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Time-dependent density-functional theory in the adiabatic approximation has been very successful
for calculating excitation energies in molecular systems. This paper studies nonadiabatic effects for
excitation energies, using the current–density functional of Vignale and Kohn@Phys. Rev. Lett.77,
2037 ~1996!#. We derive a general analytic expression for nonadiabatic corrections to excitation
energies of finite systems and calculate singlets→s ands→p excitations of closed-shell atoms. The
approach works well fors→s excitations, giving a small improvement over the adiabatic
local-density approximation, but tends to overcorrects→p excitations. We find that the observed
problems with the nonadiabatic correction have two main sources:~1! the currents associated with
the s→p excitations are highly nonuniform and, in particular, change direction between atomic
shells,~2! the so-called exchange-correlation kernels of the homogeneous electron gas,f xc

L and f xc
T ,

are incompletely known, in particular in the high-density atomic core regions. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1756865#

I. INTRODUCTION

Time-dependent density-functional theory~TDDFT!1,2

has become a popular tool for calculating excitation
energies3–5 of complex molecular systems,6 including sys-
tems of biochemical interest7,8 ~see also Ref. 9 for an over-
view of recent applications!. Almost all present applications
of TDDFT employ the adiabatic approximation for time-
dependent exchange-correlation~xc! effects: in constructing
the xc potential at timet, all functional dependence of the
time-dependent density prior tot is ignored. In the linear-
response regime, this implies frequency-independent and real
xc kernels. The simplest of these is the adiabatic local-
density approximation~ALDA !.10

There have been several attempts to construct a TDDFT
approach beyond the ALDA. Gross and Kohn suggested us-
ing the frequency-dependent xc kernel of the uniform elec-
tron gas,11 but this was was shown to violate the harmonic
potential theorem.12 Vignale and Kohn~VK !13 showed that a
nonadiabatic local approximation requires the time-
dependent current as the basic variable, rather than the den-
sity. This formalism was later cast in a physically more trans-
parent form by Vignale, Ullrich, and Conti~VUC!,14 using
the language of hydrodynamics: nonadiabatic xc effects
manifest themselves as viscoelastic stresses in the electron
liquid. A detailed account of the VK/VUC functionals is
available in Ref. 15.

The first application of the VUC formalism was to cal-
culate linewidths of intersubband plasmons in semiconductor
quantum wells.16,17 These intersubband plasmons are collec-
tive electronic excitations with frequencies in the far-

infrared. In the absence of disorder and phonon scattering,
ALDA would give infinitely sharp plasmon lines, ignoring
damping due to electronic many-body effects. This effect is
included in the VUC formalism, with good quantitative
agreement with experimental linewidth data.17 We also men-
tion an application of the VUC formalism for Hooke’s atom
with a time-periodic force constant.18

Van Faassenet al. recently used the VUC formalism to
calculate static axial polarizabilities in molecular chains,19,20

which are greatly overestimated within the ALDA. For many
systems, a significant improvement over ALDA was
achieved, in excellent agreement withab initio quantum
chemical methods. On the other hand, no improvement was
obtained for hydrogen chains with alternating bond lengths,
which can be viewed as a model for conjugated polymers.

The VUC formalism is thus showing considerable prom-
ise for modeling nonadiabatic effects in applications of TD-
DFT, but there are still many open questions: For what sys-
tems can nonadiabatic effects be expected to be important,
and when is the VUC formalism applicable and successful?
What are the reasons for failures of the VUC formalism, and
what are the possible remedies?

The purpose of the present paper is twofold. We derive a
simplified procedure for calculating excitation energies from
current–TDDFT within the VUC approximation. This is an
extension of the so-called small-matrix approximation
~SMA!.5 The resulting analytic expression yields an intuitive
interpretation of nonadiabatic effects in terms of energy dis-
sipation in the viscous electron liquid.

We then test our formalism and calculate singlets→s
ands→p excitation energies in closed-shell atoms and ions.
Formally, VUC is justified for systems with slowly varying
densities and currents such as quantum wells and long mo-a!Electronic mail: ullrichc@umr.edu
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lecular chains, where it gives sensible results. However, to
test its usefulness for molecular calculations, one needs to
apply and analyze the VUC approximation in situations with
rapidly varying ground-state densities and current responses,
such as in atomic systems. We find that VUC breaks down
for certain atomics→p excitations, and our SMA analytic
expression allows us to perform a detailed diagnosis of the
problems.

We note that the SMA as well as its simplified version,
the so-called single-pole approximation,4 are justified for ex-
citations involving states that are energetically well separated
from the rest of the spectrum.5 This is the case for low-lying
atomic states, but is often not true in larger systems or in the
presence of near-degeneracies.21 In practice, full TDDFT cal-
culations of excitation energies beyond the SMA3 are fea-
sible even for large molecules.

This paper is organized as follows: Section II contains an
overview of linear current–density response theory, and a
derivation of an analytic expression for nonadiabatic correc-
tions to ALDA excitation energies. Numerical results, to-
gether with an analysis of the performance of the VUC func-
tional, are presented in Sec. III. We give our conclusions in
Sec. IV. We use Hartree atomic units (e5m5\51) unless
indicated otherwise.

II. FORMALISM

A. Linear current–density response
within and beyond the adiabatic approximation

We consider systems that are everywhere nonmagnetic,
such as closed-shell atoms or molecules, and we consider
only singlet excitations. The spin degree of freedom is there-
fore ignored. In TDDFT, the linear current–density response
j ~r ,v! to an external, frequency-dependent vector potential
aext(r ,v) is given by

j m~r ,v!5(
n
E d3r 8xmn~r ,r 8,v!@an

ext~r 8,v!

1an
H~r 8,v!1an

xc~r 8,v!#, ~1!

where m and n denote Cartesian coordinates. Equation~1!
features the noninteracting~Kohn–Sham! current–current
response tensorxmn , defined as

xmn~r ,r 8,v!5n0~r !d~r2r 8!dmn1Rmn~r ,r 8,v!. ~2!

n0 is the ground-state density, and the paramagnetic part of
the response tensor is

Rmn~r ,r 8,v!5
1

2 (
j ,k

`
f k2 f j

«k2« j1v1 ih

3@ck* ~r !¹mc j~r !2c j~r !¹mck* ~r !#

3@c j* ~r 8!¹n8ck~r 8!2ck~r 8!¹n8c j* ~r 8!#.

~3!

The noninteracting density–density response function

x~r ,r 8,v!52(
j ,k

`

~ f k2 f j !
ck* ~r !c j~r !ck~r 8!c j* ~r 8!

«k2« j1v1 ih
~4!

is related toxmn as follows:

x~r ,r 8,v!5
1

v2 (
mn

¹m¹n8xmn~r ,r 8,v!. ~5!

j m is calculated in Eq.~1! as the current–density response of
a noninteracting system to an effective vector potential. The
many-body effects enter through the linearized Hartree vec-
tor potential

an
H~r ,v!5

¹n

~ iv!2 E d3r 8
¹8• j ~r 8,v!

ur2r 8u
, ~6!

and through the xc vector potentialan
xc(r ,v). The simplest

approximation foran
xc is the ALDA, which is defined as

an
xc,ALDA~r ,v!5

¹n

~ iv!2 E d3r 8¹8• j ~r 8,v! f xc
ALDA ~r ,r 8!,

~7!

where

f xc
ALDA ~r ,r 8!5

d2exc

dn2 U
n5n0(r )

d~r2r 8! ~8!

is the frequency-independent ALDA xc kernel (exc is the xc
energy density of a homogeneous electron gas!. Combining
this with the integral kernel of the Hartree term~6!, we de-
fine

f Hxc
ALDA ~r ,r 8!5

1

ur2r 8u
1 f xc

ALDA ~r ,r 8!. ~9!

In contrast with the xc scalar potential, the xc vector poten-
tial admits a frequency-dependent local approximation.13–15

The resulting expression can be written as follows:

an
xc~r ,v!5an

xc,ALDA~r ,v!2
1

ivn0~r ! (k
¹ksnk

xc ~r ,v!.

~10!

Here,snk
xc is the xc viscoelastic stress tensor:

snk
xc 5hxc~¹nuk1¹kun2 2

3 ¹•udnk!1zxc¹•udnk , ~11!

where u(r ,v)5 j (r ,v)/n0(r ) is the velocity field, andhxc

andzxc are complex viscosity coefficients defined as

hxc~n,v!52
n2

iv
f xc

T ~n,v!, ~12!

zxc~n,v!52
n2

iv F f xc
L ~n,v!2

4

3
f xc

T ~n,v!2
d2exc

dn2 G . ~13!

f xc
L (n,v) and f xc

T (n,v) are frequency-dependent xc kernels
for the homogeneous electron gas, and are reasonably well
known.11,22,23In Eq. ~11!, hxc and zxc are both evaluated at
the localn0(r ).
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B. Excitation energies from the current–density
response: Small-matrix approximation

To determine the excitation energies of the system, we
search for those frequencies where there exist solutions of
Eq. ~1! with finite j ~r ,v! in the absenceof any external
perturbation.4 These solutions can be viewed as the ‘‘eigen-
modes’’ of the system. The current response equation then
becomes

j m~r ,v!5(
n
E d3r 8xmn~r ,r 8,v!an

Hxc~r 8,v!, ~14!

where

an
Hxc~r ,v!5

¹n

~ iv!2 E d3r 8¹8• j ~r 8,v! f Hxc
ALDA ~r ,r 8!

2
1

ivn0~r ! (k
¹ksnk

xc ~r ,v!. ~15!

Equations~14! and ~15! can in principle be solved numeri-
cally, for instance by generalizing Casida’s technique.3 In-
stead, we proceed to derive an approximation for the excita-
tion energy involving levels p ~occupied! and q
~unoccupied!, both of which are assumed to be
nondegenerate.24 The Kohn–Sham~KS! orbitals are taken to
be real. We approximate the current–current response tensor
as

xmn~r ,r 8,v!'
~ iv!2

2vpq
2 S 1

v1vpq
2

1

v2vpq
D

3Pm
pq~r !Pn

pq~r 8!, ~16!

wherevpq5«p2«q , and

Pm
pq~r !5cp~r !¹mcq~r !2cq~r !¹mcp~r !. ~17!

We will comment later on the motivation for this approxima-
tion. Equation~15! thus becomes

an
Hxc~r ,v!5

~ iv!2

vpq
2 S vpq

vpq
2 2v2D(

kj
S ¹n

~ iv!2 E d3r 8 f Hxc
ALDA ~r ,r 8!¹k8Pk

pq~r 8!E d3r 9Pj
pq~r 9!aj

Hxc~r 9,v!

2
¹k

ivn0~r ! H hxc~r ,v!F¹n

Pk
pq~r !

n0~r !
1¹k

Pn
pq~r !

n0~r !
G E d3r 8Pj

pq~r 8!aj
Hxc~r 8,v!

1Fzxc~r ,v!2
2

3
hxc~r ,v!Gdnk(

m
¹m

Pm
pq~r !

n0~r !
E d3r 8Pj

pq~r 8!aj
Hxc~r 8,v!J D . ~18!

Operating with(n*d3rPn
pq(r ) on Eq.~18! allows us to can-

cel H(v)5(n*d3rPn
pq(r )an

Hxc(r ,v), which leads to

15
~ iv!2

vpq
2 S vpq

vpq
2 2v2D(

kn
E d3rPn

pq~r !

3S ¹n

~ iv!2 E d3r 8 f Hxc
ALDA ~r ,r 8!¹k8Pk

pq~r 8!

2
¹k

ivn0~r ! H hxc~r ,v!@¹nuk
pq~r !1¹kun

pq~r !#

1Fzxc~r ,v!2
2

3
hxc~r ,v!Gdnk¹•um

pq~r !J D , ~19!

whereun
pq5Pn

pq/n0 is the velocity field associated with the
p→q excitation under study. We perform partial integra-
tions, and use

cp~r !¹2cq~r !2cq~r !¹2cp~r !52vpqcp~r !cq~r ! ~20!

in the ALDA part. After some further manipulations, this
leads to the following expression:

v25vpq
2 12vpqSpq2

iv

vpq
E d3r

3H hxc~r ,v!
1

2 (
nk

@¹nuk
pq~r !1¹kun

pq~r !#2

1Fzxc~r ,v!2
2

3
hxc~r ,v!G@¹•upq~r !#2J , ~21!

where

Spq52E d3r E d3r 8cp~r !cq~r !

3 f Hxc
ALDA ~r ,r 8!cp~r 8!cq~r 8!. ~22!

Equation~21! features a nonadiabatic correction to the well-
known ALDA–SMA,

vALDA
2 5vpq

2 12vpqSpq . ~23!

We can rewrite Eq.~21! as

v25vALDA
2 2

iv

vpq
(
nk

E d3rsxc,kn
pq ~r ,v!¹kun

pq~r !, ~24!

where sxc
pq is the xc stress tensor~11! with the exactun

replaced byun
pq . For the numerical analysis later on in Sec.

III B, we define the integral kernelRpq(r ,v) via
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E
0

`

drr 2Rpq~r ,v!5
iv

vpq
(
nk

E d3rsxc,kn
pq ~r ,v!¹kun

pq~r !.

~25!

The ALDA–SMA, Eq.~23!, is normally derived starting
from the density response equation and replacing the re-
sponse function~4! by

x~r ,r 8,v!'2cp~r !cq~r !cp~r 8!cq~r 8!

3S 1

v2vpq
2

1

v1vpq
D , ~26!

keeping only those terms which contain that Kohn–Sham
excitationvpq which we want to correct. Notice that relation
~5! only holds between theexact density and current re-
sponse functions, and should therefore not be used to derive
a corresponding expression forxmn from an approximatex,
or vice versa. Instead, our approximation forxmn , Eq. ~16!,
is a direct consequence of the requirement that it reduces to
the ALDA result ~23! in the appropriate limit.

In classical fluid dynamics,25 the average rate of energy
dissipation per unit time in a viscous fluid is

Ėdiss52(
nk

E d3rskn¹kun , ~27!

wheres is the viscoelastic stress tensor of the fluid. In de-
riving Eq. ~27!, the viscosity coefficientsh andj are usually
assumed to be real, positive constants. In our case, they are
frequency dependent and complex, so the rate of energy dis-
sipation ~27! has both real and imaginary part. Assuming
small nonadiabaticity, Eq.~24! becomes

v'vALDA 1
IĖdiss

2vALDA
2 i

RĖdiss

2vALDA
, ~28!

to lowest order inĖdiss/vALDA
2 . Thus, energy dissipation

from xc viscoelastic stresses leads to nonadiabatic correc-
tions tovALDA in the form of a frequency shift and a finite
linewidth.

A finite linewidth is an important physical property of
collective excitations in extended systems, such as intersub-
band plasmons in quantum wells.16,17 However, for bound-
to-bound transitions in finite systems the linewidth should be
exactly zero. This condition is difficult to satisfy for approxi-

mate xc functionals based on the electron gas, and we will
see that VUC leads to atomic excitation energies with finite
~but usually small! imaginary parts.

III. RESULTS AND DISCUSSION

A. Excitation energies of closed-shell atoms and ions

We now apply our formalism to calculate nonadiabatic
corrections to ALDA excitation energies for closed-shell at-
oms and ions. To evaluate Eq.~21!, one needs the viscoelas-
tic xc stress tensor expressed in spherical polar coordinates
(r ,u,f). In particular, see Ref. 25 for the incompressible
part ofsxc . Notice further that if the excitation frequencyv
acquires a finite imaginary part, analytic continuation of the
xc kernels into the complexv plane is required.26

In the following calculations, we have used the LDA
functional of Voskoet al.27 and the longitudinal and trans-
verse xc kernelsf xc

L (n,v) and f xc
T (n,v) in the parametriza-

tion of Qian and Vignale~QV!.23 The QV parametrization
requires as input the xc energy densityexc(n)27 and the xc
shear modulusmxc

28 of a homogeneous electron gas of den-
sity n. At present, the shear modulusmxc is only approxi-
mately known for a few values in the metallic density range
1,r s,5 ~see Table 1 in Ref. 23!. We will therefore present
later two different VUC results:~a! usingmxc50 in the QV
parametrization,~b! including mxc , but only in the range
1,r s,5 where it is known.

We have calculated excitation energies associated with
s→s and s→p singlet transitions of the closed-shell atoms
Be, Mg, Ca, Sr, and the positive ions B1, Al1, Sc1, Y1.
For the neutral atoms, only the lowest excitation energies
were calculated. For the positive ions, LDA yields more un-
occupied bound KS orbitals, which allows one to consider
some additional higher excitations. The results are given in
Tables I and II, showing experimental29,30and calculated val-
ues:vpq ~bare KS!, vALDA @ALDA, Eq. ~23!#, andv @VUC,
Eq. ~21!#.

We first discuss thes→s transitions in Table I. We find
in all cases that the VUC functional produces a small but
noticeable improvement upon the ALDA excitation energies.
The up-shift is around 1% for the lowest excitations of the
neutral atoms and the ions, but less than 0.1% for the higher
excitations of the ions. We also find that all excitation ener-

TABLE I. Excitation energies~in eV! for the lowests→s transitions in closed-shell atoms and ions.

Transition Expt. Bare KS ALDA VUC (mxc50) VUC ~finite mxc)

Be 2s→3s 6.779 5.564 5.622 5.66520.038i 5.66920.037i
B1 2s→3s 16.812 15.166 15.490 15.64920.143i 15.66420.127i
B1 2s→4s 20.821 17.760 17.826 17.83720.020i 17.84020.017i
Mg 3s→4s 5.394 4.719 4.777 4.82320.047i 4.82920.046i
Al1 3s→4s 11.822 11.182 11.409 11.53320.142i 11.55820.127i
Al1 3s→5s 15.048 13.395 13.442 13.45020.020i 13.45420.018i
Ca 4s→5s 4.131 3.765 3.814 3.85920.055i 3.86520.055i
Sc1 4s→5s 8.603 8.200 8.350 8.44220.139i 8.46920.128i
Sc1 4s→6s 10.065 10.095 10.10120.021i 10.10620.019i
Sr 5s→6s 3.793 3.495 3.539 3.58220.058i 3.58920.057i
Y1 5s→6s 7.609 7.313 7.436 7.51920.141i 7.54520.131i
Y1 5s→7s 9.047 9.072 9.07820.023i 9.08320.020i
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gies in VUC acquire an imaginary part, which is of the order
of the shift of the real part. The VUC results with and with-
out mxc are very close.

The situation is less straightforward for thes→p transi-
tions in Table II. We observe the general trend that the VUC
corrections to the ALDA excitation energies are much larger
than for thes→s transitions~real as well as imaginary parts!.
For the positive ions, we see that the effect of the VUC
functional becomes smaller for highers→p excitations. For
the lower excitations, there are pronounced differences for
the case with and withoutmxc .

VUC often corrects the ALDA excitation energies in the
right direction. Sometimes the performance is better with
mxc50 ~down-shift for Mg and Al1 3s→3p), and some-
times better with finitemxc ~up-shift for Be and B1). There
are cases of substantial improvement over the ALDA, in par-
ticular for Mg and Ca. On the other hand, for Be and B1

~finite mxc) we find that VUC drastically overcorrects the
ALDA. The calculation breaks down for Sr and Y1 resulting
in VUC down-shifts larger thanvALDA @the corresponding
numbers in Table II were obtained from Eq.~28!, since Eq.
~24! would yield imaginary excitation energies in this case#.

These trends are in qualitative agreement with a recent
study by van Faassen and de Boeij31 who implemented the
VUC functional in benchmark studies of various molecular
excitations. Their computational approach differs from ours
in that they solve numerically the full current response Eqs.
~14! and~15!, but they ignore the imaginary part of the VUC
functional. They find that VUC gives good results forp*
←p transitions, but in general fails forp* ←n transitions,
giving strong overestimates in many cases.

B. Analysis of the VUC functional
for atomic excitations

As we have seen in the previous section, going beyond
the ALDA works well for some excitations, but results in
overcorrections for others. In the following, we provide an
analysis of the situation. There are several potential issues
when applying our VUC approach to a calculation of atomic

or molecular excitation energies. The first issue concerns our
use of the SMA versus a full solution of the TDDFT response
equation. However, this is an unlikely source for the ob-
served VUC breakdown in some of thes→p excitations:
first of all, there are no such problems in the ALDA–SMA,
and second, a similar failure was observed by van Faassen
and de Boeij31 in their full calculations for molecules. Full
s→p ALDA excitation energies for Be, Mg, Ca, and Sr were
also calculated by Vasilievet al.,32 and all of them are lower
than the ALDA–SMA by about 0.14 eV.

Next, one needs to consider the range of validity of the
VUC functional itself for atomic excitations. In their original
derivation based on a weakly inhomogeneous electron gas,
VK13 gave the conditionsk,q!kF ,v/vF , wherekF andvF

are the local Fermi wave vector and velocity, respectively.k
is a measure for the degree of nonuniformity of the ground-
state density, and we can rewrite the associated condition as

u¹n0u
n0

!kF ,v/vF . ~29!

On the other hand,q measures the degree of spatial variation
of the external perturbation. For finite systems like atoms
and molecules, one needs to consider instead the spatial
variation of the current response, so that

U¹ j n

j n
U!kF ,v/vF . ~30!

With the velocity profile defined asu5 j /n0 , conditions~29!
and ~30! also imply

U¹un

un
U!kF ,v/vF . ~31!

Conditions ~30! and ~31! require that the gradients of the
current and velocity fields are small, in order for the hydro-
dynamic VUC approach to be applicable. This indicates a
largely collective motion of the electron liquid, with only
little internal compression.

It turns out that none of the conditions~29!–~31! is par-
ticularly well satisfied for atoms. Close to the nucleus, the

TABLE II. Excitation energies~in eV! for the lowests→p transitions in closed-shell atoms and ions. The
numbers in parentheses for Sr and Y1 were calculated using Eq.~28!.

Transition Expt. Bare KS ALDA VUC (mxc50) VUC ~finite mxc)

Be 2s→2p 5.277 3.498 5.077 4.27620.500i 6.23620.689i
B1 2s→2p 9.100 5.948 8.569 6.38421.094i 11.70921.955i
B1 2s→3p 17.867 16.346 16.232 16.25720.443i 16.56620.370i
B1 2s→4p 21.151 18.072 18.050 18.04520.105i 18.10720.086i
Mg 3s→3p 4.346 3.394 4.571 4.50920.093i 4.85520.090i
Al1 3s→3p 7.421 5.729 7.745 7.52720.183i 8.07120.173i
Al1 3s→4p 13.256 12.462 12.474 12.64820.128i 12.67920.113i
Al1 3s→5p 15.606 13.744 13.748 13.78320.034i 13.79020.030i
Ca 4s→4p 2.933 2.394 3.381 2.96220.063i 3.22220.063i
Sc1 4s→4p 5.453 3.841 5.371 4.53620.099i 4.91720.097i
Sc1 4s→5p 9.213 9.204 9.33420.121i 9.35620.111i
Sc1 4s→6p 10.353 10.352 10.37520.031i 10.38020.028i
Sr 5s→5p 2.690 2.215 3.105 (21.83620.064i ) (21.63020.060i )
Y1 5s→5p 5.526 3.505 4.850 (23.84220.098i ) (23.52220.088i )
Y1 5s→6p 8.279 8.275 7.91620.118i 7.93620.111i
Y1 5s→7p 9.313 9.313 9.21120.035i 9.21620.032i
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ground-state densities change quite rapidly, so thatu¹n0u/n0

is typically of the same order or larger than the localkF ~the
condition involving v/vF is easily satisfied in the inner
atomic region!.

The conditions involvingj n and un depend on the par-
ticular kind of excitation under consideration. In general,
condition ~30! is better satisfied for thes→s than for thes
→p transitions. This is illustrated in Fig. 1, where we plot
u¹r j r

pq/ j r
pqu andkF for the s→s ands→p excitations. In the

former case, the criterion~30! is quite well satisfied. How-
ever, for s→p excitations we find a sharp peak aroundr
51.8 a.u. ~Be! and r 50.4– 0.6 a.u.~Mg, Ca, Sr!, which
means that Eq.~30! is strongly violated. The reason for this
sharp peak is that the radial current associated withs→p
excitations reverses direction between atomic shells and in
doing so passes through zero, so thatu¹r j r

pq/ j r
pqu becomes

infinite. A similar behavior occurs for the polar currentsj u
pq

~which are absent for the strictly radials→s excitations!.
We now direct our attention to the fact that the VUC

functional requires the longitudinal and transverse xc kernels
f xc

L (n,v) and f xc
T (n,v) of the homogeneous electron gas as

input, which are only approximately known. We have recal-
culated the excitation energies in Tables I and II using the
parametrization of Nifosiet al.,22 and we find that for the

s→p excitations the results get slightly worse in the sense
that we obtain even stronger overestimates. The QV
parametrization,23 which satisfies exact constraints for
f xc

L (n,v) and f xc
T (n,v) in the low-frequency limits, seems to

give overall better results.
As discussed earlier, the QV parametrization relies in

part on the xc shear modulusmxc , which is available only for
few values of the Wigner–Seitz radiusr s between 1 and 5.
While this is normally sufficient to describe systems in the
metallic density range, atomic densities are much higher near
the nucleus, which means that the region ofr s;0.1 becomes
important. This is illustrated Fig. 2, which showsr s for Be,
Mg, Ca, and Sr. Our results in Tables I and II were calculated
setting mxc50 in those regions withr s,1, which is of
course a potential source for errors. It therefore remains a
very important task to develop parametrizations forf xc

L (n,v)
and f xc

T (n,v) that are accurate over the wide density range
occurring in atoms and molecules.

Indeed, our insufficient knowledge of the xc kernels is
another likely reason why the VUC functional performs pro-
gressively worse for heavier atoms and ions, for the case of
s→p excitations. To confirm this diagnosis, and to illustrate
the importance of a more accurate treatment of the high-
density regions, we plot in Figs. 3 and 4 the essential ingre-
dients of the nonadiabatic VUC correction formula for the
excitation energies, Eq.~24!.

Figure 3 shows the radial derivatives of the radial com-
ponent of the velocity field,u¹rur

pqu, associated with the low-
est s→s and s→p excitations. Derivatives of the velocity
field enter quadratically in Eq.~24!, weighted with the vis-
cosity coefficientshxc and zxc . One clearly sees that thes
→p transitions have much larger values ofu¹rur

pqu ~and in
addition, there are also components and derivatives alongu,
which are absent for thes→s transitions!. This suggests that
the large VUC frequency shifts for thes→p excitations arise
predominantly from contributions in the high-density region
close to the nucleus. This region has a much smaller weight
for the s→s excitations, because the velocity gradients are
much smaller.

Figure 4 shows the real part of the radial integrand of the
VUC correction,r 2Rpq(r ,v) @Eq. ~25!#, evaluated with finite
mxc and at vALDA . For the two types of excitation, very
different spatial regions contribute to the VUC correction:
the outer region (r .5 a.u.) fors→s, and the region close to

FIG. 1. Test of criterion~30! for Be, Mg, Ca, and Sr. Dashed lines: localkF .
Full and dotted lines:u¹r j r

pq/ j r
pqu for s→s ands→p excitations.

FIG. 2. LDA Wigner–Seitz radiusr s for Be ~long-dashed line!, Mg ~dotted
line!, Ca ~full line!, and Sr~dash-dotted line!.
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the nucleus fors→p ~notice the logarithmic scale!. The
broad hump for Be aroundr s51, which produces a positive
frequency shift, rapidly decreases and moves to the right for
the heavier atoms. The dominant contributions for thes→p
excitations in Ca and Sr, associated with frequency down-
shifts, take place forr s,1 ~see Fig. 2!. This again points out
the need for a more accurate parametrization off xc

L (n,v) and
f xc

T (n,v) in that region.

IV. CONCLUSION

The goal of this work was to gain deeper insight into the
nature of nonadiabatic effects beyond the ALDA in the cal-
culation of excitation energies with TDDFT. Such effects are
best described in the framework of linear current–density
response, using the linearized xc vector potential first derived
by VK13 and later recast in the language of hydrodynamics
by VUC.14 This approach has met with recent success in
calculating axial polarizabilities of molecular chains,19,20 but
appears to perform inconsistently for molecular excitations.31

Starting from the full current–density response equation,
we have derived a simplified approach for calculating VUC
excitation energies, which can be viewed as a generalization

of the so-called small-matrix approximation.5 This formalism
is appealing because if features an explicit and relatively
simple expression for the nonadiabatic VUC corrections on
top of the ALDA excitation energies. Furthermore, our ap-
proach allows for an intuitive physical interpretation for non-
adiabatic frequency shifts in terms of the average rate of
energy dissipation induced by the xc viscosity of the electron
liquid.

Our calculations of excitation energies for various
closed-shell atoms and ions show that the VUC approach
works for some excitations~namely,s→s), but has problems
for others (s→p). A detailed analysis identifies two likely
causes for the observed difficulties.

~1! The VUC functional is formally justified only if the
system under consideration has a slowly varying ground-
state density, and if the currents associated with a particular
excitation are also slowly varying on the scale of the local
kF . These conditions are often not too well satisfied in prac-
tice, and sometimes even severely violated. Of course, our
experience with the LDA in ground-state DFT shows that a
method may be very successful in practice even though it is
not very well formally justified. Thus, one cannot say with
certainty that VUC always breaks down if conditions~29!–
~31! are violated. However, our comparison ofs→s and s
→p excitations suggests that these criteria nevertheless pro-
vide some useful guidance, in particularly if the violation is
very strong~i.e., involving a singularity!.

~2! The VUC functional requires the complex,
frequency-dependent xc kernelsf xc

L and f xc
T of the homoge-

neous electron gas as input, which are only approximately
known. The last few years have witnessed steady progress in
constructing better parametrizations for the xc kernels, but

FIG. 3. Radial derivative of the radial component of the velocity field,
u¹rur

pqu, for the lowests→s ~dashed lines! ands→p ~full lines! excitations
of Be, Mg, Ca, and Sr.

FIG. 4. uRe(r2Rpq)u @Eq. ~25!# for the s→s and s→p transitions of Be
~long-dashed line!, Mg ~dotted line!, Ca~full line!, and Sr~dash-dotted line!.
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clearly more work is required. This is especially important in
the high-density region (r s,1), which often makes the larg-
est contribution to the nonadiabatic corrections.

Since the VUC functional is based on the frequency-
dependent xc kernel of the homogeneous electron gas, it pro-
duces excitation energies with small but finite imaginary
parts. The requirement that excitation energies of bound-to-
bound transitions in finite systems be real imposes an addi-
tional constraint on any approximate, frequency-dependent
xc vector potential, which will be the subject of future study.
We also mention that the VUC formalism in its full
implementation3,31 may produce oscillator strengths with
small imaginary parts~which should, however, satisfy the
f -sum rule since particle conservation is guaranteed!. One
can show that within the VUC–SMA of the present paper
one obtains the~real! Kohn–Sham oscillator strengths.

In summary, the VUC approach shows much promise for
the calculation of excitation energies for atomic and molecu-
lar systems, as well as for plasmon-like excitations in solids
and nanostructures. The specific question of the applicability
and of possible improvements of the VUC functional, and
the more general question of the importance and significance
of nonadiabatic effects in electron dynamics, merit further
study.
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