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In time-dependent density-functional theory, exchange and correlation (xc) beyond the adiabatic
approximation can be described by viscoelastic stresses in the electron liquid. In the time domain, the
resulting velocity-dependent xc vector potential has a memory containing short- and long-range compo-
nents, leading to decoherence and energy relaxation. We solve the associated time-dependent Kohn-Sham
equations, including the dependence on densities and currents at previous times, for the case of charge-
density oscillations in a quantum well. We illustrate xc memory effects, clarify the dissipation mechanism,
and extract intersubband relaxation rates for weak and strong excitations.
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Time-dependent density-functional theory (TDDFT) [1]
has become a popular tool for describing the dynamics
of many-electron systems. The exact time-dependent
exchange-correlation (xc) potential vxc�n��r; t� contains
information about the previous history of the system, in-
cluding its initial state [2]. However, almost all present
applications of TDDFT employ the adiabatic approxima-
tion for vxc�n��r; t�, ignoring all functional dependence on
past time-dependent densities n�r; t0�, t0 < t. The simplest
example is the adiabatic local-density approximation
(ALDA):

vALDAxc �r; t� �
d�xc� �n�
d �n

�������� �n�n�r;t�
; (1)

where �xc� �n� is the xc energy density of a homogeneous
electron gas of density �n. The neglect of retardation in
ALDA implies frequency-independent and real xc kernels
in linear response [3]. This approach has been widely used
for calculating molecular excitation energies [4,5].

There have been several attempts to go beyond the
ALDA [3,6–11]. Vignale and Kohn (VK) [6] showed that
a nonadiabatic local approximation requires the time-
dependent current j�r; t� as basic variable, rather than the
density n�r; t�. This formalism was later cast in a physi-
cally more transparent form using the language of hydro-
dynamics [7–11], where nonadiabatic xc effects appear as
viscoelastic stresses in the electron liquid.

To date, the VK formalism has been applied exclusively
in frequency-dependent linear response. The first applica-
tion was to calculate linewidths of intersubband (ISB)
plasmons in semiconductor quantum wells [12]. In the
absence of disorder and phonon scattering, ALDA gives
infinitely sharp plasmon lines. The VK formalism in-
cludes damping due to electronic many-body effects, in
good agreement with experimental linewidths [12]. Van
Faassen et al. [13] calculated static axial polarizabilities in
molecular chains, which are greatly overestimated with
ALDA. For many systems, VK led to an excellent agree-
ment with ab initio quantum chemical results. Other recent
studies applied the VK theory to calculate atomic and
molecular excitation energies [14,15].
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Beyond linear response, a wealth of interesting electron
dynamics can be explored using time-dependent Kohn-
Sham (TDKS) theory [1]. This Letter presents an analysis
of the VK formalism in the time domain, with application
to charge-density oscillations in quantum wells. For the
first time, TDKS equations with post-ALDA dependence
on densities and currents at previous times are solved
self-consistently. We will demonstrate that the retardation
caused by the memory and velocity dependence of the VK
xc potential has the striking consequence of introducing
decoherence and energy relaxation into TDKS theory.

Several time-dependent Schrödinger equations with dis-
sipation have been proposed in the literature [16–19],
using quantized classical frictional forces or other phe-
nomenological assumptions. By contrast, the VK xc po-
tential has a microscopic origin, and satisfies exact
conditions such as the harmonic potential theorem [6–8].

In the presence of external scalar and vector potentials,
v�r; t� and a�r; t�, the TDKS equation is

i@ _’j�r; t� �
�
1

2m

�
@
r

i
�
e
c
a�r; t� �

e
c
axc�r; t�

�
2

� v�r; t� � vH�r; t�
�
’j�r; t�; (2)

where vH is the Hartree potential and axc�r; t� is the xc
vector potential. A nonadiabatic, nonlinear xc vector po-
tential has been given in Ref. [7] to within second order in
the spatial derivatives as

e
c
_axc;i�r; t� � 	riv

ALDA
xc �r; t� �

X
j

rj�xc;ij�r; t�
n�r; t�

; (3)

where the viscoelastic stress tensor �xc is defined in terms
of the velocity field u�r; t� � j�r; t�=n�r; t�:

�xc;ij�r;t��
Z t

	1
dt0

�
��r;t;t0�

�
rjui�r;t0��riuj�r;t0�

	
2

3
r�u�r;t0��ij

�
���r;t;t0�r�u�r;t0��ij

	
:

(4)
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FIG. 1. Memory kernel Y�n; t	 t0� for rs � 3, using the QV
and GK parametrizations [3,20] for fLxc�!�. Inset: YGK for rs
between 1 and 15, indicating exponential memory loss, with a
longer-ranged memory for lower densities.
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The viscosity coefficients in Eq. (4) are defined as

��r; t; t0� �
Z d!

2�
~�� �n;!�e	i!�t	t

0�

�������� �n�n�r;t�
(5)

and similar for � , where

~��n;!� � 	
n2

i!
fTxc (6)

~��n;!� � 	
n2

i!

�
fLxc 	

4

3
fTxc 	

d2�xc
dn2

�
: (7)

fLxc and fTxc are the longitudinal and transverse frequency-
dependent xc kernels of a homogeneous electron gas of
density n [3,20]. The apparent ambiguity in Eq. (5)
whether the density should be evaluated at t or t0 is resolved
by noting that the difference involves higher gradient
corrections. The same argument applies to the difference
between the instantaneous position r of a fluid element and
its ‘‘retarded position’’ R [9].

In the following, we consider quantum well systems
where all spatial dependence is along the z direction
only. One can then transform the xc vector potential,
Eq. (3), into a scalar one: vxc�z; t� � vALDAxc �z; t� �
vMxc�z; t� (ALDA�M), with the memory part given by

vMxc�z; t� � 	
Z z

	1

dz0

n�z0; t�
rz0�xc;zz�z

0; t�: (8)

Assuming that the system has been in the ground state
(with zero velocity field) for t < 0, the zz component of the
xc stress tensor becomes

�xc;zz�z0; t� �
Z t

0
Y�n�z0; t�; t	 t0�rz0uz0 �z0; t0�dt0; (9)

where the memory kernel Y is given by

Y�n; t	 t0� �
4

3
��n; t	 t0� � ��n; t	 t0�: (10)

With the help of the Kramers-Kronig relations for fLxc we
can express the memory kernel as follows:

Y�n; t	 t0� �
4

3
�xc 	

n2

�

Z d!
!

=fLxc�!� cos!�t	 t0�;

(11)

with the xc shear modulus of the electron liquid [20],

�xc �
3n2

4

�
<fLxc�0� 	

d2�xc
dn2

�
: (12)

Figure 1 shows the memory kernel Y for rs � 3, evalu-
ated with the Gross-Kohn (GK) [3] and Qian-Vignale
(QV) [20] parametrizations for fLxc�!�. As shown in the
inset, YGK decreases exponentially over time. The falloff
is very rapid for the highest densities, and the memory
becomes more and more long-ranged for lower densities.
Comparing the GK and QV parametrizations, one finds a
similar overall behavior for different values of rs, except
08640
that YQV does not decrease monotonically with time but
passes through a negative minimum, and then approaches
the finite limit 4�xc=3 (�xc ! 0 for large rs [20], while
GK assume �xc � 0 throughout).

To illustrate and analyze the xc memory effects beyond
the ALDA, it is convenient to use a simple analytic model
density in Eq. (8) to evaluate vMxc�z; t�. The function

n�z; t� �
2Ns
L

cos2
�
�z
L

��
1� A sin!t sin

�
�z
L

��
(13)

mimics the noninteracting density of a hard-wall quantum
well, driven by an ac field of frequency !, where jAj � 1
to ensure that n�z; t� � 0. We take Ns � 1a	2

0 and L �
10a0 such that rs � 1 in the center, and we simulate a
weakly driven case with ! � 1 a:u: and A � 0:01.

Figure 2 shows a stroboscopic plot of vMxc�z; t� during the
4th cycle after switch-on of the time-dependent model
density. Four snapshots during the cycle are highlighted:
density passes through equilibrium, turns around at the
right wall, sloshes back, and hits the left wall. The reaction
of vMxc to these periodic density fluctuations is remarkable:
it opposes the instantaneous current flow by periodically
building up an S-like potential barrier in the central part of
the well, trying to slow down the sloshing motion of the
density. The large-amplitude fluctuations of vMxc close to the
edges, on the other hand, have little overall impact since
they occur in low-density regions.
vM;GKxc and vM;QVxc have similar magnitude and shape, and

are retarded with respect to the ALDA fluctuations. For a
purely dissipative, quarter-cycle (�=2) phase lag, the op-
posing potential barriers would be largest at the instants of
maximal current flow, and flat when the density hits the
wall and turns. Figure 2 shows that the phase lag of vM;GKxc

and vM;QVxc is slightly above �=2, due to the presence of
dissipative as well as elastic contributions. QV has lower
1-2
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FIG. 3. Dipole moment d�t� of a 40 nm GaAs=Al0:3Ga0:7As
quantum well with electron density 1� 1011 cm	2, initially in a
uniform electric field E1 � 0:01 mV=nm (top) and E2 �
0:5 mV=nm (bottom), which is abruptly switched off at t � 0.
Dashed lines: ALDA. Solid lines: ALDA�M (using QV).
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FIG. 2. Memory part of the xc potential [Eq. (8)], evaluated for
n�z; t� of Eq. (13) in GK and QV parametrization, shown in a
stroboscopic plot during the 4th cycle after switch-on. The heavy
lines indicate equidistant snapshots. Compared to the ALDA
fluctuations (bottom panel), vM;QVxc and vM;GKxc have a phase lag a
little over �=2. The density oscillation in the inset is drawn with
enhanced amplitude for clarity.
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potential barriers than GK, but causes a stronger damping
(see below) since its phase lag is a bit closer to �=2. This
points to a subtle balance between the short- and long-
range parts in the memory kernel YQV.

Inspired by recent time-domain measurements of ISB
oscillations in quantum wells [21,22], we now consider a
more realistic case and solve the TDKS equation for a
40 nm modulation-n-doped GaAs=Al0:3Ga0:7As quan-
tum well (for details see [12,23]), with effective mass
m� � 0:067 m, effective charge e� � e=








13

p
, well depth

257.6 meV, and electronic sheet density Ns � 1�
1011 cm	2. The initial condition, obtained from the static
KS equation in LDA, is the electronic ground state in the
presence of a uniform electric field E (‘‘tilted’’ quantum
well). At t � 0, the electric field is abruptly switched off,
which leaves the quantum well electrons in an excited state
08640
and triggers a collective charge-density oscillation. In the
linear regime, this oscillation represents the so-called ISB
plasmon, but in the following we will also explore the
nonlinear, strongly excited regime. Figure 3 shows the
dipole moment d�t� �

R
zn�z; t�dz versus time (1 a:u: �

61 fs in GaAs) for two initial electric fields, E1 � 0:01 and
E2 � 0:5 mV=nm, comparing ALDA with ALDA�M
(using QV; GK gives qualitatively similar results).

Linear-response theory [12] yields ISB plasmon fre-
quencies !ALDA � 0:9307, !GK � 0:9367, and !QV �

0:9346 a:u:, and line(half )widths !GK � 0:0061 and
!QV � 0:0080 a:u: (1 a:u: � 10:79 meV in GaAs). The
weak-field case, E1, is perfectly reproduced by d�t� �
d0 cos�!ALDAt� in ALDA and d�t� � d0 cos�!QVt�e

	!QVt

in ALDA�M. This shows that vMxc has dissipative and
reactive components, giving an exponential decay of the
dipole amplitude with characteristic time !	1

QV, and a small
blueshift of the ISB plasmon frequency.

The stronger field, E2, causes much richer dynamics. By
projecting the initial wave function on field-free KS states,
we find 10% and 0.1% initial occupation probabilities of
the second and third subband levels (see Fig. 4 inset).
Consequently, a more complex pattern emerges in the di-
pole oscillations. A spectral analysis shows that d�t� con-
tains higher harmonics of the lowest (1–2) ISB plasmon, as
well as sidebands resulting from a nonlinear coupling with
the dipole-forbidden 1–3 ISB excitation (the crosstalk
between the 1–2 and 1–3 modes is mediated through
modulations of the TDKS effective potential). Due to their
larger velocities, the higher-frequency spectral compo-
1-3
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FIG. 4. Dissipation of excitation energy E�t�, for the quantum
well of Fig. 3 and initial fields E between 0.01 and 1 mV=nm as
indicated, calculated with ALDA�M (using QV). Inset: initial
occupation probabilities of the first three subbands.
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nents in d�t� are more rapidly damped than the 1–2 ISB
plasmon, as seen in Fig. 3.

The decoherence of the dipole oscillations is accompa-
nied by energy dissipation. We define the excitation energy
per unit area, E�t�, as the expectation value of the ALDA
Hamiltonian with the ALDA�M wave function, minus
the ground-state energy. Figure 4 shows E�t� scaled by the
square of the initial electric field. Following the quadratic
Stark effect, E�t�=E2 is independent of E for small fields
& 0:01 mV=nm. For larger E, higher-order deviations
from the quadratic Stark effect emerge.

For small E, the excitation energy decreases as E�t� �
E�0�e	2!QVt (small steps are superimposed since the in-
stantaneous dissipation rate depends on the oscillating
velocity field of the ISB plasmon). For larger E, one notes
deviations from this simple behavior in the form of a more
rapid initial decay and the appearance of a larger step
structure. The origin for these steps is the nonlinear cou-
pling between the 1–2 and 1–3 ISB plasmon modes dis-
cussed above, which generates sidebands around !12

QV

whose frequency spacing !13
QV 	 2!12

QV increases with E

(0.27, 0.39, and 0.52 a.u. for 0.1, 0.5, and 1 mV=nm). As
long as these steps are not too pronounced, E�t� is well
described by a biexponential model, with an additional fast
channel accounting for the relaxation from higher sub-
bands. The associated relaxation rate varies between
0.017 and 0.021 a.u. for E between 0.1 and 0:3 mV=nm,
which is more than twice as fast as !QV.

Finally, we comment on the physical mechanism for
energy dissipation. In the linear regime, the VK theory
locally assumes a homogeneous electron gas subject to
small periodic modulations. The frequency-dependent xc
kernels then cause the decay of collective modes into
multiple particle-hole excitations, even if Landau damping
is forbidden [6–8]. In the time domain, one can view the
dynamics of an inhomogeneous electron distribution as a
superposition of local plasmon modes, each subject to
decay into multiple particle-hole excitations.
08640
In conclusion, we have given an explicit demonstration
of how memory effects introduce the element of intrinsic
decoherence and energy relaxation into TDKS theory. This
represents an alternative viewpoint to the density-matrix
approach [23], which, in its simplest form, describes dis-
sipation through phenomenological decoherence and re-
laxation times (known as T1 and T2 for 2-level systems). A
combination of the two approaches suggests itself as a
powerful TDDFT tool to describe nonlinear electron dy-
namics in the presence of intrinsic and extrinsic (impurities
and disorder) dissipation mechanisms.
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