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Abstract. A density-matrix approach combined with time-dependent density-functional theory is used to calculate the
intersubband photoabsorption in a strongly driven, DC-biased GaAs/AlGaAs single quantum well. For certain frequencies
and intensities of the driving field, optical bistability is observed. Compared to a full time propagation of the density matrix,
the commonly used two-level rotating wave approximation becomes less and less accurate for increasing asymmetry.

Intersubband (ISB) transitions in semiconductor quan-
tum wells take place on a meV energy scale and are
therefore attractive for THz device applications [1]. Non-
linear ISB dynamics has attracted particular attention,
and many interesting effects have been studied: second-
and third-harmonic generation [2], intensity-dependent
saturation of photoabsorption [3, 4], directional con-
trol over photocurrents [5], generation of ultrashort THz
pulses [6], plasma instability [7], or optical bistability
[8, 9]. Inspired by the photoabsorption experiments by
Craig et al. [4], we have recently performed a theoretical
study of the optical bistability region in a strongly driven,
modulation n-doped GaAs/Al0�3Ga0�7As quantum well
[10]. We have demonstrated that ISB bistability can be
manipulated on a picosecond time scale by short THz
control pulses. This opens up new opportunities for ex-
perimental study of optical bistability, which in the long
run may lead to new THz applications such as high-speed
all-optical modulators and switches.

Most previous theoretical studies of nonlinear ISB dy-
namics were based on the semiconductor Bloch equa-
tions (SBE) in Hartree [11]–[13] or exchange-only [14]–
[16] approximation. These studies showed that the col-
lective ISB electron dynamics is strongly influenced
by depolarization and exchange-correlation (xc) many-
body effects. We account for these effects using time-
dependent density-functional theory, which has the ad-
vantage of formal and computational simplicity.

The present study deals with a popular simplification
of the ISB SBE: the 2-level rotating-wave approxima-
tion (RWA) [11]–[13], which was used by Za użny [11]
to derive analytical expressions for nonlinear ISB pho-
toabsorption. The 2-level RWA works well for symmet-
ric quantum wells, but we will demonstrate numerically
that it breaks down when the system becomes asymmet-
ric under the influence of DC electric fields.

The conduction subbands are described in effective-
mass approximation for GaAs, where m� � 0�067m and
e� � e�

�
, � 13, are the effective mass and charge.

The ground state is characterized by single-particle states
0
jq

��
�r� � A�1�2 eiq

��
r
�� 0

j �z�, with r�� and q�� in the x� y

plane. The envelope function for the jth subband 0
j �z�

follows self-consistently from a one-dimensional Kohn-
Sham equation [17], with the ground-state density

n�z� � 2
j�q

��

� 0
j �z��2 � F �Ejq

��
�� (1)

Here, E jq
��
� j � h2q2

���2m�, and j and F are the sub-

band and Fermi energy levels. We consider electronic
sheet densities Ns such that only the lowest subband is
occupied, in which case F � h2Ns�m�� 1.

Under the influence of THz driving fields, linearly po-
larized along z, the time-dependent states have the form

jq
��
�r� t� � A�1�2 eiq

��
r
��

j�z� t�, with initial condition

jq
��
�r� t0� �

0
jq

��
�r�. The time-dependent Hamiltonian

H�t��� h2

2m�

2

z2 �vqw�z��vdr�z� t��vH�z� t��vxc�z� t�

(2)
features vdr�z� t� � eFz f �t�sin� t� describing the driv-
ing field, with electric field amplitude F , frequency ,
and envelope f �t�. vqw�z� is the bare quantum well po-
tential, the Hartree potential vH follows from Poisson’s
equation, and we use the time-dependent local-density
approximation for vxc [10]. The time-dependent density
n�z� t� follows by substituting j�z� t� in Eq. (1).

To account for disorder or phonon scattering, we use a
density-matrix approach. We expand the first conduction
subband as 1�z� t� �

Nb
k�1

ck�t�
0
k �z�. The associated

Nb�Nb density matrix has elements kl�t� � c�k�t�cl�t�
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FIGURE 1. ISB photoabsorption for a 40 nm GaAs/AlGaAs
quantum well with electron density 6�4� 1010 cm�2 and DC
bias 0.1, 0.5, and 1.0 mV/nm, driven by THz fields with intensi-
ties as indicated. Lines: 2-level RWA [11]. Symbols: full 2-level
(circles) and 6-level (triangles) density-matrix propagation.

and initial condition kl�t0� � kl 1k. The time evolution
of follows from

ih
�t�
t

� �H�t�� �t���R � (3)

with the relaxation matrix Rkl � h� kl�t�� kl�t0���Tkl .
For simplicity, Tkl � T1 kl �T2�1� kl�, where T1 and T2
are phenomenological relaxation and decoherence times.

We consider a 40 nm GaAs/Al0�3Ga0�7As square quan-
tum well with Ns � 6�4� 1010 cm�2 [4], with 2� 1 �
8�72 meV and ISB plasmon frequency 9.91 meV at zero
bias. We use T1 � 40 ps and T2 � 3�1 ps, consistent with
recent values for similar systems [17]–[19]. In the fol-
lowing, we apply DC electric fields 0.1, 0.5, and 1.0
mV/nm, and we perform 2-level and 6-level density-
matrix calculations (Nb � 2�6). To describe ISB photoab-
sorption, we propagate Eq. (3) in the presence of THz
driving fields, switched on at t0 over a 5-cycle linear ramp
and then kept at constant intensity for several hundred ps.

The photoabsorption cross section (the dissipated power)
� � follows from the induced dipole moment [10].
Figure 1 shows results for the ISB photoabsorption,

comparing Za użny’s 2-level RWA [11] with our density
matrix calculations, for THz intensities 0.001, 10 and
30 W/cm2. At low intensities, � � has a Lorentzian
shape, and the RWA and full calculations agree very
well. The ISB plasmon peak Stark-shifts to higher fre-
quencies under DC bias [17, 18]. At higher intensities,
deviations from the Lorentzian lineshape are observed:
population transfer into higher levels reduces the depo-
larization shift, predominantly at the peak position. At
0.1 mV/nm and 30 W/cm2 this leads to bistability [10].

The 2-level RWA [11] and the full density-matrix cal-
culations are close for small asymmetries, but discrep-
ancies develop at increasing DC bias: the RWA tends
to exaggerate the shift and change of shape of the ab-
sorption peak. The reason is that the RWA ignores all
higher harmonics of in the induced density matrix, and
thus the coupling to the diagonal matrix elements of the
time-dependent potential, which are finite for asymmet-
ric wells. We also observe more pronounced deviations
between the 2-level and 6-level density-matrix calcula-
tions at larger asymmetries. A more complete analysis of
the breakdown of the RWA for asymmetric systems will
be presented in a forthcoming publication.
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