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We show that the Lorentz shear modulus—one of the three elastic moduli of a homogeneous electron gas in
a magnetic field—can be calculated exactly in the limit of high magnetic field �i.e., in the lowest Landau level�
and zero frequency. Its value is ±�n /4, where n is the two-dimensional electron density and the sign is
determined by the orientation of the magnetic field. We use this result to refine our previous calculations of the
dispersion of the collective modes of fractional quantum Hall liquids.
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The collective dynamics of a two-dimensional electron
gas at high magnetic fields continues to be a subject of in-
tense interest and a source of surprises. Witness be the recent
observation, by inelastic light scattering, of a new collective
mode in the fractional quantum Hall liquid at filling factor
�=1/3.1 Theoretically, the interest arises from the fact that
the electrons in the lowest Landau level �LLL� exhibit an
unusual kind of collective behavior �for the most recent over-
view of the theory of fractional quantum Hall effect, see Ref.
2�. In an ordinary two-dimensional quantum liquid collective
modes arise either as hydrodynamic modes �sustained by fre-
quent collisions in local quasiequilibrium� or as collisionless
modes sustained by strong self-consistent fields �in which
case a generalized hydrodynamic description is possible�. In
both cases the frequency of the modes tend to zero at long
wavelength, reflecting the underlying translational invariance
of the system. By contrast, in the incompressible fractional
quantum Hall liquid the collective modes have a finite fre-
quency in the long wavelength limit. One mode at the clas-
sical cyclotron frequency �c=eB /m �−e and m being the
electron charge and mass—we use SI units throughout� is
completely expected as a consequence of Kohn’s theorem.3

The surprise comes from the low-frequency mode, which in
a fractional quantum Hall liquid �e.g., the �=1/3 state� tends
to a finite frequency � which scales as e2 / ��b ��=�� /eB
being the magnetic length�. The gap has long been under-
stood as a manifestation of the incompressibility of the elec-
tron liquid in the LLL,4,5 which is also responsible for the
fractional quantum Hall effect.6 �The gap closes in compress-
ible states, e.g., the �=1/2 state.�

The presence of the gap raises the question whether a
continuum mechanics formulation �hydrodynamics or elas-
ticity� for this type of mode is possible at all. At first sight
such a formulation can only produce gapless modes. Yet the
absence of low-energy excitations or other single particle
excitations overlapping the energy of the collective mode
suggests that a collective description of the dynamics should
be possible.7 Recently, it has been found that the problem has
a natural formulation as an elasticity theory in which the
elastic constants are local in space, but strongly retarded in
time.8–10 Let us briefly review the essential points of this
formulation.

First, the equation of motion for a Fourier component of

the particle current density at frequency �, in the linear ap-
proximation and in the absence of external fields �other than
a magnetic field B in the negative z direction� is

− im�j�r,�� − eBj�r,�� � ẑ + � · PJ�r,�� = 0, �1�

where PJ�r ,�� is the Fourier component of the stress tensor,
and �· denotes its divergence. The stress tensor is defined as

the expectation value of the stress tensor operator P̂, which
can be directly derived from the Heisenberg equation of mo-
tion for the current operator.11,12

Second, the stress tensor is expressed �in the long-
wavelength limit� as a linear function of the current density

Pij�r,�� = − Qijkl���ukl�r,�� �2�

�we sum over repeated indices� where

ukl�r,�� =
i

2n�
��kjl�r,�� + �l jk�r,��� , �3�

is the Fourier component of the strain tensor �n being the
homogeneous density of the electron gas� and Qijkl��� is the
Fourier component of the homogeneous tensor of
elasticity—a fourth-rank tensor, which is symmetric with re-
spect to any of the interchanges �ij�↔ �kl�, i↔ j, or k↔ l.
In two dimensions Qijkl��� has at most six independent
components. However, in a two-dimensional homogeneous
electron liquid in the presence of a perpendicular magnetic
field the six components of Qijkl��� can be expressed in
terms of only three independent elastic moduli in the follow-
ing manner: Qxx,xx���=Qyy,yy���=K���+	���, Qxy,xy���
=	���, Qxx,yy���=K���−	���, and Qxx,xy���=−Qyy,yx���
= i�
���. A compact representation is

Qijkl��� = K����ij�kl + 	�����ik� jl + � jk�il − �ij�kl�

+ i�

���

2
��ik� jl + � jk�il + �il� jk + � jl�ik� , �4�

where K���, 	���, and 
��� are the frequency-dependent
bulk modulus, the shear modulus, and the Lorentz shear
modulus, respectively.13 The first two moduli, K and 	, are
familiar from conventional elasticity theory,14 and cannot be
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calculated without detailed microscopic input �notice how-
ever that the zero frequency limit of the shear modulus must
be zero in a liquid state�. The Lorentz shear modulus 
,
introduced in Refs. 8–10, is a distinctive feature of the sys-
tem in the presence of a magnetic field. Physically it is re-
sponsible for the force that squeezes together two oppositely
directed streamlines. Formally it arises as follows: First, ro-
tational invariance about the z axis mandates that the tensor
of elasticity be invariant under the transformation x→y,
y→−x: This enforces the identity Qxx,xy���=−Qyy,yx��� at all
frequencies. Second, at zero frequency one has an additional
reflection symmetry which allows us to interchange x and y
without the minus sign: This implies Qxx,xy�0�=−Qyy,yx�0�
=0. In the absence of a magnetic field this symmetry persists
even at finite frequency, but the magnetic field breaks it:
Hence 
��� has a finite nonzero value.

The main purpose of this Communication is to show that
the zero frequency limit of the Lorentz shear modulus 
0
�−lim�→0
��� can be calculated exactly and has the uni-
versal value ±�n /4 �+ if the magnetic field is along the nega-
tive z axis, − if it is along the positive z axis� when all the
electrons are in the lowest Landau level. The reason is that

0 can be expressed as a Berry curvature of the ground-state
wave function with respect to a homogeneous change of the
metrics, just as the Hall conductivity can be expressed as a
Berry curvature with respect to a homogeneous vector
potential.15,16 This analogy was first noted in a paper by
Avron et al.,17 entitled “The viscosity of the quantum Hall
liquid,” in which 
0 was calculated for a noninteracting elec-
tron gas at integral filling factor, and improperly called “vis-
cosity.” Because of the nondissipative character of the dy-
namics we will continue to refer to 
0 as the “Lorentz shear
modulus.” Unlike Avron et al., who considered only nonin-
teracting systems at integral filling factors, we will calculate
the Lorentz shear modulus for an interacting electron gas in
a partially occupied lowest Landau level. We will show that
the calculation can be done exactly due to a special analyt-
icity property which every wave function in the LLL enjoys.
This result is far more rigorous and generally applicable than
our previous theory of the collective mode.10 In particular, it
is not restricted to uniform states. Here we simply apply it to
the equation of motion �1� and show how the dispersion of
the collective modes obtained in Ref. 10 is modified by the
exact treatment of 
0.

A very useful representation of the stress tensor can be
given in terms of the derivative of the Hamiltonian with
respect to a metric tensor gij�r� �ds2=gijdxidxj� which de-
fines a non-Euclidean geometry in the plane �gij =�ij is the
Euclidean metrics� �see, e.g., Refs. 12 and 18�. This is the
analogue of defining the current operator as the derivative of
the Hamiltonian with respect to the vector potential.19 To this
end, let us introduce the Hamiltonian of the spinless two-
dimensional electron gas in a metric field gij�r�:

H�g� = �
n

Tn +
1

2 �
n�n�

e2

�bd�rn,rn��
, �5�

where the sums run over particle indices �n and n��,

Tn = −
1

2m
g−1/4�rn�Dn,i

�g�rn�gij�rn�Dn,jg
−1/4�rn� �6�

is the kinetic energy of the nth electron, gij is the inverse of
gij,

Dn,i = �rni
+ ieAi�rn� �7�

is the kinetic momentum operator, A�r� is the vector poten-
tial, and d�r ,r�� is the length of the geodesics connecting r
to r� in the non-Euclidean plane. We will work in the Landau
gauge A�r�= �By ,0� with periodic boundary conditions in
the x direction and open boundary conditions in the y direc-
tion. The linear size of the system in either direction is L,
which we take as our unit of length, L=1. We have also set
�=1. In these units the operator D is conveniently expressed
as

Dx = �x + 2iNLy, Dy = �y , �8�

where NL is the number of magnetic flux quanta �h /e� en-
closed by the system.

The stress tensor is defined as follows:

Pij�r,t� = 2� �H�g�
�gij�r�	 , �9�

where the average is taken in the time-dependent quantum
state and at Euclidean metric. With this definition of the
stress tensor, the equation of motion �1� is exact. The basic
task of the theory is to express the stress tensor as a �linear�
functional of the current density so that Eq. �1� can be
closed. This is a formidable task, of course, but we know that
it can be carried out exactly in principle.20

As a first step in this direction we notice a small deviation
from the Euclidean metrics, arising from the infinitesimal
deformation r→r+u�r� �u being the integral in time of the
velocity field j /n�, can be represented in the form
gij =�ij −2uij where uij is the strain tensor. Then, it is not
difficult to show that Qijkl��� has the microscopic
representation21

Qijkl��� = Qijkl
� + 

P̂ij; P̂kl���, �10�

where the first term �purely real and independent of fre-
quency� is the instantaneous derivative of Pij with respect to
gkl and the second term is the Kubo formula for the stress-
stress response function.

It is evident from Eq. �4� that


0 = − lim
�→0

Im
Qxxxy���

�
. �11�

Then, using Eq. �10� in combination with the geometric defi-
nition of the stress tensor �9� we arrive, after well-known
manipulations analogous to the ones that lead to the expres-
sion for the Hall conductivity,15,16 to the key result


0 = 8 � Im�� ��0

�gxx� ��0

�gxy	 , �12�

where �0� is the ground state of the Hamiltonian �5� in the
presence of homogeneous metrics gij. This is essentially the
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formula obtained in Ref. 17 for what they call “viscosity.”
In order to proceed, it is very convenient to parametrize

the metric tensor as follows:

gij =
J

�2
� 1 �1

�1 �2 �, gij =
1

J�2
� �2 − �1

− �1 1
� , �13�

where �=�1+ i�2 is a complex number defining the length
and orientation of the y axis of the distorted plane, and J is
the Jacobian of the coordinate transformation that is induced
by deformation. The Euclidean metrics is recovered by set-
ting J=1, �1=0, and �2=1. The derivatives with respect to gij

evaluated at the Euclidean metrics are given by

�

�gxx =
1

2
� �

��2
−

�

�J
�,

�

�gyy = −
1

2
� �

��2
+

�

�J
� ,

�

�gxy =
�

�gyx = −
1

2

�

��1
. �14�

Notice that the derivative with respect to gxy is taken at con-
stant gyx and vice versa.22

Inserting Eq. �14� into Eq. �12�, and noting that the wave
function does not depend on J �J enters the homogeneous
Hamiltonian as a global scale factor�, we get the following
representation for 
0:


0 = 2 � Im�� ��0

��1
� ��0

��2
	 , �15�

where the derivatives are calculated at �1=0, �2=1, and J
=1.

The calculation of 
0 is dramatically simplified if we as-
sume that the wave function lies within the lowest Landau
level. First of all, let us define “Landau levels.” It is easy to
see that the eigenfunctions of the kinetic energy operator �6�
with a homogeneous metric and the stated boundary condi-
tions have the form �up to a normalization constant�

�lk�x,y� = e2ikxei�NLỹ2
Hl��2�2NLỹ� , �16�

where ỹ=y+k /NL, k is an integer, and Hl is the lth Hermite
polynomial. �The eigenvalue is �l+1/2��c /J�. The �degener-
ate� states of the lowest Landau level are the ones with l
=0 and k ranging from 0 to NL−1. From this, we immedi-
ately see that any N-electron wave function that lies entirely
in the lowest Landau level must have the form

��r1, . . . ,rN� = A��1,�2�f��1, . . . ,�N��
i=1

N

ei�NLyi
2
, �17�

where f is an analytic function of the variables �i�xi+�yi,
and therefore also of �=�1+ i�2. A��1 ,�2� is the normalization
constant. Unlike f , A depends separately on �1 and �2, i.e., it
is a nonanalytic function of �. �We note that the form of Eq.
�17� is, in fact, independent of boundary conditions.� Hence
in general the � dependence of any LLL many-body wave
function can be represented as ���1 ,�2�=A��1 ,�2�����,
where ���� is a holomorphic function. Making use of this
fact it is possible to show that Eq. �15� simplifies as
follows:23


0 = −
�

L2� �2

��1
2 +

�2

��2
2�ln A��1,�2� . �18�

�Here we have reinstated the physical units, multiplying the
result of the dimensionless calculation by the factor � /L2,
which had been previously set to 1.�

The problem is finally reduced to calculating derivatives
of the normalization constant. A second major simplification
occurs in the thermodynamic limit, i.e., when the number N
of electrons tends to infinity in such a way that N /NL=�
remains constant. Because NL tends to infinity it is evident
that only values of y�1/NL�0 contribute to the normaliza-
tion integral, and therefore the dependence of the analytic
factor f on � �through �=x+�y� effectively disappears. Then
we immediately see that the � dependence of the normaliza-
tion constant is of the form A��1 ,�2���2

N/4, and use of Eq.
�18� yields


0 =
�n

4
, �19�

where n=N /L2 is the areal density of electrons. We empha-
size that this result does not depend on the detailed form of
the wave function.

Let us now apply the above universal result to the disper-
sion of collective modes in incompressible liquid states. In
Ref. 10 we developed a theory of the elastic constants in the
incompressible quantum Hall liquid, based on the premise
that the stress-stress response function is dominated by a
single pole at the frequency � of the q=0 gap. This assump-
tion uniquely fixes the frequency dependence of the ordinary
shear modulus 	��� and the Lorentz shear modulus 
���

	��� =
	��2

�2 − �2 , 
��� =

0�2

�2 − �2 , �20�

while the bulk modulus K remains frequency independent for
any LLL state. The excitation gap �, the bulk modulus K
together with 	� and 
0 became the phenomenological pa-
rameters of the theory �	� and � however could be deter-
mined self-consistently from sum rule arguments provided
the microscopic ground state wave function is given10�.

Inserting the above 	���, 
���, and K into Eq. �4� and
this into Eqs. �2� and �1�, and solving the resulting dispersion
equation we get two collective modes with frequencies �±�q�

�±
2

�2 = 1 + 	̄��	̄� + K̄�
Q4

2
− 
̄0Q2

±��	̄��	̄� + K̄�
Q4

2
− 
̄0Q2�2

+ �	̄�
2 − 
̄0

2�Q4,

�21�

where Q=q�, 	̄�=	� /�n�, K̄= K̄ /�n�, and 
̄0=
0 /�n are
the dimensionless wave vector and elastic moduli.

In the special case of a Laughlin wave function with fill-
ing factor �=1/M, where M is an odd integer larger than 1,
we have shown in Ref. 10 that 	� /�=�n�M −1� /4. Combin-
ing this with our new result of Eq. �19� we get 
0� /	�

=1/ �M −1�. Hence the only phenomenological parameter
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that is left at the current stage of the theory is the bulk modu-
lus K. Importantly, K is irrelevant for small q. Therefore at
long wavelength our dispersion relations �21� for the Laugh-
lin states are completely parameter-free.

Figure 1 shows the dispersion of the collective modes

calculated at �=1/3 with the exact value of 
0 in compari-
son with the somewhat larger value of 1.4�n /4 used in Ref.
10 �the bulk modulus remains the same�. It is clear that the
overall behavior of the curve is still quite satisfactory. The
reduced values of 
0 flattens the dispersion of the collective
modes at large q giving a shallower roton minimum. The
changes in the dispersion at small q are quite small.

In summary, we have presented an exact calculation of the
low-frequency elasticity modulus 
0 of interacting electrons
in the lowest Landau level. The fact that the calculation can
be done in universal form is a consequence of two facts: �i�
The existence of a geometric representation of 
0 and �ii� the
analyticity of lowest Landau level wave functions with re-
spect to the complex deformation parameter �, which de-
scribes a variation of the metrics. We believe that this general
result will be useful to further elucidate the dynamics of
collective states �not necessarily uniform� in the lowest Lan-
dau level.
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FIG. 1. �Color online� Dispersion of the collective modes at
�=1/3 obtained from the solution of Eq. �1� for �i� the value of

0=1.4�n /4 used in Ref. 10 �dashed lines� and �ii� the exact value
from Eq. �19� �solid lines�. All other parameters are the same as in
Ref. 10. Here Q=q� and � is in units of e2 / ���b� �.
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