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We develop the microscopic theory of the extrinsic spin-Hall conductivity of a two-dimensional electron gas,
including skew-scattering, side-jump, and Coulomb interaction effects. We find that while the spin-Hall con-
ductivity connected with the side jump is independent of the strength of electron-electron interactions, the
skew-scattering term is reduced by the spin-Coulomb drag, so the total spin current and the total spin-Hall
conductivity are reduced for typical experimental mobilities. Further, we predict that in paramagnetic systems
the spin-Coulomb drag reduces the spin accumulations in two different ways: �i� directly through the reduction
of the skew-scattering contribution, and �ii� indirectly through the reduction of the spin diffusion length.
Explicit expressions for the various contributions to the spin-Hall conductivity are obtained using an exactly
solvable model of the skew scattering.
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I. INTRODUCTION

There has recently been a strong revival of interest in the
phenomenon of the spin-Hall effect in the context of semi-
conductor spintronics.1 Two different forms of this phenom-
enon have been identified: an extrinsic spin-Hall effect,2–5

which is driven by spin-orbit scattering with impurities, and
an intrinsic one,6–8 which is due to spin-orbit effects in the
band structure. In both forms, the phenomenon consists of
the appearance of a transverse spin current—say a z-spin
current in the y direction—when the electron gas is driven by
an electric field in the x direction. The physical manifesta-
tions of this spin current are still an active subject of study
and controversy.9 However, it is now believed that the spin-
Hall effect should lead to transverse spin accumulation when
the flow of the spin current is suppressed by an appropriate
gradient of spin-dependent electrochemical potential. Re-
cently, the spin-Hall effect has been experimentally observed
in Kerr rotation experiments in three-dimensional �3D� and
two-dimensional �2D� n-doped GaAs10,11 and in a p-n junc-
tion light emitting diode �LED� realized in a two-
dimensional hole system.12 However, there is still a debate
on the origin �extrinsic or intrinsic� of the experimentally
observed spin accumulation.13–17

In this paper we focus exclusively on the theory of the
extrinsic effect in a two-dimensional electron gas �2DEG�. It
has long been realized that the extrinsic spin-Hall current is
the sum of two contributions.18 The first contribution �com-
monly known as the “skew-scattering” mechanism19,20�
arises from the asymmetry of the electron-impurity scattering
in the presence of spin-orbit interactions:21 electrons that are
drifting in the +x direction under the action of an electric
field are more likely to be scattered to the left than to the
right if, say, their spin is up, while the reverse is true if their
spin is down. This generates a net z-spin current in the y
direction. The second contribution �the “side-jump”
mechanism18,22–24� is caused by the anomalous relationship
between the physical and the canonical position operator �see
Eq. �6� below�. This again leads to a finite spin current in the
y direction. The skew-scattering and side-jump contributions
were widely discussed in the context of the anomalous Hall

effect18–20,22–26 in magnetic materials. The skew-scattering
contribution was first studied by Smit19,20 while the side-
jump contribution was introduced by Berger.22,23 The theory
for both effects has been also discussed recently in several
excellent papers, both for the extrinsic13,16,27 and the intrinsic
cases.28–31

In this paper, in addition to the previously considered
skew-scattering and side-jump contributions, we also include
the Coulomb interaction effects. The main effect of interac-
tions on the spin transport originates from the friction be-
tween spin-up and spin-down electrons moving with differ-
ent drift velocities, the so called spin-Coulomb drag �SCD�
effect.32–34 We show that while the spin-Hall conductivity
associated with the side-jump term is independent of the
strength of electron-electron interactions, the skew-scattering
part is reduced by the spin-Coulomb drag, so the absolute
value of the spin-Hall conductivity �and hence the spin-Hall
current� is reduced for experimentally accessible parameters.
Since the SCD has been predicted �and recently observed35�
to be a rather significant contribution to the overall resistivity
in high mobility electronic systems, we think it is important
to include it in the description of the spin-Hall effect, and we
show here how this is done. Moreover, we predict that SCD
in paramagnetic materials will reduce the spin accumulations
through the reduction of the skew-scattering resistivity as
well as the spin-diffusion length. Also, we present in the
Appendix a simple model for electron-impurity scattering
which can be solved exactly, leading to an analytical deter-
mination of scattering rates as well as side-jump and skew-
scattering contributions to the spin-Hall conductivity.

This paper is organized as follows: In Sec. II the Hamil-
tonian and the Boltzmann equation are presented; in Sec. III
the skew-scattering contribution to the conductivity is de-
rived; in Sec. IV we use a force-balance argument to calcu-
late the side-jump contribution; in Sec. V the contributions of
spin-Coulomb drag and spin-flip processes are included; and
in Sec. VI the spin accumulation in the presence of skew-
scattering, side-jump, and electron-electron interactions is
calculated. We summarize the paper in Sec. VII.
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II. HAMILTONIAN AND BOLTZMANN EQUATION

We consider a strictly two-dimensional electron gas
�2DEG� that lies in the x–y plane. The Hamiltonian is

H = H0 + Hso + Hc + HE, �1�

where

H0 = �
i
� pi

2

2m
+ Vei�r�i�� �2�

is the noninteracting Hamiltonian �m being the effective
mass of the conduction band�, including the electric potential
Vei�r�� generated by randomly distributed impurities,

Hc =
1

2�
i�j

e2

�b�r�i − r� j�
, �3�

is the electron-electron interaction �screened by the back-
ground dielectric constant �b�,

Hso = ��
i

	p� i � ��� iVei�r�i� + �� iVee
i �
 · �� i �4�

is the spin-orbit interaction �SOI� induced by the electric
potential of the impurities, Vei�r�i�, and of the other electrons

V� ee
i =� j�i

e2

�b�r�i−r� j�
, and finally

HE = �
i

	eE� · r�i + e��p� i � E� � · �� i
 �5�

is the interaction with the external electric field E� .
The various spin-orbit terms appearing in the Hamiltonian

can all be shown to arise from a single basic fact, namely, the
change in form of the physical position operator under a
transformation that eliminates the coupling between the con-
duction band in which the electrons of interest reside, and the
spin-orbit-split valence band. If we denote by r�i the canoni-
cal position operator of the ith electron, then the physical
position operator is given by

r�phys,i = r�i − ��p� i � �� i� , �6�

and correspondingly the velocity operator is

v� i = −
i

�
�r�phys,Ĥ� =

p� i

m
+ 2���� iVei�r�i� + �� iVee

i + eE� � � �� i.

�7�

The spin-orbit “coupling constant” � takes into account
the effective SOI induced by the valence bands �heavy holes,
light holes, and split-off band� on conduction electrons in the
framework of the eight-band Kane model. Within this model
one finds36

� =
�P2

3me
2� 1

Eg
2 −

1

�Eg + �SO�2� ,

where Eg is the gap energy between conduction and heavy/
light holes bands, �SO is the splitting energy between heavy/
light holes and split-off bands, P is the matrix element of the
momentum operator between the conduction and the
valence-band edges, and me is the bare electron mass. Using

values of the parameters appropriate for the 2DEG in
Al0.1Ga0.9As �Ref. 11� with a band mass m=0.074me we find
��=4.4 Å2. In this paper we treat the spin-orbit interaction
to the first order in �, which is justified by the smallness of
the parameter �� /aB

2 , where aB�100 Å is the effective Bohr
radius.

Notice that the canonical positions r�i and the canonical
momenta p� i of the particles are vectors in the x–y plane, and

so is the �� operator. Therefore p� � ��� iVei�r�i�+�� iVee
i � is a vec-

tor in the z direction, and the spin-orbit interaction conserves
the z component of the spin of each electron. This nice fea-
ture of our strictly 2D model allows a particularly simple
analysis of the spin-Hall effect without sacrificing any essen-
tial features of the spin-orbit interaction. Processes that flip
the z component of the spin will be considered separately
�see Sec. V�.

We begin to exploit the conservation of �z by defining the
quasiclassical one-particle distribution function f��r� ,k� , t�,
i.e., the probability of finding an electron with z component
of the spin Sz= �� /2��, with �= ±1, at position r� with mo-
mentum p� =�k� at the time t. In this paper we focus on spa-
tially homogeneous steady-state situations, in which f� does
not depend on r� and t �for a discussion of nonhomogeneous
spin accumulation effects, see Sec. VI�. We write

f��r�,k�,t� = f0���k� + f1��k�� , �8�

where f0���k� is the equilibrium distribution function—a
function of the free particle energy �k= ��2k2� /2m—and
f1��k�� is a small deviation from equilibrium induced by the

application of steady electric fields E� � ��= ±1� which couple
independently to each of the two spin components. Then to

first order in E� � the Boltzmann equation takes the form

− eE� � ·
�k�

m
f0�� ��k� = ḟ1��k��c, �9�

where ḟ1��k��c is the first order in E� � part of the collisional

time derivative ḟ��k��c due to different scattering processes
such as electron-impurity scattering, electron-electron scat-

tering, and spin-flip scattering. As usual, ḟ��k��c is written as
the difference of an in-scattering term and an out-scattering
term. For example, in the case of spin-conserving electron-
impurity scattering, one has

ḟ��k��c,imp = − �
k��

�Wk�k���f��k�� − Wk��k��f��k�������̃k� − �̃k��� ,

�10�

where Wk�k��� is the scattering rate for a spin-� electron to go
from k� to k��, and �̃k� is the particle energy, including the

additional spin-orbit interaction due to the electric field E� �.
The last point is absolutely vital for a correct accounting

of the “side-jump” contribution. We must use

�̃k� = �k + 2e����E� � � ẑ� · k� , �11�

where the second term on the right-hand side differs by a
factor of 2 from what one would surmise from the intuitive
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expression �p+eE ·rphys. Why? The reason is that the � func-
tion in Eq. �10� expresses the conservation of energy in a
scattering process. This is a time-dependent process; there-
fore, the correct expression for the change in position of the
electron �rphys must be calculated as the integral of the ve-
locity over time. From the commutator of the physical posi-
tion operator with the Hamiltonian we easily find

v� i� =
p� i

m
+ 2����� iVei�r�i� + �� iVee

i + eE� � � ẑ , �12�

where the term in the square brackets is �minus� the total
force acting on the ith electron. The time integral of this term
over the duration of the collision �be it an electron-impurity
or an electron-electron collision� gives the change in mo-
mentum �p� during the collision. Thus we see that the change
in position is �r�phys=−2���p� � ẑ �this is the so-called side
jump� hence, the change in energy is correctly given by Eq.
�11�.

Kohn and Luttinger37 have shown that the above form of
the collision integral is correct up to third order in the
strength of the electron-impurity approximation; this is one
order higher than the Born approximation and should there-
fore be sufficient to capture the skewdness of the scattering
probability, which arises from terms beyond the Born ap-
proximation. Notice that the collision integral does not con-
tain the tempting but ultimately incorrect “Pauli-blocking”
factors 1− f��k���.

Similarly, the electron-electron contribution to the colli-
sional derivative has the form34

ḟ��k��c,e−e � − �
k��p�p��

WC�k��,p� − �;k���,p�� − ��	f��k��f−��p��

��1 − f��k�����1 − f−��p���� − f��k���f−��p���

��1 − f��k����1 − f−��p���
�k�+p� ,k��+p��

����̃k� + �̃p−� − �̃k�� − �̃p�−�� , �13�

where WC�k�� , p� −� ;k��� , p��−�� is the electron-electron scat-
tering rate from k�� , p� −� to k��� , p��−�, and the Pauli factors
f��k��, 1− f��k��� etc. ensure that the initial states are occupied
and the final states are empty as required by Pauli’s exclu-
sion principle. Notice that, for our purposes, only collisions
between electrons of opposite spins are relevant, since colli-
sion between same-spin electrons conserve the total momen-
tum of each spin component. Accordingly, only the former
have been retained in Eq. �13�.

III. SKEW SCATTERING

Let us, at first, neglect the electron-electron interaction.
From the general theory developed, for instance, in Ref. 38,
one can easily deduce that the scattering amplitude from one
impurity in two dimensions has the form

fk�k��,� = Ak�k�� + �Bk�k���k̂ � k̂��z, �14�

where Ak�k�� and Bk�k�� are complex scattering amplitudes, and k̂

and k̂� are the unit vectors in the directions of k� and k��

respectively. The second term on the right-hand side of Eq.
�14� is due to the spin-orbit interaction. Squaring the scatter-
ing amplitude and multiplying by the number Ni of indepen-
dent scattering centers we arrive at the following expression
for the scattering rate from k� to k��:

Wk�k��,� = �Wk�k��
s + �Wk�k��

a �k̂ � k̂��z����k − �k�� , �15�

where

Wk�k��
s = Ni��Ak�k���

2 + �Bk�k���
2� , �16�

and

Wk�k��
a = 2NiRe�Ak�k��Bk�k��

* � . �17�

Here and in the following �k���2k2� /2m is the free particle
energy. The second term in the square brackets of Eq. �15�
depends on the spin ��= +1 or −1 for up or down spins,
respectively� and on the chirality of the scattering �i.e., the

sign of �k̂� k̂��z�. We will refer to this as the skew-scattering
term. It should be noted that for a centrally symmetric scat-
tering potential—the only case we are going to consider in
this paper—Wk�k��

s and Wk�k��
a depend only on the magnitude of

the vectors k� and k��, which are equal by energy conservation,
and on the angle 	 between them. Furthermore, they are both
symmetric under interchange of k� and k��—the antisymmetry
of the skew scattering being explicitly brought in by the

factor �k̂� k̂��z=sin 	. Thus, in the following, we will often
write Wk�k��

s/a �Ws/a�k ,	�, where Ws/a�k ,	� are even functions
of 	. Notice that the skew scattering term vanishes when the
scattering is treated in the second-order Born
approximation.38 Indeed, within this approximation Ak�k�� is
purely real and Bk�k�� is purely imaginary, so Wk�k��

a is zero.
The linearized Boltzmann equation can be solved exactly

under the assumption that Wk�k��
s and Wk�k��

a depend only on the

energy �k=�k� and on the angle 	 between k� and k��. The
solution has the form

f��k�� = f0���k� − f0�� ��k��k� · V� ��k� , �18�

where V� ��k� is proportional to the electric field. In view of
Eq. �11� it is convenient to expand

f0���k� = f0���̃k�� − f0�� ��k���̃k� − �k� . �19�

so that our ansatz �18� takes the form

f��k�� = f0���̃k�� − 2f0�� ��k�e����E� � � ẑ� · k�

− f0�� ��k��k� · V� ��k� . �20�

The advantage of this form is that the “zero-order term”
f0���̃k�� makes no contribution to the collision integral �10�.
Then, making use of Eq. �15� and discarding terms propor-
tional to �Wa �which are small since Wa itself is proportional
to �� we arrive at the following form for the linearized col-
lision integral:
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ḟ1��k��c,imp = − �
k��

Wk�k��
s 	f1��k�� − f1��k���
���k − �k��

− ��
k��

Wk�k��
a �k̂ � k̂��z	f1��k�� + f1��k���


����k − �k�� + 2��
k��

Wk�k��
s f0�� ��k�e��

��E� � � ẑ� · �k� − k�� ����k − �k�� , �21�

where f1��k���−f0�� ��k��k� ·V� ��k� is the deviation of the dis-
tribution function from unpertubed equilibrium.

At low temperature, it is not necessary to take into ac-

count the full k dependence of V� ��k�, since the derivative of
the Fermi distribution f0�� ��k� restricts the range of k to the
vicinity of the Fermi wave vectors kF�. Thus we replace the
function V��k� by a constant V�, and determine V� from the
consistency condition

− e�
k�

�k�

m
�E� � ·

�k�

m
� f0�� ��k� = �

k�

�k�

m
ḟ1��k��c,imp. �22�

Substituting the collision integral from Eq. �21� on the right-
hand side of this equation and moving its last term to the
left-hand side we arrive at

en�

m
E� � − 2e��

k�k�

�2k�

m
��k� − k���Wk�k��

s
��E� � � ẑ�f0�� ��k����k

− �k��� = �
k�k��

Wk�k��
s �2k�

m
�k� − k��� · V� �f0�� ��k����k − �k��

+ ��
k�k��

Wk�k��
a �2k�

m
�k̂ � k̂��z�k� + k��� · V� �f0�� ��k����k − �k�� ,

�23�

where n�=kF�
2 /4
 is the density of �-spin carriers and kF� is

the corresponding Fermi wave vector. The first term on the

right-hand side of Eq. �23� is parallel to V� �, while the second
term is orthogonal to it. Then a simple calculation leads to

the following expression for V� � in terms of the electric field:

−
e

m
E� � −

2e���E� � � ẑ�
��

=
V� �

��

+ �
V� � � ẑ

��
ss , �24�

and its inverse to first order in � is

V� � =
− e��

m
�E� � − �

��

��
ssE� � � ẑ� − 2e���E� � ẑ� , �25�

where

1

��

= −
mA

4
2�2�F�


0

�

d��f0�� ���
0

2


d	Ws��,	��1 − cos 	� ,

�26�

and

1

��
ss = −

mA
4
2�2�F�


0

�

d��f0�� ���
0

2


d	Wa��,	�sin2 	 .

�27�

In the above equations �F�=kF�
2 �2 /2m is the Fermi energy

for spin �. In the limit of zero temperature the derivative of
the Fermi function reduces to f0�� ����−���−�F�� and the
above formulas simplify as follows:

1

��

�
T→0 mA

4
2�2
0

2


d	Ws�kF,	��1 − cos 	� , �28�

and

1

��
ss �

T→0 mA
4
2�2

0

2


d	Wa�kF,	�sin2 	 . �29�

Figure 1 shows the antisymmetric scattering rate
�0

2
d	Wa�� ,	�sin2 	 calculated numerically using Eq. �A22�
for a model impurity potential Eq. �A1� presented in Appen-
dix, and for the typical experimental parameters.11

IV. SPIN-HALL CURRENT AND SIDE JUMP

The quantity V� � obtained in Eq. �25�, determines the non-
equilibrium distribution, according to Eq. �18�. We now use
this distribution to calculate the current density. In order to
do this correctly, however, we must remember that the spin-
orbit interaction alters the relation between the velocity and
the canonical momentum. The correct expression for the ve-
locity is given in Eq. �7� and in the absence of electron-
electron interactions takes the form

FIG. 1. Antisymmetric scattering rate Wint
a

=�0
2
d	Wa�� ,	�sin2 	 in units of nih /m2A �see Eq. �A22�� as a

function of k2 for a model circular well attractive potential V0=
−5 meV and radius a=9.45 nm �described in the Appendix�. We
choose the parameters typical for the experimental 2DEG confined
in Al0.1Ga0.9As quantum well, i.e., density of electrons and impuri-
ties n2D=ni=2.0�1012 cm−2, m=0.074 me, and mobility ̄
=0.1 m2/Vs. The effective spin-orbit coupling ��=4.4 Å2 in accor-
dance with �Ref. 36�.
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v� i =
p� i

m
+ 2���� Vei�r�i� + eE� � � �� i. �30�

The second term on the right-hand side of this equation con-
tains the net force resulting from the combined action of the
external electric field and the impurity potential on the ith
electron. This force must vanish when averaged in a non-
equilibrium steady-state ensemble, since the average value of
the momentum must be stationary. Also, the same is true in
the presence of electron-electron interactions, provided the
Coulomb force is included. Thus, we arrive at the simple
result

j�� = − en�V� �. �31�

Combining this with Eq. �25� we obtain the complete rela-
tion between electric field and current density

j�� =
n�e2��

m
�E� � − �

��

��
ssE� � � ẑ� + 2e2��n�E� � � ẑ .

�32�

The last term on the right-hand side of this expression is
known in the literature as the side-jump contribution to the
current density.18 It comes from the use of �̃k rather than �k in
the � function of conservation of energy; see discussion in
the paragraph following Eq. �11�. Inverting Eq. �32� we ob-
tain the following formula for the electric field in terms of
the current densities:

E� � = ��
Dj�� + ����

ss − ����
D�j�� � ẑ , �33�

where ��
D=m /n�e2�� is the Drude resistivity, ��

ss=m /n�e2��
ss,

��=2m� /��. Hence the resistivity tensor, written in the basis
x↑, y↑, x↓, y↓, has the following form:

� =�
�↑

D �↑
ss − �↑�↑

D 0 0

− �↑
ss + �↑�↑

D �↑
D 0 0

0 0 �↓
D − �↓

ss + �↓�↓
D

0 0 �↓
ss − �↓�↓

D �↓
D

� .

�34�

The diagonal part of the resistivity reduces to the Drude for-
mula ��

D=m / �n�e2��� as expected. The spin-orbit interaction
is entirely responsible for the appearance of an off-diagonal
�transverse� resistivity. The latter consists of two competing
terms associated with side jump �����

D� and skew scattering
���

ss�, as seen in Eq. �34�. Hence our expression for the trans-
verse resistivity is different from the expression presented in
previous papers �see for example Ref. 5� where only the
side-jump contribution appears in the final formulas. Notice
that, at this level of approximation, the resistivity is diagonal
in the spin indices.

V. SPIN-COULOMB DRAG

Up to this point we have ignored electron-electron scat-
tering processes, as well as scattering processes that might
flip the spin of the electrons. As discussed in Ref. 34 these
processes are important because they couple the up- and
down-spin components of the current density, giving rise to
off-diagonal elements, �↑↓

��, of the resistivity tensor. The Cou-
lomb interaction, in particular, leads to the phenomenon of
the spin-Coulomb drag �SCD�—a form of friction caused by
the relative drift motion of spin-up and spin-down electrons,
and the consequent transfer of momentum between
them.33–35,39 Both Coulomb and spin-flip scattering can be
included in our formulation as additional contributions to the

collisional derivative ḟ1��k��c �see Ref. 34�. In particular, the
Coulomb contribution is given by Eq. �13�. Substituting Eq.
�20� into Eq. �13� and including the first-order corrections
from electron-electron interactions to the spin-orbit Hamil-
tonian, we arrive at the following expression for the Cou-
lomb collision integral:

ḟ��k��c,e−e � −
1

kBT
�

k��p�p��

WC�k��,p� − �;k���,p�� − ����V� � − �V� −� + 2e����E� � + E� −�� � ẑ� · �k� − k���

�f0���k�f0−���p�f0��− �k��f0−��− �p���k�+p� ,k��+p�����k� + �p−� − �k�� − �p�−�� , �35�

where T is the temperature, kB is the Boltzmann constant,
and we have made use of the identity f0���k�f0−���p��1
− f0���k����1− f0−���p���= �1− f0���k���1− f0−���p��
�f0���k��f0−���p�� for �k�+�p−�−�k��−�p�−�=0.

Equation �35� is now inserted into the “consistency con-
dition” �22�, and the resulting sum over momenta is ex-
pressed in terms of the spin-drag coefficient �, i.e., the rate
of momentum transfer between up- and down-spin electrons,
according to the formula34
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� =
n

n�n−�
�

k�k��p�p��

WC�k��,p� − �;k���,p�� − ��

�
�k� − k���2

4mkBT
f0���k�f0−���p�f0��− �k��f0−��− �p��

��k�+p� ,k��+p�����k� + �p−� − �k�� − �p�−�� . �36�

Then Eq. �24� for V� � is modified as follows:

−
e

m
E� � − 2

e���E� � � ẑ�
��

=
V� �

��

+ �
V� � � ẑ

��
ss −

n−��

n�ne
j�� +

�

ne
j�−�

+ 2�
n−�

n
e���E� � + E� −�� � ẑ

+
1

���n�e
j�−�. �37�

The third and fourth terms on the right-hand side �r.h.s.� of

this equation are connected with the SCD and � is the spin-
drag coefficient calculated in Ref. 39. The fifth term on the
r.h.s. of Eq. �37� comes from the side-jump effect in Cou-
lomb scattering. The last term in Eq. �37� is associated with
spin-flip collision processes, characterized by the spin-
relaxation time ��� . We include it for completeness, even
though spin-flip effects are expected to be small in n-doped
semiconductors. The current is now given by the full velocity
operator of Eq. �7�, but thanks to the force balance condition
in the steady state it reduces again to the simple form

j�� = − en�V� �. �38�

Combining Eq. �37� with Eq. �38� leads to the resistivity
tensor, which in the basis of x↑, y↑, x↓, y↓ has the form

� =�
�↑

D + �SDn↓/n↑ �↑
ss − �↑�↑

D + A↑
�� − �SD − �↑� B↑

��

− �↑
ss + �↑�↑

D − A↑
�� �↑

D + �SDn↓/n↑ − B↑
�� − �SD − �↑�

− �SD − �↓� − B↓
�� �↓

D + �SDn↑/n↓ − �↓
ss + �↓�↓

D − A↓
��

B↓
�� − �SD − �↓� �↓

ss − �↓�↓
D + A↓

�� �↓
D + �SDn↑/n↓

� , �39�

where �SD=m� /ne2 is the spin-Coulomb drag resistivity and
��� =m /n�e2��� �recall that ��=2m� /�� is a dimensionless
quantity�. A�

�� and B�
�� represent the terms of the first order

in electron-electron coupling � and in SO coupling � and are
defined as follows: A�

��=−���SDn−� /n�+2m*���−n−���
D /n

+ �n−� /n−n−�
2 /nn���SD� and B�

��=���SD+2m*���
−n−��−�

D /n+ �n−� /n−n� /n��SD�. Notice that the resistivity
satisfies the following symmetry relations:

���
��� = − ���

���, �40�

��−�
��� = �−��

��� , �41�

where upper indices � and �� denote directions, and the
lower ones spin orientations. From Eq. �39� one clearly sees
that the spin-Coulomb drag and spin-flip processes couple
the spin components of the longitudinal resistivity. Further,
the spin-Coulomb drag corrections to the spin-orbit Hamil-

tonian ��� corrections� result in the ��−�
��� terms, i.e., in the

transverse resistivity which couples opposite spins. Also, the
SCD renormalizes the longitudinal spin-diagonal compo-
nents ��−�

�� of the resistivity, in such a way as to satisfy Gal-
ilean invariance.

The spin-flip collision processes come as a phenomeno-
logical term which could have origin for example in some
random magnetic field, which does not appear in the original

spin-conserving Hamiltonian �Eq. �1��. The spin-flip relax-
ation time, ��� is given by the microscopic expression34

1

���
= −

mA
8
2�2�F−�


0

2


d	W�,−�
sf ��k,	�cos 	 , �42�

where W�,−�
sf denotes the spin-flip scattering rate from spin �

to the opposite spin orientation −�.45 Since the relaxation
time for spin-flip processes �� is very long,34 the SCD nor-
mally controls the coupling between the spin components,
except at the very lowest temperatures �the spin drag rate �
vanishes as T2 ln T while the spin-flip rate remains constant�.
Spin-flip processes will therefore be omitted henceforth.

In a paramagnetic material there is symmetry between up-
and down-spin densities, mobilities, etc. and one can easily
separate the spin and charge degrees of freedom. Then com-
bining the Eq. �37� and Eq. �38� simplifies to

E� c = �Dj�c + 2��ss − ��D − ��SD�j�s � ẑ , �43�

E� s = 4��SD + �D�j�s + 2��ss − ��D − ��SD�j�c � ẑ , �44�

where we omit spin-flip processes, and the charge/spin com-

ponents of the electric field are defined as E� c= �E� ↑+E� ↓� /2,

E� s=E� ↑−E� ↓, and the charge and spin currents are j�c= j�↑+ j�↓
and j�s= �j�↑− j�↓� /2, respectively. The spin-Coulomb drag
renormalizes the longitudinal resistivity only in the spin
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channel. This is a consequence of the fact that the net force
exerted by spin-up electrons on spin-down electrons is pro-
portional to the difference of their drift velocities, i.e., to the
spin current. Additionally, the electron-electron corrections
to the spin-orbit interactions renormalize the transverse resis-
tivity in the charge and spin channels, so the Onsager rela-
tions between spin and charge channels hold. Under the as-
sumption that the electric field is in the x direction has the
same value for spin up and spin down we see that Eqs. �43�
and �44� yield the following formula for the spin current in y
direction:

js
y
z = � �ss/2��D�2

1 + �SD/�D −
�

2�D
�Ex. �45�

The first term in the square brackets is associated with the
skew scattering, while the second is the side-jump contribu-
tion. Notice that the side-jump conductivity −� /2�D=
−�ne2 depends neither on the strength of disorder nor on the
strength of the electron-electron interaction. In contrast, the
spin-Coulomb drag reduces by factor 1+�SD /�D the skew-
scattering term, so the total spin-Hall conductivity and the
spin-Hall current are reduced as well.

The temperature dependence of the spin conductivities
�yx= js

y
z /Ex for two different mobilities and for the param-

eters of the recent experiment on the 2DEG in Al0.1Ga0.9As
�Ref. 11� is presented in Fig. 2. We used Eqs. �A21� and

�A22� to calculate the scattering rates. The procedure is as
follows. First we find the scattering rate ���=�−�� from the
mobility. Then using Eqs. �A21� and �26� we estimate the
strength of impurity potential V0. Finally, we compute the
skew-scattering rate by numerically evaluating Eq. �A22�. In
general the skew-scattering rate of Eq. �26� is temperature
dependent through the Fermi distribution. However, in a
wide range of mobilities the impurity potential V0 is much
smaller than the Fermi energy and the scattering rate does
not change with energy around EF, i.e., ��Wa�� ,�� /����=EF
�0 �see Fig. 1�. Since the temperature dependence of the
skew-scattering rate comes from the energy dependence of
Wa�� ,��, we see that the temperature dependence of the
skew-scattering term is very weak. In Fig. 2, �yx

sj is the side-
jump contribution to the conductivity in the absence of
electron-electron interactions �found from the last term of
Eq. �32��. �yx

ss is the skew-scattering conductivity in the ab-
sence of electron-electron interactions �found from second
term of Eq. �32��. �yx

tot is the total off-diagonal conductivity
modified by the spin-Coulomb drag term, as given by Eq.
�45�. For T=0 the total spin conductivity is the sum of two
contributions: skew-scattering proportional to �ss /2�D

2 and
side-jump proportional to � /2�D=−�ne2. For an attractive
electron-impurity potential �V0�0� the two contributions
have opposite signs, consistent with previous theoretical es-
timates in Refs. 13 and 16. The ratio of the skew-scattering
to side-jump terms depends on the mobility, ̄. The skew-
scattering conductivity scales as ̄ while the side-jump is
independent of mobility. As a consequence the skew-
scattering conductivity dominates for high mobilities while
the side-jump dominates at low mobilities. The different ra-
tios of skew-scattering to side-jump conductivities reported
in recent theoretical papers13,16 result from choosing different
mobilities �see also Fig. 2�. The spin-Coulomb drag is the
only temperature-dependent contribution in this calculations:
it scales as T2 ln T for T�TF and reduces the absolute value
of spin conductivity and spin current. Moreover, the reduc-
tion of spin-Hall effect by spin-Coulomb drag depends
strongly on the Drude resistivity. Hence the reduction of
spin-Hall conductivity will be of the order of a few percent
for low mobilities �invisible change in �yx for ̄
=0.1 m2/Vs in Fig. 2� and of the order of 25%–50% for high
mobilities �see �yx for ̄=1 m2/Vs in Fig. 2�.

Thus far, as stated in the Introduction, we have only con-
sidered the extrinsic spin-Hall effect. What about the intrin-
sic effect? In recent experiments by Sih et al.11 on a 2DEG
confined in an �110� AlGaAs quantum well, three different
contributions to the spin-Hall conductivity are present in
principle: the impurities, the linear-in-k� SO Rashba field, and
the cubic-in-k� SO Dresselhaus field which is perpendicular to
the Rashba field. Since in �110� quantum wells, the Dressel-
haus field is in the �110� direction; we do not expect any
spin-Hall current or spin-Hall accumulation connected with
this term in the plane of the quantum well. Further, it has
been established that the spin-Hall conductivity in an infinite
2DEG with only linear spin-orbit interactions of Rashba or
Dresselhaus type vanishes for arbitrarily weak disorder.40–43

Hence we believe that the extrinsic contribution �yx�2
�10−41 /k� is the dominant one in the referenced paper.

FIG. 2. Spin Hall conductivity as a function of temperature. �yx
sj

�open squares�, �yx
ss �open and closed circles� are the side-jump and

skew-scattering contributions, respectively, to the conductivity in
the absence of electron-electron interactions, and �yx

tot is the total
spin conductivity when electron-electron interactions are taken into
account. We choose the parameters typical for the experimental
2DEG confined in Al0.1Ga0.9As quantum well, i.e., density of elec-
trons and impurities n2D=ni=2.0�1012 cm−2, m=0.074 me, and
two sets of mobilities and relaxations times: ̄=0.1 m2/Vs, �=4
�10−5 ns, �ss=0.02 ns, and ̄=1 m2/Vs �=4�10−4 ns, �ss

=0.2 ns. The effective spin-orbit coupling ��=4.4 Å2 in accor-
dance with Ref. 36. We used the model potential �see Appendix�
where an effective impurity radius a=9.45 nm, the height of attrac-
tive impurity potential V0=−5 meV for ̄=0.1 m2/Vs, and V0=
−1.6 meV for ̄=1 m2/Vs.
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Also, the theoretical estimates of extrinsic13 and intrinsic14

contributions in the experiments on three-dimensional
n-doped GaAs �Ref. 10� show that the extrinsic contribution
is an order of magnitude larger than the intrinsic one.

VI. SPIN ACCUMULATIONS

Let us now study the influence of spin-Coulomb drag on
the spin accumulation. This is relevant to the interpretation
of the experiments by Sih et al.11 and Kato et al.10 We con-
sider a very long conductor in the form of a bar of length L
in the x direction and narrow width W in the y direction. A
charge current flows only in the x direction. The y compo-
nents of the current j�

y , with �=↑ and ↓ add up to zero
everywhere and individually vanish on the edges of the sys-
tem, i.e., j�

y =0 at y= ±W /2. In order to satisfy the boundary
conditions the system cannot remain homogeneous in the y
direction. A position-dependent spin density, known as spin
accumulation develops across the bar, and is reflected in
nonuniform chemical potentials ��y�. In the steady-state re-
gime the spatial derivative of the spin current in the y direc-
tion must exactly balance the relaxation of the spin density
due to spin-flip processes. This condition leads to the follow-
ing equation for the spin chemical potentials:44

d2���y� − −��y��
d2y

=
��y� − −��y�

Ls
2 , �46�

where Ls is the spin diffusion length. The solution of this
equation is

��y� − −��y� = Cey/Ls + C�e−y/Ls, �47�

where C, C� are constants to be determined by the boundary
conditions j±�

y �±W /2�=0. The effective electric field in the y
direction is eE�

y =d� /dy. Thus,

− e�E↑
y − E↓

y� =
d�↓ − ↑�

dy
=

C�

Ls
e−y/Ls −

C

Ls
ey/Ls. �48�

Using the boundary conditions at y= ±W /2 we obtain

E↑
y�±W/2� = �↑↑

yx j↑
x + �↑↓

yx j↓
x , �49�

E↓
y�±W/2� = �↓↑

yx j↑
x + �↓↓

yx j↓
x . �50�

Making use of Eqs. �48�–�50� to eliminate the electric field,
we obtain the following set of equations:

C�

Ls
e−W/2Ls −

C

Ls
eW/2Ls =

C�

Ls
eW/2Ls −

C

Ls
e−W/2Ls = − e��↑↑

yx j↑
x

+ �↑↓
yx j↓

x − �↓↑
yx j↑

x − �↓↓
yx j↓

x� , �51�

which gives immediately the solution C=−C� and

C� =
− eLs��↑↑

yx j↑
x + �↑↓

yx j↓
x − �↓↑

yx j↑
x − �↓↓

yx j↓
x�

2 cosh�W/2Ls�
. �52�

Thus, the formula for the spin accumulation is

↑�y� − ↓�y� =
eLs��↑↑

yx j↑
x + �↑↓

yx j↓
x − �↓↑

yx j↑
x − �↓↓

yx j↓
x�sinh�y/Ls�

cosh�W/2Ls�
.

�53�

Finally, upon substituting the matrix elements of the resistiv-
ity from Eq. �39� we find

↑�y� − ↓�y� =
− eLs�j↑

x��↑
ss − �↑�↑

D + A↑
�� + B↑

��� + j↓
x��↓

ss − �↓�↓
D + A↓

�� + B↓
����sinh�y/Ls�

cosh�W/2Ls�
. �54�

The spin-Coulomb drag modifies the spin accumulation in
three different ways: �i� the spin-Coulomb drag resistivity
appears directly in the terms A�� and B��, defined after Eq.
�39�; �ii� the values of the spin components of the longitudi-
nal current j�

x are, in general, affected by the SCD; and �iii�
the spin diffusion length Ls is significantly reduced by the
spin-Coulomb drag35 as seen from the formula34

Ls =
�0

�s

Lc

1 + �SD/�D
, �55�

where �0 is the susceptibility, �S is the spin susceptibility,
and Lc is the density diffusion length.

In paramagnetic materials Eq. �54� simplifies to

↑�y� − ↓�y� =
− 2eLsjx��ss − ��D − ��SD�sinh�y/Ls�

cosh�W/2Ls�

=
− 2eLsEx��ss − ��D − ��SD�sinh�y/Ls�

�D cosh�W/2Ls�
,

�56�

where jx=Ex /�D indeed is independent of �SD. Further the
Eq. �56� at the edges of sample for L=W /2 gives

↑�W/2� − ↓�W/2� = − 2eLsjx��ss − ��D

− ��SD�tanh�W/2Ls� . �57�

The three terms in the square bracket of Eq. �57� are the
skew-scattering term, the side-jump contribution, and the
electron-electron correction. The last term reduces the spin
accumulations. Additionally, the spin-Coulomb drag reduces
the spin accumulation through the spin-diffusion length �see
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Eq. �55��. However, in the limit of W�Ls, tanh�W /2Ls� can
be approximated by W /2Ls, and the spin accumulation at the
edges becomes independent of Ls. In this limit, the influence
of SCD on the spin accumulation is only through the ��SD
term. Notice that in the limit of infinite spin-relaxation time
�Ls→�� the spin accumulation can be obtained directly from
the homogeneous formulas, Eqs. �43� and �44�.

For a two-dimensional electron gas confined in
Al0.1Ga0.9As quantum well measured by Sih et al.11 with
electron and impurity concentrations ni=n2D=2�1012 cm−2,
mobility ̄=0.1 m2/Vs, Ls=1 m, �=4�10−5 ns, �ss
=0.02 ns, ��=4.4 Å and for the sample with width W
=100 m, we calculate the spin accumulation to be
−1.5 meV/ �e� on the left edge of the sample �relative to the
direction of the electric field�, i.e., for W /2=−50 m. This
means that the nonequilibrium spin-density points down on
the left edge of the sample and up on the right edge. It is not
clear at present whether this sign of the spin accumulation is
consistent or not with the sign of the Kerr rotation angle
measured in the experiments.11,10

VII. SUMMARY

We have developed the microscopic theory of the extrin-
sic spin-Hall effect taking into account the skew-scattering,
side-jump, and Coulomb interaction effects. The total spin
conductivity in zero temperature is a sum of the skew-
scattering and side-jump terms. The spin-Coulomb drag is
the only temperature-dependent term, causing a quadratic-in-
T reduction of the spin-Hall conductivity. Further, we find
that the spin-Hall conductivity associated with the side-jump
contribution is independent of the strength of electron-
electron interactions, while the part of the spin conductivity
connected with the skew scattering is reduced by the spin-
Coulomb drag for experimentally accessible mobilities.
Moreover, we predict that in paramagnetic systems the spin-
Coulomb drag reduces the spin accumulations in two differ-
ent ways: �i� directly through the reduction of the skew-
scattering contribution, and �ii� indirectly through the
reduction of the spin-diffusion length.
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APPENDIX: AN EXACTLY SOLVABLE MODEL FOR
SKEW SCATTERING

We present the calculations of the scattering rates for a
circular well potential of the form

V�r� = V0	�a − r� + �̄aLzSz��r − a�V0, �A1�

which is attractive for V0�0 and repulsive for V0�0. The
second term on the right is the spin-orbit interaction and �̄

=�� /a2 where � is an effective spin-orbit coupling found in
the eight-band Kane model and a is the impurity radius.
Since the orbital angular momentum Lz= l and the spin an-
gular momentum Sz=� are conserved we can separate the
wave function into radial and orbital parts

�kl��r,	� = Rkl��r�eil	, �A2�

and the corresponding Schrödinger equation has the form

−
�2

2m
�Rkl�� +

1

r
Rkl�� � +

�2l2

2mr2Rkl� + V�r�Rkl��r� = ERkl��r� ,

�A3�

where E=�2k2 /2m and the prime denotes a derivative with
respect to r. We now express lengths and wave vectors in
units a and a−1 respectively, so r should be understood as
r /a, k as ka, and, of course, a=1 in these units. The dimen-
sionless Schrödinger equation is

Rkl�� +
1

r
Rkl�� + �k2 − v0 −

l2

r2�Rkl� = 0, r � 1, �A4�

and

Rkl�� +
1

r
Rkl�� + �k2 −

l2

r2�Rkl� = 0, r � 1, �A5�

where v0=2mV0a2 /�2 is the dimensionless parameter which
measures the height of the impurity potential barrier. The
regular solution of this equation for r�1 is

Rkl��r� = J�l���r�, r � 1, �A6�

where we have defined �=�k2−v0. On the other hand, the
solution for r�1 can be written as a superposition of the two
independent solutions of the differential equation �A5�,

Rkl��r� = ei�l��cos �l�J�l��kr� − sin �l�Y �l��kr��, r � 1.

�A7�

The matching conditions on the wave function and its deriva-
tive lead to the following equations:

Rkl��1+� = Rkl��1−� = Rkl��1� , �A8�

Rkl�� �1+� − Rkl�� �1−� = �̄l�Rkl��1�v0. �A9�

Substitution of Eqs. �A6� and �A7� to the matching condi-
tions yields

k cos �l�J�l�� �k� − k sin �l�Y �l�� �k�

cos �l�J�l��k� − sin �l�Y �l��k�
= �

J�l�� ���

J�l����
+ �̄l�v0,

�A10�

from which one gets the following equation for the phase
shifts �l�:

cot �l� =
kY �l�� �k� − �l�Y �l��k�

kJ�l�� �k� − �l�J�l��k�
, �A11�

where �l�=�J�l�� ��� /J�l����+ �̄l�v0, J�l��k�, and Y �l��k� are the
Bessel functions of the first and second kinds. The wave
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function at large distance from the scattering center can be
written as

�kl��r,	� �
r→�� 2


kr
cos�kr −

�l�

2

−



4
+ �l��eil	ei�l�

= �kl�
0 �r,	� +

e2i�l� − 1
�2
kr

ei�kr−�l�
/2−
/4�eil	, �A12�

where �kl�
0 �r ,	�=� 2


kr cos�kr− �l�

2 − 


4
�eil	 is the free wave

function in the channel of angular momentum l. The scatter-
ing amplitude f��k ,	� is the factor multiplying the outgoing
wave eikr /�r in the above equation,

f��k,	� = �
l=−�

�
e2i�l� − 1
�2
k

e−i��l�
/2+
/4�eil	. �A13�

The differential cross section is accordingly given by

�d�c

d	
�

�

= �f��k,	��2 =
1

2
k
�
l,l�

�e2i�l� − 1�

��e−2i�l�� − 1�e−i
/2��l�−�l���ei�l−l��	. �A14�

Finally we notice that the total scattering rate is related to
the differential scattering cross section for a single impurity
as follows:

W�k,	� = Ws�k,	� + �Wa�k,	�sin 	 = ni
4
2�3k

m2A
d�c

d	
,

�A15�

where ni=Ni /A is the areal density of impurities. Combining
this with Eq. �A14� we find

W�k,	� = ni
2
2�3

m2A �
l,l�

�e2i�l� − 1��e−2i�l�� − 1�i�l��−�l�ei�l−l��	.

�A16�

To identify Ws and Wa we separate Eq. �A16� into even and
odd components with respect to the scattering angle 	, which
can be easily done using the identity ei�l−l��	=cos��l− l��	�
+ i sin��l− l��	�. Then

Ws�k,	� = ni
2
2�3

m2A �
l,l�

�e2i�l� − 1��e−2i�l�� − 1�i�l��−�l�

�cos��l − l��	� �A17�

and

Wa�k,	� = �ni
2
2�3

m2A sin 	
�
l,l�

�e2i�l� − 1�

��e−2i�l�� − 1�i�l��−�l�+1 sin��l − l��	� . �A18�

Making use of the identities e±2i�l� −1= ±2i / �cot �l�� i� we
rewrite the scattering rates as

Ws�k,	� = ni
8
2�3

m2A �
l,l�

i�l��−�l� cos��l − l��	�
�cot �l� − i��cot �l�� + i�

�A19�

and

Wa�k,	� = �ni
8
2�3

m2A �
l,l�

i�l��−�l�+1 sin��l − l��	�
�cot �l� − i��cot �l�� + i�sin 	

,

�A20�

where the phase shifts are completely determined by Eq.
�A11�. Notice that the sums over l and l� in Eq. �A19� and
Eq. �A20� run from −� to � and the phase shifts have the
symmetries �−l,−����=�l,���� and �−l,��−��=�l,����, which
implies that Ws�k ,	� and Wa�k ,	� are invariant under spin
reversal �→−� and Wa�k ,	� changes sign with a change of
sign of �, as expected. The integral over 	 Eq. �28� elimi-
nates the majority of the terms from the sum over l and l�
and the only nonzero terms for Ws�k ,	� are with l= l� and l
= l�±1. This gives


0

2


d	Ws�k,	��1 − cos 	� = ni
8
3�3

m2A ��
l

2

�cot �l�
2 + 1�

− �
l=l�±1

i�l��−�l�

�cot �l� − i��cot �l�� + i�� .

�A21�

One can see that Ws�k ,	� is modified by spin-orbit interac-
tions, however it has a nonzero value even if spin-orbit in-
teractions are absent. We checked numerically that the sum
over l in Eq. �A21� is convergent after taking into account a
few first terms. For the skew-scattering rate Wa�k ,	�, the
integral over 	 Eq. �29� have nonzero terms only if l= l�±1.
This gives


0

2


d	Wa�k,	�sin2 	 = �ni
8
3�3

m2A

� �
l=l�±1

i�l��−�l�+1

�cot �l� − i��cot �l�� + i�
.

�A22�

For very small ka the only relevant terms are l�=0, �l�=1 and
�l� � =1, l=0 which yields to


0

2


d	Wa�k,	�sin2 	 � �ni
8
3�3

m2A � 1

�cot �1� − i��cot �0� + i�

−
1

�cot �0� − i��cot �−1� + i�

+
1

�cot �0� − i��cot �1� + i�

−
1

�cot �−1� − i��cot �0� + i��
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= �ni
16
3�3

m2A

��Re
1

�cot �1� − i��cot �0� + i�

− Re
1

�cot �−1� − i��cot �0� + i��
= �ni

16
3�3

m2A

�� 1 + cot �0� cot �1�

�cot2 �1a + 1��cot2 �0� + 1�

−
1 + cot �0� cot �−1�

�cot2 �−1� + 1��cot2 �0� + 1�� ,

�A23�

independent of 	. Notice that �0
2
d	Wa�k ,	�sin2 	 vanishes

in the absence of spin-orbit interactions, since all the phase
shifts are independent of � in that case.
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