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than the Fermi temperature TF and changes to a power law TF /T for T�TF.
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I. INTRODUCTION

Spintronics is a new subfield of condensed matter
physics,1–3 whose aim is to involve the spin of the electron in
the operation of electronic devices. While several metal-
based spintronic devices �e.g., magnetic read heads for hard
disk drives and magnetic tunnel junctions for magnetic ran-
dom access memories� have already been described and
commercialized, the quest is still on for semiconductor-based
devices, which might one day lead to the integration of logi-
cal and memory functions on the same chip.

In the past few years, the efforts of the semiconductor-
spintronics community have focused on the coupling of the
spin and orbital degrees of freedom—the spin-orbit
coupling—as means to generate and control spin-polarized
currents in the absence of magnetic field. In fact, the strength
of the spin orbit interaction in a semiconductor can be to a
certain extent controlled by electrical means �gates�.4,5 One
of the first spintronic devices ever proposed, i.e., the Datta–
Das spin transistor,4 made use precisely of a gate-controlled
Rashba spin-orbit coupling to control the flow of an ordinary
electrical current in a two-dimensional electron gas. The re-
cently discovered spin Hall effect,6–12 whereby an electrical
current drives a transverse spin current flow, causing a spin
accumulation at the edges of a two-dimensional electron gas,
offers another way to manipulate the spin via spin-orbit cou-
pling.

However, when it comes to spin currents, one must be
very careful to distinguish between persistent currents, which
can exist even in equilibrium, and genuine transport currents,
which arise in response to external fields. Macroscopic spin
currents are generally present in spin-orbit coupled systems
at equilibrium when the total spin is not conserved. In a
stationary state, the spin precession caused by spin-orbit
torques must be compensated by a steady spin current so that
the spin density may remain constant in time. Notice that the
spin current is invariant under time reversal, so it can exist in
the absence of a magnetic field.

In a recent couple of papers, Sonin13,14 examined the pos-
sibility of observing equilibrium spin currents in a controlled
experiment and concluded that such currents can indeed be
observed through the mechanical torque they exert on a
neighboring medium. This provides additional motivation for

pursuing a quantitative study of equilibrium spin currents.
In the present paper, we shall be concerned with the per-

sistent spin current in a two-dimensional electron gas with
Rashba and Dresselhaus spin-orbit interactions. For that, we
consider N noninteracting electrons that are confined in two-
dimensional electron gas �2DEG� and we assume that the
single particle Hamiltonian, which includes both Rashba15

and Dresselhauss �linear� type16,17 spin-orbit couplings, is
given by

Ĥ =
Px

2 + Py
2

2m
+

�

�
�Py�x − Px�y� +

�

�
�Py�y − Px�x� , �1�

where � and � are, respectively, the Rashba and Dressel-
hauss coupling constants in a 2DEG.

This system has received tremendous attention in the past
few years. The fact that it supports equilibrium spin currents
has been first recognized by Rashba18 in the context of the
debate on the nature of the spin Hall effect. Although these
currents are very small �proportional to �3, where � is the
Rashba spin-orbit coupling constant�, they are conceptually
important in the analysis of spin-transport phenomena. In
this paper, we develop a simple density matrix formalism for
the calculation of the spin current, and then apply it to the
study of the temperature dependence of the spin current in
the Rashba–Dresselhaus model. In view of the fact that the
spin-orbit-induced splitting of the band structure is very
small compared to the Fermi energy, one could have ex-
pected the spin current to decay to zero with increasing tem-
perature on a comparably small energy scale. We will see
that it is not so. Because the relevant part of the spin current
operator has no matrix elements between the Rashba and/or
Dresselhaus split bands, we find that the net current is the
difference of contributions associated with each band and
therefore the scale of its temperature dependence is given by
the Fermi energy. Indeed, at low temperature, we find that
the corrections to the zero-temperature results are exponen-
tially small ��e−TF/T, where TF is the Fermi temperature�, and
they decay as a power of the temperature at temperatures
larger than TF. Thus, the persistent spin current is an ex-
tremely robust property of these systems.

One may ask why use the powerful density matrix formal-
ism rather than the usual textbook methods, in which the spin
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current is calculated from one-electron wave functions. The
reason is that �i� the density matrix formalism is of course
more readily generalizable to interacting systems and �ii� a
most recent trend in electronic structure theory is to formu-
late the problem as an optimization of the energy regarded as
a functional of the density matrix—the so called density-
matrix functional theory19—thus completely bypassing the
one-electron wave functions. From this point of view, the
approximate density matrix of a reference system obtained
by direct solution of the Bloch equation becomes the starting
point for the more sophisticated density-matrix functional
treatment.

This paper is organized as follows. In Sec. II, we describe
the Bloch equation method for directly calculating the den-
sity matrix, which determines the equilibrium spin current.
In Sec. III, we apply the general method to a very simple
case and derive an analytical expression for the spin current
at zero temperature. The generalization of the formalism to
finite temperature and the results for the Rashba–Dresselhaus
model are presented in Sec. IV. Finally, the summary and the
outlook end the paper.

II. SPIN DENSITY-MATRIX METHOD AT ZERO
TEMPERATURE

In the study on properties of the noninteracting fermions
in a one particle potential, the canonical or Bloch density
matrix defined, here in a joint space of spin and orbital de-
grees of freedom, as

C��r�,�;r��,��� ª �r�,��Ĉ�r��,��� = �r�,��exp�− �Ĥ��r��,���
�2�

is of great importance, as we will show below. Here � and ��
are the spin indices, � is to be interpreted as mathematical
variable which in general is taken to be complex and not the

inverse temperature, and Ĉ�=exp�−�Ĥ� is the Bloch density
operator, which satisfies the Bloch equation,

−
�Ĉ�

��
= ĤĈ� = Ĉ�Ĥ , �3�

with

Ĥ =
P� 2

2m
+ V̂ = �

i

	i�
i��
i� , �4�

where �
i� are the eigenstates of the Schrödinger equation

Ĥ�
i�=�i�
i�, and V̂ is a spin dependent potential operator
of the form

V̂ = V�R� � + �b�0�R� � · �� + �b�1�R� ,P� � · �� . �5�

Here, V�R� � is a scalar confining potential, the second term is
a Zeeman-like term, and the last one represents the spin orbit
coupling.

The Bloch density matrix is of particular interest since its
knowledge enables the Dirac density matrix ��r� ,� ;r�� ,��� to
be found, through the inverse Laplace transform.20,21 In fact,

at T=0, the single particle density operator, �̂EF
=�all i�
i��
i��EF−	i� can be rewritten, for a given fermi
energy EF, as

�̂EF
=

1

2�i
�

c−i�

c+i�

d�e�EF
Ĉ�

�
, �6�

where we have used

�EF − 	i� =
1

2�i
�

c−i�

c+i�

d�
e��EF−	i�

�
, �7�

with c any positive constant.
Let us now consider systems of noninteracting fermions

with spin s=1 /2, thus we can expand the density matrix
�̂�r� ,r���= �r���̂EF

�r��� over the complete set of Pauli matrices as

�̂�r�,r��� =
1

2
���r�,r���Î + ���r�,r��� · �� 	 . �8�

Besides the scalar density ��r� ,r���=������̂���, one also de-

fines the spin vector density ���r� ,r���=������̂�� ���, where Î is
the unit 2�2 matrix. Now, invoking Eq. �6�, we can write

��r�,r��� =
1

2�i
�

c−i�

c+i�

d�
e�EF

� 
�
�

C��r�,�;r��,��� , �9�

���r�,r��� =
1

2�i
�

c−i�

c+i�

d�
e�EF

� 
�
�

�r�,��Ĉ��� �r��,���
=

1

2�i
�

c−i�

c+i�

d�
e�EF

� 
�
�,��

C��r�,�;r��,��������� ���� .

�10�

In addition to the density matrix �̂�r� ,r���, we shall also define

the so-called kinetic current density matrix ĵ�kin�r� ,r���
= �

2mi ��
�

r�−�� r����̂�r� ,r���, which is similar to Eq. �8�, can be de-
composed in the form

ĵ
�kin�r�,r��� =

1

2
� j�kin�r�,r���Î + �

�=1

3

J��
kin�r�,r����� . �11�

Here, j�kin�r� ,r��� is the usual quantum mechanical current den-

sity, and the set of vectors �J�1
kin ,J�2

kin ,J�3
kin� are the components

�not to be confused with Cartesian components� of the ki-
netic spin-current density. Now, we use Eq. �8� together with
Eqs. �9� and �10� to find

j�kin�r�,r��� =
�

2mi

1

2�i
�

c−i�

c+i�

d�
e�EF

� 
��� r�

− �� r����
�

C��r�,�;r��,��� , �12�
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J��=1,2,3
kin �r�,r��� =

�

2mi

1

2�i
�

c−i�

c+i�

d�
e�EF

� 
��� r�

− �� r��� �
�,��

C��r�,�;r��,������������� .

�13�

It should be noted that when Hamiltonian of the system
includes a spin-orbit coupling term, the corresponding par-
ticle current and spin current densities are no longer simply
given by Eqs. �12� and �13� but contain additional terms. To
obtain these terms, let us use the following definitions and
physically reasonable Hermitian forms for the particle cur-
rent density operator:

j� =
1

2�
j=1

N

�v� j��r� − r� j� + ��r� − r� j�v� j	 , �14�

and for the spin current density operator,

J��=1,2,3 =
1

2�
j=1

N

�v� j�� j����r� − r� j� + ��r� − r� j��� j��v� j	 , �15�

where j labels the particles, and p� j and v� j = ��� p� j
Ĥ0� are, re-

spectively, the momentum and the velocity operators of the

particle j. Here, Ĥ0 is the corresponding many particle
Hamiltonian and �� j�� is the 2�2 Pauli matrix acting on the
spin space of the particle j. In the presence of the spin-orbit
coupling, the one particle hamiltonian contains an extra con-
tribution, which can be written in the case of linear in mo-

mentum spin orbit term, as Ĥso=����=1
3 A� ���� · p� ,22,23 where

the set of the three vectors A� 1, A� 2, and A� 3 will be explicitly
given further for the case of Rashba and/or Dresselhauss spin
orbit coupling. In the absence of a magnetic field, we get v�
= p�

m +���=1
3 A� ��� for the velocity operator, which yields to the

following expressions for the one particle current and the
spin current densities:

j� = j�kin + ��
�=1

3

��A� �, �16�

J�� = J��
kin + ��A� �, � = 1,2,3, �17�

where j�kin and J��
kin are, respectively, given in Eqs. �12� and

�13� and �� is the �th component of the spin vector density �� .

Notice that the latter density and the spin current density J��

are related by a continuity equation. Several authors have
derived such relation �see Refs. 24–26 and references
therein	. We can show, using our notations, that it reads

���

�t
+

1

2
�� · J�� = m�

�=1

3

�
�=1

3

	���A� � · J��, � = 1,2,3. �18�

Let us mention that in the context of time independent spin
current density functional theory, a general relationship be-
tween the spin vector density �� and the spin current density

J�� has been obtained earlier in Refs. 22 and 23, including a

scalar potential, an external magnetic field, and spin orbit
coupling. In the absence of magnetic field, the equation that
is obtained there reduces to the static form of Eq. �18�, i.e.,
without the term

���

�t .
Hence, the various physical local densities of the system,

namely, �, �� , j�, and J��, have been expressed in terms of the
Bloch density matrix C��r� ,� ;r�� ,���. Therefore, if one suc-
ceeds in finding an explicit analytical solution of the Bloch
equation �3�, then the previously mentioned local densities
can be deduced without going through the use of the single
particle wave functions.

Finally, some comments can be made about closed ana-
lytical solutions of Eq. �3� for simple but interesting physical
situations. The interest in finding closed analytical expres-
sion for the Bloch density matrix or Bloch propagator is an
old problem27 but is still of considerable interest. In the ab-
sence of the spin-orbit term in the Hamiltonian, exact ana-
lytical forms for the Bloch density matrix have already been
derived in the case of an isotropic harmonic potential27 and
also for a three- or two-dimensional charged isotropic oscil-
lator in a uniform magnetic field.28 In recent years, these
useful analytical results were used in theoretical studies of
ultracold atoms. In fact, with the advances in the magneto-
optical trapping techniques, it becomes possible to obtain
harmonically confined ultracold atoms.29 These experimental
realizations of a nearly noninteracting system have motivated
a considerable volume of theoretical work30 and provide a
natural ground for the application of the Bloch density ma-
trix method at zero and nonzero temperatures.

Let us now come to the case where, in addition to a scalar
potential, a spin-orbit term is also present. For such a spin-
dependent Hamiltonian, to our knowledge, a closed analyti-
cal expression for the associated Bloch density matrix has
not been reported in the literature yet, even for the simple
case of Rashba or Dresselhaus spin-orbit coupling with a
harmonic confining potential. In Sec. III, we shall consider
the case of the Hamiltonian given by Eq. �1�, which corre-
sponds to situations in which the scalar potential and the
Zeeman-like terms are set to zero in Eq. �5�.

III. EQUILIBRIUM PERSISTENT SPIN CURRENT IN
TWO-DIMENSIONAL ELECTRON GAS

For the 2DEG system under study, whose one particle
Hamiltonian is given by Eq. �1�, one can apply our general
method outlined above. As stated before, this corresponds to

the simple case, where in Eq. �5� V̂= �
� �Py�x− Px�y�

+ �
� �Py�y − Px�x�, i.e., we have no confining potential and we

ignore the Zeeman-like term. By using the plane wave basis,
Eq. �2� leads to

C��r�,�;r��,��� = �r�,���e−�·P̈
� 2/2me−�V̂��r��,���

=� d2p

�2���2e�i/��p� ·�r�−r���e−�p�2/2m���e−��a� �u� ·�� ���� ,

�19�

where the components u�=1,2,3 of the unit vector u� =a� / �a� � are
given by
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u1 =
1

�
��py − �px�/�a� �, u2 =

1

�
�− �px + �py�/�a� �, u3 = 0,

�20�

with

�a� � =
1

�
���2 + �2��px

2 + py
2 − 4��pxpy/��2 + �2�	 . �21�

Next, we use the following expansion e−��a� �u� ·�� =cosh���a� ��
− �u� ·�� �sinh���a� ��, we can then write Eq. �19� as

C��r�,�;r��,��� =� d2p

�2���2e�i/��p� ·�r�−r���e−�p�2/2m cosh���a� ������

−� d2p

�2���2e�i/��p� ·�r�−r���e−�p�2/2m

�sinh���a� ��u� · ����� ���� . �22�

Once the Bloch density matrix is known, we proceed to

evaluate the various local densities, �, �� , j�, and J�� by the use
of Eqs. �9�, �10�, �16�, and �17� with Eqs. �12� and �13�.
Therefore, the substitution of Eq. �22� into �9� leads to

��r�� =
2

2�i
�

c−i�

c+i� d�

�
e�EF� e�−�p�2/2m� cosh���a� ��

d2p

�2���2

=� d2p

�2���2 ��EF − p�2/2m + �a� �� + �EF − p�2/2m − �a� ��	 ,

�23�

where we have used the following relation:

1

2�i
�

c−i�

c+i� d�

�
exp ��EF − p�2/2m � �a� ��

= �EF − p�2/2m � �a� �� . �24�

The p� integration can be easily performed by using the polar
coordinates of the momentum, px= p cos��� and py
= p sin���, simple manipulations lead to the following result:

��r�� =
1

��2
mEF +
m2

�2 ��2 + �2�� . �25�

Here, EF is the Fermi energy which could be expressed in
terms of the total particle number N through the normaliza-
tion of the density. By putting again Eq. �22� into Eqs. �10�
and �16�, we find that the spin vector density and the particle
current density vanish everywhere, that is,

���r�� = 0� and j��r�� = 0� . �26�

The above results in Eq. �26� could be found by using gen-
eral arguments from symmetry considerations, as noticed in
Ref. 26. In fact, the Hamiltonian in Eq. �1� commutes with
the time reversal operator T; this leads to the Kramer degen-
eracy. The properties of the single particle density matrix
��r� ,� ;r� ,��� under time reversal are carefully examined in
Ref. 31, and, in particular, it is shown that if such a density
matrix is invariant under time reversal, i.e., t→−t transfor-

mation, then the local spin vector density ���r�� and the local
current density j��r�� vanish.

Although the particle current density is identically zero,
we show in the following that the spin current density is
nonzero. This is due to the presence of the spin orbit term in
the Hamiltonian. We first explicitly calculate the local kinetic
spin current in Eq. �13�. Substituting Eq. �22� into �13� and
performing the inverse Laplace transform implies the follow-
ing reduced expression for the local kinetic spin current den-
sity:

J��=1,2,3
kin �r�� = −� d2p

�2���2

p�

m
u���EF − p�2/2m + �a� �� − �EF

− p�2/2m − �a� ��	 . �27�

By using Eq. �20� together with �21�, we evaluate the above
integral using polar coordinates in momentum space. This

gives the following results for J�1
kin and J�2

kin with J�3
kin=0�:

J�1
kin = +

�m

3��3
2m

�2 �2�2 + �2� + 3EF�x̂ −
�m

3��3
2m

�2 ��2

+ 2�2� + 3EF�ŷ , �28�

J�2
kin = +

�m

3��3
2m

�2 ��2 + 2�2� + 3EF�x̂ −
�m

3��3
2m

�2 �2�2

+ �2� + 3EF�ŷ . �29�

According to Eq. �17�, to obtain the spin current density,
we need only to calculate the set of the three spin-orbit vec-

tors A� 1, A� 2, and A� 3 since the kinetic spin current and the
particle density are now known. Let us rewrite the spin orbit
term in Eq. �1� as

�

�
�Py�x − Px�y� +

�

�
�Py�y − Px�x� = ���

�=1

3

A� ���P� ,

�30�

where we recall that P� is the momentum operator. We then
deduce from Eq. �30� that

A� 1 = −
�

�2 x̂ +
�

�2 ŷ, A� 2 = −
�

�2 x̂ +
�

�2 ŷ, A� 3 = 0� . �31�

Now, by substituting Eqs. �28�, �29�, �25�, and �31� into Eq.
�17�, we then get the following expression for the spin cur-
rent:

J�1 = +
m2�

3��5 ��2 − �2�x̂ +
m2�

3��5 ��2 − �2�ŷ , �32�

J�2 = −
m2�

3��5 ��2 − �2�x̂ −
m2�

3��5 ��2 − �2�ŷ . �33�

The above results are similar to those recently obtained in
Ref. 8.
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IV. SPIN DENSITY MATRIX METHOD AND EQUILIBRIUM
PERSISTENT SPIN CURRENT IN TWO-

DIMENSIONAL ELECTRON GAS AT NONZERO
TEMPERATURES

In the following, we shall generalize the method and the
results that are obtained in the previous section at T=0 to
nonzero temperatures. To do so, we start with the important
relation given in Eq. �6�, which expresses the density opera-
tor in terms of the Bloch density. Such relation was general-
ized at finite temperature,32 it reads

�̂� =
1

2�i
�

c−i�

c+i�

d�e��
Ĉ�

T

�
, �34�

where

Ĉ�
T = Ĉ�

T=0 ���kBT�
sin���kBT�

�35�

is the finite temperature extension of the Bloch density op-
erator, � is the chemical potential, kB is Boltzmann’s con-

stant, and Ĉ�
T=0=Ĉ� is the T=0 Bloch density operator given

in Eq. �2�. Recall that in the present context, � is to be
interpreted as mathematical variable, which in general is
taken to be complex and not the inverse temperature 1 /kBT.
For the interested reader, we give in the following a simple
proof of Eq. �34�. Using the grand canonical description for
noninteracting fermions, the density operator at temperature
T is given by

�̂� = �
all i

�
i��
i�f i. �36�

Here, f i= �e�	i−��/kBT+1	−1 is the Fermi distribution function.
If we use the identity

1

ex + 1
= �

−�

+� �y − x�

4 cosh2� y

2
dy , �37�

we deduce that

f i = �
−�

+� �� − 	i + ��

4kBT cosh2� 	

2kBT
d	 . �38�

By writing the Heaviside step function as an inverse Laplace
transform like in Eq. �7�, the above relation becomes

f i =
1

2�i
�

c−i�

c+i�

d�
e��

�
e−�	i

���kBT�
sin���kBT�

, �39�

where we have used the following two sided Laplace trans-
form �see, e.g., Ref. 33�:

�
−�

+� e−�	

4kBT cosh2� 	

2kBT
d	 =

���kBT�
sin���kBT�

. �40�

By substituting Eq. �40� into Eq. �36�, we obtain

�̂� =
1

2�i
�

c−i�

c+i�

d�
e��

� ��
all i

�
i��
i�e−�	i ���kBT�
sin���kBT�

=
1

2�i
�

c−i�

c+i�

d�e��exp�− �Ĥ�
�

���kBT�
sin���kBT�

=
1

2�i
�

c−i�

c+i�

d�e��
Ĉ�

T

�
.

This completes the proof of the relation given in Eq. �34�.
Notice that the finite temperature single particle density

operator is expressed as an inverse Laplace transform in a
similar form as in the T=0 case. Therefore, we can use the
spin density matrix method that is previously developed to

obtain the local densities �T, ��T, j�T, and J�T� at nonzero tem-
peratures. This is simply achieved by including in Eqs.
�9�–�13� with Eqs. �16� and �17� the temperature dependent
factor ���kBT� /sin���kBT� and replacing the Fermi energy
EF by the chemical potential �. Consequently, it follows

�T�r�� =
1

2�i
�

c−i�

c+i�

d�
e��

� 
�
�

C�
T=0�r�,�;r�,��

���kBT�
sin���kBT�� ,

�41�

��T�r�� =
1

2�i
�

c−i�

c+i�

d�
e��

� 
�
�,��

C�
T=0�r�,�;r�,���

������� ���
���kBT�

sin���kBT�� �42�

and the finite temperature versions of Eqs. �16� and �17� are,
respectively,

j�T = j�T
kin + ��

�=1

3

�T�A� �, �43�

J�T� = J�T�
kin + ��TA� �, � = 1,2,3, �44�

with

j�T
kin�r�� =

�

2mi

1

2�i
�

c−i�

c+i�

d�
e��

� 
��� r�

− �� r����
�

C�
T=0�r�,�;r��,��

���kBT�
sin���kBT��

r��=r�

,

�45�
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J�T�=1,2,3
kin �r�� =

�

2mi

1

2�i
�

c−i�

c+i�

d�
e��

� 
��� r�

− �� r��� �
�,��

C�
T=0�r�,�;r��,���

����������
���kBT�

sin���kBT��
r��=r�

, �46�

where we recall that C�
T=0�r� ,� ;r�� ,��� is the Bloch density

matrix at T=0. In the above, for notational simplicity, we
have only displayed the local parts of the various densities.
Hence, in a similar way as in the T=0 case, the actual den-

sities �T, ��T, j�T, and J�T� have been expressed in terms of

C�
T=0, which in turn can be obtained through the solution of

the Bloch equation �3�.
In the following, we shall apply the spin density matrix

method at finite temperature to the unconfined 2DEG system
examined in the previous section at T=0. For that, we only
need to insert the expression of the “cold Bloch density”
C�

T=0�r� ,� ;r�� ,���, which is given in Eq. �22� into Eq. �41�, to
get the particle density for a given temperature T,

�T =� d2p

�2���2

1

2�i
�

c−i�

c+i� d�

�
e��e�−�p�2/2m��e��a� �

+ e−��a� �	
���kBT�

sin���kBT�
. �47�

To carry out the inverse Laplace transform, we make use of
Eq. �40� to obtain

�T =� d2p

�2���2�
−�

+� d	

4kBT cosh2� 	

2kBT
�c−i�

c+i� e���−p�2/2m+�a� �−	� + e���−p�2/2m−�a� �−	�

2�i�
d�

=� d2p

�2���2�
−�

+� ��� − p�2/2m + �a� � − 	� + �� − p�2/2m − �a� � − 	�	

4kBT cosh2� 	

2kBT
 d	

=� d2p

�2���2� 1

exp� p�2/2m − �a� � − �

kBT
 + 1

+
1

exp� p�2/2m + �a� � − �

kBT
 + 1� . �48�

The above expression is an exact quantum mechanical
result. Note that it looks as if we have simply replaced by
hand in Eq. �23�, the step function by the Fermi distribution
function. Taking into account this last remark, one is easily
convinced that the spin vector density ��T�r�� and the current

density j�T�r�� vanish as in the T=0 case. Moreover, by using
Eq. �27�, we deduce the finite temperature expression of the
kinetic spin current density as

J�T�=1,2,3
kin �r�� = −� d2p

�2���2

p�

m
u�� 1

exp� p�2/2m − �a� � − �

kBT
 + 1

−
1

exp� p�2/2m + �a� � − �

kBT
 + 1� . �49�

To push the analytical treatment as far as possible, we
shall, in the remaining of the paper, restrict ourselves to the
case where only the Rashba spin-orbit coupling is present.
Let us mention that the case of pure Dresslhauss spin orbit

coupling can also be analytically worked out along the same
way, as will be described in the following. Therefore, by
putting �=0, Eq. �21� gives

�a� � =
�

�
�p� � �50�

so that, carrying out the angular integration, the particle den-
sity in Eq. �48� simplifies to

�T =
1

2��2�
0

+�

dp�
p

exp� p2/2m −
�

�
p − �

kBT
� + 1

+
p

exp� p2/2m +
�

�
p − �

kBT
� + 1� , �51�

which can be rewritten as
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�T =
m

2��2�
0

+�

dp�
p

m
−

�

�

exp� p2/2m −
�

�
p − �

kBT
� + 1

+

p

m
+

�

�

exp� p2/2m +
�

�
p − �

kBT
� + 1�

+
m�

2��3�
0

+�

dp�
1

exp� p2/2m −
�

�
p − �

kBT
� + 1

−
1

exp� p2/2m +
�

�
p − �

kBT
� + 1�

=
mkBT

��2 ln�1 + e�/kBT� +
m�

2��3�
0

+�

dp�
1

exp� p2/2m −
�

�
p − �

kBT
� + 1

−
1

exp� p2/2m +
�

�
p − �

kBT
� + 1� . �52�

At this level, a perturbative treatment of the spin orbit is
helpful. For that, let g��� denotes the following function of
the parameter �:

g��� = �
0

+�

dp�
1

exp� p2/2m −
�

�
p − �

kBT
� + 1

−
1

exp� p2/2m +
�

�
p − �

kBT
� + 1� . �53�

Since g��� is an odd function, its Taylor expansion around
�=0 up to the order � is g�������g /����=0+O��3�, simple
manipulations yield to

g��� =
�2m��/�

1 + e−�/kBT + O��3� . �54�

By substituting this result into Eq. �52�, one obtains up to the
order �2,

�T =
mkBT

��2 ln�1 + e�/kBT� +
m2�2

��4

1

1 + e−�/kBT . �55�

The above equation is used to obtain the chemical potential
� for a given temperature T.

Let us now come to the evaluation of the kinetic spin
current given in Eq. �49�. Since �=0, the components of the

unit vector u� in Eq. �20� reduce to u1= py / p and u2=−px / p,
with u3=0. It then follows

J�T1
kin = −� d2p

�2���2

py
2

mp�
1

exp� p�2/2m −
�

�
p − �

kBT
� + 1

−
1

exp� p�2/2m +
�

�
p − �

kBT
� + 1�ŷ = −

1

4�m�2h���ŷ ,

�56�

J�T2
kin = +� d2p

�2���2

px
2

mp�
1

exp� p�2/2m −
�

�
p − �

kBT
� + 1

−
1

exp� p�2/2m +
�

�
p − �

kBT
� + 1�x̂ =

1

4�m�2h���x̂ ,

�57�

where in Eqs. �56� and �57� we have performed the angular
integration and defined the function h��� as
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h��� = �
0

+�

dp�
p2

exp� p2/2m −
�

�
p − �

kBT
� + 1

−
p2

exp� p2/2m +
�

�
p − �

kBT
� + 1� . �58�

Expanding such odd function up to �3 order

h��� � �� �h

��


�=0
+

�3

6
� �3h

��3
�=0

+ O��5� . �59�

Then, we substitute the following result, which is derived in
the appendix:

h��� =
4m2��kBT�

�
ln�1 + e�/kBT� +

8m3�3

3�3

1

1 + e−�/kBT + O��5�

�60�

into Eqs. �56� and �57� so that

J�T1
kin = − 
m��kBT�

��3 ln�1 + e�/kBT� +
2m2�3

3��5

1

1 + e−�/kBT

+ O��5��ŷ , �61�

J�T2
kin = + 
m��kBT�

��3 ln�1 + e�/kBT� +
2m2�3

3��5

1

1 + e−�/kBT

+ O��5��x̂ . �62�

To determine the spin current, we make use of Eq. �44�. By
substituting into this equation the above two results �Eqs.
�61� and �62�	 together with Eqs. �55� and �31� for �=0, one
finally gets

J�T1 = + 
m2�3

3��5

1

1 + e−�/kBT + O��5��ŷ , �63�

J�T2 = − 
m2�3

3��5

1

1 + e−�/kBT + O��5��x̂ . �64�

It is easy to check that, for T→0, the above expressions
reduce, respectively, to their zero temperature limits given in
Eqs. �32� and �33� with �=0. This allows us to rewrite Eqs.
�63� and �64�, up to order �3, in the compact form

J�T� = J�0�� 1

1 + e−�/kBT, � = 1,2, �65�

where obvious notations have been used. The above result is
the generalization to nonzero temperatures of the one found
in Ref. 18.

Next, to obtain the dependence of the spin current as a
function of temperature T, one has to eliminate the chemical
potential � between Eqs. �55� and �65�. To keep the accuracy

consistently to order �3 in Eq. �65�, we need to take only the
contribution of the first term �leading term which is of order
�0� in Eq. �55�. So, at this order and for a given constant
particle density �, this equation solves as

� = kBT ln�e��2�/mkBT − 1� . �66�

At zero temperature, the above equation leads to the usual
relation between the Fermi energy and the particle density in
2DEG, EF=��2� /m. At this point, let us introduce the Fermi
temperature of the system TF=EF /kB so that

TF =
��2�

mkB
. �67�

Plugging this last relation into Eq. �66� yields

� = EF
T

TF
ln�eTF/T − 1� . �68�

In Fig. 1, we plot the ratio � /EF as a function of T /TF. Now,
if we insert Eq. �68� into Eq. �65�, one then finds

J�T� = J�0�
1 − exp�−
TF

T
� . �69�

In Fig. 2, the ratio JT /J0 is plotted as a function of T /TF.

V. SUMMARY AND OUTLOOK

In this paper, we have presented a spin density matrix
method at zero and nonzero temperatures for spin orbit
coupled systems, using as a tool the Bloch density matrix.
This density matrix is defined in a joint space of spin and
orbital degrees of freedom. This allows us to calculate, be-
side the particle and spin densities, quantities of great inter-
est such as the current and spin current. As a simple appli-
cation, we have examined the case of unconfined 2DEG with
Rashba spin-orbit coupling. We have found that the persis-
tent spin current is extremely robust against thermal disorder.
The results of these calculations can in principle be tested

0 1 2 3 4 5 6 7 8

-14

-12

-10

-8

-6

-4

-2

0

2

µ/
Ε F

Τ/ΤF

FIG. 1. Plot of the ratio � /EF as a function of T /TF �see Eq.
�68�	.
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against mechanical torque experiments of the type recently
suggested by Sonin.13 Natural extensions of the present study
will be the inclusion of the effect of a confining scalar po-
tential and the inclusion of many-body effects.
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APPENDIX A

This appendix is devoted to the derivation of the result
given in Eq. �60�. To this aim, we start with Eq. �58�, from
which we deduce

�� �h

��


�=0
=

2�

��kBT��0

+� p3Adp

�1 + A�2 , �A1�

with

A = exp� p2/2m − �

kBT
 . �A2�

An integration by parts yields

�� �h

��


�=0
=

4m2��kBT�
�

ln�1 + e�/kBT� . �A3�

Using once again Eq. �58�, we can show that

�3

6
� �3h

��3
�=0

=
�3

3�3�kBT�3R , �A4�

with

R = �
0

+� p5A�A2 − 4A + 1�dp

�1 + A�4

= �
0

+� p5Adp

�1 + A�2 − 6�
0

+� p5A2dp

�1 + A�4 . �A5�

The first integral in Eq. �A5� can be carried out. An integra-
tion by parts yields

�
0

+� p5Adp

�1 + A�2 = 4m�kBT��
0

+� p3dp

1 + exp� p2/2m − �

kBT
 .

�A6�

If we make the change of variable x= p2 / �2mkBT�, we then
get

�
0

+� p5Adp

�1 + A�2 = 8m3�kBT�3F1� �

kBT
 , �A7�

where F1 is the so-called Fermi integral defined by

F1�z� = �
0

+� xdx

1 + exp�x − z�
. �A8�

The second integral in Eq. �A5� can be performed as follows.
We begin by two integration by parts

− 6�
0

+� p5A2dp

�1 + A�4 = − 2mkBT
4�
0

+� p3Adp

�1 + A�3

+
kBT

m
�

0

+� p5Adp

�1 + A�3�
= − 2mkBT
4mkBT�

0

+� pdp

�1 + A�2

+ 2�
0

+� p3dp

�1 + A�2�
= − 8m3�kBT�3�

0

+� �x + 1�dx


1 + exp�x −
�

kBT
�2 .

Upon using

�
0

+� �x + 1�dx


1 + exp�x −
�

kBT
�2 = −

1

1 + e−�/kBT + F1� �

kBT
 ,

�A9�

we find

− 6�
0

+� p5A2dp

�1 + A�4 = 8m3�kBT�3
 1

1 + e−�/kBT − F1� �

kBT
� .

�A10�

Summing up the two terms in Eq. �A5� that are given, re-
spectively, by Eqs. �A7� and �A10�, one then finds

R =
8m3�kBT�3

1 + e−�/kBT , �A11�

thus, Eq. �A4� reads

�3

6
� �3h

��3
�=0

=
8m3�3

3�3 
 1

1 + e−�/kBT� . �A12�

Finally, inserting Eqs. �A3� and �A12� into Eq. �59� will
yield the result given in Eq. �60�.
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0.0
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0.4

0.6

0.8

1.0
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FIG. 2. Plot of the ratio JT /J0 as a function of T /TF �see Eq.
�69�	.
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