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Fermi hypernetted-chain study of half-filled Landau levels with broken rotational symmetry
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We investigate broken rotational symmetBRS) states at half-filling of the valence Landau leviel ). We
generalize Rezayi and ReadRR) trial wave function, a special case of Jain’s composite ferni@® wave
functions, to include anisotropic coupling of the flux quanta to electrons, thus generating a nematic order in the
underlying CF liquid. Using the Fermi hypernetted-chain method, which readily gives results in the thermo-
dynamic limit, we determine the properties of these states in detail. By using the anisotropic pair distribution
and static structure functions we determine the correlation energy and find that, as expected, RR'’s state is stable
in the lowest LL, whereas BRS states may occur at half-filling of higher LL's, with a possible connection to the
recently discovered quantum Hall liquid crystals.
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l. INTRODUCTION ite fermion (CF) theory/*® Rezayi-Reatf (RR) described
During the past two decades the physics of two-the half-filled state by a correlated Fermi wave function that
dimensional electron systenf@DES’9 has provided some of is a product of a Slater determinant of plane waves, with a
the richest grounds for developments in condensed-mattelastrow factor corresponding to a Bose Laughlin state at
physics. In particular the integemnd fractional quantum  half-filling,
Hall effects in strong magnetic fields are some of the most

remarkable phenomena discovered in the second half of the N N

20th century, and rival superconductivity in their fundamen- W (r,, ... ry )= |50H (Zj_zk)ze_kzl ‘Zk|2/4de(¢k(ri)],
tal significance by manifesting quantum mechanics on mac- <k -

roscopic scales and providing a major impetus to the devel- (€

opment of ideas in many-body physitkke the existence of , .
fractionally charged quasiparticl8stopological quantum Whereei(r;) are 2D plane waves for fully spin polarized CF

numbere chiral Luttinger liquids® composite particlebetc. ~ States that fill a 2D disk in reciprocal space with Fermi mo-
One of the reasons that 2DES’s keep supplying exciting reMeNtUMKg, z;=x;+1iy; is the complex 2D coordinate ¢th
sults is the improved quality of the samples with mobilities electron, andP, is a projector onto the LLL (=0). We
increasing roughly exponentially with time, thus allowing work in units of the magnetic lengthi=%/eB=1).
the emergence of subtler effects due to electronic correla- The situation is dramatically different for the next Landau
tions (which are enhanced because of the reduced dimensiofevel (LL) (LL index L=1), where forr=>5/2 a quantized
ality). Hall conductance is observed along with a strong reduction
Consider, initially, a 2DES at half-filling=1/2) of the  of the longitudinal conductancé which are an indication of
lowest Landau leve(LLL ). Experimentally, this state does a Cooper pairing instability of the CF'§.A discussion of
not exhibit the typical features of the fractional quantum Hallthis state is a wide and complex topic by itself, and this,
effect (FQHE), namely, the very precise quantization of the along with the properties of the=3/2 and 7/2 stategalf-
transverse conductance in units et/h, or the vanishing filling of the upper-spin subbandwill not be addressed in
longitudinal resistivity. However, the resistivity shows a this work.
broad minimunf and an anomalous behavior in the propa- In this paper we discuss some aspects related to the many
gation of surface acoustic wavelsas been observed. Early interesting phenomena that have recently emerged in nearly
numerical work by Haldart® suggested that=1/2 is not  half-filled higher LL’s (with LL index L=2), in particular
incompressible. The overall experimental evidence stronglghe extreme anisotropy measured in the low-temperature
suggests that, in the LLL, for half-filling the system behavesmagnetotransporf 2! This anisotropic behavior was attrib-
like a strange Fermi liquid at close to zezffectivemagnetic  uted to the formation of a nematic phase of a 2DES which, at
field 1113 higher temperatures, undergoes a nematic to isotropic
A theory of compressible Fermi-liquid-like behavior at transition???® The motivation of our work is to study these
half-filling was proposed by Halperin, Lee, and Rédd  nematic phases by means of many-body trial wave functions
two-dimensional(2D) system of electrons subjected to an with broken rotation symmetryBRS) at half-filing of a
external perpendicular magnetic field, at half-filling of the Landau level. Previousf} we reported on the existence of a
LLL, can be transformed to a mathematically equivalent sysBRS instability of the Laughlin statefor 1/3-filled higher
tem of fermions interacting with a Chern-Simons gauge field_L's (with L=1). Here we discuss a similar procedure for
such that the average effective magnetic field acting on théhe more complex case of 1/2 filling, which is more closely
fermions is zerd? Since these fermions do not “see” a net related to the experiments on anisotropic phases.
magnetic field, they can form a 2D Fermi sea of uniform  Theoretically, Hartree-FockHF) calculation&®~2" have
density. In a very successful approach, based on the composeen very succesful in predicting the anisotropic state in
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higher LL's and explaining thére)orientation of the stripes state. A detailed description of the FHNC formalism in the
when an in-plane magnetic field is appli@dThe HF theory  context of the BRS wave functidfEq. (2)] is given in Sec.
suggests that for high LL's single-Slater determinant states dfll. The results for the BRS state in the LLL and their exten-
charge-density-wavéCDW) form have lower energies than sion in higher LL's are discussed in Sec. IV.

Laughlin-type isotropic liquid states. These CDW states,

with stripe order, which are predicted to be stable for par- Il. BASIC THEORY

tially filled LL's are, indeed, good candidates for the ground ) - .

state atL=2, although questions remain about whether are In this work we study the stability of different states by
they stable against quantum fluctuations that in principle cak'Sing trial wave functions of the form of Eg). We perform
produce liquid crystalline behavié??® We note that the thls_ analysis by comparing the energy in each of thes_e states
BRS states considered in this work are qualitatively different© find the optimum value for the anisotropy-generating pa-
from CDW or Wigner crystal states because they represent ré_lmetera. The potential, or correlation energy per electron is
liquid crystalline state witmematic rather than smectic or 9iven by

fully crystalline order.

Similarly to the Musaelian and Joyritsgeneralization of E _ LW V[V QJ Pvolgn-1], (3
Laughlin’s FQHE stattused by us in Ref. 24, we add a “ N (P v,y 2 g '
symmetry breaking parameter in the RR wave function -
[Eq. (1)] where V  represents the electron-electron, electron-
background, and background-background interaction; and
N g(r) is the(angle-dependenpair distribution function given
W, (rq, ... ,rN)=P|_]1;[k (Zj—z+ a)(zj—z— @) by
. A2y d2r W1y Ty) 2
2 — 3 N a\l'l N
xe 2 4 def g (1)), el o(r) = - 1) f _

2
~ P d2r - - d2r | W (rg- - 1y))?
whereP, now represents a projector onto théh LL. This f ! MYl )l

order (for a=0 we re?:over th,e RR wave function which is pfd’rlg(r)—1]=—1, can be used as a convenient check
. S . . for numerical pr res. For an ideal 2D sample the inter-
obviously isotropi¢. Note that the magnitude af is related or numerical procedures. For an idea sample the inte

. : action is a pure Coulomb potentis(r)=e?/(er), while in
tc_) the amount of ams_otropy, and its phase 1o t_he angle thgamples with finite thickness a reasonable choice is the
director of the nemati¢for real « the system will have a

i Ap9 — a2 [ 2 2
stronger modulation in th& direction, and therefore likely ﬂi?git)igsofs?ﬁ?aor%?r %?‘t(taﬁgazar\r/l(rlé_tﬁi é Igﬁesr;: Xltéyrna-
have larger conductance in the perpendicular directigy: tivel : P o T

. Co . ; ) y, the correlation energy can be computed in reciprocal

>a,,). This wave function is an obvious starting point to space
study thenematicquantum Hall liquid crystals at half-filling, '
by facilitating the systematic study of the energy dependence 10 o2
of BRS states for diverse physical parametérk index, Ea:_J q V(a)[S(q)—1], (5)
width of the 2DES, efc 2) (2m)?

We study the BRS state for 1/2 filling of the valence LL ~ ) )
(i.e., v=M=+1/2, with M an integer by using the Fermi whergV(q) is the 2D Fourier transforffl (FT) of V(r) and
hypernetted-chailFHNC) method®~2*This method allows S(0) is the static structure factor:
us to compute physical quantities in the thermodynamic -~
limit, without the limitations of using a finite number of par- S(q)—1=pFT[g(r)—1]. (6)
ticles that hinder other techniques, where the extrapolation ofvhile both g(r) and S(q) are angle-dependerte.g., see
the results to the thermodynamic limit is not totally unam-Figs. 1 and 2 because the interaction potential is centrally
biguous. symmetric, the energye, depends only on the angle-

We find that, for realistic interaction potentials, the RR averaged pair distribution function or static structure factor
(isotropig state is stable in the LLL, whereas a BRS state isjefined as
possible in higher LL's. While this is consistent with the
view of BRS states fot. =2, it does not reflect the situation — 2ndh — 2rd g,
for L=1, where it is believed that CF’s can form an incom- 9(r)= fo 5790, Sa)= fo Py CURN)
pressible state by a Bardeen-Cooper-Schrieffer-like paifing,
as first pointed out by Moore and ReddRecent exact di- The determination of either the pair distribution function or
agonalization results by Mao¥f strongly suggest that such the structure factor is generally a complicated integral prob-
spin-polarized Pfaffian state is the best candidate to descridem that needs to be solved for each LL. However, its is
this filling. known that if transitions to other LL's are neglectéck., a

In Sec. Il we present the basic theoretical calculationssingle-LL approximatiop g(r) and S(qg) at higher LL's are
needed to determine the stability of an isotropic or BRSsimply related to those at the LLLLEO) by means of a
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FIG. 1. Pair distribution function for the BRS stateat 1/2. (a) a=2, surface plot ofy(r) (the surface fory<0 was removed for
clarity). (b) @=2; dotted linesy(r,#) for variousf<[0,27]; full line: angle-averageg_(r). () Angle-average@(r) for =0, 1, 2, 2.5,
and 3.(d) Small+ behavior ofg_(r); lines are fitting curves. Note the discrete nodeg(@f, ¢) atr=«, 6=6,,6,+ 7 (6,=0 in this casg
Calculations were performed in the FHNC/O approximation.

convolution or product respectively. We will apply this ap- Fermi systems described by correlated Fermi wave func-
proximation (which, moreover, quenches the kinetic energytions, having(but not limited t9 a Jastrow-Slater form. In

in higher LL's as well. It is then, sufficient to compute these addition one can prove that the FHNC scheme achieves con-
distribution functions once in the LLL, and then the correla-vergence of the expectation value of a Hamiltonian within

tion energy per electron is given by some expansion scherffethus substantiating the belief that
the FHNC gives an accurate upper bound for the energy and
L_lf d?q v . @ other related quantitie:*?
“ 2] (2m)2 er(@)[S(q)—11, An important problem arises at this stage. The projection

onto thelLth LL performed in the RR wave function or its
whereV¢(q)=V(q)[L.(g%/2)]%. L (2) are Laguerre poly- generalizatiorfEq. (2)] leads to a wave function that cannot
nomials, andS(q) is calculated in the LLL {=0). In what  be directly treated within the FHNC formalism, because the
follows we computey(r) andS(q) using the FHNC method. Simple Jastrow< Slater determinant structure of single par-
ticle orbitals is lost. We therefore use anprojectedversion
IIl. FERMI HNC METHOD FOR THE BROKEN of' Eq. (2), whiph, although approximate, is believed to con-
ROTATIONAL SYMMETRY STATE tain the most important physics, e_spemally since the Jastrow
factors already significantly annihilate higher-LL compo-
The development of the FHNC method for Ferminents of the wave functioff.In addition, although the wave
system3"*2allows one to estimate accurately the expectatiorfunction given in Eq.(2) has a Jastrow-Slater form after
value of a Hamiltonian, the pair distribution function and dropping the projectoP, , the FHNC method in this case
related quantities associated with a Jastrow-Slater wavdiffers from the standard approach since two-body correla-
function and other more complex many-body Fermi wavetion factors and related quantities depend not only on inter-
functions. The FHNC method treats the correlated system gbarticle distance, but also on the relative angle between the
particlesa priori in the thermodynamic limit, and therefore particles. In order to calculate the pair distribution function
is extremely useful in the study of infinite homogeneousthe modulus square of the wave function,
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FIG. 2. Static structure factor for the BRS statevat 1/2. (a)
a=2, surface plot o55(q) (the surface fog, <0 was removed for

clarity). (b) Angle-averaged(q) for =0, 1, 2, 2.5, and 3. Note

the presence of peaks 8(q), consistent with a nematic structure.

Calculations were performed in the FHNC/O approximation.

N
[Volry, . rn)P=e2 u(zi~2)
N
xe™ 2 (4P| def o (r)]% ()
whereu(z) =In|z—af?+In|z+af?, is expanded perturbatively
in terms ofh(r;;) =exdu(rj;)]— 1, and may be ordered as

N N

N
| ,|2= 1+i2<j h(ri,->+i2<j gl h(rijh(r)+- -

X |def i (ri)]|. (10

In addition todynamical correlationdetween particles, de-
scribed by the pseudopotentia{z;—z;), there are alssta-

tistical correlations described by the Slater determinant
which renders the whole state antisymmetric. Similar to the

Jastrow part, we may expadef ¢, (r;)]|? in the number of
exchanges between particles. In this way @4) becomes a
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sion for g(rq,) contain both kinds of correlations, and may
be represented by cluster diagrams. As in the Bose case, the
associated pair distribution functiay(r,,) is then given by

the sum of all linked irreducible diagrams obeying well-
defined topological rule$:

One definesnodal composite(non-nodal, and elemen-
tary diagrams as in the Bose case, but there are now four
different types for each of them. The four different classes of
nodal, composite, and elementary diagrams are generally de-
noted by dd (direct-direcf, de (direct-exchange ee
(exchange-exchangeand cc(circular-exchange Then the
pair distribution function is obtained from the set of FHNC
equations given in the Appendix, whegeis the density,
0s(=1) is the spin degeneracy, am@r,) is the familiar
statistical exchange factor for the 2D Slater determinant
given by

J1(Kerap)

, 11
Ker12 )

I(rler):z
wherer 1,=|r,—r4|, andJ;(x) is the first order Bessel func-
tion.

For standard systems like th#de Fermi liquid, the pair
correlation factor is short ranged, and heals to 1 for large
distances; therefore, the function ufr;;)|—1 provides a
possible expansion paramefaote that in order to apply the
Fermi HNC expansion, the correlatigpseudgpotential has
to satisfy the conditionsu(r;—0)— —c andu(rj;— + )
—0]. In the case of the BRS wave function, tfgseudo
potentialu(r) is logarithmically long ranged; however, for-
mally it is possible to extend the method by splitting the
pseudopotential associated with the Jastrow part into short-
and long-ranged parts, respectively,

U(rip) =ug(rip) +ui(rip),

with the dd nodal and composite function similarly split:

(12)

Nad(r'12) = Ngasr12) —Ui(roo), (13
Xdd(r12) = Xgas(12) + U (r12). (14)

The splitting is done subject to the conditions
U(r12) +Ngg(r12) = Us(r12) + Ngadr12), (19
Nad(r12) + Xgd(r12) = Ngad(r12) + Xgadr12). ~ (16)

The short-range functiong(r,,) (going to <0 for small dis-
tances and healing to O for large distancaad its long-
range counterpart are then chosen as

Us(r12) = —2Ko(Q[r 1o~ @) = 2Ko(Q|r o+ @), (17)

U(r19) =2[In(|r1o— @)+ Ko(Q|r 1o~ @)1+ 2[In(|r 1o+ a|)

+Ko(Q[riz+al)], (18)

quite symmetrical expansion in the number of dynamicalwhere Ky(x) is the modified Bessel function, ar@ is a
correlation factorsh(rj;), as well as the number of statistical cutoff parameter of order 1. We recall that the 2D (Ref.
correlation factors. The resulting cluster terms in the expres40) of u,(ry,) is
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the 2D system width\, and Landau-level indek. The fol-

47Q? .
(e'Tr+e'd). (19 lowing simplified formula can be used in view of E):

9%(9?+Q?)

The final set of equations is solved by a standard iterative L L [* ~ P\? = _
procedure. There is one necessary approximation within the Ea(M)= EJO dqu(q’)\)[LL(7” [Sta)=1],
FHNC method in order to obtain a closed set of equations for (20)
the nodal and non-nodal functions: a small set of cluster

diagrams (corresponding to the so-calleelementarydia-  where V(q,\) = (2me?/ eq)exp(—Aq) is the 2D FT of the
grams, which cannot be includedb initio in the method, ZDS interaction potential’ In addition to allowing straight-
needs to be somehow estimated outside the FHNC methotbrward calculations to be extended to any LL, E2Q) per-
Several schemes have been devised to include the contribmits a higher numerical accuracy in the calculationEgf

tion of such diagrams at various levels of approximationisince S(q) saturates exponentially to 1 for relatively small
however, the simplest approximation of totally neglectmgValues ofq as compared tg(r).

these termgcalled the FHNC/0 approximation where we as- Figure 3 shows the energy difference between BRS states

sumeE y=Eqe=Ec.e=E..=0) generally leads to very reli- . _ : : .
9§ 42,49 o . with =1, 2, 2.5 and 3, and the isotropic state with0.
able result®*****and we have adopted itin this paper. - g oo ndicate that in the LLLL(=0) the RR state is
stable for any\, since alla#0 states have higher energies
IV. RESULTS AND DISCUSSIONS (top panel.
The situation changes considerably in higher LLIs (
=1). In general, Fermi BRS states are found to himveer
energies, and the compressible RR state is unstable toward a

u(q)=-

In this work we applied the FHNC theory to study the
BRS state at filling 1/2 of an arbitrary LL. For the sake of

simplicity we neglected the elementary diagra@siNC/0). nematic statésee the lower panels of Fig).3ontrary to our

This has allowed us to determine to a reasonable accura(f}/ndings for one-third-filled LL'2* we do not see a runaway
the pair distribution function and the static structure factor.. f

In order to compare the=0 (RR statejsotropid with the instability but rather find that there are optimal value:
Y — . _ * — _
a#0 (BRS state, omematid we studied the properties of ~2 for thefirstLL (L=1) anda;~1 for L=2.

the BRS wave function for severafs with magnitudes be- Experiments have not observed a BRS state for lthe
tween 0 and 3(in generala=|a|e‘ %, but without losing =1 LL at filling factors v=>5/2 and 7/2. There, remarkable

generality we considered only,=0). even—denominatoFQHE’s _have b_een observed, indicating
In Fig. 1 we plot the pair distribution functiog(r) for the Iag:k of gapl_ess (.EXC.ItatIOI’]S. Itis clear that a gap’less com-

a=2 [panels(a) and (b)], and the angle-averaged pair dis- pressible Ferml-_llqwd-lll_(e state, such as either RR_s state or

I = . our BRS state, is less likely to be a good description of the
tribution functiong(r) corresponding tax = 0, 1, 2, 2.5, 0 ground state. Paired CF stdfegnost likely Pfaffian-
and 3[pane.|s(c) and (d)]. It is interesting to note, fog like spin-polarized®) have been proposed to explain these
0, the noticeable angle dependencey(), and the split- experiments. For higher LL'sl(=2), however, it is likely
ting of the triple node at the origin to a simple node at they .+ the BRS states proposed here is related to the low-
origin and additional simple nodes at=« and angle6

] . . temperature anisotropic conductance found
=6,, 0,+7 (0,=0 in this casg From the energetics

. . : _ TETE experimentally:®~23
point of view [see Eq.(3)], a major consideration is the 'zt this point it is important to comment on how precise

strong dependence of(r) on the value of the parametet  our determination of these energy differences is. There are
As « is increased the major peak gfr) becomes less pro- two aspects to this problem. First, the reader should note that
nounced, and fow~3 it develops a shoulder for small we used arunprojectedwave function in place of the RR
[panel(c)]. In addition, note the change in the smialbe-  generalizatior{ Eq. (2)]. While it would be highly desirable
havior Ofg(r), which switches fromxr® (for @=0) to<r2 10 incorporate this LL projection operators into the formal-
o - ism, this is not feasible within the FHNC method used here.
asa is increasedpanel(d)]. In general, for smalt, g(r) has hould note. h that th n f the Jastrow
almost no angular dependerfeand for a#0, g(r~0,6) We s ouid note, however, that Ihe presence of Ihe Jastro
~C 12 for 0=r<05. whereC ~0.0244L7 factors in Eq(2), a!ready provides a con§|derable projection
Ir? Fig. 2 we pI(;t ,the statig strﬁcture factGXq) for o into the LLL, and is beheveq to be particularly effective as
_> (top.pane) where the most important feature is the far as ground-state properties are conceffiethe second
’ L : aspect is that the FHNC/0 method is essentially a variational
emergence of peaks B(q) characteristic of a nematic struc- oy “giving energies that constitute an upper bound to the
ture; and the angle-averaged static structure fe8tq) cor-  exact ground-state ener8f.While a precise estimate of
responding tax=0, 1, 2, 2.5, and 8bottom panel Note the  these errors can only be madeposteriori by comparing
considerable dependence 8fq) on «: as it increases the these results with alternative calculations, these methods
peak is broadened and flattened, with no significant changeave proven to be quite reliable in scenarios ranging from
in the smallg behavior. other partially filled LL's (Refs. 24 and 42 to 3He
One can compute the correlation energy per particle eithesystems>*! While the energydifferenceswe are interested
directly from Eqgs(3), (5), or (8) to determine the energy per in (see Fig. 3 are quite small, and perhaps smaller than the
electron for arbitrary values of the Fermi BRS parameter errors in the absolute values of the correlation energy in the
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FIG. 3. Energy per particle of the Fermi BRS states with
=1, 2, 2.5, and 3 relative to the isotropiee€0) state:AE_(\)
=E_(\)—Ey(\) for the LLL (L=0) and higher LL's as functions
of the short-distance cutoff parameter Energies are in units of
e?/(el,). Note that in the LLL, the Fermi BRS states always have
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isotropic RR state is stable in the LLL for realistic interaction
potentials. In higher LL's, BRS states with nematic order are
energetically more favorable than the RR state, perhaps with
a direct connection to the anisotropic states observed re-
cently in high LL's?%-%
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APPENDIX

For a Fermi system at densifyand spin degeneragy (1
or 2) the sum of nonnodalcomposit¢ diagrams is given by

Xgg(r 1) =e"(12+Nad(r12 +Eaa(rd — Ny (1) — 1, (Al)

Xge(F 1) =112 " Nad112* EadMI[ Nyo(r15) + Egelr12)]

~ Ngelr12), (A2)

Xee(rlz) = eu(r12)+ Nga(r12) + Edd(rlZ)[Nee(rlz) + Eee(rlz)
+ | Nde(rlz) + Ede(r12)|2_ gs| Ncc(rlz) + Ecc(rlz)
—1(r12/9¢/* 1= Ned r12), (A3)

Xeelr12) = eu(r12 *Naa(r1d) + Edd(rlz)[ Nec(rip) +Ece(rio)
_l(rlz)/gs]+|(r12)/gs_ Ncc(rlz)- (A4)

The chain formation of the nodal diagrams is generated
by convolution equations

Ndd(rlz):pf dr3[ Xga(r13) + Nga(r13) 1P(r3p), (A5)

Nge(r12) = PJ dr3[ Xga(r13) Xedr32) = Xgelr13) Xgelr32)

+[Xge(r13) + Nge(r13) [P(rzo) ], (A6)

an energy higher than the isotropic state, whereas in higher LL's

(L=1, 2) there are ranges af for which Fermi BRS states are
favorable.

states, we remark that these are notorrelated errorsbut
systematic deviationdue to the nature of the approximations
used, and energyifferenceswill likely be considerably more
precise.

In conclusion, we applied the FHNC theory to study pos-
sible Fermi BRS states in a half-filled LL. We find that the

Ned(r12) = Pf dr3[ Xge(r13) Xge(r32) = Xgd(r13) Xed32)

[ Xeelr13) +Neelr13) JP(r3n) ], (A7)
Ncc(rlz):PJ' drg[ —1(ri3)/gs+ Xce(ria)
+Nee(r13) 1Xee(r30), (A8)
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where The pair distribution function is then given from
PUrij) =XaalFiy) + 2Xqelriy) +pJ Ard Xaa(Ti) Xed i) 9(r12) =1+ Xyg(r12) +Ngg(r12) +2[ Xge(r12) + Nge(r12) ]
— Xae( i) Xael i) 1- (A9) + Xeelr12) + Nedr12)- (A10)
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