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Fermi hypernetted-chain study of half-filled Landau levels with broken rotational symmetry
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We investigate broken rotational symmetry~BRS! states at half-filling of the valence Landau level~LL !. We
generalize Rezayi and Read’s~RR! trial wave function, a special case of Jain’s composite fermion~CF! wave
functions, to include anisotropic coupling of the flux quanta to electrons, thus generating a nematic order in the
underlying CF liquid. Using the Fermi hypernetted-chain method, which readily gives results in the thermo-
dynamic limit, we determine the properties of these states in detail. By using the anisotropic pair distribution
and static structure functions we determine the correlation energy and find that, as expected, RR’s state is stable
in the lowest LL, whereas BRS states may occur at half-filling of higher LL’s, with a possible connection to the
recently discovered quantum Hall liquid crystals.
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I. INTRODUCTION

During the past two decades the physics of tw
dimensional electron systems~2DES’s! has provided some o
the richest grounds for developments in condensed-ma
physics. In particular the integer1 and fractional2 quantum
Hall effects in strong magnetic fields are some of the m
remarkable phenomena discovered in the second half o
20th century, and rival superconductivity in their fundame
tal significance by manifesting quantum mechanics on m
roscopic scales and providing a major impetus to the de
opment of ideas in many-body physics,3 like the existence of
fractionally charged quasiparticles,4 topological quantum
numbers,5 chiral Luttinger liquids,6 composite particles,7 etc.
One of the reasons that 2DES’s keep supplying exciting
sults is the improved quality of the samples with mobiliti
increasing roughly exponentially with time, thus allowin
the emergence of subtler effects due to electronic corr
tions~which are enhanced because of the reduced dimens
ality!.

Consider, initially, a 2DES at half-filling (n51/2) of the
lowest Landau level~LLL !. Experimentally, this state doe
not exhibit the typical features of the fractional quantum H
effect ~FQHE!, namely, the very precise quantization of t
transverse conductance in units ofe2/h, or the vanishing
longitudinal resistivity. However, the resistivity shows
broad minimum,8 and an anomalous behavior in the prop
gation of surface acoustic waves9 has been observed. Ear
numerical work by Haldane10 suggested thatn51/2 is not
incompressible. The overall experimental evidence stron
suggests that, in the LLL, for half-filling the system behav
like a strange Fermi liquid at close to zeroeffectivemagnetic
field.11–13

A theory of compressible Fermi-liquid-like behavior
half-filling was proposed by Halperin, Lee, and Read:14 a
two-dimensional~2D! system of electrons subjected to a
external perpendicular magnetic field, at half-filling of th
LLL, can be transformed to a mathematically equivalent s
tem of fermions interacting with a Chern-Simons gauge fi
such that the average effective magnetic field acting on
fermions is zero.14 Since these fermions do not ‘‘see’’ a n
magnetic field, they can form a 2D Fermi sea of unifo
density. In a very successful approach, based on the com
0163-1829/2002/65~20!/205307~7!/$20.00 65 2053
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ite fermion ~CF! theory,7,15 Rezayi-Read16 ~RR! described
the half-filled state by a correlated Fermi wave function th
is a product of a Slater determinant of plane waves, wit
Jastrow factor corresponding to a Bose Laughlin state
half-filling,

C~r1 , . . . ,rN!5 P̂0)
j ,k

N

~zj2zk!
2e2(

k51

N

uzku2/4det@wk~r i !#,

~1!

wherewk(r i) are 2D plane waves for fully spin polarized C
states that fill a 2D disk in reciprocal space with Fermi m
mentumkF , zj5xj1 iy j is the complex 2D coordinate ofj th
electron, andP̂0 is a projector onto the LLL (L50). We
work in units of the magnetic length (l 0

25\/eB51).
The situation is dramatically different for the next Land

level ~LL ! ~LL index L51), where forn.5/2 a quantized
Hall conductance is observed along with a strong reduc
of the longitudinal conductance,17 which are an indication of
a Cooper pairing instability of the CF’s.18 A discussion of
this state is a wide and complex topic by itself, and th
along with the properties of then53/2 and 7/2 states~half-
filling of the upper-spin subband! will not be addressed in
this work.

In this paper we discuss some aspects related to the m
interesting phenomena that have recently emerged in ne
half-filled higher LL’s ~with LL index L>2), in particular
the extreme anisotropy measured in the low-tempera
magnetotransport.19–21 This anisotropic behavior was attrib
uted to the formation of a nematic phase of a 2DES which
higher temperatures, undergoes a nematic to isotro
transition.22,23 The motivation of our work is to study thes
nematic phases by means of many-body trial wave functi
with broken rotation symmetry~BRS! at half-filling of a
Landau level. Previously24 we reported on the existence of
BRS instability of the Laughlin state4 for 1/3-filled higher
LL’s ~with L>1). Here we discuss a similar procedure f
the more complex case of 1/2 filling, which is more close
related to the experiments on anisotropic phases.19–21

Theoretically, Hartree-Fock~HF! calculations25–27 have
been very succesful in predicting the anisotropic state
©2002 The American Physical Society07-1
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ORION CIFTJA AND CARLOS WEXLER PHYSICAL REVIEW B65 205307
higher LL’s and explaining the~re!orientation of the stripes
when an in-plane magnetic field is applied.28 The HF theory
suggests that for high LL’s single-Slater determinant state
charge-density-wave~CDW! form have lower energies tha
Laughlin-type isotropic liquid states. These CDW stat
with stripe order, which are predicted to be stable for p
tially filled LL’s are, indeed, good candidates for the grou
state atL>2, although questions remain about whether
they stable against quantum fluctuations that in principle
produce liquid crystalline behavior.22,29 We note that the
BRS states considered in this work are qualitatively differ
from CDW or Wigner crystal states because they represe
liquid crystalline state withnematic, rather than smectic o
fully crystalline order.

Similarly to the Musaelian and Joynt’s30 generalization of
Laughlin’s FQHE state4 used by us in Ref. 24, we add
symmetry breaking parametera in the RR wave function
@Eq. ~1!#

Ca~r1 , . . . ,rN!5 P̂L)
j ,k

N

~zj2zk1a!~zj2zk2a!

3e2(
k51

N

uzku2/4det@wk~r i !#, ~2!

whereP̂L now represents a projector onto theLth LL. This
BRS wave function represents a homogeneous Fermi-liq
like state at half-filling factor, and foraÞ0 has a nematic
order ~for a50 we recover the RR wave function which
obviously isotropic!. Note that the magnitude ofa is related
to the amount of anisotropy, and its phase to the angle
director of the nematic~for real a the system will have a
stronger modulation in thex direction, and therefore likely
have larger conductance in the perpendicular direction:syy
.sxx). This wave function is an obvious starting point
study thenematicquantum Hall liquid crystals at half-filling
by facilitating the systematic study of the energy depende
of BRS states for diverse physical parameters~LL index,
width of the 2DES, etc!.

We study the BRS state for 1/2 filling of the valence L
~i.e., n5M11/2, with M an integer! by using the Fermi
hypernetted-chain~FHNC! method.31–35This method allows
us to compute physical quantities in the thermodynam
limit, without the limitations of using a finite number of pa
ticles that hinder other techniques, where the extrapolatio
the results to the thermodynamic limit is not totally una
biguous.

We find that, for realistic interaction potentials, the R
~isotropic! state is stable in the LLL, whereas a BRS state
possible in higher LL’s. While this is consistent with th
view of BRS states forL>2, it does not reflect the situatio
for L51, where it is believed that CF’s can form an incom
pressible state by a Bardeen-Cooper-Schrieffer-like pairin36

as first pointed out by Moore and Read.37 Recent exact di-
agonalization results by Morf38 strongly suggest that suc
spin-polarized Pfaffian state is the best candidate to desc
this filling.

In Sec. II we present the basic theoretical calculatio
needed to determine the stability of an isotropic or B
20530
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state. A detailed description of the FHNC formalism in t
context of the BRS wave function@Eq. ~2!# is given in Sec.
III. The results for the BRS state in the LLL and their exte
sion in higher LL’s are discussed in Sec. IV.

II. BASIC THEORY

In this work we study the stability of different states b
using trial wave functions of the form of Eq.~2!. We perform
this analysis by comparing the energy in each of these st
to find the optimum value for the anisotropy-generating p
rametera. The potential, or correlation energy per electron
given by

Ea5
1

N

^CauV̂uCa&

^CauCa&
5

r

2E d2rV~r !@g~r !21#, ~3!

where V̂ represents the electron-electron, electro
background, and background-background interaction;
g(r ) is the~angle-dependent! pair distribution function given
by

g~r !5
N~N21!

r2

E d2r 3•••d2r NuCa~r1•••rN!u2

E d2r 1•••d2r NuCa~r1•••rN!u2

, ~4!

where r5r22r1. The following normalization condition
r*d2r @g(r )21#521, can be used as a convenient che
for numerical procedures. For an ideal 2D sample the in
action is a pure Coulomb potentialV(r ).e2/(er ), while in
samples with finite thickness a reasonable choice is
Zhang–Das Sarma~ZDS! potential39 V(r )5e2/(eAr 21l2),
where l is of the order of the sample thickness. Altern
tively, the correlation energy can be computed in recipro
space,

Ea5
1

2E d2q

~2p!2
Ṽ~q!@S~q!21#, ~5!

whereṼ(q) is the 2D Fourier transform40 ~FT! of V(r ) and
S(q) is the static structure factor:

S~q!215rFT@g~r !21#. ~6!

While both g(r ) and S(q) are angle-dependent~e.g., see
Figs. 1 and 2!, because the interaction potential is centra
symmetric, the energyEa depends only on the angle
averaged pair distribution function or static structure fac
defined as

ḡ~r !5E
0

2p du

2p
g~r !, S̄~q!5E

0

2pduq

2p
S~q!. ~7!

The determination of either the pair distribution function
the structure factor is generally a complicated integral pr
lem that needs to be solved for each LL. However, its
known that if transitions to other LL’s are neglected~i.e., a
single-LL approximation!, g(r ) andS(q) at higher LL’s are
simply related to those at the LLL, (L50) by means of a
7-2
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FIG. 1. Pair distribution function for the BRS state atn51/2. ~a! a52, surface plot ofg(r ) ~the surface fory,0 was removed for

clarity!. ~b! a52; dotted lines:g(r ,u) for variousuP@0,2p#; full line: angle-averagedḡ(r ). ~c! Angle-averagedḡ(r ) for a50, 1, 2, 2.5,

and 3.~d! Small-r behavior ofḡ(r ); lines are fitting curves. Note the discrete nodes ofg(r ,u) at r 5a, u5ua ,ua1p (ua50 in this case!.
Calculations were performed in the FHNC/0 approximation.
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convolution or product respectively. We will apply this a
proximation~which, moreover, quenches the kinetic ener
in higher LL’s as well!. It is then, sufficient to compute thes
distribution functions once in the LLL, and then the corre
tion energy per electron is given by

Ea
L5

1

2E d2q

~2p!2
Ṽeff~q!@S~q!21#, ~8!

whereṼeff(q)[Ṽ(q)@LL(q2/2)#2. LL(z) are Laguerre poly-
nomials, andS(q) is calculated in the LLL (L50). In what
follows we computeg(r ) andS(q) using the FHNC method

III. FERMI HNC METHOD FOR THE BROKEN
ROTATIONAL SYMMETRY STATE

The development of the FHNC method for Ferm
systems31,32allows one to estimate accurately the expectat
value of a Hamiltonian, the pair distribution function an
related quantities associated with a Jastrow-Slater w
function and other more complex many-body Fermi wa
functions. The FHNC method treats the correlated system
particlesa priori in the thermodynamic limit, and therefor
is extremely useful in the study of infinite homogeneo
20530
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Fermi systems described by correlated Fermi wave fu
tions, having~but not limited to! a Jastrow-Slater form. In
addition one can prove that the FHNC scheme achieves
vergence of the expectation value of a Hamiltonian with
some expansion scheme,41 thus substantiating the belief tha
the FHNC gives an accurate upper bound for the energy
other related quantities.41,42

An important problem arises at this stage. The project
onto theLth LL performed in the RR wave function or it
generalization@Eq. ~2!# leads to a wave function that cann
be directly treated within the FHNC formalism, because
simple Jastrow3 Slater determinant structure of single pa
ticle orbitals is lost. We therefore use anunprojectedversion
of Eq. ~2!, which, although approximate, is believed to co
tain the most important physics, especially since the Jast
factors already significantly annihilate higher-LL comp
nents of the wave function.43 In addition, although the wave
function given in Eq.~2! has a Jastrow-Slater form afte
dropping the projectorPL , the FHNC method in this cas
differs from the standard approach since two-body corre
tion factors and related quantities depend not only on in
particle distance, but also on the relative angle between
particles. In order to calculate the pair distribution functi
the modulus square of the wave function,
7-3
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uCa~r1 , . . . ,rN!u25e(
i . j

N

u(zi2zj )

3e2(
i 51

N

(uzi u
2/2)udet@wk~r i !#u2, ~9!

whereu(z)5 lnuz2au21lnuz1au2, is expanded perturbativel
in terms ofh(r i j )5exp@u(r i j )#21, and may be ordered as

uCau25F11(
i , j

N

h~r i j !1(
i , j

N

(
k, l

N

h~r i j !h~r kl!1•••G
3udet@wk~r i !#u2. ~10!

In addition todynamical correlationsbetween particles, de
scribed by the pseudopotentialu(zi2zj ), there are alsosta-
tistical correlations described by the Slater determina
which renders the whole state antisymmetric. Similar to
Jastrow part, we may expandudet@wk(r i)#u2 in the number of
exchanges between particles. In this way Eq.~10! becomes a
quite symmetrical expansion in the number of dynami
correlation factors,h(r i j ), as well as the number of statistic
correlation factors. The resulting cluster terms in the expr

FIG. 2. Static structure factor for the BRS state atn51/2. ~a!
a52, surface plot ofS(q) ~the surface forqy,0 was removed for

clarity!. ~b! Angle-averagedS̄(q) for a50, 1, 2, 2.5, and 3. Note
the presence of peaks inS(q), consistent with a nematic structur
Calculations were performed in the FHNC/0 approximation.
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sion for g(r12) contain both kinds of correlations, and ma
be represented by cluster diagrams. As in the Bose case
associated pair distribution functiong(r12) is then given by
the sum of all linked irreducible diagrams obeying we
defined topological rules.31

One definesnodal, composite~non-nodal!, and elemen-
tary diagrams as in the Bose case, but there are now
different types for each of them. The four different classes
nodal, composite, and elementary diagrams are generally
noted by dd ~direct-direct!, de ~direct-exchange!, ee
~exchange-exchange!, and cc~circular-exchange!. Then the
pair distribution function is obtained from the set of FHN
equations given in the Appendix, wherer is the density,
gs(51) is the spin degeneracy, andl (r 12) is the familiar
statistical exchange factor for the 2D Slater determin
given by

l ~r1 ,r2!52
J1~kFr 12!

kFr 12
, ~11!

wherer 125ur22r1u, andJ1(x) is the first order Bessel func
tion.

For standard systems like the3He Fermi liquid, the pair
correlation factor is short ranged, and heals to 1 for la
distances; therefore, the function exp@u(r i j )#21 provides a
possible expansion parameter@note that in order to apply the
Fermi HNC expansion, the correlation~pseudo!potential has
to satisfy the conditions:u(r i j →0)→2` andu(r i j →1`)
→0#. In the case of the BRS wave function, the~pseudo!
potentialu(r ) is logarithmically long ranged; however, for
mally it is possible to extend the method by splitting t
pseudopotential associated with the Jastrow part into sh
and long-ranged parts, respectively,

u~r12!5us~r12!1ul~r12!, ~12!

with the dd nodal and composite function similarly split:

Ndd~r12!5Ndds~r12!2ul~r12!, ~13!

Xdd~r12!5Xdds~r12!1ul~r12!. ~14!

The splitting is done subject to the conditions

u~r12!1Ndd~r12!5us~r12!1Ndds~r12!, ~15!

Ndd~r12!1Xdd~r12!5Ndds~r12!1Xdds~r12!. ~16!

The short-range functionus(r12) ~going to -̀ for small dis-
tances and healing to 0 for large distances! and its long-
range counterpart are then chosen as

us~r12!522K0~Qur122aW u!22K0~Qur121aW u!, ~17!

ul~r12!52@ ln~ ur122aW u!1K0~Qur122aW u!#12@ ln~ ur121aW u!

1K0~Qur121aW u!#, ~18!

where K0(x) is the modified Bessel function, andQ is a
cutoff parameter of order 1. We recall that the 2D FT~Ref.
40! of ul(r12) is
7-4
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ũl~q!52
4pQ2

q2~q21Q2!
~eiq•aW 1e2 iq•aW !. ~19!

The final set of equations is solved by a standard itera
procedure. There is one necessary approximation within
FHNC method in order to obtain a closed set of equations
the nodal and non-nodal functions: a small set of clus
diagrams~corresponding to the so-calledelementarydia-
grams!, which cannot be includedab initio in the method,
needs to be somehow estimated outside the FHNC met
Several schemes have been devised to include the cont
tion of such diagrams at various levels of approximatio
however, the simplest approximation of totally neglecti
these terms~called the FHNC/0 approximation where we a
sumeEdd5Ede5Eee5Ecc50) generally leads to very reli
able results33,41,42,44and we have adopted it in this paper.

IV. RESULTS AND DISCUSSIONS

In this work we applied the FHNC theory to study th
BRS state at filling 1/2 of an arbitrary LL. For the sake
simplicity we neglected the elementary diagrams~FHNC/0!.
This has allowed us to determine to a reasonable accu
the pair distribution function and the static structure fact
In order to compare thea50 ~RR state,isotropic! with the
aÞ0 ~BRS state, ornematic! we studied the properties o
the BRS wave function for severala ’s with magnitudes be-
tween 0 and 3~in generala5uaueiua, but without losing
generality we considered onlyua50).

In Fig. 1 we plot the pair distribution functiong(r ) for
a52 @panels~a! and ~b!#, and the angle-averaged pair di
tribution function ḡ(r ) corresponding toa 5 0, 1, 2, 2.5,
and 3 @panels~c! and ~d!#. It is interesting to note, fora
Þ0, the noticeable angle dependence ofg(r ), and the split-
ting of the triple node at the origin to a simple node at t
origin and additional simple nodes atr 5a and angleu
5ua , ua1p (ua50 in this case!. From the energetics
point of view @see Eq.~3!#, a major consideration is th
strong dependence ofḡ(r ) on the value of the parametera.
As a is increased the major peak ofḡ(r ) becomes less pro
nounced, and fora'3 it develops a shoulder for smallr
@panel ~c!#. In addition, note the change in the small-r be-
havior of ḡ(r ), which switches from}r 6 ~for a50) to }r 2

asa is increased@panel~d!#. In general, for smallr, ḡ(r ) has
almost no angular dependence,45 and for aÞ0, g(r'0,u)
.Car 2 for 0<r<0.5, whereCa.0.024a1.7.

In Fig. 2 we plot the static structure factorS(q) for a
52 ~top panel!, where the most important feature is th
emergence of peaks inS(q) characteristic of a nematic struc
ture; and the angle-averaged static structure factorS̄(q) cor-
responding toa50, 1, 2, 2.5, and 3~bottom panel!. Note the
considerable dependence ofS̄(q) on a: as it increases the
peak is broadened and flattened, with no significant cha
in the small-q behavior.

One can compute the correlation energy per particle ei
directly from Eqs.~3!, ~5!, or ~8! to determine the energy pe
electron for arbitrary values of the Fermi BRS parametera,
20530
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the 2D system widthl, and Landau-level indexL. The fol-
lowing simplified formula can be used in view of Eq.~7!:

Ea
L~l!5

1

4pE0

`

dqqṼ~q,l!FLLS q2

2 D G2

@S̄~q!21#,

~20!

where Ṽ(q,l)5(2pe2/eq)exp(2lq) is the 2D FT of the
ZDS interaction potential.39 In addition to allowing straight-
forward calculations to be extended to any LL, Eq.~20! per-
mits a higher numerical accuracy in the calculation ofEa

since S̄(q) saturates exponentially to 1 for relatively sma
values ofq as compared toḡ(r ).

Figure 3 shows the energy difference between BRS st
with a51, 2, 2.5 and 3, and the isotropic state witha50.
Our findings indicate that in the LLL (L50) the RR state is
stable for anyl, since allaÞ0 states have higher energie
~top panel!.

The situation changes considerably in higher LL’sL
>1). In general, Fermi BRS states are found to havelower
energies, and the compressible RR state is unstable towa
nematic state~see the lower panels of Fig. 3!. Contrary to our
findings for one-third-filled LL’s,24 we do not see a runawa
instability but rather find that there are optimal values:a1*
'2 for the first LL (L51) anda2* '1 for L52.

Experiments have not observed a BRS state for theL
51 LL at filling factorsn55/2 and 7/2. There, remarkabl
even-denominatorFQHE’s have been observed, indicatin
the lack of gapless excitations. It is clear that a gapless c
pressible Fermi-liquid-like state, such as either RR’s state
our BRS state, is less likely to be a good description of
true ground state. Paired CF states37 ~most likely Pfaffian-
like spin-polarized38! have been proposed to explain the
experiments. For higher LL’s (L>2), however, it is likely
that the BRS states proposed here is related to the l
temperature anisotropic conductance fou
experimentally.19–23

At this point it is important to comment on how precis
our determination of these energy differences is. There
two aspects to this problem. First, the reader should note
we used anunprojectedwave function in place of the RR
generalization@Eq. ~2!#. While it would be highly desirable
to incorporate this LL projection operators into the forma
ism, this is not feasible within the FHNC method used he
We should note, however, that the presence of the Jas
factors in Eq.~2!, already provides a considerable projecti
into the LLL, and is believed to be particularly effective a
far as ground-state properties are concerned.43 The second
aspect is that the FHNC/0 method is essentially a variatio
method, giving energies that constitute an upper bound to
exact ground-state energy.46 While a precise estimate o
these errors can only be madea posteriori by comparing
these results with alternative calculations, these meth
have proven to be quite reliable in scenarios ranging fr
other partially filled LL’s ~Refs. 24 and 42! to 3He
systems.33,41 While the energydifferenceswe are interested
in ~see Fig. 3! are quite small, and perhaps smaller than
errors in the absolute values of the correlation energy in
7-5
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states, we remark that these are notuncorrelated errorsbut
systematic deviationsdue to the nature of the approximation
used, and energydifferenceswill likely be considerably more
precise.

In conclusion, we applied the FHNC theory to study po
sible Fermi BRS states in a half-filled LL. We find that th

FIG. 3. Energy per particle of the Fermi BRS states witha
51, 2, 2.5, and 3 relative to the isotropic (a50) state:DEa(l)
5Ea(l)2E0(l) for the LLL (L50) and higher LL’s as functions
of the short-distance cutoff parameterl. Energies are in units o
e2/(e l o). Note that in the LLL, the Fermi BRS states always ha
an energy higher than the isotropic state, whereas in higher
(L51, 2) there are ranges ofl for which Fermi BRS states ar
favorable.
20530
-

isotropic RR state is stable in the LLL for realistic interactio
potentials. In higher LL’s, BRS states with nematic order a
energetically more favorable than the RR state, perhaps
a direct connection to the anisotropic states observed
cently in high LL’s.19–21
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APPENDIX

For a Fermi system at densityr and spin degeneracygs ~1
or 2! the sum of nonnodal~composite! diagrams is given by

Xdd~r12!5eu(r12)1Ndd(r12)1Edd(r12)2Ndd~r12!21, ~A1!

Xde~r12!5eu(r12)1Ndd(r12)1Edd(r12)@Nde~r12!1Ede~r12!#

2Nde~r12!, ~A2!

Xee~r12!5eu(r12)1Ndd(r12)1Edd(r12)@Nee~r12!1Eee~r12!

1uNde~r12!1Ede~r12!u22gsuNcc~r12!1Ecc~r12!

2 l ~r12!/gsu2#2Nee~r12!, ~A3!

Xcc~r12!5eu(r12)1Ndd(r12)1Edd(r12)@Ncc~r12!1Ecc~r12!

2 l ~r12!/gs#1 l ~r12!/gs2Ncc~r12!. ~A4!

The chain formation of the nodal diagrams is genera
by convolution equations

Ndd~r12!5rE dr3@Xdd~r13!1Ndd~r13!#P~r32!, ~A5!

Nde~r12!5rE dr3@Xdd~r13!Xee~r32!2Xde~r13!Xde~r32!

1@Xde~r13!1Nde~r13!#P~r32!#, ~A6!

Nee~r12!5rE dr3@Xde~r13!Xde~r32!2Xdd~r13!Xee~r32!

1@Xee~r13!1Nee~r13!#P~r32!#, ~A7!

Ncc~r12!5rE dr3@2 l ~r13!/gs1Xcc~r13!

1Ncc~r13!#Xcc~r32!, ~A8!

’s
7-6
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where

P~r i j !5Xdd~r i j !12Xde~r i j !1rE dr k@Xdd~r ik!Xee~r k j!

2Xde~r ik!Xde~r k j!#. ~A9!
ic

.

.

-

.

.

C
v.

d,

.

-

D

20530
The pair distribution function is then given from

g~r12!511Xdd~r12!1Ndd~r12!12@Xde~r12!1Nde~r12!#

1Xee~r12!1Nee~r12!. ~A10!
.

.
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