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Non-V-representability of currents in time-dependent many-particle systems
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We argue that an arbitrarily chosen time-dependent current density is genericalfnepnesentable in a
many-particle system; i.e., it cannot be obtained by applying only a time-dependent scalar potential to the
system. Furthermore, we show by a concrete example that even a current\thapiesentable in an inter-
acting many-particle system mésnd in general will turn out to be non/-representable when the interaction
between the particles is turned off.
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I. INTRODUCTION by a time-dependent scalar potentA(r,t) starting from an

Since the beginning of density functional the¢BFT),: initial stateW,, now with interactions turned off.

the problem of answering the following questions has beenh In thisdpaé)/er we are not:_lgoing to cha]leng_e the wisdom of
recognized to be of fundamental importance: the standard/-representability assumptions in DFT or TD-

(1) Given a (positive particle density n(F) in an DFT, but rather will examine whether such assumptions can

N-particle system, is there a local potent\&lf) that pro- be plausibly extended to thgarticle current density (f,t).
duces this density in the ground state of the system? There are good reasons to undertake this study. During the
(2) If a certain particle density(F) arises in the ground Past ten years we have seen many indications that the time-
state of anN-particle system subjected to a local potentialdependent current densfy,® together with the initial state
V(7), is there a local potential(f) that produces the same of the system(and hence the initial densjtynay provide a

density in the ground state of the same system with thé0re fundame_ntal description of the dynamics. Inde_ed, the
particle-particle interactions turned off? proof that the time-dependent current density determines the

] o - external scalar potential is the very first step in the proof of
The first question is known as thérepresentability ques-  the Runge-GroséRG) theorem—the foundation theorem of
tion, and a given density is said to herepresentabléf the  TpDFTS However, the RG theorem does not say anything
answer is affirmative. The original formulation of DFT by ahout theV-representability question for the current; i.e.,
Hohenberg and Kotinmade heavy use of the assumption yhether a given time-dependent current can be produced by
that “all reasonable densities akérepresentable.” Subse- 5 |ocal time-dependent scalar potential. Reasoning by anal-
quent work has shown that this assumption is necessaryqy with the particle density has I€dr, as we are going to
only when one tries to prove the existence of the functionakhow, misledl some workers to believe that the
derivative of the energy functional. The second question liesy.representability assumption for the current density is about
at the very heart of the Kohn-Sham formali$Recall that 45 plausible as the corresponding assumption for the density,
within this formalism, one tries to obtain the ground-stateang that therefore any physical current density can be ap-
density of an interacting many-particle system by applying gyroximated to an arbitrary degree of precision by the current

local potential to a noninteracting version of the same SYStlensity generated by a suitably chosealar potential, in an
tem. Obviously, it is vital to the success of this theory thatinteracting as well as in a noninteracting system.

the target density, which is by assumptivfrepresentable,  The purpose of this paper is to show that this is not the
be also noninteractiny-representable; i.e., the answer t0 case. Due to the vector character of the current density it is
question(2) must be affirmative. usually impossible for an arbitrary current to be generated by

Even though mathematically rigorous answers to the twoy single scalar function: the potential. Even in those special
V-representability questions are not known, DFT has beefbut physically very relevaptcases in which this can be
widely applied to the calculation of the electronic structuregone, the current will not be simultaneously representable in
of matter. In these calculations it is tacitly assumed that thgpe noninteracting systef. A more general theory that
set of V-representable densities in both interacting and non,akes use of an effectiveector potential to generate the
interacting systems is dense enough to approximate 0 &rrent is therefore needed: such a theory exists and it is

arbitrary level of accuracy any physical ground-state densityyown as time-dependent current density functional theory
(these beliefs are supported by mathematical work on lattic DCDFT).%13

system). These assumptions have been automatically trans-
planted to the relatively younger field of time-dependent
density functional theor¢TDDFT),*-8 wherein the questions
are whether a givetime-dependenparticle densityn(r',t)
evolving from a given initial stat& can be produced by a
local time-dependent scalar potentif,t) and, in the affir- In this section we present our main argument against
mative case, whether the same density can also be produc¥erepresentability of the current density. Recall that the vec-

II. NON-V-REPRESENTABILITY OF GENERIC
CURRENT DENSITIES
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tor field f(F,t), like any other vector field, can be written as
the sum of a longitudinal componeit(r,t), a transversal

componentj(f,t), and a constant that can be assumed to
vanish if the full current has to vanish at infinity:

J(F8) = JL(F 1) + (1), 1)

The longitudinal current densitfr_(F,t) is curl-free and can
therefore be represented as the gradient of a scalar field, FIG. 1. A simple cartoon of the sparsity of therepresentable
while the transversal currerﬁ-(ﬂt) is divergence-free and current densities. Th¥/-representable current densifylies on a
can therefore be represented as the curl of a vector field. Thontinuous hypersurfacéere schematized as a continuous chrve

spatial Fourier components ‘ﬁﬂc and fT, denoted bw'l(ﬁ,t) in current densrty space. Due to the continuity of the mapping be-
andfT(d,t), respectively, are obtained by projecting the Fou- tween j, and j a sufficiently small neighborhood of the non-

. > . ) V-representable current denS|tyj contains only non-
rier component ofj(qd,t) along directions parallel and per- V-representable current densities.
pendicular to the unit vectdy, as

JL

HCR) =[f(d,t) -gla, 2) Ehat, within the subset oY/-representatlle current dcnsities,
j7(F,t) is a continuous functional of (r,t). Let j(F,t)

) ) ) =j.(F,)+j7(F,t) be aV-representable current density. Con-

IRCHENCRIEITNCAR (3) sider then a small “neighborhood” of the non-

Notice that the particle density is completely determined by representable current densifi(r, t)=j,(r,t) +j(r,t) and
the longitudinal current density since, according to the conlet 1(7,t) be a(hypothetical V-representable current density

and

tinuity equation, one has in this nerghtzorhood Srncc by choice, the longitudinal com-
an(F ) .. ponerlt oflele, is close toj,, the continuity of the mapping

a =V (4)  from j_ to jr for V-representable currents implies that the
transverse component ¢f, j;1, is close tojr. However, this

with initial condition n(r',t)=ny(r). cannot be true for a sufficiently small neighborhood of

We begin our argument by assuming that a certain curreryt (7 1) if the difference betweef andj; is finite (see Fig.
densityj(F,t) is V-representable, and Igt(f,t) and j7(F,t) 1). We conclude that every novrepresentable current den-
denote its longitudinal and transverse components, respesity is surrounded by a neighborhood that contains only non-
tively. According to the RG theorem, the potend4F,t) that  V-representable current densities: the seVatpresentable
produceg (f,t) is unique up to an arbitrary function of time. current densities is not “dense” in the space of all possible
Consider now a second current densif(r,t) —jL(I’,t) current densities.
+H(F, O =] (F,0) +]4(F,1); i.e.,j'(F,t) differs fromj(F,t) only
because its transverse componen‘ﬁ(r” ,t) differs from

j(F,1). We claim thatj’(f,t) is not V-representable. Indeed,
if it were V-representable, then there would be a potential Undeterred by the above arguments one might insist that,
V/(r,t) # V(r,t) that generates ithere and in the following, after all, the task of the Kohn-Sham theory is to approximate
the # sign means that two potentials differ by more than aV-representable current densities by noninteracting
mere function of timg However, this is impossible, since, V-representable ones. We know that the set of
according to Eq.(4), these two different potentials would V-representable current densities is characterized by a certain
give the same particle density, in contradiction with thej; versusj, relation: it is the presence of this constraint that
Runge-Gross theorefnThus, for a given longitudinal cur- makes the set so “sparse.” Similarly, in the noninteracting
rent densityj,(F,1), there is at most one transverse currentsystem, the set of th¥-representable current densities is
density j(f,t) such that the full current density (F,t) ~ characterized by anothgf versusj, relation. It would be
+fT(F,t) is V-representable. nice if these two relations happen'ed ro be the same relatl_on,
The ease with which, given\&representable current den- S° that a Kohn-Sham potential yielding the correct density

sity, we were able to construct infinitely many non- would also automatically yield the correct current density.
V-rcpresentable ones is a strong indication that This conjecture has found its way in the literatfisg that

V-representable currents are a rather exceptional occurrengeIS important to examine it carefully. In this section we
in the space of all possible currents. To strengthen the argPnStruct an example of ¥-representable current density,
ment let us make the plausible assumption that the mappin hich is definitely norN-reprcserrtable in the rlonlnteractrng
from potentials tov-representable currents, via the solution (Kohn-Sham system. Thus, in this example, theversusj,

of the time-dependent Schrodinger equation, is not only infelation of the interacting system turns out to be incompat-
vertible (RG theoreny but also continuous. This implies ible with the]T versusr,_ relation of the corresponding non-

Ill. INTERACTING VERSUS NONINTERACTING
V-REPRESENTABILITY
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interacting one. We will arguéwithout prooj that this state

of affairs is quite generic for currents generated by scalar Vo) = COSG (10
potentials in anisotropic interacting systems. XO(G)

The system we consider is a two-dimensional interactingN h 2 . . I .
electron liquid that is initially in the ground state with inho- herexo(G) is the static denS|ty_suscept|b|I|ty of th*e honin-
mogeneous density teracting electron gas of density at wave vectorG. We

know from the invertibility of the mapping between vector
no(F) =T(L + 2y cosG - M), (5) potentials and currents that the exact current density of Eq.

(9) can be generated in the noninteracting electron gas by

> . . . — one and only one time-dependent vector potential,
whereG is a two-dimensional vector parallel to tikeaxis,n

is the average density, amdy the amplitude of the density F) = A (F1) + f S+IG.G+1'G
modulation, withy<1. This density is produced by the ap- AsalT U =ALTY ”%5 Heap(d+1G, ')
plication of the static potential o

- > Y
on- X xps(q + 1'G, w) gl @G -otl 4 ¢ . (11)
Y cosG-F (6) @
X (©) where fi,c ,4(G+1G,G+1'G, ) is the sum of the so-called
to an initially homogeneous electron liquid of densfty® exchange-correlation kem@lmﬁ(ﬁﬂe G+I'G,w) and the

Here x"(G) is the static density susceptibility of the homo- Hartree kernelf, aﬁ(q+IG G+1'G, ) = (27m€*/|G+IG[(q,

geneous electron gas of densityat wave vectorG.1¢ We *1G,)(Gs+IG, )/ w?]8, for our system. Thus, in order to

now apply to this system a time-dependent, periodic Scalaprovetthattthe cur:ent gf Ed9) (;,anno:[[ bef[ glenerateld in thdet
potential of the form noninteracting system by a scalar potential, we only need to

show that the vector potentlag(r ,t) has a finite transversal
V(F,t) = ve@™ed y c ¢, (7) ~ component. If this is the case, then the uniquenes#of
guarantees that the current density cannot be produced by a
whereq is a two-dimensional wave vector, which we assumePurely longitudinal vector potential, and hence not by a
to be much smaller in magnitude than bathand ke (k=  Simple scalar potential.
being the Fermi wave vector corresponding to the average !N order to establish the existence of a transversal compo-
density n). The frequencyw is assumed to be larger than nent ofAswe focus on the Fourier component at wave vector

bothveq andvgG, whereug is the Fermi velocity associated G and we discard botA and the contribution of the Hartree

F)‘

with k. _ _ kernel because they are purely longitudinal fields. The quan-
It is well known that the time-dependent potential of Eq.tity of interest is thus the exchange-correlation vector poten-
(7) can be recast as a longitudinal vector potential tial
N N
A 1) = Hg@rab 4 o ¢ (8 Accal@0) = 2 Tuapl(G,G+1G, ) x5(G +1G q,w)—
1) 1,8,6
(12)

so that we can say that the induced current density is

The zeroth order iny of this expression is purely longitudi-
nal and can therefore be discarded. The next nonvanishing
+|G 9]

Jolt) = E Xap(G+1G.G, “’) 96 gl@nG)-on 4 . ¢, (9  contribution is of order? and is given by

) A f +f2 (4.6,
where x,4(G+IG,§,) is the dynamical linear response el ) = 2{ reapl G (AG0) * 1:2op(dG,0)

function of the inhomogeneous liquid, which connects the

cartesianB component of the vector potential amplitude at X xX3s(0, ) + fxmg(q §+G, W)XGNG+G,G,w)
wave vectorq to the Cartesiany component of the current _

. . Loz . . f(l) (4, ) (l)( -G.g )}ql (13)
density amplitude at wave vectgrIG, wherel is an inte- xcapld G w)xps5(d-G,0,@ R

ger. It should be noted that this response function coincides

with the homogeneous response funct,i&ﬂjg(d,w) up to cor-  where the quantities with superscrigis and(2) refer to the
rections of orden? whenl =0, and is of first order i when  inhomogeneous system of densiiy(f) and are first order
|=+1. The components wit[i| =2 are of ordery? at least. ~ and second order ify, respectively.

We now want to show that the exact current of E®). To proceed, we now make use of certain exact identities,
cannot be obtained in a non-interacting system subjectedhich can be obtained starting from identities that were de-
only to scalar potentials that yield the exact density. We firstived in Ref. 14 from a careful consideration of the behavior
notice that the ground-state density(r) is enforced in a of the current response function and its associatekiernel
noninteracting electron gas by the scalar potential under transformation to an accelerated reference frame.

245103-3



R. D’AGOSTA AND G. VIGNALE PHYSICAL REVIEW B 71, 245103(2005

These “acceleration identities” are summarized in the follow-the case: A calculation very similar to the one described in

ing four equations: the previous paragraphs reveals that these components are
- h purely longitudinal; i.e., parallel tg+G. One needs to go to
W s Ny X' Gow) | = .
Xap(G,0,w) = Sup~ " h Pas(G) | (14)  at least second order iy to see a transverse component
m X'(G) of A
XC*

G\ 1 _Xh(G,w)] Lo-
mw> X"(G)[ VG |t

(15

X(0,0,0) = - 2(
IV. DISCUSSION
The example worked out in the previous section shows
. /G2 ) that a perfectly Iegitimate/-representgble current dens:ity
f 4(G,0,0) = = {[{%(G,w) - {1 (G,0)]P,4(G) can turn out to be nok-representable in the noninteracting
w system. We believe that this state of affairs is generic. Only
in exceptional cases will the current density be
V-representable in both the interacting and the noninteracting
. . versions of the same system. Hence, in general, the Kohn-
fi2 5(0,0,0) = = 2y 4(G,0,0), (179 Sham equation does not give the correct value of the trans-
h h . verse current density.
where f,(G,w) and f;+(G,w) are the longitudinal and  \ve may now ask, how big an error does one make if one
transversexc kernels of the homogeneous electron liquid atinsjsts on calculating the transverse current by means of the
densityn and wave vecto6, while PE,B(G)EGQGﬁ/G2 and  Kohn-Sham theory? Going back to our model system it is
pzﬁ(é)zgaﬁ- pll;ﬁ(é) are the projectors parallel and per- not difficult to see that the Fourier components of the Kohn-
2 Sham potential are given by

+ f14(G, ) PL4(G)}, (16)

pendicular to the direction db, respectively. The derivation
of these identities is briefly presented in Appendix A. . ® - . =
What makes these identities relevant to the evaluation of Vks(d+1G,0) = —|AL(G+1G,0)], (20

=L . . 4+
A, ) is the fact that in our modetj is much smaller than G-+1G]
G or kg; therefore, the quantities appearing in EfB) can be i.e., the Kohn-Sham potential is simply the scalar represen-

evaluated in the— 0 limit, where they reduce precisely to tation of the longitudinal part of the vector potentil cal-

the quantities that appear in Ec{i.4)—_(17). Underlym_g Fhe culated in the previous sectioiﬂsL andA;T are the longitu-
calculation is of course the assumption that ¢fxe O limits ) L )
of the current response functions and kernels are dinal and transversal component Af, respectively. The

regular—an assumption we have presently no reason {gbove equation is accurate up to corrections of orger

doubt. Indeed, becaus&svT is of ordery? its influence on the lon-
By making use of Egs(14)—(17) and of the limiting  gitudinal current begins at ordef, implying thatA, alone
form®® fully accounts for the longitudinal current density up to cor-
T rections of ordery®. On the other hand, becaud&s is
Lif‘o Xop(G,w) = n—15aﬁ (18)  equivalent toAy, it clearly fails to produce the part of the

. _ _ _ ~ transverse current that is dueigT. This is of ordery® for
in Eq. (13), and discarding all but the leading-order terms iNthe Fourier components at wave vecﬁalrlé with 10 and

q. we arrive, after some algebra, at of order 2 for the Fourier component at wave vectpre

. nG(G - §) X'(G, w) conclude that the error on the transverse current is overall of
A(G,w) = 297 5 — order y%: this may partly explain the difficulty of finding
M x'(G) examples in which the Kohn-Sham current density differs
vV significantly from the exact one.
X[ (G, ) - chL(G,O)];- (19 Where does this leave us with regard to the application of

the time-dependent Kohn-Sham theory to the calculation of

This vector has a component perpendiculargfounlessg  current densities? From a fundamental standpoint it is clear
happens to be either parallel or perpendiculaBtahoosing  that only the time-dependent CDFT can provide the right
G in any other direction provides the desired example of non@nswer. In TDCDFT one does not ne¥erepresentability,
V-representability. Although our derivation has made use obut only the much weakek-representability assumption. We
Eq. (18), which is valid only in two dimensions, it is possible know that this assumption holds true in linear response
to show that the transverse part of Efj9) is unchanged in theory, and it is highly reasonable to assume that the set of
three dimensiong A-representable current densities is dense in the space of all

It is also interesting to ask what is the behavior of thecurrent densities. On the other hand, we have also found that
Fourier components @&, at wave vectorgj+G. These com- the error entailed by the use of the ordinary Kohn-Sham
ponents are first order ipmand one might think that they lead equation of TDDFT is of second order in the parameter that
more directly to the desired result. Remarkably, this is notmeasures the strength of the density nonuniformity, and may
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perhaps be reasonably neglected in practical implementa- To derive Eq.(15) we take theq=0 component of both
tions of the theory that are based on the local density apsides of Eq.Al) of the second order iry. SinceV(r) and

proximation.
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APPENDIX A: ACCELERATION IDENTITIES FOR THE
CURRENT RESPONSE FUNCTIONS OF A WEAKLY
INHOMOGENEOUS ELECTRON LIQUID

Our starting point is the acceleration identity in real space

af

ngg’vom)} G
m(i w)?

> f XaoTs F,:w)|:553 +
P

(A1)

which was derived in Ref. 14, beginning on p. 205. Both

sides of this identity can be expanded in a seriey.ofhe

Fourier transform of the coefficients of this expansion will

give us the identitie§14) and(15). The first order iny evalu-
ated at wave vectoB gives

K600+ 322G w)ﬁ@vo(e) =5
(A2)
Inserting
Vy(G) = (A3)
X"(G)

from Eq. (6), and recalling that

> X046, 0)G,Gp= X'(G,w)0?PL4(G),  (A4)
S

no(r) are given by Eqs(5) and(6) up to corrections of order
¥® we readily obtain

x2(0,0,0) = 2 [X5(0,G, ) + ¥%(0,- G,w)]

G -
X m;ffvo(e). (A5)

Inserting Eq.(14) for X”)(o,é,w) and Eq.(A3), we imme-
diately arrive at Eq(15).
We proceed similarly for the last two identities, E¢E6)

nd (17). The starting point in this case is E®7) of Ref.
14:

V.V Ve, 1
f fxm(r,r*',w)no(r*’)dr'=-Lﬁ;¢ﬂ, (A6)
w

where, to the required accuradéy

Vsxd(F) = 2nyfh (G,0)cosG - F (A7)

is the exchange-correlation part of the static Kohn-Sham po-

tential V(F). Notice thatf", G,0) is the scalar exchange-

correlation kernel of the homogeneous electron liquid at zero
frequency, quite different from the tensorial and frequency-
dependent exchange-correlation kernel of the inhomoge-
neous system, which appears on the left-hand side of Eq.

(A6). Taking the Fourier component at wave vec®rof
both sides of Eq(A6) to first order iny, and recalling that

- G2
feap(G.0) = —lfx "G, )PL4(G) + (G, ) PL4(G)],
(A8)

we arrive at Eq(16). Taking the Fourier component of both

whereXh(G w) is the density-density response function, wesides of Eq(A6) at wave vector 0 to second order jnwe

arrive at Eq.(14).

finally arrive at Eq.(17).
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refer to thehomogeneousystem of densityn. Their Fourier
transforms have a single wave vector argument.

three  dimensions, one has(}4(G, ®)=x(G, w)P54(G)
+X.*}(d,w)Pzg(Q), where(see Ref. 15, Chap.)8im ox(q, )
=[n/m(1-wj/ 0?)], limg_ox}(d, @)=n/m, and w,=\4mne?/m
is the plasmon frequency in three dimensiong=a0. However,
these modifications contribute only to the longitudinal part of
,&XC: the transverse part of EL9) remains unchanged. Notice
that in two dimensions, one hag,=0 (at q=0), and thus the
longitudinal and transverse parts of the current-current response
function coincide in the limig— 0, as seen in Eq18).



