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Disclination unbinding transition in quantum Hall liquid crystals
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We derive the long-wavelength elastic theory for the quantum Hall smectic state starting from the Hartree-
Fock approximation. Dislocations in this state lead to an effective nematic model forT.0, which undergoes
a disclination unbinding transition from a phase with algebraic orientational order into an isotropic phase. We
obtain transition temperatures that are in qualitative agreement with recent experiments that have observed
large anisotropies of the longitudinal resistivities in half-filled Landau levels, lending credence to the liquid
crystal interpretation of experiments.
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Recent experiments1–3 in high-mobility two-dimensional
electron systems~2DES! have revealed remarkable phenom
ena in the transitional regions between the different plat
of the Hall conductance. In particular, striking anisotrop
and nonlinearities in the magnetotransport were observed
Landau level~LL ! filling factors nearn5n11/2, for n>4,
corresponding to partially filled LL indicesL>2. This an-
isotropy tends to align with the crystalline axes of t
sample, but can be reoriented by the application of in-pl
magnetic fields,4,5 and resistance ratios as high asRxx /Ryy

;3500 have been observed.6 This anisotropic behavior ha
been attributed to the formation of a striped phase. A un
rectional charge density wave~UCDW! had been predicted
several years ago7 for nearly-half-filled high LL’s; exact di-
agonalizations for systems of up to 12 electrons8 corroborate
this picture forL>2, and many experimental results can
qualitatively understood under the assumption of a UCD
The presence of stripes has already been directly observ
a large class of low-dimensional, strongly correlated el
tronic systems,9 and the present experimental evidence
quantum Hall devices is compelling, even if still somewh
circumstantial.10

Due to the similarities of the UCDW state with a classic
smectic liquid crystal, these states have been dubbedquan-
tum Hall smecticsby Fradkin and Kivelson.11,12 In two di-
mensions thermal fluctuations destroy the positional orde13

but the system should still exhibit anisotropic transport
long as there is some remnant of orientational order~alge-
braic order in thequantum Hall nematic!.14 As the tempera-
ture is increased, the algebraic orientational order will dis
pear in a Kosterlitz-Thouless~KT! disclination-unbinding
transition.15

To study this process we have mapped the interac
electron system~in the Hartree-Fock approximation! onto a
classical smectic~the UCDW!. We then consider the role o
thermal fluctuations~phonons and dislocations! in reducing
the order from smectic to nematic at larger distances. W
out the use of any fitting parameters, and using only exp
mentally accessible values for the electron density and
width of the 2DES, we are able to estimate values for
disclination-unbinding transition temperature, which are
qualitative agreement with the transport measurements.
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(I) Hartree-Fock approximation for the charge-densit
wave state. In order to study the energetics of a charge de
sity wave~CDW! in the 2DES we closely follow the strateg
developed in Refs. 16–18, and use the Hartree-Fock~HF!
approximation, which corresponds to the assumption that
electronic state can be described as a Slater determina
single-electron states. In the Landau gauge,A(r )5(0,Bx,0),
and the eigenstates of the noninteracting problem are

c isnx0
~r !5

z i~z!eix0y/ l b
2
Hn„~x2x0!/ l b…e

2(x2x0)2/2l b
2

p1/4~2nn! l bLy!1/2
, ~1!

wherei, s, n, andx0 indicate the electric subband index~due
to the confinement in thez direction!, spin index, LL index,
and guiding center, respectively;l b5(\/eB)1/2 is the mag-
netic length,Ly is the length of the system in they direction,
andHn are Hermite polynomials.

Since the electric subband splitting is very large~about
9.8 meV in the sample of Ref. 1!, in what follows we con-
sider only states withi 50. The Coulomb interaction be
tween the basis states above can be replaced by the effe
interaction16–18

Vx1 ,x2

n1 ,n2~qx ,qy!5
4pe2

k E dqz

uMx1 ,x2

n1 ,n2~q!u2

q2
, ~2!

where k is the dielectric constant of the semiconducto
(;13 in GaAs/AlxGa12xAs), with the matrix element

Mx1 ,x2

n1 ,n2~q!5E d3xeiq•rc0sn1x1
* ~r !c0sn2x2

~r !, ~3!

which may be expressed in terms of associated Lagu
polynomials.16–18Since the anisotropic states occur for mo
erately weak magnetic fields, the effect of a CDW on t
valence LL is to polarize the fully occupied LL’s below. Th
polarization may be accounted for with an effective dielect
constante(q), which can be calculated in the random pha
approximation17–19 ~RPA!. This effective interaction greatly
simplifies the calculation, as we only need to consider sta
within the valence LL for the determination of CDW ene
gies.
©2001 The American Physical Society12-1
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In the absence of LL mixing, the state of the system
uniquely specified by the particle density function.16,20 The
energy per electron in a CDW state at a fractional fillingn*
is given by21

E5
1

2n*
(

j
U~Gj !uD~Gj !u2, ~4!

where D(Gj ) is the Fourier coefficient of the occupatio
number at the reciprocal lattice vectorGj and the kernel
U(q)5H(q)1X(q) with the direct and exchange contribu
tions

H~q!5
1

2p l b
2e~q!

Vx1 ,x11 l
b
2qy

n,n
~q!, ~5!

X~q!52E d2p

~2p!2e~p!
ei (pxqy2pyqx) l b

2
Vx1 ,x11 l

b
2py

n,n
~p!.

~6!

In the UCDW state, we haveGj5exG1 j with j an integer,
and

D~Gj !5
sin~n* p j !

p j
, ~7!

whereG152p/a, with a the period of the UCDW. Inserting
this into Eq.~4! we findEUCDW(G1), the average energy pe
electron in the UCDW~see Fig. 1!. The optimal UCDW
corresponds to the minimumEUCDW, and is observed ata

FIG. 1. Dependence of the average energy per electron
EUCDW for various filling factors of Ref. 1 (ne52.67
31011 cm22,zrms558.3 Å).
11531
s

.Rc.2.84l bA2L11 ~in general agreement with Ref. 7, eve
though we are far fromL→`), where each electron gain
one to a few degrees; see Table I. Since the anisotro
isotropic transition is observed at temperatures much sma
than this, it is clear that the observed transition is not rela
to the formation of the stripes but, as we shall see, to
unbinding of topological defects in the stripes.

(II) Low-energy excitations of the UCDW. Here we con-
sider low-energy states that correspond to long-wavelen
fluctuations of the UCDW. We take care to construct mod
lations of the stripes that do not accumulate charge over la
distances since this would significantly increase the Coulo
energy of the system. These modulations add extra ‘‘Bra
peaks’’ to the density functionD(G) ~see Fig. 2!, and of the
many modulations one can devise, very few avoid add
significant peaks far from whereU(G) is near its
minimum.22 These can be described by a distortion in t
position of the UCDW stripe edges of the form

u~x,y!5a cos~qxx!cos~qyy!, ~8!

wherea,qx ,qy are the amplitude and wave-vector comp
nents of the modulation, respectively. Longitudinal (qy50)
and transverse (qx50) modulations are illustrated in Fig. 2

te

FIG. 2. Two characteristic examples of low-energy perturbatio
of the UCDW. Top: thelongitudinal modulation. Bottom: thetrans-
verse modulation. On each panel, the right-hand side shows
Bragg peaks ofD(G) in reciprocal space.G1 is the wave vector of
the UCDW, andqx ,qy are the wave vectors of the modulation. S
Eqs.~8!–~10!.
TABLE I. UCDW: optimal wave vectorG1, period a, energy gain per electronEUCDW and elastic
constantsB andK. The calculations were performed for the realization of Ref. 1.

n B(T) l b(Å) G1l b a(Å) EUCDW (K) B (mK/Å 2) K (mK)

9/2 2.46 164 0.983 1048 -3.603 25.5 189
11/2 2.02 181 0.978 1163 -2.830 15.7 144
13/2 1.70 197 0.842 1470 -2.234 13.0 192
15/2 1.48 211 0.839 1580 -1.864 9.07 158
17/2 1.30 225 0.746 1895 -1.549 7.58 196
19/2 1.16 239 0.744 2018 -1.332 5.66 167
2-2



th

n

e
Th

f

-

m-

of
m
d
or-

nt
an

.
s

t
r

-

k

c

that

l-
ac-

DISCLINATION UNBINDING TRANSITION IN . . . PHYSICAL REVIEW B 64 115312
To determine the energy of this excited state toO(a2), we
need to retain the following peaks:

D@exG1 j #5
sin~n* p j !

p j S 12
G1

2 j 2a2

8 D , ~9!

D@ex~G1 j 6qx!6eyqy#52
sin~n* p j !

p j

G1 j a

4
, ~10!

wherej is an integer. The energy per electron, relative to
optimal UCDW is then given by

DE5
G1

2a2

16p2n* (
j 52`

`

sin2~n* p j !@U„A~G1 j 1qx!
21qy

2
…

1U„A~G1 j 2qx!
21qy

2
…22U~G1 j !#. ~11!

Keeping terms up toO(qx
4 ,qy

4 ,qx
2qy

2), the energyper unit
area is

DE5
a2

8
@Bqx

21Kqy
41K8qx

2qy
21K9qx

4#, ~12!

with the elastic coefficients given by

B5
n*

2p l b
2

G1
2]2EUCDW

]G1
2

, ~13!

K5
1

16p3l b
2 (

j 52`

`
sin2~pn* j !

j 2 FU9~G1 j !2
U8~G1 j !

G1 j G ,
~14!

K85
G1

4p3l b
2 (

j 52`

`
sin2~pn* j !

j FU-~G1 j !

2
2

U9~G1 j !

G1 j

1
U8~G1 j !

G1
2 j 2 G , ~15!

K95
G1

2

48p3l b
2 (

j 52`

`

sin2~pn* j !U99~G1 j !. ~16!

It is easy to see from energetics above@Eq. ~12!# that the
low-energy perturbations of a UCDW correspond one-to-o
to those of a smectic liquid crystal:14

Esm5
1

2E d2r $@B~]xu!21K~]y
2u!2#

1@K8~]x]yu!21K9~]x
2u!2#%. ~17!

Results for the elastic moduliB andK are presented in Tabl
I for parameters relevant to the sample used in Ref. 1.
terms between the second set of brackets in Eq.~17! are not
expected to be relevant since they only become large
momenta near the edge of the Brillouin zone~where the va-
lidity of the elastic theory is doubtful!. We now use the en
ergy functionalEsm ~without the terms involvingK8 andK9)
for all further analysis of the quantum Hall liquid crystal.
11531
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(III) Effects of thermal fluctuations: from smectics to ne
atics. The energy functional for a smectic@Eq. ~17!# has been
extensively studied. We follow closely the formulation
Toner and Nelson.14 Since the dimensionality of the syste
(d52) is one below the lower critical dimension for layere
materials, phonon fluctuations readily destroy positional
der for T.0 ~the Landau-Peierls argument!, while preserv-
ing order in the layer orientation. However, this argume
omits dislocations, which have finite energy; their energy c
be estimated as22

ED5
Ba2

4p
@A2qcl1121#, ~18!

wherel25K/B and qc;p/a is a large-momentum cutoff
Therefore, forT.0 we expect a density of dislocation
given by nD'a22e2ED /kBT. At distances larger thanjD

5nD
21/2, and as long asED@” dkBT, dislocations can be

treated in a Debye-Hu¨ckel approximation. Then, to lowes
order in qx

2 and qy
2 , the correlation function for the laye

normal angleu52]yu can be written as14

^ũ~q!ũ~2q!&5
kBT

2EDqx
21Kqy

2
, ~19!

which is precisely the correlation function of a two
dimensional nematic, with a free energy

Fnm5
1

2E d2r @K1~“•n!21K3@n3~“3n!#2#, ~20!

wheren5(cosu,sinu) is the director field, and the two Fran
constants are given by

K15K, K352ED . ~21!

Orientational correlations in the directorn(r ) should decay
algebraically at distances much larger thanjD . Table II sum-
marizes the values ofK1 andK3. The values of these elasti
constants are determined at distances comparable tojD
(;10a at T;100 mK).

(IV) The nematic to isotropic transition. At sufficiently
long wavelengths Nelson and Pelcovits,23 using a
momentum-shell renormalization approach, have shown

TABLE II. Frank elastic constantsK1 and K3, renormalized
elastic constantK and KT disclination unbinding temperature ca
culated for the experimental realization of Ref. 1. Note the char
teristic oscillations with the spin index.

n s K1 (mK) K3 (mK) K(mK) TKT (mK)

9/2 ↑ 189 1030 610 206
11/2 ↓ 144 783 463 156
13/2 ↑ 192 1041 616 208
15/2 ↓ 158 848 503 170
17/2 ↑ 196 1034 615 208
19/2 ↓ 167 875 521 176
2-3
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C. WEXLER AND ALAN T. DORSEY PHYSICAL REVIEW B64 115312
deviations from the one-Frank-constant approximationsK1
5K3 are irrelevant, and the system is equivalent to a tw
dimensionalXY model:

FXY5
1

2
K~T!E d2r ~“u!2, ~22!

with K→@K1(jD)1K3(jD)#/2 at very large distances. Fo
our values ofK1 andK3, at the characteristic temperatures
the experiments, convergence is achieved at distances ar
~20–100)jD . We then expect unbinding of disclination pai
at the KT temperature:15

kBTKT5
p

8
K~TKT!, ~23!

where thep/8 comes instead of the more commonp/2 for
vortices since each disclination winds up the angle byp
rather than 2p. In general,K(TKT) corresponds to the large
distance elastic constant~reduced by disclination pairs! to
the bare elastic constant at small distancesK(0) by means of
the KT renormalization group~RG! formulas:15

dk21

dl
5p3y2~ l !,

dy

dl
5@82pk~ l !#

y~ l !

4
, ~24!

where k5K/kBT and we have introduced the fugacityy
; exp@2p2K(0)/kBT#. In practice, these RG equation
can be approximated by kBTKT.(p/8)K(0)/$1
12p exp@2p2K(0)/8kBTKT#%.0.86(p/8)K(0). This reduc-
tion is in general agreement~although somewhat less impo
tant! to results for Monte Carlo simulations.12

Table II presents the resulting estimates for t
disclination-unbinding transition temperatures for half-fill
LL’s. Although these can only be considered estimates du
the approximations used, they are in qualitative agreem
with the temperatures at which the anisotropies are see
vanish. For comparison, Fradkinet al.12 find TKT.65 mK
with significant rounding by 5% intrinsic anisotropy forn
59/2 by fitting the results of a Monte Carlo simulation of a
XY model to the resistivity data of Ref. 1. We also see
characteristic spin oscillation of the transition parameters1,24

The reason for this spin oscillation is simple: in the energ
ics of Eqs.~4!–~6!, there is an energy scalee2/Rc that de-
creases with increasing filling factorn ~both because of the
change in LL indexand the reduction of the magnetic field!;
th
,
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simultaneously the matrix elements of the Coulomb inter
tion @Eq. ~3!# increase with increasing LL indexL, resulting
in the observed spin dependence.

There are a couple of caveats that apply to our resu
First, we have left out the native anisotropy of the sam
that tends to align the smectic structure~similar effects arise
from an in-plane component of the magnetic field!. Uniaxial
anisotropy will produce a term of the formB8(]yu)2 in the
smectic energy density; although the experiments indic
that B8!B, at sufficiently long length scales~of order
AK/B8) the anisotropy will dominate over the bending e
ergy. In this case the dislocation energy diverges as the lo
rithm of the system size, and the transition to the isotro
phase occurs through the unbinding of dislocations. Seco
as is customary in studies of smectics, we have drop
terms in the smectic free energy, Eq.~17!, of O(qx

2qy
2). To

check the validity of this truncation we have calculated t
elastic coefficientsK8 andK9, and find that whileK9.0, it
is possible forK8 to be negative.25 This does not seem to
cause any problems in the long-wavelength limit, but it m
change our estimates of the dislocation energy. This issu
currently under study.22

In conclusion, we have mapped a 2DES with half-fille
LL’s to a liquid crystal with smectic/nematic order at sho
long distances and that undergoes a KT disclinati
unbinding transition, after which the system becomes iso
pic, as seen by transport measurements. Without the us
any fitting parameters we have obtained transition temp
tures in qualitative agreement with experimental evidence
particularly robust feature is the spin dependence of the n
atic elastic moduli and transition temperature~Table II!: they
are larger for the lower-spin subband (n59/2,13/2,17/2).
While precise experimental values for the transition tempe
tures have not been established and the transition is roun
by disorder, the same characteristic spin dependence is
served in the transport anisotropy1,24 rxx /ryy .

We would like to acknowledge numerous helpful discu
sions with A. MacDonald, S. Girvin, E. Fradkin, J. Eise
stein, H. Fertig, L. Radzihovsky, M. Lilly, M. Fogler, and G
Vignale; A.T.D. would also like to thank the Aspen Cent
for Physics for its hospitality during the completion of th
work. This work was supported by the NSF Grant No. DM
9978547 ~A.T.D.! and by the University of Missouri Re
search Board and Research Council~C.W.!.
.
1M. P. Lilly et al., Phys. Rev. Lett.82, 394 ~1999!.
2R. R. Duet al., Solid State Commun.109, 389 ~1999!.
3M. Shayeganet al., Physica E6, 40 ~2000!.
4W. Panet al., Phys. Rev. Lett.83, 820 ~1999!.
5M. P. Lilly et al., Phys. Rev. Lett.83, 824 ~1999!.
6The effect is exaggerated by the current distribution geometry;

intrinsic anisotropy is smaller:rxx /ryy;20. See S. Simon
Phys. Rev. Lett.83, 4223~1999!.

7M. M. Fogleret al., Phys. Rev. B54, 1853~1996!; M. M. Fogler
and A. A. Koulakov, ibid. 55, 9326 ~1997!; A. A. Koulakov
e

et al., Phys. Rev. Lett.76, 499 ~1996!; R. Moessner and J. T
Chalker, Phys. Rev. B54, 5006~1996!.

8E. H. Rezayi, F. D. M. Haldane, and K. Yang, Phys. Rev. Lett.83,
1219 ~1999!.

9J. M. Tranquadaet al., Nature~London! 375, 561 ~1995!.
10J. P. Eisensteinet al., Physica A6, 29 ~2000!; F. von Oppen, B. I.

Halperin, and A. Stern, Phys. Rev. Lett.84, 2937~1999!.
11E. Fradkin and S. A. Kivelson, Phys. Rev. B59, 8065~1999!; S.

A. Kivelson, E. Fradkin, and V. J. Emery, Nature~London! 393,
550 ~1998!.
2-4



ys

se
ys

z.

ral

,

uc-

DISCLINATION UNBINDING TRANSITION IN . . . PHYSICAL REVIEW B 64 115312
12E. Fradkin, S. A. Kivelson, E. Manousakis, and K. Nho, Ph
Rev. Lett.84, 1982~2000!.

13At zero temperature the existence of an ordered smectic pha
still unsettled. See A. H. MacDonald and M. P. A. Fisher, Ph
Rev. B 61, 5724 ~2000!; H. Yi, H. A. Fertig, and R. Coˆté,
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