in
Ref. [4]. The spin mass, on the other hand, is given by
[see Eq. (4)]

ms

m� �
1

1� Fa1=d
; (12)

showing that the relation ofms tom� is to the spin channel
what the relation of mb to m� is to the density channel.

It should be noted that the spin current density obtained
from Eq. (6) satisfies the continuity equation

@
@t
ns	 ~r; t
 � ~r � ~js	 ~r; t
 � 0; (13)

where ns	 ~r; t
 � n"	 ~r; t
 � n#	~r; t
 is the spin density.
Conversely, Eq. (12) could have been directly obtained
from the requirements of charge and spin conservation.

The microscopic calculation of Landau parameters is
notoriously difficult. Diagrammatic calculations of Fs1
and Fa1 in the three-dimensional electron liquid were
done by Yasuhara and Ousaka [8], and the calculated
parameters, together with the resulting values of ms=mb
are listed in the upper half of Table I for various values of
the Wigner-Seitz radius rs. In two dimensions the pa-
rameters Fs1 and Fa1 were calculated by a variational
quantum Monte Carlo method in Ref. [9]. The parameters
and the resulting values ofms=mb are listed in the bottom
half of Table I. Notice that the spin mass enhancement in
TABLE I. Landau parameters from Refs. [8,9] and spin mass
enhancement ms

mb
�

1�Fs1=d
1�Fa1=d

in the d-dimensional electron liquid.

d rs 1 2 3 4 5

3 Fs1
d �0:0543 �0:0647 �0:0713 �0:0773 �0:0829
Fa1
d

�0:0645 �0:0825 �0:0915 �0:0956 �0:0965
ms
mb

1.011 1.019 1.022 1.020 1.015

2
Fs1
d �0:071 �0:050 �0:015 � � � 0.061
Fa1
d �0:096 �0:120 �0:130 � � � �0:136
ms
mb

1.028 1.080 1.132 � � � 1.228
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two dimensions is considerably higher than in three
dimensions.

In view of the uncertainty in the calculation of the
Landau parameters it seems worthwhile to attempt an-
other kind of calculation, which does not rely on diagram-
matic expansions. We first establish the connection
between the spin mass and the dynamical local field
factor in the spin channel. We recall that the dynamical
spin susceptibility of an electron liquid is usually repre-
sented in the form

$s	q;!
 �
$0	q;!


1� vqG�	q;!
$0	q;!

; (14)

where $0	q;!
 is the noninteracting spin susceptibility
(i.e., the Lindhard function), vq is the Fourier transform
of the Coulomb interaction ( � 4�e2=q2 in three dimen-
sions and 2�e2=q in two dimensions), and G�	q;!
 is
the dynamical local field factor in the spin channel. In the
limit q! 0 and small, but finite frequency (!� 'F= �h
where 'F is the Fermi energy), Eq. (14) reduces to

$s	q;!
 !
q!0 nq2

mb�1� limq!0
nq2vqG�	q;!


mb!2 �!2
: (15)

On the other hand, the small-q/finite-! limit of $s	q;!

can also be calculated by solving the kinetic equation [4]
in the presence of slowly varying external fields V�	q;!
.
In this region collisions are irrelevant, and one gets the
spin response

�ns	 ~q; !
 ’
nq2

ms!
2 Vs	 ~q; !
; (16)

where �ns	 ~q;!
 � �n"	 ~q; !
 � �n#	 ~q;!
 and Vs	 ~q;!
 �
�V"	 ~q; !
 � V#	 ~q;!
�=2. Therefore,

$s	q;!
 !
q!0 nq2

ms!
2 : (17)

Comparing the above equation with Eq. (15) leads to the
identification

ms

mb
� 1� lim

!!0
lim
q!0

nq2vqG�	q;!


mb!
2 : (18)

The order of the limits is, of course, essential. When !
tends to zero first,G�	q;!
 vanishes as qd�1 for q! 0, so
as to yield a finite enhancement of the uniform static spin
susceptibility. In Eq. (18), however, q tends to zero first,
and we see that vqG�	q;!
 must go as !

2

q2 in order to give

a finite value of the spin mass.
The above analysis, combined with the Kramers-

Krönig dispersion relation, leads to the following relation
between the real and the imaginary part of G�	q;!
:

lim
q!0

ReG�	q;!
� lim
q!0

2

�
P
Z 1

0
d!0!

2ImG�	q;!
0


!0	!02�!2

; (19)
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TABLE II. Spin mass enhancement calculated from Eq. (20).
The first, third, and fourth lines are obtained from Eqs. (9) and
(14) of Ref. [14]. The static local field factors employed in this
calculation are taken from Ref. [15] in 3d, and from Refs. [16]
(third line) and [17] (fourth line) in 2d. The second line was
obtained after including an empirical correction to satisfy the
third-moment sum rule in 3d [14,18].

d rs 1 2 3 4 5

3 ms
mb

1.02 1.06 1.11 1.17 1.23
ms
mb

1.01 1.03 1.03 1.04 1.04

2 ms
mb

1.15 1.46 1.83 2.21 2.59
ms
mb

1.18 1.77 2.78 4.11 5.36
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where P denotes the principal part. In the !! 0 limit,
comparison with Eq. (18) yields

ms

mb
� 1�

n
mb

lim
q!0

2

�

Z 1

0
d!

q2vqImG�	q;!


!3 : (20)

A simple approximation scheme for the key quantity
A	!
  limq!0q2vqImG�	q;!
, based on earlier mode-
decoupling theories [10–13], has recently been proposed
in Ref. [14]. In this scheme A	!
 is written as a convolu-
tion of spin-resolved density-density response functions
$��0 	k;!
, which are then evaluated in a generalized
random phase approximation, where the static local field
factors are taken from Ref. [15] in 3d, and from
Refs. [16,17] in 2d, respectively. Although generally un-
controlled (but demonstrably exact in the high-density
limit), this approximation scheme nevertheless reflects
the state of the art in the theory of the dynamical local
field factor.

The results of our calculations of the spin mass from
Eq. (20) are listed in Table II. They are consistently larger
than the ones listed in Table I. We notice that there is
considerable difference between the numbers obtained in
different variants of the approximation scheme, as de-
scribed in the caption. In particular, we see that correct-
ing for the third-moment sum rule in 3d significantly
reduces the values ofms=mb: we expect a similar thing to
happen in 2d but have not yet found a way to implement
the third-moment correction in that case [18].

Although the spin masses calculated in various
schemes in 2d are quite different from each other and
might be overestimated in some cases due to the limita-
tions of the approximations employed, there is no doubt
that they all indicate a significant many-body effect
which is definitely large enough to be observable in the
exciting practice of 2d spintronics. We hope that these
results will stimulate more accurate calculations of the
spin mass by quantum Monte Carlo methods.
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