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Magnetic and Orbital Order in LaMnO3 under Uniaxial Strain: A Model Study
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The effect of uniaxial strain on electronic structure and magnetism in LaMnO3 is studied from a
model Hamiltonian that illustrates the competition between the Jahn-Teller, super exchange, and
double exchange interactions. We retain in our model the three main octahedral distortions (Q1, Q2,
and Q3), which couple to the Mn (eg) electrons. Our results show the ground state to be a type
A antiferromagnetic (AFM) insulating state for the unstrained case, consistent with experiments.
With tensile strain (stretching along the c axis), the ground state changes into a ferromagnetic
and eventually into a type G′ AFM structure, while with compressive strain, we find the type A
switching into a type G structure. The orbital ordering, which displays the well known checkerboard
x2−1/y2−1 structure for the unstrained case, retains more or less the same character for compressive
strain, while changing into the z2 − 1 character for tensile strains. While Q1 and Q3 are fixed by
the strain components εxx and εzz in our model, the magnitude of the in-plane distortion mode
(Q2), which varies to minimize the total energy, slowly diminishes with tensile strain, completely
disappearing as the FM state is entered. Within our model, the FM state is metallic, while the
three AFM states are insulating.

PACS numbers: 75.47.Lx; 75.10.-b; 71.70.Ej

I. INTRODUCTION

It is well known that the interplay between the orbital,
lattice, and spin degrees of freedom in the lanthanum
manganite, a key member of the colossal magnetoresis-
tive materials, produces a checkerboard orbital-ordered
ground state by the cooperative Jahn-Teller effect and
simultaneously the type A antiferromagnetic ordering.
However, a detail knowledge of what happens to this
ground state under the application of strain or uniform
pressure is lacking.

On the other hand, high-quality, lattice-matched het-
erostructures of the manganites have begun to be grown
and studied, heterostructures that are frequently un-
der uniaxial strain due to the pseudomorphic growth
condition during epitaxial growth. The variation of
layer thickness and substrate induce different magnetic
ground states ranging from complete ferromagnetic or-
dering to a canted magnetic state or an antiferro-
magnetic state1,2,3,4,5. An interesting two-dimensional
spin-polarized electron gas was also predicted for the
manganite heterostructures.6 In addition, the mag-
netotransport studies on bulk LaMnO3(LMO) under
pressure7,8,9,10 and LMO thin films grown on different
substrates11,12,13,14,15,16,17 show metal insulator transi-
tions accompanied by magnetic transitions. Theoreti-
cally, it is known that strain can change orbital ordering
in LMO, which affects magnetism,18 and leads to mod-
ified properties in the manganite superlattices.19,20 The
commonalities involved in these are strain, either induced
by pressure or due to substrate.

It is therefore important to understand the ground-
state of the underlying material, viz., the bulk LMO un-
der uniaxial strain condition. It is the goal of the paper
to provide this insight by studying a simple model Hamil-
tonian that contains the relevant interactions important
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FIG. 1: The ground-state magnetic phase diagram for LMO
as a function of strain and the ddσ electronic hopping Vσ, as
obtained from our model. Type A represents the phase with
ferromagnetic ab planes stacked antiferromagnetically along
the c axis, while F and G stand, respectively, for the ferro-
magnetic and the Neél ordered antiferromagnetic state. We
distinguish between two type G states (G and G′) depending
on the orbital occupancy of the Mn eg electron: x2 − 1 or
y2 −1 for G and z2 −1 for G′. For LMO, Vσ is about -0.5 eV.

for this material.
Density-functional studies21,22,23,24 of the unstrained

LMO have provided important insights into the physics of
the system regarding how the Jahn-Teller (JT) coupling,
orbital ordering, and magnetism are intertwined. The
few such studies performed for the strained LMO are fo-
cused on the uniform pressure situation and indeed they
do find changes in the magnitude of the JT distortions
as well as in the conduction properties.25,26 Above the
critical pressure of 32 GPa, LMO becomes metallic and
the JT distortion appears to be completely suppressed.8,9

Systematic experimental work as well as theory work on
the uniaxial strain situation is missing; yet, as already
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FIG. 2: The magnetic and orbital order of the four phases under varying strain conditions as obtained from our model. Shown
are only the Mn atoms and arrows denote the t2g core spins. Tensile strain means stretching along the c direction, normal to
the ab plane.

mentioned, this strain condition is frequently realized in
thin films and superlattices grown on different substrates
and must be understood before an understanding of the
superlattices of LMO can be accomplished.

In this paper, we study the interplay between the lat-
tice, orbital, and magnetic degrees of freedom in LMO
under uniaxial strain condition by using a tight-binding
model that includes the relevant interactions, viz., the
antiferromagnetic super exchange between the t2g core
spins, the double exchange between the core spins and
the itinerant eg electrons, the electronic band structure
energy, as well as the JT coupling between the eg elec-
trons and the lattice.

At this stage, a model study is more instructional than
a density-functional study, since unlike the latter, one can
vary here the relative strengths of the various interactions
and study their effect on the ground state, providing us
with valuable insight into the system. This study will be
important in understanding the experimental results on
strained LMO as well as help interpret results of detail
ab initio calculations, which are in progress and will be
reported elsewhere.27

Our results, summarized in Figs. 1 and 2, show that
the magnetic state, the JT distortions, the orbital or-
dering, as well as conduction properties, all change with
uniaxial strain. As strain changes from compressive to
tensile, the system changes from a type G antiferromag-
netic (AFM) to the type A AFM phase, then to a fer-
romagnetic phase (F), ultimately changing into a type
G′ phase. The FM phase is metallic, while the rest are
insulating phases. As regards the orbital ordering, while
the unstrained LMO shows the well known checkerboard
x2 − 1/y2 − 1 ordering on the ab plane, the applica-
tion of compressive strain retains the same orbital struc-
ture more or less, while tensile strain results in a z2 − 1
orbital ordering. As the strain is changed from com-
pressive to tensile, the magnitude of the in-plane dis-
tortion (Q2 mode) diminishes, eventually disappearing
completely for the ferromagnetic phase and beyond. The
changes in the various features are intertwined with one

Q2Q1
y

z

x
Q3

Mn

O2
5

6
1

4

3

FIG. 3: Vibronic modes for the MnO6 octahedron with the
eigenvectors: |Q1〉 = (−X1 + X2 − Y3 + Y4 − Z5 + Z6)/

√
6,

|Q2〉 = (−X1 + X2 + Y3 − Y4)/2, and |Q3〉 = (−X1 + X2 −
Y3+Y4+2Z5−2Z6)/

√
12, where X1 denotes the x coordinate

of the first oxygen atom, etc.

another as discussed below.

II. THE MODEL HAMILTONIAN

We consider the following model Hamiltonian, re-
stricted to the Mn sites in a tetragonal lattice, with lat-
tice constants being different along the plane and normal
to the plane in order to accommodate the uniaxial strain:

H =
∑

i

1

2
KQi

2 +
∑

i

Hi
JT + Hke +

J

2

∑

<ij>

~Si · ~Sj , (1)

where i is the site index and < ij > denotes summa-
tion over nearest-neighbor sites. The last term describes
the antiferromagnetic superexchange interaction between
the Mn t2g spins, treated as classical, which provide the
background for the motion of the itinerant Mn eg elec-
trons. The first two terms in the Hamiltonian describe
the Jahn-Teller interaction of the Mn eg electrons with
the lattice, where the first term is the elastic energy with
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Q2 = Q2
1 + Q2

2 + Q2
3, with Q1 being the breathing mode,

Q2 being the basal plane distortion mode, and Q3 be-
ing the octahedral stretching mode as shown in Fig. 3.
These are the three important modes that couple to the
eg electrons.

The JT interaction at each Mn site is given by28

HJT = g′Q1I − g(Q3τz + Q2τx)

−G(Q2
3 − Q2

2)τz + 2GQ2Q3τx, (2)

where both the linear and quadratic vibronic couplings
are included. The quadratic coupling is necessary to
describe the checkerboard orbital ordering on the ab
plane.29 In Eq. 2, ~τ is the pseudospin describing the
two eg orbitals, viz., | ↑〉 = |z2 − 1〉 and | ↓〉 = |x2 − y2〉.
Denoting the creation operators for these two orbitals

on the i-th site by c†i1 and c†i2, respectively, the pseu-
dospin operator at the i-th site in Eq. 2 is written as:

~τi =
∑

αβ c†iα~ταβciβ , where the greek indices denote the
orbitals and i is the site index. The lattice interactions
do not depend on the electron spin, which therefore does
not appear in Eq. 2.

The kinetic energy term in the Hamiltonian may be
written as

Hke =
∑

〈ij〉,αβ

tiα,jβ cos(θij/2)c†iαcjβ + H.c., (3)

where the value of the Hund’s energy is taken as JH = ∞.
In this limit, the coupling between the core and the itin-

erant spins, HHund = −JH

∑

iα
~Si · ~siα, makes the elec-

tron state with the spin anti-aligned with the t2g core
spin at that site inaccessible to the system (core t2g spin

and the electron spin at the i-th site are denoted by ~Si

and ~si respectively). Thus the itinerant electrons are ef-
fectively described as spinless, with only its spin state
aligned parallel to the core spin at a particular site being
accessible to the system. The electron hopping is dimin-
ished by the well known Anderson-Hasegawa cos(θij/2)
factor, where θij is the angle between the core spins at
the two sites.30,31

The nearest-neighbor (NN) hopping integral t depends
on the relative positions of the two Mn sites. For NN
along x̂ or ŷ, we have32

tαβ =

(

1 −
√

3

−
√

3 3

)

× Vσ

4
, (4)

while along ẑ, we have tαβ = δα1δβ1Vσ, where Vσ is the
ddσ hopping parameter and we have neglected the much
smaller ddδ interaction. The typical values of the Hamil-
tonian parameters used in our calculations throughout,
unless otherwise stated, are: K = 9 eV/Å2 following
from the optical studies on La0.85Sr0.15MnO3

33, g = 2.5
eV/Å, G = 1.5 eV/Å2 and Vσ = -0.5 eV following earlier
density-functional results.29 The value of the exchange
energy is taken as J = 26.2 meV, which is the experimen-
tal value for CaMnO3,

34,35 which has the t32ge
0
g electronic

configuration. Note that in our model Hamiltonian, g′ is

an unimportant parameter, as it affects the energies of
both the eg orbitals equally and therefore adds a constant
to the total energy.

We have considered the typical magnetic ordering of
the core spins found in the manganites, viz., the A, C,
G, and F types of magnetic states. Type C was always
found to be of higher energy within our model. To ac-
commodate these structures, the unit cell in the lattice
consisted of four Mn atoms. The total energy was cal-
culated by diagonalizing the Hamiltonian (1) and adding
the energies of the occupied states in the Brillouin zone,
corresponding to one eg electron per Mn atom, for the
various strain conditions and magnetic configurations.

Strain and the JT parameters – In our model, since we
keep only the three main octahedral modes, the strain
components are related to the magnitudes of the JT dis-
tortions. We consider only uniaxial strain conditions but
no shear, so that only the diagonal components of the
strain tensor are non zero.

For the unstrained crystal, the ground-state in our
model has a tetragonal lattice structure with type A mag-
netic configuration and a checkerboard JT distortion and
orbital ordering. The JT distortion has been shown29 to
lead to the checkerboard distortions on the ab plane of
the type (Q2, Q3) alternating with (-Q2, Q3) consistent
with the experiments.

This checkerboard JT distortion in our model results
in a tetragonal structure with the lattice constants being
a =

√

2/3 Q10 −Q30/
√

3 and c = a+
√

3 Q30, where the
zero in the subscript denotes the calculated magnitudes
for the unstrained LMO. The magnitudes of these distor-
tions that minimize the ground-state energy clearly de-
pends on the Hamiltonian parameters used in the model.
For our typical parameters, we find that Q20 ≈ 0.32 Å
and Q30 ≈ −0.18 Å, which are close to the experimental
values of 0.28 Å and −0.10 Å, respectively.36 Optimiza-
tion of Q1 for the Hamiltonian yields, trivially, the result
that Q10 = −g′/K, while the cell volume is given by

a2c ≈ (
√

2/3 Q10)
3. So, in essence, the experimental

volume of LMO, which corresponds to Q10 = 4.85 Å de-
termines the ratio of −g′/K.

We note that c and a are independent of the strength
of the in-plane distortion Q2. Therefore, any strain that
changes c and a will directly affect the Q1 and Q3 dis-
tortions only, whereas the system will have an optimized
Q2 distortion in order to achieve the minimum in the
ground state energy. This is consistent with the experi-
mental studies of bulk LMO under pressure, where it has
been found that the Mn-O bond length along the c-axis
changes linearly with the lattice parameter of the LMO
unit cell, while the Mn-O bond lengths along the plane
follow a non-linear behavior.8,9

Now, with uniaxial strain, the lengths of the axes be-
come a (1+ εxx) and c (1+ εzz), respectively. The strain
parameters completely determine the magnitudes of the
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breathing and the octahedral stretching modes, viz.,

Q1 = Q10(1 + 2εxx/3 + εzz/3)

Q3 = Q30(1 + εzz) +
√

2Q10(εzz − εxx)/3. (5)

In addition, the Poisson’s ratio ν relates the two strain
components,37 εxx = (2ν)−1(ν − 1)εzz, so that there is
a single strain parameter εzz in the problem. Rewriting
Eq. (5) in terms of this parameter, we have

Q1 = Q10(1 +
2ν − 1

3ν
εzz)

Q3 = Q30(1 + εzz) + Q10

√
2

3

ν + 1

2ν
εzz, (6)

so that in our model, the strain parameter fixes the val-
ues of the Q1 and the Q3 distortions. The magnetic con-
figurations and the in-plane JT distortion Q2 are then
determined so as to minimize the total energy.

The value ν = 1/2 corresponds to conservation of vol-
ume under strain and the measured values for materials
are not too far from this. For the manganites, the mea-
sured value is ν ≈ 0.4,37,38 which we use in our calcula-
tions together with the unstrained distortions Q10 = 4.85
Å and Q30 = −0.18 Å as indicated above. For the case
of conserved volume (ν = 1/2), the value of Q1 does not
change with strain, while for ν = 0.4 and εzz = 5%,
it changes by less than a percent from Q10, while Q3

changes significantly. Furthermore, because of the form
of the Hamiltonian, Eqs. (1) and (2), Q1 adds just an
elastic energy and shifts the energies of both components
of the eg orbitals uniformly, irrespective of the magnetic
structure of the Mn core spins, so that the relative en-
ergies of the different magnetic structures for a given
strain εzz are not affected by Q1. Thus in essence Q3

remains the sole parameter in the problem for obtaining
the ground states for different strains and the two param-
eters εzz and Q3 can be used interchangeably to describe
the strain condition. It has been recently shown that for
manganites, the strain parameter εzz can be varied by as
much as ±5% by using different materials as substrates.37

III. RESULTS AND DISCUSSIONS

Isolated octahedra under strain – To begin on famil-
iar grounds, we consider the situation where the intersite
hopping integral Vσ = 0 in the Hamiltonian (1). This is
equivalent to a collection of isolated MnO6 JT centers,
each under the applied strain condition. The octahedra
interact only via the super exchange interaction of the
Mn core spins that results in the Neél AFM order, but
the orbital occupancy and the JT distortions are deter-
mined by the interaction within a single octahedron. We
see from Fig. 1 that in this case the magnetic ordering
changes from type G AFM to type G′ AFM beyond a cer-
tain value of tensile strain. This can be easily understood
as explained below.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6

y 2 − 1

x2 − 1

z2 − 1
Q3

Q2

FIG. 4: Energy contours of an isolated Jahn-Teller center on
the Q2 − Q3 plane with linear and quadratic coupling. The
three global minima are indicated by the circular dots along
with the corresponding occupied orbital; one of the three min-
ima is occupied in the isolated octahedron. For the octahe-
dron in the solid, the strain parameter εzz fixes the magnitude
of Q3 and the octahedron occupies the state marked by the
square dots. As Q3 is changed, the system traverses along
the lines marked by the arrows. Beyond a critical value of the
tensile strain (i.e., a critical Q3), the orbital order abruptly
switches from x2 − 1 or y2 − 1 like to z2 − 1, making thereby
a transition from G to G′ state.

The energy of an isolated octahedron, with one eg elec-
tron occupied, is well known.39 The expression is

E =
1

2
KQ2 − Q(g2 + G2Q2 + 2gG cos(3φ))

1

2 , (7)

where Q =
√

Q2
2 + Q2

3 and φ = tan−1(Q2/Q3). This
leads to the energy contours with three equivalent min-
ima at φ = 0,±2π/3 with Q = g/(K − 2G) and the
corresponding occupied orbital as shown in Fig. 4.

Now, when the octahedron is placed in LMO, the strain
parameter εzz fixes the magnitude of Q3 as given by Eq.
(6), with the result that the state of the octahedron is
given by minimizing the energy with respect to Q2 only.
The constrained minima for a certain value of Q3 are
shown by the square dots in Fig. 4. For the isolated
octahedron, there are two equivalent minima with either
the x2 − 1 or the y2 − 1 occupation; In the solid, they
become staggered resulting in the checkerboard orbital
order in the ab plane. As strain is changed, Q3 changes
and the system traverses along the lines marked by the
arrows in the figure. Beyond a certain tensile strain, the
strength of the Q2 mode sharply reduces to zero, which
is also accompanied by a transition in the orbital occu-
pancy from x2 − 1 or y2 − 1 to z2 − 1. The octahedra
interact only via the super exchange term when the hop-
ping term Vσ is zero, so that the Neél order is retained
throughout, resulting in the transition from type G to G′

configuration as the orbital state changes.
Inter-octahedral hopping allowed – When the inter-

octahedral hopping is allowed (Vσ 6= 0), it leads to a
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x2 − 1
2 − 1z
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C

F A

G A F

Ground State

FIG. 5: Energy contours for different phases and for the
minimum-energy phase (bottom right). For a fixed strain
(fixed Q3), the global minimum is obtained by varying Q2 for
each phase and comparing the minima thus obtained for each
phase. The line with arrows indicates the state of the system
as strain is varied. As strain changes from compressive to
tensile, the magnetic state changes from G →A →F → G′,
the magnitude of Q2 slowly diminishes eventually becoming
zero, and finally the orbital order changes from x2 − 1/y2 − 1
to z2−1 type. Contours are obtained by solving Hamiltonian
Eq. (1) with the hopping parameter Vσ = -0.5 eV.

cooperative JT ordering, i.e., that the JT distortions of
the neighboring octahedra are organized so as to optimize
the various energy terms in the solid. The ground-state
configuration is determined by a competition between (i)
the electron kinetic energy, which would prefer no JT
distortion and a FM alignment of the core spins, so that
all eg orbitals are aligned and the kinetic energy gain
due to hopping is maximized, (ii) the on-site JT interac-
tion that would prefer a large octahedral distortion, at
the same time balancing the elastic energy cost, and (iii)
the super exchange energy that prefers antiferromagnetic
alignment between all neighboring spins. If the electronic
hopping is taken as zero, there is no conflict between the
last two terms and a Neél state (G or G′) results as dis-
cussed above, simultaneously maximizing the JT energy
gain and as well as the super exchange term.

With the switching on of the hopping term, all three
energies cannot be simultaneously optimized. The result-
ing competition leads to a staggered orbital order accom-
panied by a staggered JT distortion, where both Q2 and
Q3 distortions occur at each site, with Q2 changing sign
on neighboring sites and the x2 − 1 and y2 − 1 orbitals
alternately occupied. The system thus stabilizes in the
orbital ordered type A AFM state29.

When strain is applied, other magnetic phases com-
pete, resulting in different ground-state structures as
shown in Fig. 1. To gain insight into the possible phases
in strained LMO, we have kept the staggered JT distor-
tion and examined four possible magnetic ordering, viz.,
A, F, G, and C. In Fig. 5 we have shown the energy
contours in the Q3 − Q2 plane for the type F, type A,
and type C magnetic ordering. Results for type G or-
dering remains the same as in Fig. 5, irrespective of the
magnitude of the hopping integral, since the Anderson-
Hasegawa cos (θ/2) factor makes the effective hopping
to be zero anyway. For the ferromagnetic ordering, the
eg − eg hopping is allowed in all the directions. It is the
strongest when there is no JT splitting of the eg orbitals.
Therefore the global minimum for the ferromagnetic or-
dering occurs at the center of the Q3 − Q2 plane as can
seen from the energy contours of Fig. 5. As we devi-
ate from the center, JT-splitting reduces the effect of the
hopping due to the energy denominator, which therefore
weakens the FM stability.

For the type A AFM ordering, the eg − eg orbital hop-
ping is forbidden along the c-axis. Therefore, through-
out the Q3 − Q2 plane, the net gain in the band energy
is weaker in comparison to the FM case. In this case,
the competition between the JT energy and band energy
lead to two global minima located at Q3 = -0.18 Å and
Q2 = ± 0.32Å (see Fig. 5 (top right)) which is close
to earlier experimental and theoretical studies8,22,29. In
fact, taking the super exchange into account, these min-
ima have the lowest energy in the Q3 − Q2 plane when
all the magnetic configurations are considered.

In the case of type C magnetic ordering, where the an-
tiferromagnetic ab planes are stacked ferromagnetically
along the c-axis, the hopping between the z2 − 1 orbitals
along the c-axis is only allowed and the remaining hop-
ping interactions are forbidden either due to orbital sym-
metry along the c-axis or due to the Anderson-Hasegawa
cos(θ/2) factor along the plane. As a result, the system
gains very little band energy, making this phase unfavor-
able for all strains.

Total energy – The total energies of the various struc-
tures as a function of strain are plotted in Fig. 6. It is
easy to understand several general features of the energy.
First, note that with the energy minimum occurring at
zero strain condition (εzz = 0), the total energy is in-
ternally consistent. If the minimum occurred somewhere
else, that would indicate that LMO would automatically
occur with a different strain condition. The energy of
the F structure does approach the minimum of the A
structure at εzz = 0, but does not come below it.

A second feature of the total energy is that for large
strains, the octahedral distortion is strong, which leads
to a large on-site splitting of the eg states,

ǫ± = g′Q1 ± g
√

Q2
2 + Q2

3, (8)

the lower orbital being fully occupied and the higher or-
bital empty. This in turn leads to a vanishing gain in



6

εzz

−0.8

0.8

E
ne

rg
y 

( 
eV

) 
/ M

n

0.10 0.2

−0.6

0.4

0.2
0−0.4 0.4

Q3 (Å)

G
A F

F

G

C
G

FIG. 6: (Color online) Total energy for the different phases
as a function of strain. Parameters are the same as in Fig. 5.

energy due to hopping between the occupied and the un-
occupied states because of the large energy denominator
in the second order perturbation theory, irrespective of
the magnetic structure and the corresponding Anderson-
Hasegawa cos(θ/2) factors. The net result is that for
large strains, the energies for all structures simply tend
to a sum of the elastic energy and the on-site JT energy:

E = (1/2)KQ2 + g′Q1 − g
√

Q2
2 + Q2

3. (9)

The quadratic dependence on the JT distortion or,
equivalently, the strain for large strain for all magnetic
structures is clearly seen in Fig. 6. The curves are
parabolas with shifted minima for the G and G′ struc-
tures, where the expression (9) is exact, since there is no
hopping for these structures. For the remaining struc-
tures, there is a gain of energy due to hopping, being
maximum for the ferromagnetic F structure, where hop-
ping is allowed in all directions in the lattice. This leads
to the stability of the F structure for small strain param-
eters as seen from the figure. The argument is consistent
with the fact that the energy gain for small strain pro-
gressively increases from C to A to F (as seen in Fig.
6), where hopping is allowed along one, two, and three
directions, respectively, for these structures.

Another point regarding the total energy of Fig. 6 is
that the ferromagnetic phase is always close by in energy
for small strain situations, which is suggestive of the rea-
son why LMO thin films are usually observed to occur in
the ferromagnetic phase, rather than the A phase of the
bulk.

Finally, one might ask how is it possible that at larger
strains the Néel ordered G or G′ state wins over the fer-
romagnetic F state. The reason is that as strain is in-
creased, the progressively larger JT distortions split the
eg states more and more (Eq. 8). The kinetic energy gain
in the FM phase due to hopping between the occupied
eg state and the neighboring unoccupied eg states pro-
gressively diminishes, due to the energy denominator in

F G
/
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FIG. 7: Variation of the JT distortions (upper panel) and the
occupancy of the Mn eg orbitals (lower panel) as a function
of the applied strain. In our model, Q3 and εzz are linearly
related by Eq. (6). The hopping parameter is Vσ = -0.5 eV.
Dots denote the unstrained structure.

the second-order perturbation theory. This can not over-
come the super exchange energy cost, so that the Néel
ordered states win in the limit of large strains.

JT distortions and orbital occupancy – Turning now
to the question of JT distortion strengths, Fig. 7 shows
the variation of Q2 and Q3 modes and the change in
the orbital occupancy as a function of strain. As dis-
cussed earlier, the Q3 mode is directly related linearly to
εzz through Eq. ( 6). Quite interestingly, we find that
the magnitude of the in-plane distortion Q2 at first di-
minishes and then sharply drops to zero as the strain is
changed from compressive to tensile. This is due to the
fact that in the compressive strain condition, the sys-
tem stabilizes in the type G AFM ordering where the Q2

mode is more favorable (see Fig. 4). On the other hand,
in the tensile strain condition, in the stable ferromagnetic
(F) ordering, kinetic energy gain is maximum if the eg

orbitals are not split, so that the JT distortion is small
or non-existent.

Strain has a strong effect on the eg orbital occupancies
as indicated in Fig. 5. The calculated orbital occupancies
are plotted in Fig. 7. In the A phase, the x2−y2 and the
z2-1 orbitals add up with the proper linear combination
to yield the checkerboard x2 − 1/y2 − 1 orbital ordering
on alternate Mn atoms in the ab plane. As the strain
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FIG. 8: Densities of states (DOS) corresponding to the four
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-0.5 eV. In the Neél ordered G and G′ phases, complete sup-
pression of hopping leads to the δ-functions in the DOS; In
the G phase, alternate Mn sites have the x2 − 1 or the y2 − 1
orbitals occupied with the remaining component of the eg

manifold empty, leading to the checkerboard orbital ordering,
while in the G′ phase, all sites have the z2 − 1 orbital occu-
pied. In the A phase, allowed hopping in the plane leads to a
broadening of the band, but still a gap in the DOS remains.
In the ferromagnetic F phase, hopping both in and out of the
plane is strong enough to close the gap, leading to a metallic
state due to band gap closure. The Fermi energy is taken as
the zero of energy in this plot.

is increased, the z2 − 1 orbital becomes more and more
occupied with the occupancy becoming one in the G′

phase. This is because in this limit Q3 is large and Q2 is
zero, so that the elongated Mn-O bond along the c-axis
results in a strong octahedral crystal field that increases
the energy of x2−y2 orbital, simultaneously lowering that
of z2−1 orbital and fully occupying it in the process. This
physics is of course incorporated in the linear Jahn-Teller
coupling term in our model Hamiltonian Eq. (3).

Beside the magnetic transitions, the other important
feature in the strain induced LMO is a metal-insulator
transition due to band gap closure. Fig. 8 shows the
densities of states for the various phases, which faithfully
indicates the strong JT splitting of the on-site energies
of the eg orbitals, ∆ = g

√

Q2
2 + Q2

3, with only a large

hopping in the ferromagnetic phase being able to close
the gap and produce a metallic phase. In Fig. 9, we have
shown the calculated band gap as a function of strain.
We see that the gap changes abruptly as new phases are
entered. We note that for the unstrained case, the mag-
nitude of the band gap obtained with our parameters is
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FIG. 9: Variation of the band gap with strain. Inset shows
the typical band structure for the four phases. The black dot
indicates the band gap for the unstrained LMO.

1.76 eV as compared to the measured value of 1.8 eV, ob-
tained from the photoemission data40. This suggests that
the experimental band gap under strain may also show
changes similar to what is indicated from our model.

IV. SUMMARY

In summary, we studied the effect of uniaxial strain
on the ground-state structure of LaMnO3 from a model
Hamiltonian that included the key interactions in the sys-
tem, viz., the super exchange, the double exchange, and
the Jahn-Teller electron-lattice coupling. Our results re-
veal the existence of various phases under varying strain
conditions, where the orbital order, magnetic structure,
octahedral JT distortions, as well as the conduction prop-
erties change under applied strain. Only the ferromag-
netic phase, stable with a small tensile strain in our
model, was found to be metallic, while all other phases
were found to be insulating. The analysis presented here
should be helpful in the interpretation of experiments on
epitaxially grown LaMnO3 heterostructures, which are
often in the uniaxial strain condition.

This work was supported by the U. S. Department of
Energy through Grant No. DE-FG02-00ER45818.
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