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We formulate a time-dependent density-functional theory �TDDFT� in terms of the density matrix to study
ultrafast phenomena in semiconductor structures. A system of equations for the density-matrix components,
which is equivalent to the time-dependent Kohn-Sham equation, is derived. From this, we obtain a TDDFT
version of the semiconductor Bloch equations, where the electronic many-body effects are taken into account,
in principle, exactly. As an example, we study the optical response of a three-dimensional two-band insulator
to an external short-time pulsed laser field. We show that the optical absorption spectrum acquires excitonic
features when the exchange-correlation potential contains a 1 /q2 Coulomb singularity. A qualitative compari-
son of the TDDFT optical absorption spectra with the corresponding results obtained within the Hartree-Fock
approximation is made.
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I. INTRODUCTION

Due to the demands of modern electronics, semiconductor
devices are becoming smaller and faster, which means that
applied external fields cause strongly inhomogeneous and
nonequilibrium processes in such systems. A powerful ap-
proach to study the dynamical properties of potentially use-
ful materials and devices is to apply short �femto- or pico-
second� electric field pulses and to measure the response of
the system. Recent progress in ultrafast laser pulse experi-
mental techniques allows one to study the physical processes
in such systems with a very high precision �for a review see,
e.g., Refs. 1 and 2�. For example, with this technique, one
can measure nonequilibrium energy and momentum distribu-
tions or the dynamics of excited states. Therefore, it is nec-
essary to develop theoretical tools to describe these experi-
ments, as well as to understand ultrafast processes in small
semiconductor devices, in general.

The theoretical description of ultrafast phenomena trig-
gered by short-pulse laser fields is a complicated problem
due to several reasons. One of the most difficult tasks is to
take into account many-particle correlation effects properly.
An external pulsed field causes the following main effects in
the system: �i� direct electron photoemission, �ii� inverse
electron photoemission, and �iii� absorption processes. The
first two phenomena can be described in terms of free qua-
siparticles, which makes the problem relatively simple. A
proper description of optical absorption spectra is a much
more complicated task due to quasiparticle correlation ef-
fects. In particular, external laser pulses can create excitons
or coupled electron-hole pairs. The problem of correctly de-
scribing optical absorption spectra with excitonic features in
the case of applied short-time laser pulses is one of the great
challenges in condensed matter physics.

For small devices in the presence of a short-pulse field,
typical time scales are shorter than the Coulomb scattering
time �see, for example, Ref. 3�, which means that one cannot
treat the Coulomb interaction effects by using a simple Bolt-
zmann equation approach, where all the Coulomb effects are
“hidden” in a scattering time parameter, �. Similarly, the
semiconductor Bloch equation �SBE� approach,4 based on

the Hartree-Fock �HF� approximation, and other mean-field
methods have difficulties under these circumstances because
of the presence of strong fluctuations. In principle, Coulomb
interaction effects can be taken into account in a systematic
way by using nonequilibrium Green function techniques,5,6

similar to the equilibrium case. Unfortunately, this technique
becomes numerically very complicated in a strongly non-
equilibrium situation, since in this case, the Green functions
depend on two or more time arguments, which places high
demands on the computer memory size and makes the nu-
merical analysis very time consuming.1,7

In this paper, we discuss an alternative and potentially
very powerful approach to study these kinds of problems,
based on density-functional theory �DFT�,8 and, in particular,
its time-dependent generalization �TDDFT�.9–11 In this ap-
proach, numerical calculations should be much less time
consuming compared to the Green function method. TDDFT
has been successfully applied to describe molecular
excitations;12 however, this approach has some difficulties in
describing extended systems.13 It is known that the standard
local-density approximation �LDA� and generalized gradient
approximation �GGA� for the DFT exchange-correlation �xc�
potential cannot be applied to describe some effects beyond
the ground-state properties in extended systems, such as the
energy band gaps and excitonic effects in the optical absorp-
tion spectra. Therefore, in order to apply TDDFT to study
ultrafast processes and, in particular, to describe correctly the
optical absorption spectra in such systems, it is necessary to
find suitable xc potentials.

For weak and smooth external fields, such a potential can
be constructed by using the many-body Bethe-Salpeter equa-
tion �BSE� approach.14–16 In fact, in this case, TDDFT cal-
culations with an xc potential extracted from the BSE give
very good results for the optical absorption spectra in bulk
semiconductors. Unfortunately, the BSE-TDDFT approach
cannot be used directly to construct an xc potential for exci-
tation with strong short pulses, since, here, the linear re-
sponse theory cannot be applied, and the equations in time
domain depend on many time variables, which makes nu-
merical solution extremely difficult �similar to nonequilib-
rium Green’s functions�. Therefore, it would be extremely
useful to find a simple xc potential which will allow one to
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use TDDFT straightforwardly to study the optical response
of a system in the time domain. Kim and Görling17,18 have
shown in frequency-dependent linear response that such an
xc potential exists, namely, the time-dependent optimized ef-
fective potential in exact-exchange approximation �XX-
TDOEP�, which gives rise to optical absorption spectra with
pronounced excitonic features. We also mention that the XX-
TDOEP has recently been extended into the nonlinear, real-
time domain for simple quasi-one-dimensional quantum-well
systems.19

According to Kim and Görling,17,18 the main reason for
the successful description of excitons in XX-TDOEP is the
presence of a 1 /q2 Coulomb singularity in the xc kernel
fxc�r , t ,r� , t��= ��Vxc�r , t� /�n�r� , t���n=n0�r� in momentum rep-
resentation. However, in their calculations, it was crucial to
introduce a cutoff of the long-range Coulomb interaction to
prevent collapse of the spectra. This is essentially equivalent
to using a screened Coulomb interaction, as discussed in de-
tail by Bruneval et al.20

The purpose of this paper is twofold. �1� We will formu-
late a general TDDFT approach to study optical interband
excitations in terms of the Kohn-Sham density matrix. The
corresponding system of equations has the formal simplicity
of the SBEs, which allows one to solve it directly in the time
domain, contrary to the many-body Green function approach,
where it is difficult to treat the problem numerically. At the
same time, this approach has a great formal advantage in
comparison with the SBE formalism, since in TDDFT, the
Coulomb interaction effects are treated, in principle, exactly.
�2� We will show that by using simple exchange-only func-
tionals, the essence of excitonic features can be captured in a
relatively simple manner. As an example, we consider the
model of a three-dimensional two-band bulk insulator for
different local xc potentials and show that its optical absorp-
tion spectra contain qualitatively correct excitonic features,
whenever the xc energy kernel has a 1 /q2 singularity.

The paper is organized as follows. We introduce a general
TDDFT formalism in terms of the Kohn-Sham density ma-
trix in Sec. II. In Sec. III, we derive the TDDFT-SBE for-
malism and in Sec. IV, we apply this formalism to study the
optical absorption spectra for a three-dimensional two-band
model insulator with different xc potentials and compare the
results with HF. Conclusions are presented in Sec. V. Some
technical details are given in the Appendix. We use Hartree
atomic units �e2=m=�=1� throughout this paper.

II. GENERAL FORMALISM

The general DFT Hamiltonian for a many-electron system
in a solid �in the Born-Oppenheimer approximation� can be
written in the following form:

Ĥ = −
�2

2
+ Vnucl�r� + VH�n��r� + Vxc�n��r� , �1�

where Vnucl�r� is the nuclear potential for the electrons and

VH�n��r� =� dr�
n�r��

�r − r��
�2�

is the Hartree potential, where n�r� is the density of elec-
trons. All many-body effects beyond Hartree are described
by the scalar xc potential Vxc�n��r�. In particular, in the LDA
exchange-only case:

VxLDA�n�r�� = − � 3

�
�1/3

n1/3�r� . �3�

In order to describe the ground-state properties of the sys-
tem governed by the Hamiltonian in Eq. �1�, one solves the
stationary Kohn-Sham �KS� equation:

Ĥ�r��k
li�r� = �k

li�k
li�r� , �4�

and find bands li with spectra �k
li, where k is the crystal

momentum and li=vi ,ci�i=1,2 , . . . � are the labels for the
valence �v� and conduction �c� bands. The electron density
can be found self-consistently:

n�r� = 2	
i,k

��k
vi�r��2���F − �k

vi� , �5�

where �F is the Fermi energy and the summation is per-
formed over the occupied �valence� band states. Equation �5�
is valid in the case of zero temperature, which we consider in
this paper. Finite temperatures would require introduction of
the Fermi distribution function into Eq. �5�.

In order to study the nonequilibrium case when an exter-
nal electric field E�t� is switched on at time t= t0, the Hamil-
tonian in Eq. �1� must be modified in the standard way:
an external electromagnetic vector potential Aext�r , t� should
be added by making the usual substitution �→�
−�i /c�Aext�r , t� and by adding a scalar potential term
	ext�r , t� to the Hamiltonian. The electric field is connected
with 	ext�r , t� and Aext�r , t� in the following way:

E�r,t� = − �	ext�r,t� −
1

c

�Aext�r,t�
�t

. �6�

For an extended system, one needs to preserve the periodic-
ity; therefore, an external vector potential must be used. This
makes the problem technically more complicated in compari-
son to scalar potentials. However, it can be shown that in
situations when the characteristic field frequency is bigger
than the level spacing, one can work with scalar potentials
instead of vector potentials �see, for example, Ref. 21�.
Therefore, we shall consider the case when Aext�r , t�=0 and,
for simplicity, assume that the electric field is space indepen-
dent. Strictly speaking, for external homogeneous fields, one
needs to use current TDDFT in order to study the response of
the system.22,23 One then gets the macroscopic current,
which allows one to satisfy the periodicity condition. In this
paper, however, we use the usual approximation4 where the
external homogeneous electric field is described by the fol-
lowing scalar potential:

	ext�r,t� = − E�t�r . �7�
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Due to the presence of an electric field, the Hamiltonian is
explicitly time dependent. Moreover, the Hartree and xc po-
tential terms in the Hamiltonian also become time dependent.
Such a time-dependent problem is described by the time-
dependent KS equation:

i
�

�t

�r,t� = Ĥ�r,t�
�r,t� . �8�

In the adiabatic approximation, which we use in this paper,
the xc potentials can be formally obtained from the station-
ary potentials by simply evaluating them with the time-
dependent electron density, n�r�→n�r , t�. Equation �8� must
be solved self-consistently together with the corresponding
time-dependent particle number equation �Eq. �5��. Since the
initially occupied states are the valence states �k

vi�r�, de-
scribed by the band index vi and the momentum k, the evo-
lution of the system can be completely described by the time
evolution of these states, i.e., by finding the corresponding
time-dependent wave functions 
k

vi�r , t�, such that

k

vi�r , t0�=�k
vi�r�, from Eq. �8� and a time-dependent gener-

alization of Eq. �5�:

n�r,t� = 2	
i,k

�
k
vi�r,t��2���F − �k

vi� . �9�

In the following, we express the time-dependent wave
functions as linear combinations of the ground-state wave
functions:


k
vi�r,t� = 	

j,q
�ckq

vivj�t��q
vj�r� + ckq

vicj�t��q
cj�r�� , �10�

where ckq
vilj�t� are momentum and time-dependent complex

coefficients, which satisfy the following initial condition:

ckq
vilj�t0�=�kq�vilj

e−i�k
vit0. The time evolution of the system can

thus be found by determining the coefficients ckq
vivj�t� and

ckq
vicj�t� for Eq. �10�. However, in order to solve the problem,

it is more convenient to introduce the density matrix:

�k;qp
vi;lml̄n�t�=ckq

vilm�t��ckp
vil̄n�t��*, which is useful for defining

physical quantities such as occupation of the states and op-
tical transitions �see next section�. TDDFT in the density-
matrix representation is a method which allows one to solve
the problem, in principle, exactly, since it is an exact refor-
mulation of the time-dependent Kohn-Sham formalism. This
method was already introduced to study intersubband pro-
cesses in quantum wells24 and the electrical conductivity in
dissipative models of molecular devices25 �see also Ref. 26,
where a similar approach was discussed�. Here, we develop a
technique which can be applied in more general cases with a
continuous electron spectrum, including interband transitions
in solids.

The density matrix satisfies the following equation of mo-
tion:

i
�

�t
�k;qp

vi;lmln��t� = �H�t�,��k;qp
vi;lmln�

= 	
lj�,q�

�Hqq�
lmlj��t��k;q�p

vi;lj�ln��t� − �k;qq�
vi;lmlj��t�Hq�p

lj�ln��t�� , �11�

where the Hamiltonian matrix elements Hkq
lml̄n�t� are

Hkq
lmln��t� = �

cell

dr�k
lm*�r�H�t��q

ln��r�

= �k
lm�lmln�

�kq + E�t�dkq
lmln� + VHkq

lmln� �t� + Vxckq
lmln� �t� , �12�

and the space integration is performed over a unit cell. In Eq.
�12�,

dkq
lmln� = �

cell

dr�k
lm*�r�r�q

ln��r� �13�

are the dipole matrix elements,21 and VHkq
lmln� �t� and Vxckq

lmln� �t� are
the matrix elements for the difference between the time-
dependent and the ground-state �at t� t0� Hartree and xc po-
tentials:

VHkq
lmln� �t� = �

cell

dr�k
lm*�r�
VH�n��r,t� − VH�n��r,t0���q

ln��r� ,

�14�

and similar for Vxckq
lmln� �t�. The density matrix satisfies the fol-

lowing initial condition:

�k;qp
vi;lmln��t0� = �kq�kp�vilm

�viln�
, �15�

which corresponds to the situation where all states in the
valence bands are initially occupied. The particle density in
Eq. �9� has the following form in terms of the density-matrix
elements:

n�r,t� = 2 	
i,lm,ln�,k,q,p

�k,q,p
vi;lmln��t��p

ln�*�r��q
lm�r����F − �k

vi� .

�16�

The solution of the Liouville–von Neumann equation �Eq.
�11�� allows one to study the physical properties of the sys-
tem. In particular, one can find the dynamic polarization as

D�t� = 	
i,lm,ln�,k,q,p

�k;qp
vi;lmln��t�dpq

ln�lm. �17�

Below, we shall use this formalism to study the optical
response of a three-dimensional two-band insulator by solv-
ing Eqs. �11� and �15� using different xc potentials.

III. THREE-DIMENSIONAL TWO-BAND MODEL

In general, it is very difficult to find the solution of the
density-matrix equation �Eq. �11�� and one needs to make
some approximations. For simplicity, we shall consider opti-
cal absorption spectra of systems composed of one valence
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band and one conduction band: l1=v, l2=c, i.e., we assume
that the dominant optical transitions in the system take place
from the highest occupied valence band to the lowest con-
duction band. This widely used approximation is quite accu-
rate as long as the electric field is not too strong so that
multiphoton processes come into play and as long as the
laser pulse bandwidth remains much smaller than the band
gap, which is usually the case. In the present context, since
the main aim of this paper is a proof of principle that TDDFT
can describe excitonic effects in semiconductors triggered by
short laser pulses, a two-band model is sufficient. However,
for real systems, one may need to take into account the band
structure of the materials more accurately. Another simplifi-
cation comes from the fact that in the dipole approximation
for the external field, the optical transitions in the system
take place with zero photon momentum. The coefficients c
�defined in Eq. �10�� then depend on one momentum variable
only:

ckq
vv�t� = �kqck

vv�t�, ckq
vc �t� = �kqck

vc�t� . �18�

The problem is thus reduced to finding the density matrix of
rank 2, with elements �k

vv�t�, �k
vc�t�, �k

cv�t�, and �k
cc�t�, which

are functions of momentum and time. The elements �k
vv�t�

and �k
cc�t� describe the occupancy of the valence and conduc-

tion band states, and �k
vc�t� and �k

cv�t� describe the polariza-
tion in the system. These four elements are not independent:
particle number conservation requires �k

vv�t�+�k
cc�t�=1, and

by definition, �k
cv�t�=�k

vc*�t�.
From Eq. �11�, one then obtains the following system of

equations for two independent components �k
vv�t� and �k

vc�t�:

�

�t
�k

vv�t� = − 2 Im
�E�t�dk
cv + VHk

cv + Vxck
cv ��k

vc�t�� , �19�

�

�t
�k

vc�t� = − i��k
v − �k

c��k
vc�t� − i��k

cc�t� − �k
vv�t��E�t�dk

vc

− i��k
cc�t� − �k

vv�t���VHk
vc �t� + Vxck

vc �t��

− i�VHk
vv �t� + Vxck

vv �t� − VHk
cc �t� − Vxck

cc �t���k
vc�t� .

�20�

This system represents the TDDFT version of the well-
known SBEs,4 which are used to study the optical properties
of bulk semiconductors subject to external electric fields.
Equations �19� and �20� have a more general form, since,
here, the Coulomb interaction effects are taken into account,
in principle, exactly by means of the matrix elements of
Vxc�n��r , t�. As mentioned in the Introduction, this is impor-
tant in the case of small systems and sharp pulses, where the
characteristic times in the system are shorter than the Cou-
lomb scattering time and where it is difficult to treat the
Coulomb interaction effects properly within the SBE ap-
proach.

We shall study the solution of Eqs. �19� and �20� for the
simple but instructive example of a two-band model on a
cubic lattice. We assume that the solution of Eq. �4� with the
Hamiltonian in Eq. �1� gives the following simple disper-
sions:

�k
v = �0

v + 2tv�cos�a0kx� + cos�a0ky� + cos�a0kz�� , �21�

�k
c = �0

c − 2tc�cos�a0kx� + cos�a0ky� + cos�a0kz�� , �22�

where a0 is the lattice constant. For definiteness, we consider
a model of solid hydrogen and assume that the difference of
�0

c and �0
v can be set proportional to the first two hydrogen

energy levels E=−1 / �2aBn2�, n=1,2. In the last equation,
aB=�2 /me2=1 is the Bohr radius, which is used as the length
unit in this paper. It is assumed that the band parameters tv
and tc are much smaller than �0

c −�0
v, i.e., the bands are non-

overlapping.
The valence and conduction band wave functions in the

Bloch representation:

�k
v�r� = eikruk

v�r� , �23�

�k
c�r� = eikruk

c�r� , �24�

can be written as linear combinations of Wannier functions
wv�r� and wc�r�. In fact, one can use the following represen-
tation for spatially periodic Bloch functions uk

v�r� and uk
v�r�:

uk
v�r� = 	

L
eik�r−L�wv�r − L� , �25�

and similar for uk
c�r�, where L=a0�nx ,ny ,nz� are the unit cell

vectors.
Unfortunately, it is difficult to find the exact expressions

for the Wannier functions, and hence for the Bloch functions,
even for such a simple three-dimensional system. For sim-
plicity, we choose the Wannier functions to be equal to the
1s0 and 2p0 hydrogen wave functions:

wv�r� =
1

��
e−r, �26�

wc�r� =
1

4�2�
e−r/2z . �27�

This choice of the Wannier functions is an approximation,
since the orthogonality condition on different sites

drwl*�r−L1�wm�r−L2�=�lm�L1L2

is violated. However,
when the lattice parameter a0 is much larger than the Bohr
radius aB, the requirement of orthogonality is satisfied with a
very high precision, since the overlap between different sites
becomes negligible. In our calculations, we shall use the lat-
tice constant values a0=10 and 20.

In the next section, we shall study the solution of Eqs.
�19� and �20� when an external short-pulse field:

E�t� = E0e−t2/�2
�28�

with ��10–100 fs, is applied. We numerically propagate the
time evolution of the system starting at a large negative time
t0 ��t0�
��, which means that the pulse is a smooth continu-
ous function of time. The optical absorption spectrum A���
is then obtained as the real part of the ratio of the Fourier
transforms of the total polarization:
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P��� = i�4�/��b���0
c − �0

v��dcv�2a0
3� dk

�2��3 � dtei�t�k
vc�t� ,

�29�

and the pulse field E���:

A��� = − 2 Re�P���/E���� . �30�

IV. RESULTS AND DISCUSSION

A. Hartree-Fock

Before proceeding with the solution of the TDDFT equa-
tions �Eqs. �19� and �20�� for different xc potentials, we dis-
cuss the case of the Hartree-Fock potential for the two-band
model presented above. Hartree-Fock is the most widely
used approximation in the SBE theory4 for the study of op-
tical absorption spectra in bulk systems and heterostructures
subject to both smooth and pulsed external fields �see, for
example, Refs. 27 and 28�.

In the time-dependent Hartree-Fock approximation, the
total electron wave function satisfies the following equation:

i
�
k

v�r,t�
�t

= �−
�2

2
− E�t�r

+� dr�

	
q


q
v*�r�,t�
q

v�r�,t�

�r − r��
�
k

v�r,t�

−� dr�

	
q


q
v*�r�,t�
q

v�r,t�

�r − r��

k

v�r�,t� . �31�

Applying the analysis presented in Sec. II �see Eqs.
�10�–�16��, it is possible to show that Eq. �31� is equivalent
to the system of TDDFT density-matrix equations �Eqs. �19�
and �20�� with corresponding matrix elements for the Hartree
and Hartree-Fock potentials. Namely, the Hartree potential
matrix elements are

VHk
lm �t� = 	

n,s=v,c;q
IH

lmns�k,q��q
sn�t� , �32�

where

IH
lmns�k,q� =� dr� dr��k

l*�r��k
m�r�

�q
n*�r���q

s �r��
�r − r��

.

�33�

From Eqs. �32� and �33�, one can find the following approxi-
mate expression for the Hartree matrix elements:

VHk
lm �t� = �lmV�G → 0� + 	

n,s=v,c;q
Almnsa0

3� dq

�2��3�q
sn�t� + ¯ ,

�34�

where V�q� is the Fourier transform of the Coulomb potential
1 / �r−r��, G is a reciprocal lattice vector, and

Almns = 	
G�0

V�G� � drwl*�r�e−iGrwm�r�

�� dr�wn�r��eiGr�ws�r�� �35�

�details of a similar analysis can be found in Ref. 21�. In Eq.
�34�, the dots correspond to the terms proportional to inte-
grals over products of Wannier functions which reside on
different sites ��
drwl*�r�wm�r−L��. These terms are neg-
ligible due to a small overlap of the Wannier functions on
different sites �when aB�a0, see Eqs. �26� and �27��. More-
over, the presence of oscillating functions exp�−iGr� and
exp�iGr�� under the integrals in expression �35� for the co-
efficients Almns makes the terms proportional to Almns much
smaller than the first term in Eq. �34�. Therefore, the second
term in Eq. �34� can also be neglected. Substitution of the
remaining term �lmV�G→0� into Eqs. �19� and �20� simply
causes a constant shift of the overall potential and can be
ignored. Therefore, the Hartree term does not contribute to
the density-matrix equations �Eqs. �19� and �20�� in this ap-
proximation, and we shall ignore it from now on. It is pos-
sible to show21 that higher order terms in Eq. �34�, which we
neglect, lead to a small renormalization of the energy bands
and the electric field time dependence.

In a similar way, one can find an approximate expression
for the matrix elements of the nonlocal Fock exchange po-
tential:

VHFk
lm �t� = − a0

3� dq

�2��3V�k − q��q
lm�t� . �36�

Substitution of expression �36� into Eqs. �19� and �20� leads
to the following density-matrix equations in the Hartree-
Fock approximation:

�

�t
�k

vv�t� = − 2 Im��E�t�dk
cv + a0

3� dq

�2��3V�k

− q��q
cv�t���k

vc�t�� , �37�

�

�t
�k

vc�t� = − i��k
v − �k

c − a0
3� dq

�2��3V�k − q���q
vv�t�

− �q
cc�t����k

vc�t� − i��k
cc�t� − �k

vv�t���E�t�dk
vc

− a0
3� dq

�2��3V�k − q��q
vc�t�� . �38�

These equations are equivalent to the standard SBEs.4 The
solution of the system of Eqs. �37� and �38� in the presence
of an external field E�t� allows one to calculate the optical
polarization in the system by means of Eq. �30�.

In Fig. 1, we present the frequency dependence of the
optical absorption spectra in Hartree-Fock approximation
when an external short-time pulse of the form of Eq. �28� is
applied. The calculations are for different values of the va-
lence and conduction bandwidths Wv and Wc. We find pro-
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nounced excitonic peaks whose strength increases with de-
creasing valence bandwidth.

Here and in other figures, we introduce a screening pa-
rameter �=1 in the Coulomb kernel 1 / �q2+�2�. As we al-
ready discussed in the Introduction, screening is an important
feature in exchange-only calculations, since it prevents the
excitonic absorption spectrum from collapsing. Introducing a
screening �or cutoff� parameter significantly improves the
agreement with experiment.17,20

Furthermore, in order to reach a steady state more quickly,
we introduce decoherence terms ��1+��k� /���lm on the
right-hand side of the density-matrix equations �we choose
�=0.2 and �=7.5�. In this paper, in the numerical results for
the absorption spectra, we set the prefactor �8� /��b���0

c

−�0
v��dcv�2 to be equal to 1 �see Eqs. �29� and �30��. The

absorption spectra demonstrate pronounced excitonic fea-
tures with shape and peak positions that depend on the ex-
ternal field amplitude parameters.

The SBE approach was successfully applied to study op-
tical properties of different bulk materials in the case of weak
external fields, when linear response theory can be applied.
Recently, this formalism was used to study the nonlinear
response of various quantum-well systems27,28 and some
other effects, such as the sideband generation, Franz-Keldysh
effect, four-wave mixing, and higher correlation effects, in
particular, biexcitons.3

As discussed in the Introduction, the main shortcoming of
the SBE approach for small �nano�systems and short pulses
is that the Coulomb interaction effects are treated on a mean-
field theory level. All fluctuation effects are hidden in the
inverse scattering �decoherence� time parameters �k

lm, which
are usually introduced into the system of the SBEs �Eqs. �37�
and �38�� by means of the terms �k

lm�k
lm. However, the char-

acteristic times in this case are shorter than the Coulomb
scattering time; therefore, fluctuation effects are very impor-
tant and cannot be neglected. It is extremely difficult to in-
clude higher Coulomb terms in the SBEs in a controllable
way, since in this case, one needs to consider additional
equations for higher order correlation functions. The TDDFT

approach allows one to treat the Coulomb effects, in prin-
ciple, exactly, which should make this approach favorable in
the case of small systems and short-time pulses, provided
one can find a suitable xc functional to account for correla-
tions. In the following, we shall consider the optical proper-
ties of our two-band insulator by means of the TDDFT for-
malism developed in Sec. II. We limit ourselves here to
exchange-only functionals.

B. Adiabatic local density approximation and generalized
gradient approximation

The LDA is a standard approximation used in DFT to
study the ground-state properties of many materials. In the
time-dependent case, there exists a generalization of this
approximation—the adiabatic LDA �ALDA�. In the adiabatic
approximation, it is assumed that the xc potential at time t
depends on the time-dependent particle density n�r , t� at the
same time t only. In other words, all memory effects are
neglected, and the TDDFT equations remain local in time,
which allows one to solve the problem numerically relatively
easily. In ALDA, the x-only potential matrix elements have
the following momentum and time dependence:

VxLDAk
lm �t� = − � 3

�
�1/3�

cell

dr�k
l*�r�n1/3�r,t��k

m�r� . �39�

Our numerical analysis confirms the previous
observation1 that the optical absorption spectra do not dem-
onstrate excitonic features with the ALDA exchange poten-
tial in Eq. �39� at various values of the model parameters
�Fig. 2�. Actually, there is a very wide peak in the absorption
spectra at rather large values of the quasiparticle masses �or
very narrow energy bands�; however, this wide absorption
spectral weight cannot be related to a well-defined excitonic
energy value and, hence, it does not correspond to an exciton
formation. For details of the numerical calculations in ALDA
and other potentials used in this paper �see below�, we refer
the reader to the Appendix.

Similar results can be obtained for standard adiabatic
GGAs, for example, the van Leeuwen–Baerends29 �LB� po-
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FIG. 1. Hartree-Fock optical absorption spectra for parabolic
bands at different values of the valence bandwidth Wv �divided by
�2�. We consider external pulses of the form of Eq. �28�, with pulse
duration �=0.05 and electric field amplitude E0=2.0. The conduc-
tion bandwidth and the band gap are Wc=0.4�2 and �g=5. Fre-
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FIG. 2. Absorption spectra in ALDA at different values of the
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Wc=0.06. The other parameters are �g=0.375,a0=20,�=10,
�=0.0025, and �=7.5.
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tential. In the LB approximation, the xc potential has the
following form:

VLB�r,t� = VLDA�r,t� − �n1/3�r,t�
x2

1 + 3�x ln�x + �x2 + 1�
,

�40�

where x= ��n�r , t�� /n4/3�r , t� and � is a material-dependent
parameter. We choose this particular GGA, since it has an
important feature for finite systems, namely, a correct
��1 /r� asymptotic behavior at long distances �the ALDA xc
potential and most standard GGAs decrease exponentially at
r→��. The LB has been widely used in calculations of
highly excited states, dipole moments, and other density-
dependent properties. However, these desirable features do
not seem to carry over for extended systems: no excitonic
features are produced in our calculations.

Thus, we have seen that the standard adiabatic LDA
+GGA for the xc potentials does not allow one to reproduce
the excitonic features in the optical absorption spectra within
the TDDFT formalism developed above. One needs to go
beyond this approximation and find another class of simple
TDDFT potentials which demonstrate excitonic peaks in the
absorption spectra. As shown by Kim and Görling,17,18 such
potentials exist. The main requirement is a 1 /q2 singularity
in the exchange energy kernel. In the following, we shall
consider the optical absorption spectra for classes of func-
tionals where the underlying exchange energy has such a
singularity.

C. Slater and Krieger-Li-Iafrate potentials

As shown above, the ALDA cannot describe excitonic
effects in the optical absorption spectra. A fundamental
shortcoming of the LDA is that it contains a self-interaction
error. In order to reduce this error, several approximations for
self-interaction corrected �SIC� potentials were proposed.
Probably the most often used SIC potential is due to Perdew
and Zunger.30 However, in their scheme, one must deal with
orbital-dependent potentials, which makes the calculations
difficult, especially in the time-dependent case. To make a
computational procedure simpler, the method of the opti-
mized effective potential �OEP� was proposed �for overview
and references, see, for example, Ref. 31�. In this approach,
all the wave functions for different orbitals satisfy a
Schrödinger equation with a common, orbital-independent xc
potential vxc�

OEP�r�. A time-dependent generalization of the
OEP method �TDOEP� was given in Refs. 10 and 32. Unfor-
tunately, the full TDOEP is computationally very demanding
and has only recently been solved for simple quasi-one-
dimensional quantum-well systems.19

Krieger, et al.33 proposed a simplified method �the
Krieger-Li-Iafrate �KLI� scheme� for the OEP in the equilib-
rium exact-exchange case with vxc�

OEP�r� depending explicitly
on the orbital functions 	 j�. In the equilibrium case, the KLI
potential is defined by the following integral equation:

vxc�
KLI�r� = 	

j

nj��r�
n��r� �uxcj��r� +� d3r��	 j��r���2�vxc�

KLI�r��

− uxcj��r���� , �41�

where the orbital-dependent potentials uxcj��r� are obtained
from the xc energy Exc as follows:

uxcj��r� = �f j�	 j�
* �r��−1�Exc�
	 j���/�	 j��r� . �42�

This approximation was generalized to the time-dependent
case in the adiabatic approximation �	 j��r�→	 j��r , t�� in
Ref. 32.

In the linear regime, the optical absorption spectra of in-
sulators show excitonic peaks within linearized TDOEP
when an exchange energy kernel containing a 1 /q2 singular-
ity is used.17,18 However, it is much more difficult to use this
approach for short and strong pulses, when one needs to go
beyond linear response.

Here, we consider simplified adiabatic TDOEPs with a
Coulomb singularity in the exchange energy kernel, which
are approximate solutions of Eqs. �41� and �42�, and solve
the problem in the time domain by using the density-matrix
formalism developed in the previous sections. This approach
can be applied for external fields of arbitrary strength and
duration. However, as mentioned at the beginning of Sec. III,
the two-band approximation used in this paper is valid when
the field is not too strong.

We consider the time-dependent KLI and Slater
potentials,33 where the latter is obtained as an approximation
to KLI if one neglects the orbital-dependent constants on the
right-hand side of Eq. �41�:

vxc�
Slater�r,t� = 	

j

nj��r,t�
n��r,t�

uxcj��r,t� . �43�

We use the Fock exchange energy for our two-band model in
Eq. �42�. Optical absorption spectra obtained with the Slater
and KLI exchange potentials at different values of the model
parameters are presented in Figs. 3 and 4.
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As can be seen from these figures, the absorption spectra
demonstrate a significant excitonic peak. In particular, the
excitonic peak amplitude and the exciton binding energy de-
crease with increasing valence bandwidth in the Slater case
�Fig. 3�. This effect takes place because the increase of the
bandwidth is equivalent to a reduction of the effective mass
of electron-hole pairs. A similar behavior has been found in
HF �see Fig. 1�, and we have also observed it for KLI. Figure
4 shows the KLI absorption spectrum at different values of
the electric field. Here, the spectrum demonstrates nonlinear
effects when the pulse amplitude is large.

There is a significant quantitative difference between dif-
ferent xc potentials. In particular, we find that the excitonic
features become more pronounced as one passes from KLI to
Slater. The excitonic effects are defined mainly by the ratio
of the Coulomb interaction energy to the typical energy of
the free system. Since the valence and conduction bands and
the gap have the same order of magnitude in our case, we
can consider the ratio of the Coulomb energy to the valence
bandwidth. In the Slater approximation, the amplitude of the
Coulomb interaction energy appears to be bigger compared
to KLI. In fact, as follows from the Appendix, the Coulomb
interaction matrix elements are much larger in the Slater ap-
proximation, see Eqs. �A10�, �A12�, and �A13�. In the
strongly localized case considered in this paper, the Slater
results are closer to HF �Fig. 5�. For less localized electrons,
when a0�1 and the momentum dependence of the xc poten-
tial matrix elements cannot be neglected, we expect to get
closer agreement between Slater and KLI. Since KLI is a
much better approximation for the exact OEP compared to
the Slater potential, we expect the full XX-TDOEP absorp-
tion spectrum to be not too far from the KLI curve in Fig. 5.
Another important conclusion from our numerical results is a
decrease of the excitonic binding energy in Slater and KLI
compared to HF. In fact, it is known that the HF approxima-
tion gives an overestimated binding energy of excitons �for a
discussion, see Ref. 20�.

Thus, we have shown that TDDFT can describe excitonic
effects in the optical absorption spectra triggered by short-
time laser pulses, when the exchange energy kernel contains
a long-range Coulomb singularity.

V. CONCLUSIONS

In this paper, a density-matrix TDDFT formalism to de-
scribe ultrafast processes in semiconductor structures has
been developed. We have shown that the corresponding sys-
tem of equations for the matrix elements is a generalization
of the SBEs, since it allows one to take into account Cou-
lomb effects, in principle, exactly. This is very important in
the case of short pulses and when the system is very small,
such as for nanostructures. Another important advantage of
this formalism is that it can be applied directly in the time
domain, which makes the calculation much faster.

As an example, we studied the optical absorption spectra
of a two-band model bulk insulator. We first confirmed the
well-known fact that the standard adiabatic LDA and GGA
potentials do not produce excitonic peaks in the optical ab-
sorption spectra, not even if they have the correct asymptotic
−1 /r behavior for finite systems such as the LB potential.29

We then showed that the optical absorption spectra include
excitonic effects when the xc energy kernel contains a 1 /q2

singularity. These findings are consistent with other TDDFT
results for the optical response of insulators and
semiconductors.14–16

In the TDDFT context, it is important to notice that these
effects can be already described within an adiabatic approxi-
mation, i.e., without taking into account memory effects. The
exciton binding energy in our model within the Slater and
KLI approaches is much smaller compared to HF, which
often gives too large values for the binding energy. However,
to estimate the true quality of these approximate functionals,
one needs to carry out more realistic calculations and com-
pare with experimental absorption spectra and exciton bind-
ing energies. Such efforts are currently under way.

The density-matrix TDDFT approach presented in this pa-
per should be useful for studying ultrafast optical processes
in real semiconductor and polymer nanostructures. In par-
ticular, it gives access to a variety of nonlinear effects, which
will be the subject of future studies.
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APPENDIX: TECHNICAL DETAILS

In this appendix, we present some useful approximations
and technical details of the numerical solution of the TDDFT
equations �Eqs. �19� and �20��. Since, generally speaking,
evaluation of the xc matrix elements beyond LDA requires
six-dimensional spatial integration, it is necessary to make
some simplifications to speed up the calculations. We shall
use the Wannier and Bloch representation �Eqs. �23�–�27��
for the wave functions. In this case, the electron density can
be expressed in the following form:

n�r,t� = 2 	
l,m,L,q

�q
lm�t�e−iLqwm*�r − L�wl�r� . �A1�

Since the wave functions wm�r� and wl�r� are strongly local-
ized, the main contribution to expression �A1� is given by the
term L=0. Therefore, the electron density is approximately

n�r,t� � 2	
l,m

�tot
lm�t�wm*�r�wl�r� , �A2�

where

�tot
lm�t� = 	

q
�q

lm�t� . �A3�

It turns out that Eq. �A2� can be obtained by another
approximation for the wave functions, which follows from
Eqs. �23�–�25�. Namely,

�k
v�r� � eikruk0

v �r� , �A4�

�k
c�r� � eikruk0

c �r� . �A5�

We choose the wave vector k0 to be zero. This approxima-
tion is good when one considers excitation processes around
the direct gap. In this case,

�k
v�r� � eikrwv�r� , �A6�

�k
c�r� � eikrwc�r� . �A7�

By using this approximation, one gets the following expres-
sion for the time-dependent matrix elements of the LDA and
Slater potentials:

VLDAk
lm �t� � − � 3

�
�1/3�

cell

drwl*�r�wm�r�

��	
a,b

�tot
ba�t�wa*�r�wb�r��1/3

, �A8�

VSlaterk
lm �t� � − 	

n,s,n̄,s̄
	
p,q

V�p − q�Almnsn̄s̄�t��p
sn�t��q

s̄n̄�t� ,

�A9�

where

Almnsn̄s̄�t� � �
cell

dr
wl*�r�wm�r�wn*�r�ws�r�wn̄*�r�ws̄�r�

n�r,t�

�A10�

and the density n�r , t� is given in Eq. �A2�.
Finally, by using the Wannier wave functions in Eqs.

�25�–�27� and making an approximation similar to that used
in the derivation of Eqs. �A8� and �A9�, one gets the follow-
ing equation for the KLI matrix elements, which follows
from Eq. �41�:

VKLIk
lm �t� = VSlaterk

lm �t� + 	
n,s,n̄,s̄,p

B1
lmns�t��p

snVKLIp
n̄s̄ �t��p

s̄n̄

+ 	
n,n̄,s,s̄,p,q

B2p
lmnsn̄s̄�t�V�p − q��q

sn�p
s̄n̄, �A11�

where V̄Slaterp�t� is defined in Eqs. �A9� and �A10�, and

B1
lmns�t� = �

cell

dr
wl*�r�wm�r�wn*�r�ws�r�

n�r,t�
, �A12�

B2p
lmnsn̄s̄�t� � − �

cell

dr
wl*�r�wm�r�wn*�r�ws�r�wn̄*�r�ws̄�r�

n�r,t� 	
a,b

wa*�r�wb�r��p
ba

� − �
cell

dr
wl*�r�wm�r�wn*�r�ws�r�wn̄*�r�ws̄�r�wv*�r�wv�r�

n�r,t�
. �A13�

It is convenient to solve Eq. �A11� by iteration. Therefore,
we have reduced the six-dimensional space integral to a
three-dimensional one. For numerical integration, we divide
the space interval into 120 parts for every direction. In the

case of momentum integration, we divide the interval into
100 parts. As it was mentioned in Sec. IV A, we use a deco-
herence factor � in equations in order to reach a steady state
faster. We have found that the position of the excitonic peak
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does not depend on value of �, but its height decreases with
� increasing. Also, it was found that in the Slater and KLI
cases, the total absorption conservation law is satisfied with a
higher precision when � increases. Due to finite values of the
time interval and time step, absorption A��� acquires un-
physical finite weights at large values of ��−�g�. These
weights disappear when � increases.

For completeness, let us present approximate matrix ele-
ments for the Hartree-Fock potential derived within the same
approximation. These expressions are necessary to make a
comparison of the absorption spectra using different poten-
tials �Fig. 5�. The Hartree-Fock matrix elements have the
following structure:

VHFk
lm �t� � − 	

n,s
	
p,q

V�k − p�Almns�p
sn�t� , �A14�

where

Almns � �
cell

drwl*�r�wm�r�wn*�r�ws�r� . �A15�

Following the discussion in Sec. IV A, the quantities in Eq.
�A15� can be approximated as Almns��ls�mn. However, in
approximations �A4� and �A5�, these elements become

Almns � �mnIm�
cell

drwl*�r�ws�r� � �mn�lsIm, �A16�

where Im ,m=v ,c, is the main contribution of the function
�wm�r��2 to the integral in Eq. �A15�. Its value can be chosen
to be equal to the maximum value of �wm�r��2, i.e., 1 /� for
the valence band function and 1 / �16�e2� for the conduction
band function. In the last case, there is an additional factor
1 /2, which comes from the azimuthal angle integration. The
factor � /6 must be added in Eq. �A15�, since in Slater and
KLI, there is an additional momentum integration over the
Brillouin zone, and the integration is performed over a
sphere of the radius � instead of the cubic Brillouin zone.

The most important property of expressions �A8�, �A9�,
and �A11� is the fact that they are momentum independent.
Therefore, as follows from Eqs. �19� and �20�, the matrix
elements �q

ml�t� are functions of the energy:

�k =
1

3
�cos kx + cos ky + cos kz� . �A17�

In order to reduce the dimensionality of the integrals, it is
convenient to introduce the corresponding three-dimensional
density of states:

D��� =� d3p

�2��3��� − �1/3��cos qx + cos qy + cos qz��

=
3

�3�
0

�

dpx�
0

�

dpy
��1 − �3� − cos px − cos py�2�
�1 − �3� − cos px − cos py�2

,

�A18�

where the energy � changes from −1 to 1. The energy depen-
dence of the density of states is shown in Fig. 6.

Since the xc matrix elements depend on integrals which
have the structure

� d3p

�2��3 � d3q

�2��3V�p − q�F��p
lm,�q

ns� , �A19�

it is also convenient to introduce a two-energy density of
states:

D2��, �̄� =� d3p

�2��3 � d3q

�2��3��� − �1/3��cos px + cos py

+ cos pz�����̄ − �1/3��cos qx + cos qy + cos qz��V�p

− q� . �A20�

Performing the integration over pz and qz in Eq. �A20�, one
finds

D2��, �̄� = � 3

�
�2� d2p�

�2��2 � d2q�

�2��2

��1 − x2�
�1 + � − x2

��1 − y2�
�1 + � − y2

�
1

�p� − q��2 + �cos−1 x − cos−1 y�2 + 1/�2 , �A21�

where x=3�−cos px−cos py, y=3�̄−cos qx−cos qy, and p�

= �px , py ,0�. In Eq. �A21�, we have introduced “screening”
parameters � and �, since in the three-dimensional case, the
function D2�� , �̄� has a logarithmic singularity at �= �̄. In
fact, it is possible to show analytically that in the case of a
square dispersion, D2��→ �̄�� ln�1 / ���−��̄ � �. We apply this
approximation in the LDA case, see Fig. 2. In other figures,
we use the parabolic band approximation for the sake of
simplicity. This approximation gives results close to those
obtained by using the densities of states �Eqs. �A18� and
�A21��, when one uses a decoherence factor with a momen-
tum cutoff �see Sec. IV A�. In fact, in this case, low momenta
give a dominant contribution to the absorption processes.
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FIG. 6. The three-dimensional density of states �Eq. �A18�� as a
function of energy.
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