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In the local-density approximation �LDA� for electronic time-dependent current-density-functional theory,
many-body effects are described in terms of the viscoelastic constants of the homogeneous three-dimensional
electron gas. In this paper, we critically examine the applicability of the three-dimensional LDA to the calcu-
lation of the viscous damping of one-dimensional collective oscillations of angular frequency � in a quasi-
two-dimensional quantum well. We calculate the effective viscosity ���� from perturbation theory in the
screened Coulomb interaction and compare it with the commonly used three-dimensional LDA viscosity Y���.
Significant differences are found. At low frequency, Y��� is dominated by a shear term, which is absent in
����. At high frequency, ���� and Y��� exhibit different power-law behaviors ��−3 and �−5/2, respectively�,
reflecting different spectral densities of electron-hole excitations in two and three dimensions. These findings
demonstrate the need for better approximations for the exchange-correlation stress tensor in specific systems
where the use of the three-dimensional functionals may lead to unphysical results.
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I. INTRODUCTION

Time-dependent density-functional theory is one of the
premier techniques for the study of the dynamics of quantum
many-body systems.1–4 The central idea of the theory, dating
back to the pioneering work of Kohn and co-workers,5,6 is
that the interacting many-body system can be simulated by a
noninteracting system that yields the same density under the
action of the self-consistent electrostatic potential VH and an
additional exchange-correlation �xc� potential Vxc that is
uniquely determined by the particle density n.7 This ap-
proach, while rigorous in principle, runs into serious difficul-
ties when applied to phenomena that involve dissipation and
memory, for example, the damping of collective modes. This
is because Vxc is a strongly nonlocal functional of the
density.8

About 10 years ago, a time-dependent current-density-
functional theory �TDCDFT� was proposed,9,10 which of-
fered a natural way of treating memory and dissipation with-
out losing the advantages of a local description of many-
body effects. In this theory the exchange-correlation
potential was replaced by an exchange-correlation force field

F� xc=−eE� xc �the notation is designed for electronic systems:

−e is the electron charge and E� xc is an “exchange-correlation
electric field”� which was represented as the divergence of a
stress tensor �J,

F� xc = − eE� xc =
1

n
�� · �J , �1�

which in turn was expressed as a local functional of the

equilibrium density n and the velocity v� =
j�

n , where j� is the
particle current density. Recently, TDCDFT has been ex-
tended to open quantum systems by two �Di Ventra and R.
D’Agosta� of the present authors.11

In the linear-response regime, an approximate form of the
stress tensor was proposed,8,10 which has the same form as
the stress tensor of the classical Navier-Stokes hydrody-
namics:12

�xc,ij = − pxc�ij + �� �vi

�rj
+

�v j

�ri
−

2

3
�� · v��ij� + ��� · v��ij ,

�2�

where pxc is the exchange-correlation pressure of the homo-
geneous electron gas at the local density n, � is the shear
viscosity, and � is the bulk viscosity of the homogeneous
electron gas at the local equilibrium density n0. � and � are
frequency dependent and have imaginary parts which are re-
lated to a shear modulus, and a dynamical bulk modulus
respectively.

An essential feature of this approximation is that it is still
local in the equilibrium density and the velocity field. In
particular, the adiabatic local-density approximation �LDA�
�or three-dimensional LDA �3D-LDA�� amounts to keeping
only the first term on the right-hand side of Eq. �2�.

The exchange-correlation field �1� with stress tensor �2�
has been applied to the study of several systems �semicon-
ductor quantum wells,13–15 atoms,16 semiconductors and
polymers,17–19 molecular junctions,12,20–22 and metals23,24�
with varying degrees of success. However, a fundamental
difficulty exists. Because the viscosities � and � are bor-
rowed from an infinite three-dimensional electron gas, this
approximation implicitly assumes the existence of a con-
tinuum spectrum of excitations �electron-hole pairs�. Need-
less to say, this assumption is not justified in systems with
discrete energy levels. This may lead in some cases to spu-
rious results. For example, the optical transitions between
discrete energy levels of atoms are found to have a spurious
linewidth.16
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A more “friendly” system is the electron gas in a two-
dimensional quantum well �shown in Fig. 1�, in which the
electrons perform collective oscillations in a direction per-
pendicular to the plane of the quantum well �the z direction�,
while remaining homogeneous in the plane of the well �the
x-y plane�. Spontaneous oscillations of this kind—known as
intersubband plasmons—have been intensively studied be-
cause of their possible use in devices in the terahertz fre-
quency range. In practice, these oscillations, spontaneous or
forced, provide one of the best testing grounds for TDDFT
calculations of damping and relaxation.16,25,26 Even in this
favorable case, however, one may question the accuracy of
the local-density approximation for the viscosity. To begin
with, the electron-hole pairs that are responsible for the
damping and the screening of the electron-electron interac-
tion should be those of an essentially two-dimensional elec-
tron gas �2DEG�—not those of a three-dimensional electron
gas as implicitly assumed in the 3D-LDA. However, the sys-
tem is not exactly two dimensional, even if one neglects
intersubband transitions, because the electron-electron inter-
action in the lowest subband is modified by form factors,
which take into account the finite extent of the wave function
in the z direction. More importantly, in a collective oscilla-
tion that preserves uniformity in the x-y plane, the Fermi
surface of the 2DEG does not change its �circular� shape �see

Fig. 2�: this means that only the bulk viscosity � contributes
to the damping of the collective mode. By contrast, the
dominant contribution to the damping in 3D-LDA comes
from the shear viscosity, which is associated with changes in
shape of the implicitly assumed three-dimensional Fermi sur-
face. Finally, it is evident that the above difficulties cannot be
solved by resorting to a strictly two-dimensional LDA, since
the system becomes homogeneous and time independent
when strictly projected in the x-y plane.

In view of the above difficulties, it is clearly of great
interest to test the validity of the 3D-LDA against a more
direct calculation of the damping rate of a collective
oscillation—a calculation that explicitly takes into account
the reduced dimensionality of the quantum well. Our idea is
to study a particularly simple oscillation that is described, to
zero order in the Coulomb interaction, by a separable wave
function, i.e., the product of an assigned time-dependent
function of the z coordinate of the electrons times a function
of the x and y coordinates: the latter may be either the
ground state or a uniform excited state of the quasi-2DEG in
the x-y plane. For example, we can put all the electrons in a
given time-dependent combination of the lowest and the first
excited subband: we assume that there is an external time-
dependent potential that can do this. The main physical as-
sumption here is that all the electrons populate a single time-
dependent subband, and no intersubband scattering is
considered. The time-dependent electronic density n�z , t�
creates, via time-dependent form factors, a time-dependent
Coulomb field which induces transitions between different
states of the 2DEG. We can make use of the Fermi golden
rule to calculate the rate at which the motion in the z direc-
tion creates electron-hole pairs in the x-y plane. From this,
we calculate the rate at which energy is transferred from the
oscillatory motion in the z direction to electron-hole pair
excitations in the x-y plane. In brief, the electron-hole pairs
in the x-y plane act as a thermal bath for the motion in the z
direction. Obviously, this approach is justified in the limit of
weak Coulomb interaction �high density�.

It turns out that it is possible to recast the results for the
damping rate in a form that is analogous to the LDA, except
that it involves a nonlocal viscosity ��z ,z��. This nonlocal

FIG. 1. �Color online� Two-subsystem model for electrons in a
two-dimensional quantum well. The collective motion of the elec-
trons in the z direction is coupled, through the Coulomb interaction,
to density fluctuations in the plane of the 2DEG. Energy is ex-
changed between the two subsystems via the creation of electron-
hole pairs in the 2DEG.

FIG. 2. �a� In a three-dimensional collective mode, the Fermi surface changes shape periodically from oblate to prolate. The process can
be pictured as a transfer of electrons between the Fermi disks into which the Fermi surface can be sliced, perpendicular to the direction of
propagation of the mode. These excitations are responsible for the finite shear viscosity of the electron liquid. �b� In two dimensions, for an
isotropic single band system the Fermi surface is a circle: excitations can only change the radius of the circle, not its shape. There is no shear
viscosity. �c� In multiband isotropic 2D systems, interband transitions allow a change in shape of the Fermi surface—formed in this case by
several parallel disks: the shear viscosity reappears �2D wave vectors are represented by capital letters�.
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viscosity can be converted into an effective local viscosity
��z� by integrating over z� at fixed z—a procedure that
amounts to neglecting the finite range of nonlocality on the
scale of variation of the density. In this manner, we are able
to compare the approximate LDA viscosity Y�z�—a function
of the local equilibrium density—with the more accurate
one, ��z�.

We find significant differences between ��z ,�� and
Y�z ,��. At low frequency, the latter is dominated by a shear
term, which is absent in �. For this reason, � turns out to be
numerically much smaller than Y. At high frequency ��z ,��
and Y�z ,�� exhibit different power-law behaviors ��−3 and
�−5/2, respectively�, reflecting different spectral densities of
electron-hole excitations in two and three dimensions.

We evaluate the damping rate as a function of the fre-
quency of the external field � for the screened and un-
screened potentials. We find, as one could expect, that the
rate of energy dissipation in the screened �unscreened� inter-
action goes as �4 ��2� at small frequencies. In the 3D-LDA
approximation, instead, the energy dissipation rate goes as
�2. Thus, the 3D-LDA largely overestimates the energy dis-
sipation.

It is already known16 that the LDA viscosity is spurious in
small systems such as atoms and molecules. The present
findings show that a serious loss of accuracy can also occur
in infinite systems, when the motion is restricted to a single
one-dimensional subband as in the example considered here.
Therefore, one needs to apply special care when using 3D-
LDA approximations in specific systems such as the one we
consider here. The development of a better approximation
for the viscous stress tensor—an approximation that is uni-
formly applicable across different dimensionalities—thus
emerges as a critical issue.

II. MODEL

The Hamiltonian for an interacting N-electron system
confined to a quantum well �QW� of width L in the z direc-
tion is

Ĥ = �
i

p̂i
2

2m
+ V�r̂i� +

1

2�
i�j

v��r̂i − r̂ j�� , �3�

where v�r�=e2 /4���r� is the Coulomb potential �� is the
background dielectric constant� and

V�r� 	 V�z� = 
0, �z� 	 L/2


 , �z� � L/2.
� �4�

In the absence of electron-electron interactions �v�r�	0�,
we can separate the Hamiltonian into two parts describing,
respectively, the motion in the z direction and the motion of
the 2DEG in the plane:

Ĥ0 = Ĥz + Ĥ2DEG, �5�

where

Ĥz = �
i=1

N
pz,i

2

2m
+ V�ẑi� + Vext�ẑ,t� , �6�

Ĥ2DEG = �
i=1

N px,i
2 + py,i

2

2m
	 �

i=1

N Pi
2

2m
, �7�

where Vext�z , t� is the external potential that excites the QW
�see the following discussion�. Obviously, the Coulomb in-
teraction couples these two subsystems in a nontrivial way.
In the following, we will consider the Coulomb interaction
as a small perturbation and then apply time-dependent per-
turbation theory to study the energy exchange between the z
motion and the density fluctuations of the 2DEG. In particu-
lar, we will show that, if one assumes a given motion in the
z direction, the Coulomb interaction excites electron-hole
pairs in the x-y plane, thus effectively transferring energy
from the z motion to the 2DEG.

A solution to the Schrödinger equation with the unper-

turbed Hamiltonian Ĥ0 can be written as the product of so-
lutions of H2DEG and Hz in the following manner:

��� = ��2DEG���z, �8�

where ��2DEG is a Slater determinant of N plane waves in
the coordinates Ri and

���z = ���1���2 ¯ ���N �9�

is a symmetric function of the z coordinates of the electrons.
We assume that all the electrons share a common motion in
the z direction specified by the one-electron wave function
��z , t�, which is sustained by a suitable time-dependent ex-
ternal potential Vext�z , t�. The density remains uniform in the
x-y plane. The antisymmetry of the complete wave function
is ensured by the antisymmetry of ��2DEG.

Next, we turn on the electron-electron interaction and de-
rive an effective Hamiltonian for the dynamics of ��2DEG in
the presence of the driving potential Vext�z , t�. This is done by
substituting Eqs. �8� and �9� into the Schödinger equation

i��t���t�� = Ĥ�t����t�� . �10�

Making use of the Fourier representation of the Coulomb
potential,

v�r̂� =
e2

�V
�
q,Q

e−iqẑe−iQ·R̂

q2 + Q2 �11�

�R and Q are vectors in the 2D real space and momentum
space respectively, with r= �R ,z�, q is a one-dimensional mo-
mentum, and V the volume�, and the Fourier transform of the
density

n�q,t� = 
−L/2

L/2

dzeiqzn�z,t� , �12�

we can write the electron-electron interaction as

Ĥee�t� =
e2

2�V
�
i�j

�
q,Q

e−iq�ẑi−ẑ j�

q2 + Q2 e−iQ·�R̂i−R̂j�. �13�

Assuming that the total wave function is still approximately
of the form �8�, we can ignore the correlation between the z’s
and the R’s, and simply replace e−iq�ẑi−ẑ j� by its average value
in the given one-electron wave function �9�:
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e−iq�ẑi−ẑ j� → �e−iq�ẑi−ẑ j�� = �n�q,t��2, �14�

independent of i and j. Then, the effective dynamics for
��2DEG is given by

i��t��2DEG = Ĥef f��2DEG, �15�

where

Ĥef f = �
i=1

N
P̂i

2

2m
+

e2

2�V
�
i�j

�
q,Q

�n�q,t��2

q2 + Q2 e−iQ·�R̂i−R̂j�. �16�

Notice that �n�q , t��2 plays the role of a time-dependent form
factor for the electron-electron interaction in the plane.

To apply perturbation theory, we assume that n�q , t� is the
sum of a static part plus a small dynamical contribution:

n�q,t� = n0�q� + �n�q,t� , �17�

with ��n�q , t���n0�q� for all q and t. Neglecting contribu-
tions of order ��n�2, we get the effective time-dependent
Schrödinger equation for ��2DEG,

�i��t − �
i=1

N
P̂i

2

2m
−

e2

2�V
�
i�j

�
q,Q

�n0�q��2

q2 + Q2e−iQ·�R̂i−R̂j�

−
e2

�V
�
i�j

�
q,Q

Re�n0�q��n�− q,t��
q2 + Q2 e−iQ·�R̂i−R̂j����2DEG = 0.

�18�

The left-hand side of Eq. �18� is the sum of a static part and
a time-dependent part. The static part includes the effect of
the QW static form factor on the ground state and the excited
states of the 2DEG. We assume that the 2DEG is in its
ground state at t=0. The time-dependent part induces transi-
tions between eigenstates of the static 2DEG Hamiltonian
and thus is responsible for dissipation.

An important check for this model is that if the motion in
the quantum well is a rigid translation of the equilibrium
density in the z direction �Kohn mode�, i.e., n�z , t�=n0(z
+u�t�)�n0�z�+�zn0�z�u�t�, where u�t� is a spatially uniform
function of time, then the dissipation must be absent. This is
easily verified from Eq. �18�: for the Kohn mode, we have
�n�q , t�= iqn0�q�u�t�, where u�t� is a real function, and

Re�n0�q��n�− q,t�� = Re�iq�n0�q��2u�t�� = 0. �19�

Therefore, only the static nondissipative part of the Hamil-
tonian survives for the Kohn mode.

III. PERTURBATION THEORY

To apply the Fermi golden rule, we assume that the forc-
ing density �n�z , t� is a periodic function of time with angu-
lar frequency �, �n�q , t�=�n�q ,��e−i�t+c.c., and we write

�n�q,�� =
qj�q,��

�
, �20�

where j�q ,�� is the Fourier amplitude of the current,

n0�z��tu�z,t� = j�q,��ei�qz−�t� + c.c. �21�

The energy transferred per unit of time by the z motion to the
2DEG is equal to the energy �� absorbed in each allowed
transition from the ground state to an excited state of the
2DEG times the rate at which the transition occurs. Evi-
dently, the only allowed transitions in leading order are the
ones in which two electron-hole pairs with opposite wave
vectors Q and −Q are created in the 2DEG, with energies
adding up to ��. The first pair is created by promoting an
electron from state K within the two-dimensional Fermi sur-
face of the 2DEG to state K+Q outside the Fermi surface.
Similarly, the second pair is created by promoting an electron
from K� to K�−Q, with K� inside and K�−Q outside the
Fermi surface �see Fig. 2, panel �b��. So the energy absorbed
per unit time is

dE

dt
=

4�e4

�2�A �
K,K�	KF

 d2Q dq dq���� − �K,K�,Q�

�
qq�

�
n0�q�j�− q,��

�1 − nK+Q�nK�1 − nK�−Q�nK�

q2 + Q2

�� 1

q�2 + Q2 −
1

q�2 + �Q + K − K��2�n0
*�q��j*�− q�,�� ,

�22�

where nK is the Fermi occupation number �nK=��KF−K�,
where ��x� is the step function and KF is the Fermi wave
vector� and �K,K�,Q	��Q2+Q · �K�−K�� /m is the energy of
the double electron-hole pair. A is the area occupied by the
2DEG. The two terms in the square bracket arise from direct
and exchange processes, respectively—the latter arising from
the antisymmetry of the 2DEG wave function. In the follow-
ing, we will disregard the exchange term. Aside from the fact
that its contribution is small in the high-density limit, we
must keep in mind that the exchange contribution was also
dropped in previous calculations of the LDA viscosity:27 for
a fair comparison, we must drop it here too.

Introducing in Eq. �22� the imaginary part of the two-
dimensional Lindhard function,3

Im�0
2D�Q,�� = −

�

�A�
K

nK�1 − nK+Q���� − �K,Q� ,

�23�

where �K,Q=��Q2 /2m−Q ·K /m�, we obtain

dE

dt
=

e4�A
4�4�2�

 dqqj�− q,��n0�q�

� dq�q�j*�− q�,��n0
*�q��  d2Q

0

�

d��

�
Im�0

2D�Q,����Im�0
2D�Q,� − ����

�q2 + Q2��q�2 + Q2�
. �24�

Notice that �0
2D depends only on the sheet density of the

electron gas, which is independent of z.
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As a last step, we express this result in terms of the ve-
locity field, v�z , t�=�tu�z , t�= j�z , t� /n0�z�,

dE

dt
= − 2A dz dz��zv�z,����z,z�;���z�v

*�z�,�� ,

�25�

where

��z,z�;�� = n0�z�n0�z��
�

4��


0

�

d�� dQQṽ�Q,z�

�ṽ*�Q,z��Im�0
2D�Q,���Im�0

2D�Q,� − ���
�26�

is the nonlocal bulk viscosity of the electron gas in the QW
and

ṽ�Q,z� =
2e2

�


−





dq
n0�q�e−iqz

q2 + Q2 �27�

the effective electron-electron interaction in the plane of the
2DEG.

Equation �25� should be compared with the corresponding
LDA expression,

�dE

dt
�

LDA
= − 2A dz��zv�z,���2

���LDA�z;�� +
4

3
�LDA�z,��� , �28�

where �see Refs. 27 and 28�

�LDA�z,�� =
�

36�2�


0

�

d�� dqq2�v�q��2

�Im�0
3D�q,���Im�0

3D�q,� − ��� , �29�

�LDA�z,�� =
4�

15�2�


0

�

d�� dq�v�q��2q2Im�0
3D�q,���

�Im�0
3D�q,� − ��� +

�

5�2�3

�
0

�

d�� dq�v�q��2q4Im�0T
3D�q,���

�Im�0
3D�q,� − ��� , �30�

�0
3D�q ,�� is the 3D Lindhard function, �0T

3D�q ,�� is the non-
interacting transverse current-current response function in
3D, and v�q� is the Fourier transform of the screened 3D
Coulomb interaction �about the screening more will be said
later�. The z dependence of these functions arises from the
fact that the 3D Lindhard functions depend on the local den-
sity.

To facilitate the comparison between the two sets of for-
mulas �25�, �26�, and �28�–�30�, we introduce the integrated
viscosity

��z,�� 	  ��z,z�;��dz�, �31�

which has the same physical dimensions as �LDA�z ,��
�energy� time/volume� and can be directly compared to it.
The explicit expression for ��z ,�� is

��z,�� = n0�z�
�A

4��


0

�

d�� dQQṽ�Q,z�

�ṽ*�Q�Im�0
2D�Q,���Im�0

2D�Q,� − ��� , �32�

where

ṽ�Q� 	  n0�z�ṽ�Q,z�dz .

It is interesting to compare Eq. �32� with the expressions
obtained from the xc kernel in the 3D-LDA �see Eq. �29��. In
the homogeneous 3D electron liquid, there are two indepen-
dent viscosities: the bulk viscosity ���� and the shear viscos-
ity ����. The former arises from motions that change the
volume of the local Fermi surface �the density�, but not its
shape. The latter appears when the motion changes the shape
of the Fermi surface, even if its volume does not change. A
collisionless longitudinal collective mode, such as the ordi-
nary plasmon, involves both types of motion simultaneously,
as discussed in the caption of Fig. 2: the effective viscosity
for such a mode is Y���	�LDA���+ 4

3�LDA���.25,26 Y can be
easily constructed from the combination of the two equa-
tions, Eqs. �29� and �30�.

Aside from the obvious difference in the dimensionality
of the Lindhard functions, we see that our expression �32� for
��z ,�� is formally similar to expression �29� for �LDA��� in
3D-LDA. These expressions, however, vanish as �2 at low
frequency, because the Lindhard spectra Im�0

2D�3D��q ,��
vanish as �. As a result ��z ,��, as well as �LDA���, goes as
�2 at low frequency. On the other hand, the behavior of the
LDA shear viscosity �LDA��� is quite different. From Eq.
�30�, we see that this quantity contains a term involving the
transverse current spectrum Im�0T

3D, and this term tends to a
finite limit for �→0 because the factor 1 /�3 compensates
for the smallness of the Lindhard spectra.

Therefore, a fundamental difference exists between our
results and those of the 3D-LDA in the low-frequency re-
gime. While the LDA viscosity is dominated by the shear
term, which remains finite for �→0, the present viscosity is
purely of the bulk type and vanishes as �2 for �→0, at least
when the screening of the electron-electron interaction is
properly taken into account �see discussion below�. Physi-
cally, the absence of a shear term is due to the fact that the
oscillatory motion in the z direction does not change the
shape of the local Fermi surface of the 2DEG �a circle�,
whereas in a 3D oscillation the local Fermi surface changes
its shape periodically from a prolate to an oblate ellipsoid
�passing through the sphere�, generating shear friction in the
process �see Fig. 2�.

Before proceeding to a detailed comparison of the nu-
merical results for the viscosities and the energy dissipation
rates, we need to say something more about the role of the
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screening of the electron-electron interaction. First of all, it
must be noticed that the integrals over wave vector in Eqs.
�29� and �30� diverge, in the limit �→0, if v�q� is taken to
be the Fourier transform of the bare Coulomb interaction,
4�e2 /�q2. The divergence comes from the small q region.
The standard cure for this type of divergence is to screen the
interaction by the static dielectric function of the electron
gas, which, in the high-density limit, can be reasonably ap-
proximated by the Thomas-Fermi formula. The screened in-
teraction has the form

v�q� =
4�e2

��q2 + �2�
, �33�

where �=�4�e2N�0� is the Thomas-Fermi wave vector and
N�0� is the density of states at the Fermi energy.

The situation is somewhat different in Eq. �32�. Because
the effective interaction ṽ�Q ,z� diverges at small Q only as
2�e2

Q , it turns out that the wave-vector integral is finite even
without including the screening. Nevertheless, the integral
has a large contribution from extremely small wave vectors,
of order � /vF for �→0, which effectively changes the for-
mally expected �2 behavior of ��z ,�� to a constant indepen-
dent of �. This curious phenomenon is shown in Fig. 4,
where we see that ��z ,�� tends to a constant when the inter-
action is not screened. Inclusion of screening, however, will
drastically modify this behavior, reinstating the expected �2

behavior �see Fig. 5�. To demonstrate this point, we have
calculated ��z ,�� with the bare interaction ṽ�Q ,z� replaced
by a screened interaction according to the scheme

ṽ�Q,z� →
ṽ�Q,z�

1 − ṽ�Q��0�Q,0�
. �34�

The denominator is the static dielectric constant of a 2D QW
in which all the electrons reside in the lowest subband, and
no intersubband transitions are allowed. Indeed, the low-
energy excitations of the 2DEG are exclusively intrasubband
electron-hole pairs. Therefore, neglecting intersubband tran-
sitions is justified at low frequency and qualitatively correct
at higher frequencies �as long as only a few subbands are
involved�.

IV. NUMERICAL RESULTS

Figure 3 shows the calculated values of the nonlocal
viscosity ��z ,z� ,�� as a function of z and z� for a sheet
density n2D=1011 cm−2 and L=40 nm �KF=�2�n2D=7.9
�105 cm−1� for the case of screened interaction. We have
assumed that the equilibrium density in the QW has the form

n0�z� =
2

L
cos2��z

L
� ,

appropriate to the lowest subband of a free particle in a box.
This choice gives

ṽ�Q,z� = −
2�e2L

��LQ�2� e−QL/2 cosh�Qz�

1 +
�LQ�2

4�2

−

cos�2�z

L
�

1 +
4�2

�QL�2

− 1�
�35�

and, for the unscreened interaction,

ṽ�Q� = −
2�e2

�Q � 2e−QL/2 sinh�QL/2�

�QL�2�1 +
�QL�2

4�2 �2

−
1

QL
−

QL

16�2�1 +
�QL�2

2�2 �� . �36�

The functions ṽ�Q ,z� and ṽ�Q� depend on the physical
parameter KFL, where KF is the Fermi momentum of the
2DEG and L is the thickness of the well in the z direction.
For KFL�1, ṽ�Q ,z�� ṽ�Q��2�e2 /�Q, i.e., the functions ṽ
reduce to Fourier transforms of the bare two-dimensional
Coulomb potential.

The nonlocal viscosity ��z ,z� ,�� / �n0�0��� decays when
one of the points is close to the boundary and it is maximum
when both z and z� are near the center of the well. While the
spatial behavior of ��z ,z� ,�� looks qualitatively similar for
the screened and unscreened cases, the order of magnitude is
quite different especially at small frequencies, the un-
screened results being quite large. The shape of the nonlocal
viscosity is dominated by the ground-state densities n0�z�
and n0�z�� �see Eq. �26��: The function ��z ,z� ,�� /n0�z�n0�z��
is a slowly varying function of the positions z and z�. How-
ever, the magnitude of this function depends strongly on
whether we use a screened or an unscreened interaction. This
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FIG. 3. �Color online� The nonlocal viscosity ��z ,z� ,�� /n0 as a function of z ,z� for different values of � with KFL=3.17 and screened
interaction. The nonlocal viscosity for the unscreened interaction has similar shape but could differ by a few orders of magnitude in
amplitude �see also Fig. 6� especially at small frequencies due to the singularity of the Coulomb interaction at small momenta.
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has its origin in the strong singularity of the Coulomb poten-
tial for small momenta. We then expect that in the case of the
unscreened interaction, the dissipation rate is largely overes-
timated, especially at small frequencies when the screening
is more effective.

In Fig. 4, we plot the integrated viscosity ��0,�� for vari-
ous values of KFL, as a function of the frequency for the
unscreened interaction. For all the values of the parameter
KFL, we notice the existence of a finite limiting value for
small frequencies. As already discussed, this finite limiting
value is due to the existence of a strong singularity for small
Q, 1 /Q3, which compensates for the smallness of the
Lindhard spectra. Including the screening according to the
scheme of Eq. �34� changes this behavior dramatically. The
new behavior is shown in Fig. 5 for various values of the
parameter KFL. Now, ��0,�� vanishes as �2, in agreement
with the general discussion of the previous section.

Finally, in Fig. 6 we compare the behavior of ��0,�� with
the corresponding LDA quantity Y���, evaluated at the den-
sity n0�z=0�. In the screened case, our viscosity falls well
below Y��� �calculated from the parametrization of Qian and
Vignale28�, demonstrating the intrinsic limitation of the 3D-
LDA in this regime.

It is also interesting—although not fully justified
physically—to consider the high-frequency behavior of
��z ,�� vis-a-vis the high-frequency behavior of Y���. This
can be calculated analytically and one sees that the relevant
contribution to the integral over wave vector comes from Q
proportional to �2m� /� and is therefore large. In this re-
gime, both ṽ�Q� and v�q� scale as �−1, so the only difference
between expressions �32� and �29� comes from the different
“volume element” in wave-vector space, Q and q2, respec-
tively. Taking this into account, we immediately understand
the origin of the �� difference in the high-frequency behav-
iors of ��z ,�� ��−3� and Y��� ��−5/2�—the former tending to
zero faster than the latter.

To fully evaluate the energy dissipation via either Eq. �25�
or Eq. �28�, we need to assign the velocity v�z ,��. In our
model, we consider coherent oscillations of the wave func-
tion in the quantum well. For this motion, we then choose

��z,t� = �1�z� + �ei�t�3�z� , �37�

where � is a constant and �n�z� are the normalized eigen-
functions of the quantum well,

�n�z� =�2

L�sin�n�z

L
� , n even

cos�n�z

L
� , n odd. � �38�

For the linear-response theory to be valid, we have assumed
��1.29 We can evaluate the current density for the state
��z , t� and obtain the velocity field

�zv�z,�� = �z
j�z,��
n0�z�

= − ����cos�2�z

L
� . �39�

By substituting this expression in the equation for the energy
dissipation �Eq. �25��, we get

FIG. 4. �Color online� Average local viscosity ��z ,�� /�n0�z�
from Eq. �32� as a function of frequency for z=0 and for different
values of KFL. The Coulomb interaction potential is unscreened.
Notice that � approaches a finite value for �→0.

FIG. 5. �Color online� Same as Fig. 4, but now for the case of a
screened Coulomb interaction. Notice that ��0,����2 for �→0
�the dashed line is the slope of �2 in the logarithmic plot�.

FIG. 6. �Color online� Comparison between ��z ,�� /�n0�z� and
the 3D-LDA viscosity Y�z ,�� for z=0. As expected, the screened
and unscreneed results for ��z ,�� coincide for large frequencies.
Notice that the 3D-LDA �with a screened interaction� predicts a
finite limit of the viscosity for �→0.
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dE

dt
= −

A�

��


0

�

d�� dQQIm�0
2D�Q,���

�Im�0
2D�Q,� − ����2�Q,��� , �40�

where we have defined for the unscreened case

��Q,�� = −
e2�

2��

���L

1 +
�LQ�2

4�2
�1 +

2�2

�LQ�2

+

eQL/2 sinh�QL

2
�

2QL

1 −
8�2

�LQ�2

�1 +
�LQ�2

16�2 ��1 +
�LQ�2

4�2 �� .

�41�

According to the scheme we adopted �see Eq. �34��, to in-
clude screening in the interaction potential we substitute
��Q ,�� with ��Q ,�� / �1−�0�Q�ṽ�Q��.

In Fig. 7, we plot dE /dt=d /dt�E /N��p
2���2�, where �p

2

=2�n0�0�e2KF /m is the 2D plasmon frequency evaluated at
the Fermi momentum, by directly evaluating Eq. �40� for the
screened and unscreened cases. It is immediately seen that
for small frequencies, the energy dissipation rate scales as �4

��2� for the screened �unscreened� interaction. This has to be

compared with the energy dissipation rate obtained from the
3D-LDA: since Y��� goes to a constant for small frequencies
�see Fig. 6�, we see that the 3D-LDA dissipation rate scales
as �2 for small �. Then, we can conclude that the 3D-LDA
overestimates the energy dissipation rate in our model.

V. DISCUSSION

The system studied in this paper can be thought of as
consisting of two weakly coupled subsystems of reduced di-
mensionality: a linear oscillator in the z direction coupled to
a two-dimensional electron gas in the x-y plane. We have
calculated the energy transfer between these two subsystems
to leading order in the strength of their coupling and we have
thus identified a nonlocal viscosity which can be compared
�after the integration of one variable� with the viscosity ob-
tained from the standard 3D-LDA. We have found very sig-
nificant differences between the two viscosities, particularly
at low frequency, where the 3D-LDA viscosity is dominated
by a shear term which is absent in the present treatment. This
point is clearly shown in Fig. 6, where we compare the ef-
fective viscosity as obtained within LDA and the bulk vis-
cosity we obtain from perturbation theory. We conclude that
LDA grossly overestimates the viscosity in this system. This
error is also evident in Fig. 7, where we plot the energy
dissipation calculated in our model with the exact expression
for �. The 3D-LDA energy rate dissipation goes as �2 for
small �, while the result from perturbation theory scales as
�4, reflecting the reduced bulk viscosity in that regime.

It is important to realize that the problem we have uncov-
ered stems from the extreme one-dimensional character of
the dynamics of our model. We have assumed that all the
electrons reside in a single time-dependent subband ��z , t�.
In effect, this dramatically limits the type of excitations we
can generate in the 2DEG �see Fig. 2� and this is the reason
why we do not have the transverse current term that is re-
sponsible, in three dimensions, for the shear viscosity term.
It is expected that a transversal shear viscosity term will
reappear in a multisubband system via the relative motion of
the different sheets of the Fermi surface in different sub-
bands. For a strictly one-dimensional motion, however, it
seems clear that the use of the LDA is problematic. This
leaves us with the challenge of formulating a better approxi-
mation to keep track of the systematic reduction in viscosity
following from the geometric confinement of the system.
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FIG. 7. �Color online� The energy dissipation rate for the
screened and unscreened �inset� interactions �see Eq. �40�� as a
function of the external frequency for various values of the quantity
KFL. The energy dissipation rate scales as �4 for the screened in-
teraction, a result much smaller than the �2 behavior obtained from
the 3D-LDA energy dissipation rate �also for a screened interac-
tion�. The limiting behavior dE /dt��4 is shown for reference as a
dotted line. Inset: Due to the strong singularity of the unscreened
interaction, the energy dissipation rate for this case scales as �2.
The dotted line shows the limiting behavior dE /dt��2.
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