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A self-consistent treatment of the spin-Hall effect requires consideration of the spin-orbit coupling and
electron-impurity scattering on equal footing. This is done here for the experimentally relevant case of a
[110] GaAs quantum well [Sih et al., Nature Phys. 1, 31 (2005)]. Working within the framework of the
exact linear response formalism we calculate the spin-Hall conductivity including the Dresselhaus linear
and cubic terms in the band structure, as well as the electron-impurity scattering and electron-electron
interaction to all orders. We show that the spin-Hall conductivity naturally separates into two contribu-
tions, skew-scattering and side-jump, and we propose an experiment to distinguish between them.
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Introduction.—The current focus of spintronics based
on spin-orbit (SO) interactions is on the spin-Hall effect
[1–4] (SHE), i.e., the generation of a steady spin-current
transverse to a dc electric field. The recent experimental
observations of the SHE [5–7] have enhanced the interest
of the community in this topic. At first sight the SHE seems
to arise from two quite different mechanisms: one associ-
ated with SO interactions between electrons and impurities
[1,2,8,9], and the other connected with SO interactions in
the band structure of the material [3,4]. In reality, the two
mechanisms are inseparable. On one hand, the presence of
electron-impurity scattering is essential to ensure that the
system reaches a steady state in the presence of the electric
field. This means that the dc limit (!! 0, where ! is the
frequency of the electric field) must be taken before letting
the electron-impurity scattering time � tend to infinity in
the ‘‘clean limit.’’ On the other hand, the unitary trans-
formation that reduces the original multiband Hamiltonian
of the solid to an effective Hamiltonian for, say, the con-
duction band, not only generates SO coupling terms (for
example the Dresselhaus term) but also modifies the posi-
tion operator [see Eq. (3) below]. All the above effects have
an impact on the spin-Hall conductivity (SHC). The so-
called skew-scattering (SS) contribution [10] arises from
the asymmetry of the electron-impurity scattering in the
presence of SO interactions [11]. The ‘‘side-jump’’ (SJ)
[12–14] comes from the change in the form of the position
and velocity operators. Finally, the ‘‘intrinsic’’ [15] con-
tribution arises from the SO coupling terms in the effective
Hamiltonian. Notice that the side-jump and the intrinsic
contributions have a common origin in the unitary trans-
formation that reduces the multiband Hamiltonian to an
effective one-band Hamiltonian.

Although all types of contributions are present in experi-
ments [5–7], theoretical approaches usually focus on one
or the other. Some papers focus on the band structure
effects neglecting the effect of spin-orbit coupling on
electron-impurity scattering [16,17], others on the SS and

SJ effects, ignoring spin-orbit interactions in the band
structure [9,18,19]. A complete theory should of course
describe all contributions on equal footing [20].
Furthermore, it would be desirable to have a way to dis-
tinguish experimentally the various contributions.

In this Letter we present a complete theory of the SHE
for an experimentally well-studied system, a GaAs [110]
quantum well (QW)[7], in which the electron-impurity and
the electron-electron interaction can be studied simulta-
neously and consistently with the spin-orbit terms in the
band structure, namely, the linear and cubic Dresselhaus
terms. Let us emphasize that in this system the spin current
and the SHC are well defined because the z component of
the spin is conserved. We show that the Dresselhaus terms
do not contribute while the conservation of Sz component
implies that the SHC includes only ‘‘pure’’ skew-scattering
and side-jump contributions. Furthermore, we are able to
prove (using exact linear response theory) that the side-
jump contribution is independent of the strength of disor-
der and Coulomb interactions, a fact that had been shown
on the basis of perturbative calculations to first order in
disorder [14,21,22], but never before shown to be true at all
orders in the strength of the interactions and disorder
potential. By contrast, in a [001] QW we find that the
nonconservation of Sz causes corrections to the side-
jump effect, as well as the appearance of intrinsic contri-
butions to the SHC from the nonlinear Dresselhaus term.

Thus, the spin-Hall effect in a [110] GaAs QW offers a
hitherto unexplored opportunity to measure pure skew-
scattering and side-jump contributions. And since the
skew-scattering spin-Hall conductivity increases with in-
creasing mobility while the side-jump conductivity is not
affected, we can propose a new experiment, where the
change in the sign of SHC with temperature reveals the
dominance of one or the other mechanisms.

Model and results.—Our effective Hamiltonian for the
conduction band of a [110] QW includes Dresselhaus spin-
orbit couplings, as well as SO corrections to the electron-
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impurity and the electron-electron (e-e) interactions:
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Here ~̂pi, ~̂ri are the canonical momentum and position
operators of the ith electron, Ve-e �

P
j�i

e2

�bj ~̂ri� ~̂rjj
, V̂Ti �

V� ~̂ri� � Ve-e is the total potential acting on the ith electron
due to random impurities [V�~r�] and e-e interactions in the
(110) plane, Ŝiz is the Pauli matrix operator, x, y, and z are
Cartesian component indices with z along the [110] axis,
m� is the conduction band mass, e is the absolute value of
the electron charge, E0 is a ‘‘built-in’’ electric field origi-
nating from the crystal symmetry, and the quantities �1,
�2, �02 are the strengths of SO coupling in the semicon-
ductor, whose values can be calculated from the matrix
elements of the momentum operator between different
bands within the 14� 14 band model [23]. Notice that
Ŝiz is a constant of the motion. Although �1,�2, and �02 are
connected, we assign them different labels in order to
(artificially) turn off one or the other effect in our calcu-
lations. These calculations are done to first order in the �’s,
which is correct if energies associated with the �’s are
much smaller than the Fermi energy. Notice that the SO
coupling energy is not required to be much smaller than
@=�.

We perturb the system with a uniform electric field of
frequency ! in the x direction, which is described by a
vector potential ec
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We want to calculate the magnitude of the transverse z-spin

current defined as Ĵzy �
@

2

PN
i�1

v̂iyŜiz�Ŝizv̂iy
2 , where v̂iy is the

y component of the velocity operator. To find the correct
expression for ~̂vi we note that, as a result of the trans-
formation from the original multiband Hamiltonian to the
effective Hamiltonian Eq. (2), the physical position opera-
tor no longer coincides with the canonical position opera-
tor ~̂ri, but is given by [24]

 ~̂r phys;i � ~̂ri �
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The velocity is the time derivative of ~̂rphys and making use

of� 1
c

_~A � ~E we find (to first order in the �’s and dropping
a ‘‘diamagnetic’’ term with zero average)
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It is essential for what follows that a steady state be
established in response to the dc electric field. In the steady
state regime the average force exerted on electrons of
either spin by impurities and other electrons h� ~rVTi
must be exactly balanced by the average force exerted by
the electric field �e ~E. So for the average spin current, the
last two terms of Eq. (4) cancel out and we get
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where n is the electron density. The first term on the right-
hand side (rhs) of Eq. (5) produces one half of the side-
jump contribution to the SHC, while the second one is the
intrinsic term generated by the internal field E0. The SJ and
intrinsic terms have the same form. However, the term
�2neE0=@ does not depend on the external electric field
and because hJzyi � 0 in the ground-state, it is canceled by
the ground-state average of the other terms.

Now we use the linear response theory to calculate the
average spin current hJzyi to first order in E. So we write
Jzy�t� � �SH

yx �!�Ee�i!t � c:c:, where the spin-Hall conduc-
tivity, �SH

yx �!� to the first order in the strength of SO
coupling is given by the Kubo formula:
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where ~̂P is the total momentum operator of the system, A
is the area of the 2DEG, and hhÂ; B̂ii! � �

i
@
�R

1
0 h	Â�t�; B̂�0�
ie

�i!tdt, where h. . .i is shorthand for the
Kubo linear response function.

We now show that the second term on the rhs of Eq. (6)
can be calculated exactly and, combined with the first term,
gives the full side-jump contribution to the SHC. We first
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note that according to the Heisenberg equation of motion for the momentum operator, to zero order in �1 we can write
riyV̂Ti � �

d
dt p̂iy. Furthermore Ŝiz is a strict constant of the motion, so we also have riyV̂TiŜiz � �

d
dt �p̂iyŜiz�. Making

use of this identity the term in question can be rewritten as
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where in the last step we have used the well-known prop-
erty of linear response functions,

 hhÂ; B̂ii! � �
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and the fact that Ŝ2
iz � 1.

The value of the hhP̂y; P̂yii response function in the!!
0 limit is easily obtained from the condition that the
ordinary dc conductivity
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is finite for !! 0 [25]. This implies that the quantity in
the square brackets of Eq. (9) vanishes in the limit !! 0,
i.e., [26,27]:

 lim
!!0
hhP̂y; P̂yii � �Nm�: (10)

Furthermore, it is easy to see that the terms proportional to
�02 in the last two lines of Eq. (6) vanish for �1 � 0 (this is
a consequence of the fact that for �1 � 0 these terms are
odd functions of pix while the Hamiltonian is an even
function of pix): hence they are at least of order �02�1

and can be safely neglected. Then Eq. (6), in the dc limit,
simplifies to
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The first and the second term on the rhs of this equation are
naturally identified as the side-jump and the skew-
scattering contributions to the SHC. Indeed the second
term on the rhs of Eq. (11) is simply the response of the
y component of the canonical spin current to an electric
field that couples to the x component of the canonical
particle current. This response includes neither the anoma-
lous velocity nor the anomalous coupling to the electric
field, and furthermore it vanishes for �1 � 0 (again, be-
cause of odd parity with respect to pix); hence, it cannot be
sustained by the band structure alone.

Thus, we conclude that the total SHC for a [110] QW [7]
is the sum of a universal side-jump contribution and a
skew-scattering contribution due to the impurities:

 �SH
yx � �sjyx � �ssyx; (12)

where
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and �sjyx � �1ne.

Notice that we have not assumed that either disorder or
the Coulomb interaction is weak: thus we have proved that
the side-jump SHC in a [110] QW is independent of dis-
order and the Coulomb potential to all orders in the
strength of these interactions. The proof, however, depends
on the conservation of Ŝz, which is a special feature of the
[110] QW. When Ŝz is not conserved, then Eq. (7) is no
longer true. The spin precessional frequency �p, while
proportional to �, will not be small in comparison to 1=� in
the clean limit. As a result, terms that could be safely
disregarded when �p was zero (conserved spin), become
very large when �p�� 1 and may even diverge when 1=�
tends to zero before �p. This is the basic mechanism
through which the side-jump contribution can be modified
by spin precession and intrinsic contributions to the SHC
can also appear. Indeed, in the case of a [001] GaAs QW
we find that the left-hand side of Eq. (7) vanishes in the
clean limit, thus reducing the side-jump contribution to
1
2�1ne.

Let us now return to the [110] QW. The skew-scattering
contribution [Eq. (13)] is not easily obtained from pertur-
bation theory, but we have recently shown, via the
Boltzmann equation, that it is given by

 �ssyx � ��
@n�=�ss
1� ��

; (14)

where � is the mobility, �ss is the SS relaxation time
inversely proportional to �1, and � is the spin-drag coef-
ficient [9,28,29]. It is seen that e-e interactions are quite
relevant here and reduce the SS term in Eq. (14) by the
factor 1� ��. Moreover, the two contributions in Eq. (12)
have opposite signs for an attractive impurity potential,
typical for mobilities dominated by the dopants produc-
ing mobile carriers, and the SS conductivity increases with
the mobility while the SJ is independent of it. If the
mobility is dominated by repulsive impurity potentials
the two contributions in Eq. (12) have the same sign
[18]. Similarly, the spin accumulation consists of two terms
with opposite signs and has the form [9]: Vac�W=2� �
�2Lsjx�D��=�ss � 2e�1=@�� tanh�W=2Ls�, where �D is
the Drude resistivity, Ls is the spin diffusion length, W is
the width of sample, and jx is the current density [30]. We
then propose a new experiment where the SJ=SS contribu-
tions can be distinguished through the temperature depen-
dence of �SH

yx or the spin accumulation potential Vac.
Figure 1 presents the behavior of � versus T for experi-
mentally attainable samples. Notice that the values of
parameters for theoretical curve designated by circles are
exactly the same as the values reported for the samples in
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the recent experiments [7] on a [110] QW. The samples
with lower mobilities can be easily obtained by additional
doping with Si inside the quantum well [31]. Hence � will
grow as T3=2 for low T as a result of scattering from ionized
impurities and will decrease as T�3=2 for larger T due to
phonon scattering. It is thus possible to observe two
changes of sign of Vac moving from low to high Ts: � �
1=�AT�3=2 � BT3=2�, where A is found from the low-T
mobility and B is fixed by a room temperature mobility
of 0:3 m2=Vs for AlGaAs. At low T the mobility is low and
the SJ contribution to Vac dominates. The first cross in the
graph designates the point where the SS begins to domi-
nate, and the second cross, at still higher T, is the point
where the SJ retakes control of the sign of Vac. Even if the
sign change is not detected, it is possible to tell whether SS
or SJ dominates by measuring whether Vac increases or
decreases as � increases with changing T.

Summary.—We have studied the spin-Hall effect for a
[110] QW taking into account the Dresselhaus SO coupling
terms and the spin-orbit interaction between electrons and
impurities in the presence of electron-electron interactions.
We have shown that in the recent experiment of Ref. [7] the
spin-Hall effect presents a clean competition between side-
jump and skew-scattering contributions (no intrinsic
terms). Furthermore, we have proposed a new experiment
where the change in the sign of spin-Hall accumulation
with temperature reveals the dominance of one or the other
effect. Finally, we have proved that the side-jump part of
the spin-Hall conductivity is independent of disorder and
the Coulomb interaction at all orders, provided the spin
current is associated with a conserved component of the
spin.
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[14] P. Noziéres and C. Lewiner, J. Phys. (Paris) 34, 901

(1973).
[15] H. A. Engel, E. Rashba, and B. I. Halperin, cond-mat/

0603306.
[16] J. I. Inoue, G. E. W. Bauer, and L. W. Molenkamp, Phys.

Rev. B 70, 041303(R) (2004).
[17] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, Phys.

Rev. Lett. 93, 226602 (2004).
[18] H. A. Engel, B. I. Halperin, and E. Rashba, Phys. Rev.

Lett. 95, 166605 (2005).
[19] W. K. Tse and S. D. Sarma, Phys. Rev. Lett. 96, 056601

(2006).
[20] W. K. Tse and S. D. Sarma, cond-mat/0602607 [Phys.

Rev. B (to be published)].
[21] J. M. Luttinger, Phys. Rev. 112, 739 (1958).
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FIG. 1 (color online). Mobility �, as a function of temperature
T, for three different low-T �’s. In the inset, the spin accumu-
lation (Vac) vs T. The side-jump contribution to Vac dominates
for low T. For increasing T, the lower temperature red (or dark
gray) cross corresponds to the T where the sign of Vac starts to be
controlled by skew scattering, the higher temperature red (or
dark gray) cross to the place where side jump dominates again.
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