
Asymmetry of above-threshold ionization of metal clusters in two-color laser fields:
A time-dependent density-functional study

H. S. Nguyen* and A. D. Bandrauk
Laboratoire de Chimie Théorique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada

C. A. Ullrich
Department of Physics, University of Missouri–Rolla, Rolla, Missouri 65409, USA

(Received 5 May 2003; published 24 June 2004)

Above threshold ionization(ATI ) spectra of small metal clusters(e.g., Na4 and Na4
+) are calculated numeri-

cally using a spherical jellium model and time-dependent density functional theory for two-color(1064 and
532 nm) ultrashorts25 fsd laser pulses as a function of phase difference between the two fields. ATI spectra and
ionized electron fluxes are obtained in the two opposite directions of the linearly polarized laser fields. The
asymmetry, defined as the difference in electron yield, is shown to depend strongly on the carrier-envelope
phase of the second-harmonics2vd field. The ATI spectra allow one to identify the range of kinetic energies of
the ionized electrons where the asymmetry mainly occurs. Comparisons are made between calculations with
and without self-interaction correction and also with previous exact numerical solutions of the one-electron
systems H and H2

+ [A. D. Bandrauk and S. Chelkowski, Phys. Rev. Lett.84, 3562 (2000)] where such
asymmetry effects had first been observed. We find that ATI spectra in the clusters generally have much longer
energy plateaus than in previously studied one-electron systems, with cutoffs up to 30–40 times the pondero-
motive energyUp. In high-harmonic generation spectra, on the other hand, no extended plateaus are observed.
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I. INTRODUCTION

Laser control of electronic and nuclear motion has be-
come a growing area of research[1] due to the availability of
laser pulses with variable and controllable amplitudes and
phases even in the ultrashortst,10 fsd and intensesI
ù1014 W/cm2d regime, thanks to steady progress in laser
technology[2]. Controlling electrons in atoms has had con-
siderable success by manipulating the phase difference be-
tween two laser fields. In particular, thev+2v scenario, i.e.,
the simple superposition of a field of frequencyv and its
second harmonic, with total field

Estd = E0stdfcossvtd + f coss2vt + fdg, s1d

whereE0std is the field envelope,f the relative phase, andf
the relative amplitude, permits control of the angular distri-
bution of photoelectrons in atomic ionization processes[3]
or directional control of photocurrents in quantum wells[4].
Quantum wells can be viewed as simple analogs of molecu-
lar systems, and electron-nuclear photodissociation-
ionization yield asymmetries have been observed already in
the molecule HD, with possible applications to isotope sepa-
ration [5]. Possible applications of coherent control with in-
tense ultrashort pulses have recently been suggested from
numerical simulations for the generation of attosecond pulses
and even for the measurement of laser pulse phases[6,7].

On the theoretical side, the first observations of such
electron-nuclear asymmetric yields were made from numeri-
cal solution of the time-dependent Schrödinger equation

(TDSE) for the one-electron H2
+ molecule[8,9], for which

exact non-Born-Oppenheimer simulations can be performed
in one dimension with current supercomputers. Exact three
dimensional(3D) simulations of the two-electron H2 system
with static nuclei(Born-Oppenheimer) have recently been
carried out[10]. Extension of such simulations to multielec-
tron systems is of great interest, but can only be achieved by
replacing the multidimensional TDSE with effective single-
electron theories such as density functional theory(DFT)
[11] and its extension to the time-dependent regime, TDDFT
[12].

In this work, we use TDDFT methods to investigate the
electron dynamics of small Na clusters in intense fields. The
electron dynamics of Na clusters has been widely studied
within the jellium model[13–15], using the local density
approximation(TDLDA ) with and without self-interaction
correction (SIC). The conclusion was that TDLDA and
TDLDA-SIC give similar results[16] for observables such as
ionization rates and high-harmonic generation(HHG) spec-
tra. Further tests of the SIC employing more realistic mo-
lecular models beyond jellium confirmed this conclusion
[17]. In these studies, SIC was implemented using an accu-
rate single local potential scheme based on the time-
dependent version[18] of the optimized effective potential
method of Krieger, Li, and Iafrate(KLI ) [19]. This KLI-SIC
approach has been shown to give adequate descriptions of
dynamical properties in the regime of strong excitations
[16,17].

In the present paper, we will study the open-shell clusters
Na4 and Na4

+ using the local spin-density approximation
(LSD) with and without KLI-SIC. We will in particular focus
on calculating ATI spectra and ionized electron fluxes in the
two opposite directions along the linearly polarized laser*Deceased(November 2002).
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fields. Our primary motivation is to demonstrate that TDDFT
methods can reproduce the essential physics of intense laser
field coherent control in many-electron systems, obtained in
our previous simulations for one-electron systems such as H
and H2

+ [6–9]. It will emerge that metallic clusters show
very similar features as previously observed in atoms, i.e.,
ATI spectra with extensive plateaus, and pronounced left-
right asymmetries as a function of phase in two-color lasers
fields.

The standard quasistatic tunneling model[2,20,21], which
very successfully describes strong-field laser-atom interac-
tions, turns out to be adequate for HHG spectra in clusters,
but substantially underestimates the cutoff of the ATI pla-
teaus. This indicates fundamental differences between the
nonlinear electron dynamics in metal clusters and in one- or
two-electron atoms and molecules.

In our calculations, we will treat the valence electrons
exactly in a 3D TDDFT approach, whereas core electrons are
represented in a spherical jellium model. In reality, the shape
of Na4 and Na4

+ is strongly prolate rather than spherical
[22], even though at room temperatureskBT=0.025 eVd
small alkali metal clusters are “fluxional,” i.e., they have no
fixed geometry due to a large number of near isoenergetic
conformations [23]. However, since the purpose of the
present paper is to demonstrate a fundamental strong-field
effect of the delocalized valence electrons, we will for sim-
plicity ignore all details of the ionic structure. As we will
argue below, the effects that we study here(ATI and HHG)
are likely to persist even in the nonspherical case. Further-
more, at high laser intensities the spectral differences be-
tween spherical and deformed cluster models become more
and more washed out due to power broadening[24].

This paper is organized as follows. In Sec. II we give a
brief summary of the TDDFT formalism applied to open-
shell clusters in the jellium model, explaining the LSD and
KLI-SIC approaches. Section III provides some details of
our numerical method and of the observables of interest. In
Section IV we present and discuss our numerical results, and
we conclude in Sec. V. We use Hartree atomic units unless
otherwise indicated.

II. TDDFT FOR SPHERICAL METAL CLUSTERS

Our investigations are based on the jellium model
[13–15], which treats the valence electrons explicitly and the
inner core as a uniform, spherical, positive charge back-
ground with radiusR=rsZ

1/3, wherers=4 a.u. is the Wigner-
Seitz radius of bulk sodium, andZ is the number of ions. The
associated electrostatic potential seen by the valence elec-
trons is given by

vjelsrd = H − Z/r , r . R,

Zr2/2R3 − 3Z/2R, r , R.
s2d

The time-dependent Kohn-Sham(TDKS) equations for the
single-particle valence spin orbitalsw jssr ,td are given by

i
]

] t
w jssr ,td = S−

¹2

2
+ vsfn↑,n↓gsr ,tdDw jssr ,td, s3d

where the total density is

nsr ,td = o
s=↑,↓

nssr ,td = o
s

o
j=1

Ns

f jsuw jssr ,tdu2. s4d

To treat open-shell clusters, we introduce occupation num-
bers f js, normalized asNs=o j f js. In ground state calcula-
tions, we employ the usual procedure of assigning equal,
fractional occupation numbers to degenerate orbitals. For ex-
ample, the Na4

+ cluster has three valence electrons, two
spin-up and one spin-down. The 1s↑ and 1s↓ orbitals each
contain one electron, and the 1p0↑, 1p+1↑ and 1p−1↑ orbitals
are each occupied by 1/3 of an electron[25]. The resulting
total ground-state densityn and spin densitiesns are there-
fore spherical for Na4

+ and all other open- or closed-shell
clusters(provided the jellium background is spherical). Once
the cluster is excited by the laser field, the occupations of the
1p orbitals will no longer remain identical because their dif-
ferent orientations with respect to the laser polarization cause
the orbitals to ionize at different rates.

The TDKS effective spin-dependent potentialvs is the
sum of external, Hartree, and exchange-correlation(xc) time-
dependent potentials,

vsfn↑,n↓gsr ,td = vextsr ,td +E d3r8
nsr 8,td
ur − r 8u

+ vxcsfn↑,n↓gsr ,td,

s5d

where

vextsr ,td = vjelsrd + Estdz, s6d

andEstd is defined in Eq.(1) for two colors.
The simplest approximation is to use static xc potentials

such as the LSD, with the densitynsr ,td obtained from the
time-dependent orbitalsw jssr ,td, i.e.,

vxcs
LSDfn↑,n↓gsr ,td =Udexc

h sn̄↑,n̄↓d
dn̄s

U
n̄↑,↓=n↑,↓sr ,td

. s7d

For the xc energy density of a spin-polarized homogeneous
electron gas,exc

h , we use the following standard expression
[26]:

exc
h sn,jd = exc

h sn,0d + fexc
h sn,1d − exc

h sn,0dgfsjd, s8d

wheren=n↑+n↓, j=sn↑−n↓d /n, and

fsjd =
s1 + jd4/3 + s1 − jd4/3 − 2

2s21/3 − 1d
. s9d

Explicit expressions forexc
h sn,0d andexc

h sn,1d can be found
in Ref. [27]. We use here the correlation energy density in
the parametrization of Voskoet al. [28].

In order to perform a self-interaction correction(SIC) us-
ing a single local potential, one can arrive variationally[18]
at a spin-dependent optimized effective potential akin to the
static KLI method[19]:
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vxcs
KLI sr ,td = o

j

njssr ,td
nssr ,td Huxcjs

SIC sr ,td

+E d3r8uw jssr 8,tdu2fvxcs
KLI sr 8,td − uxcjs

SIC sr 8,tdgJ ,

s10d

uxcjs
SIC sr ,td = vxcs

LSDfn↑,n↓gsr ,td − vHfnjsgsr ,td − vxcs
LSDfnjs,0gsr ,td.

s11d

We note that theu’s in Eqs.(10) and(11) contain the appro-
priate subtraction of orbital self-interaction. Furthermore, Eq.
(10) is an integral equation for the effective local xc potential
which is easily solved at each time step[17–19]. To summa-
rize this formal discussion, we have at our disposal two dif-
ferent, spin-dependent local effective potentials which con-
tain exchange and correlation,vxcs

LSD, Eq. (7), and vxcs
KLI , Eq.

(10), which can be used in the TDKS equation(3). Previous
model TDDFT calculations of atomic clusters in intense laser
fields used only the Hartree potentialvHsr ,td [29] or vxs

KLI

with no correlation and SIC[30] for 1D arrays of atoms.

III. NUMERICAL METHOD

To calculate above-threshold ionization(ATI ) spectra, we
adapt to our 3D calculations the method described by Pohlet
al. [31]. The kinetic energy spectrum of the ionized electrons
is computed from the local frequency spectrum of the single
electron wave functionsw jssr b,td at a pointr b near the grid
boundary and sufficiently far from the cluster in order to
make Coulomb effects negligible. Absorbing boundary con-
ditions betweenr b and the grid boundaries guarantee that
only outgoing waves are collected over timet and then Fou-
rier transformed to give the total kinetic energy distribution
in forward and backward direction as

nsEd = o
s=↑,↓

o
j=1

Ns

uw jssr b,Edu2. s12d

In our calculations we assume cylindrical symmetry due to
the presence of linearly polarized radiation, and we therefore
use a two-dimensional gridr =sz,rd as in our previous exact
H2

+ calculations[32]. We record electron wave functionsw js
at two opposite points on thez axis atr ±=s±zb,0d, wherezb

is about 0.75zmax, zmax being the grid size(see below). Our
simulations also allow for measuring the ionization signal in
a cone(forward and backward) within an angleu in order to
detect total asymmetries which can even be used in principle
to measure absolute phases of ultrashort intense pulses
[7,33]. We thus define the total probability flux passing the
surface atzb,

Pbstd = 2pE
0

t

dtE
0

r0

jszb,r,tdrdr, s13d

where the local flux is given as

jszb,r,td = Imo
s,j
Fw js

* ]

] z
w jsG

z=zb

, s14d

andr0=zmax tan u.
The numerical simulations were performed for a two-

color laser field with intensityI1=631012 W/cm2 at l1
=1064 nm sv=1.16 eVd and I2=1.531012 W/cm2 at l2

=532 nms2v=2.32 eVd. The angleu=15° was chosen as in
our previous work[7,33] as an experimentally feasible col-
lection angle of ionized electrons with respect to the laser
polarization direction. Both pulses(v and 2v) were assumed
to have the same Gaussian envelope with full width at half
maximum length(duration) 25 fs.

The chosen laser intensities and wavelengths determine
certain essential physical parameters which allow for quasi-
static interpretations of strong field laser-atom processes
[2,20,21]. One is the ponderomotive energyUp=eI/4mv2

which for v=1.16 eV is Upsvd=0.56 eV and Ups2vd
=0.035 eV. This allows for defining the Keldysh parameterg
separating tunneling and multiphoton ionization regimes for
an ionization potentialIp:

g = ÎIp/2Up = H1.5 sNa4d,

2.1 sNa4
+d.

s15d

The tunneling ionization regime is defined byg,1, so that
the present parameters situate our calculations near and
above the limit of this regime. In the multiphoton regime,
considering ionization as direct transitions, we can identify
the minimal photon numberns for ionization, which is given
by

ns = Ip/v = H3 sNa4d,

5 sNa4
+d.

s16d

Finally, we calculate the maximum spatial amplitude of the
laser induced electron oscillations:

a =
eE

mv2 = H 7.0 a.u. svd,

0.875 a.u. s2vd.
s17d

The larger value, 7 a.u., determines the minimum grid size.
We choosezmax=62.5 a.u. to insure sufficient space for the
laser induced oscillations after ionization. Thuszb is at
47.5 a.u., followed by an absorbing boundary of width
15 a.u. to minimize reflections. Along ther direction, we
have rmax=35 a.u. and an absorbing boundary of width
10 a.u. Convergence of the spectra(ATI as well as HHG)
was verified by varying the grid size between 50325 a.u.
and 62.5335 a.u.

IV. RESULTS AND DISCUSSION

We first tabulate in Tables I and II the total energies and
KS orbital eigenvalues for our Na4 and Na4

+ jellium cluster
models, obtained by solving the time-independent KS equa-
tions corresponding to the TDKS equations(3). We find that
correlation generally lowers the total energyEtot and the vari-
ous orbital energies. The SIC within the KLI scheme has a
large stabilizing effect on the inner valence orbital 1s↓ in
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both clusters. On the other hand, SIC stabilizes the 1s↑ and
1p↑ orbitals only in Na4, whereas in Na4

+ the effect is re-
versed. Thus the presence of the extra electron in Na4
s1s21p2d as compared to Na4

+ s1s21p1d results in a somewhat
increased ionization potentialIp=2.98 eV for Na4 and a de-
creased ionization potentialIp=5.41 eV for Na4

+ when the
KLI-SIC method is used.

It is to be noted that these ionization potentials(which we
take to be the negative of the HOMO 1p↑, i.e., the highest
occupied molecular orbital, in keeping with KLI-SIC results
[34]) are somewhat lower than previousab initio molecular
values calculated at equilibrium geometries. ThusIpsNa4d
=4.4 eV andIpsNa4

+d=8.2 eV were reported using pseudo-
potential LSD calculations[35]. These numbers are to be
compared to the atomic ionization potential,IpsNad
=5.14 eV. We emphasize that our lowerIp’s are due to the
use of a spherical jellium model for the core, which can be
viewed as simulating the average geometry of the clusters
expected at room temperature, whereas theab initio molecu-
lar geometries correspond to zero-temperature equilibrium
structures. One expects that at higher temperatures, geom-
etries dilate and randomize, thus loweringIp’s.

We illustrate in Fig. 1(a) the two pulses which are super-
posed with changing relative phasesf to give net resulting
fields Estd [see Eq.(1)], for the casesf=0 [Fig. 1(b)], f
=p /4 [Fig. 1(c)], andf=p /2 [Fig. 1(d)]. In the limit of a
few cycles ofv (,5 fs pulse width), Fig. 1(b) becomes simi-
lar to a single-frequency “cos” pulse, whereas Fig. 1(d) ap-
proaches a single-frequency “sin” pulse. These ultrashort
single-frequency pulses have recently been shown to give
rise to very large ionization asymmetries from which we can
infer the absolute phase of these pulses[33]. We note that in
the v+2v coherent superpositions illustrated in Fig. 1, the
phasef=0 superposition[Fig. 1(b)] exhibits the largest elec-
tric field asymmetry since the relative maximum field ampli-
tudes areE1/E2=ÎI1/ I2=2 [9]. The f=p /2 superposition
[Fig. 1(d)] has local maxima and minima of equal absolute
amplitude strength, but one notes that locally the fields are

asymmetric due to the presence of a “kink” between the posi-
tive and negative amplitudes. As shown for the 1D single-
electron system H2

+, this results in large asymmetries of the
ionized electrons and dissociated protons, which have the
unusual feature that bare protons and electrons preferentially
move in thesamedirection, which we have called “counter-
intuitive” [7,33]. In the following, we examine whether simi-
lar phenomena exist in sodium clusters and present our re-
sults based on the TDDFT approach outlined above.

Figure 2(a) illustrates the ATI spectra of Na4, obtained
with KLI-SIC for single-color excitation atl=1064 nm,I
=631012 W/cm2, and pulse duration 25 fs. Both left and
right ionization patterns are nearly identical, with slight dif-
ferences reflecting nonadiabatic excitations from ultrashort
pulses [7]. In particular, notice that the ATI spectrum is
nearly constant up toEmax=15v<30Up, where Up is the
ponderomotive energy defined in the previous section. Qua-
sistatic tunneling ionization models of single-electron atoms
predict Emax=10Up [20,34]. In the case of extended mol-
ecules, we have shown previously that collisions with neigh-
boring ions can raise this up to 12Up, thus extending high-
order harmonic generation plateaus beyond the atomic
maximumEmax= Ip+3.17Up [36]. This has been confirmed in
simulations of chains of atoms[29]. Thus the single-color
ATI spectrum of Na4 clearly shows an unusually long plateau
with a cutoff (sharp decrease) aroundEmax=30Up. The same
phenomenon is observed for the Na4

+ cluster, see Fig. 3(a),
the main difference being the slightly lower intensity as there
is one less 1p valence electron in this case. In summary,
one-color excitation of both Na4 and Na4

+ results in ex-
tended ATI spectra with cutoffs at around 30Up, which far
exceeds the single-electron atom cutoff of 10Up.

We next return to the Na4 ATI spectra illustrated in Figs.
2(b)–2(f)) with the two-color coherent superpositionEstd,
see Eq.(1) and Fig. 1. Atf=0 where the positive field am-
plitude is twice the negative amplitude or, equivalently,

TABLE I. Total ground-state energyEtot and orbital energy ei-
genvalues of the 1s↑, 1p↑, and 1s↓ orbitals for Na4 (in eV), ob-
tained for a spherical jellium model with different DFT approaches.

Etot 1s↑ 1p↑ 1s↓
LSD (x only) −46.53 −3.76 −2.16 −2.78

KLI-SIC (x only) −47.35 −4.39 −2.79 −5.34

LSD −49.80 −4.34 −2.64 −3.83

KLI-SIC −48.98 −4.69 −2.98 −5.92

TABLE II. Same as in Table I, for Na4
+.

Etot 1s↑ 1p↑ 1s↓
LSD (x only) −51.70 −7.38 −5.51 −6.75

KLI-SIC (x only) −51.16 −7.00 −5.14 −9.39

LSD −54.97 −8.06 −6.08 −7.73

KLI-SIC −52.79 −7.37 −5.41 −9.93

FIG. 1. (a) Electric fieldsE1std andE2std associated with a two-
color 25-fs laser pulse: l1=1064 nm, l2=532 nm, I1=6
31012 W/cm2, I2= I1/4, and relative phasef=0. (b)–(d) Resulting
net field Estd [see Eq. (1)] for f=0, f=p /4, and f=p /2,
respectively.
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maximum intensities have the ratio 4:1, the left and right ATI
spectra exhibit different cutoffs. Thus the left-ionized elec-
trons have a cutoff atEmax<12v=22Up, whereas the right-
ionized electron cutoff is atEmax<22v=40Up, i.e., a ratio of
approximately 2:1. Furthermore, one must emphasize an
anomaly, akin to the counterintuitive processes found previ-
ously in H2

+ [7,33], i.e., there is a preponderance afterE

<15v<30Up of electrons ionized in the right direction in
spite of the fact that the net field, see Fig. 1(b), is over-
whelmingly positive. This effect is further confirmed atf
=p relative phase difference in Fig. 2(f). The same “coun-
terintuitive” effect occurs in Na4

+ [Fig. 3(f)], albeit again
with slightly less intensity since there is one electron less in
the 1p HOMO orbital.

On examining thef=p /2 or “sin” coherent superposition
of the two fieldsv and 2v, one observes that for both Na4
and Na4

+ [Figs. 2(d) and 3(d)] the ATI energy cutoff has
been extended with respect to the single field excitation to
Emax<40Up. For the case of both clusters, thef=p /2 or
“sin” field superposition produces less asymmetry in the ATI
spectra, reflecting the fact that the maximum-minimum field
amplitudes are more symmetric in time.

The ATI spectra displayed in Figs. 2 and 3 were calcu-
lated with a TDKS approach using the KLI-SIC xc potential.
We have found that very similar spectra are obtained using
the LSD xc potential. It thus appears that, qualitatively, self-
interaction corrections have only very little effect on the
kinetic-energy spectra of the ionized electrons. This is not
too surprising, since SIC is most effective for localized or-
bitals, whereas the features of ATI are determined by con-
tinuum states.

The difference between LSD and KLI-SIC becomes more
apparent when we look at an integrated time-dependent
quantity such as the total time-dependent flux according to
Eq. (13). The results are summarized for Na4 and Na4

+ and
the two computational schemes in Fig. 4(KLI-SIC) and Fig.
5 (LSD). Each panel shows the left and right flux associated
with one-color ionization[Figs. 4(a) and 5(a)] and two-color
coherent field superposition for various phases[Figs.

FIG. 2. ATI spectra of a Na4 jellium cluster, calculated with
KLI-SIC. (a) Single-color excitation;(b)–(f) two-color excitations
with varying relative phasef, as indicated.

FIG. 3. Same as Fig. 2, for Na4
+.

FIG. 4. Left and right probability fluxesPbstd [Eq. (13)] for Na4

and Na4
+, calculated with KLI-SIC.
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4(b)–4(f) and 5(b)–5(f)]. The general patterns of ionization
of Na4 and Na4

+ follow similar trends in both KLI-SIC and
LSD, where, as expected, the flux associated with Na4

+ is
smaller, due to the larger binding energy of the valence elec-
trons caused by the positive charge state of the system.

However, some interesting features can be observed in the
details of the left-right asymmetries of the ionization fluxes.
For one-color ionization[Figs. 4(a) and 5(a)], the net flux
asymmetries are very small for Na4

+, but are appreciable for
Na4. This somewhat surprising observation reflects the nona-
diabatic excitation with ultrashort laser pulses, and appears
more pronounced in KLI-SIC than in LSD. In both cases, the
left signal is stronger, which can be explained by an asym-
metry induced during the switching-on of the laser pulse: the
first cycle starts off with an electric field in the positive di-
rection.

For the two-color excitations, the left-right asymmetry is
very pronounced in LSD. From Fig. 5 we see that maximum
asymmetry occurs atf=0 andp /4, and with reversed direc-
tion at f=p. At f=p /2, the asymmetry is only small. No-
tice that the asymmetry is again “counterintuitive”: for ex-
ample, at f=0, the flux is predominantly to the right,
whereas the net field is mainly positive, see Fig. 1(b). At f
=3p /4 and f=p, the field is more negative and electrons
now again follow counterintuitively, this time to the left, in
the direction of the negative field. We will discuss the physi-
cal reasons of this anomalous behavior below.

For Na4
+, the left-right asymmetry under two-color exci-

tations shows the same behavior in KLI-SIC(Fig. 4) as in
LSD (Fig. 5), although somewhat less pronounced. For Na4,
on the other hand, it appears to be almost absent in KLI-SIC
in some cases, such asf=0. This can be explained by a
competition between the “intuitive” asymmetry due to the

nonadiabatic excitation[see the discussion of Figs. 4(a) and
5(a) above] and the “counterintuitive” asymmetry, which in
these cases seem to have about equal magnitude and thus
cancel each other.

Next, we discuss harmonic generation. Figure 6 shows
HHG spectra for our spherical model of Na4 and Na4

+, cal-
culated with LSD(KLI-SIC gives very similar results). We
compare the cases of one-color and two-color excitation, the
latter with relative phasef=p /2. The quasiclassical model
for HHG predicts cutoffs atEmax= Ip+3.17Up, which corre-
sponds to harmonic orders 4 and 7 for Na4 and Na4

+, respec-
tively. The HHG spectra in Fig. 6 show hardly any indication
for plateaus beyond the third harmonic, but instead decrease
more or less continuously.

We note that the collective Mie plasmon energies[13,14]
for Na4 and Na4

+ are 2.54 and 3.02 eV, i.e., between the
seconds2v=2.32 eVd and third s3v=3.48 eVd harmonics.
In Fig. 6, the HHG cutoffs thus appear to be set by the Mie
plasmons, whose tails absorb most of the oscillator strength
beyond the third harmonic. The dominating nature of the Mie
plasmon in the linear and nonlinear dipole response of metal
clusters is well known[15] (plasmon energies can be ob-
tained as the field-free oscillation frequencies of the initially
displaced valence electron cloud). However, we point out
that collective plasmon effects are an unlikely cause for the
large extent of the ATI plateaus observed in Figs. 2 and 3. As
a check, we performed calculations for Na clusters with non-
interacting valence electrons and found ATI spectra with
very similar cutoffs.

We conclude this discussion with some remarks concern-
ing validity and limitations of the spherical jellium model.
As we have explained before, at or above room temperature
one should consider an average of the various possible ionic
configurations of the cluster. One might wonder whether the
resulting averaged ionic background is robust under the in-
fluence of strong laser fields. For the time scales of interest in
this paper, this is indeed the case. We study here electron
dynamics following excitation by 25-fs laser pulses, and
propagate up to 80 fs. This is very short compared to typical

FIG. 5. Same as Fig. 4, calculated with LSD.

FIG. 6. HHG spectra for Na4 and Na4
+, calculated with LSD,

for one- and two-color(phasef=p /2) excitations. The arrows in-
dicate the positions of the Mie plasmon energies.
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time scales for ionic dynamics(a few picoseconds) [15].
On the other hand, spherical averaging of ionic configu-

rations becomes less well-justified at lower temperatures,
and eventually one needs to consider the explicit ionic posi-
tions of the minimum conformations. To predict the signa-
tures of the transition from the high- to the low-temperature
regime in ATI spectra and fluxes thus requires the use of
pseudopotentials[37], which is beyond the scope of the
present approach. However, the pronounced asymmetry of
the ATI spectra is likely to persist even in the nonspherical
case, see the case of H2 and H2

+. Furthermore, the valence
electrons are delocalized not only in jellium, but also in a
real Na4 or Na4

+ molecule. Collective effects and power
broadening at high laser intensities will therefore still play an
important role, even in the low-temperature case.

V. CONCLUSION

We have presented ATI spectra for Na4 and Na4
+ clusters

in a two-color excitation scheme using a spherical jellium
model for core electrons and TDDFT for the valence elec-
trons. In both cases we observe strong phase dependence of
the asymmetries of the ionization yields reflected in the cal-
culated ATI spectra and probability fluxes passing through
the grid boundaries. The asymmetries are maximal for the
relative phase difference 0,f,p /2 between the two-color
(v and 2v) fields. In the one-color excitation, ATI energies
up to 30Up are obtained. In the two-color excitation scheme,
right and left electrons have cutoffs(maxima) in ATI ener-
gies at 40 and 20Up, respectively, suggesting a transfer of
energy of,20Up between the two directions. In the case of
previous calculations on one-electron systems[8,9] similar
asymmetries were found but the maximum ATI energy never
exceeded 3Up. This suggests that different ionization
mechanisms occur in the clusters.

The ionization asymmetries discovered in the one-
electron systems H and H2

+ [8,9] were found to be “coun-
terintuitive,” i.e., nonclassical, and were explained in terms
of quasistatic tunneling[20] through the field induced quasi-
static barrier at the peaks of the field amplitude. The asym-
metries calculated in the present paper also exhibit similar
“counterintuitive” behavior. Thus, as seen in Figs. 2(b), 2(c),
3(b), and 3(c), the highest energy electronss,40Upd are

mainly ionized to the right, in the direction of maximum
positive field, see Figs. 1(b) and 1(c), contrary to classical
response theory. In the clusters the asymmetry disappears
aroundf=3p /4, whereas in the one-electron systems the
asymmetry reverses aroundp /4, thus reflecting the multi-
electron character of the clusters.

The present TDDFT approach shows that the energetics of
the ionized electrons, as represented by the ATI spectra, Figs.
1 and 3, are similar for LSD and KLI-SIC. The main differ-
ence between the two methods is observed in the calculated
fluxes, Figs. 4 and 5, thus reflecting the difference in ioniza-
tion potentials by the two methods(Tables I and II). Our
calculations therefore confirm the persistence of counterin-
tuitive, i.e., nonclassical, ionization asymmetries when clus-
ters are exposed to coherent superpositions of short intense
laser pulses. The new finding is that this counterintuitive
asymmetric ionization results in unusually high-energy ATI
spectra, with a ratio of the left and right maximum energies
up to 2:1. At the same time, HHG spectra, calculated by the
same methods and laser conditions described above, show no
high energy plateaus but have cutoffs below the 3.17Up pre-
dicted by single electron recollision models[20].

This points to several fundamental differences between
atoms and metal clusters in their ionization dynamics under
short intense laser pulses. Valence electrons in metal clusters
are much more weakly bound, and are delocalized over the
entire ionic(or jellium) background, with a high density of
states. The electron dynamics thus shows pronounced collec-
tive or plasmon effects. As a consequence, multiphoton ion-
ization in clusters typically takes place at intensities 1 to 2
orders of magnitude lower than in atoms. The associated
Keldysh parameters are thus in the rangeg.1, which means
that ionization occurs in the multiphoton and not in the tun-
neling regime. This may explain why the quasistatic tunnel-
ing model is unable to account for the unusually large extent
of the ATI plateaus in metal clusters.
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