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Experimental discovery of the gravitomagnetic fields generated by translational and/or
rotational currents of matter is one of primary goals of modern gravitational physics.
The rotational (intrinsic) gravitomagnetic field of the Earth is currently measured by
the Gravity Probe B. The present paper makes use of a parametrized post-Newtonian
(PN) expansion of the Einstein equations to demonstrate how the extrinsic gravitomag-
netic field generated by the translational current of matter can be measured by observing
the relativistic time delay caused by a moving gravitational lens. We prove that mea-
suring the extrinsic gravitomagnetic field is equivalent to testing relativistic effect of the
aberration of gravity caused by the Lorentz transformation of the gravitational field.
We unfold that the recent Jovian deflection experiment is a null-type experiment testing
the Lorentz invariance of the gravitational field (aberration of gravity), thus, confirming
existence of the extrinsic gravitomagnetic field associated with orbital motion of Jupiter
with accuracy 20%. We comment on erroneous interpretations of the Jovian deflection
experiment given by a number of researchers who are not familiar with modern VLBI
technique and subtleties of JPL ephemeris. We propose to measure the aberration of
gravity effect more accurately by observing gravitational deflection of light by the Sun
and processing VLBI observations in the geocentric frame with respect to which the Sun
is moving with velocity ∼ 30 km/s.
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1. Introduction

A gravitomagnetic field, according to Einstein’s theory of general relativity, arises

from moving matter (mass current) just as an ordinary magnetic field arises in

Maxwell’s theory from moving charge (electric current). The weak-field linearized

theory of general relativity unveils a mathematical structure comparable to the

Maxwell equations 1,2,3. This weak-field approximation splits gravitation into com-

ponents similar to the electric and magnetic field. In the case of the gravitational

field, the source is the mass of the body, whereas in the case of the electromagnetic

field, the source is the charge of the particle. Moving the charge particle creates a

magnetic field according to Ampère’s law. Analogously, moving the mass creates a

mass current which generates a gravitomagnetic field according to Einstein’s gen-

eral relativity. Ampère-like induction of a gravitomagnetic field (gravitomagnetic

induction) in general relativity has been a matter of peer theoretical study since

1
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the Lense-Thirring paper a Nowadays this problem can be tackled experimentally.

There are two types of mass currents in gravity. The first type is brought about

by the rotation of matter around body’s center of mass. It generates intrinsic grav-

itomagnetic field tightly associated with body’s angular momentum (spin) and so

far the basic research in gravitomagnetism has been focused on the discussion of its

various properties 7. The second type of the mass current is caused by translational

motion of matter. It generates extrinsic gravitomagnetic field that depends on the

frame of reference of observer and can be completely eliminated in the rest frame of

matter. This property of the extrinsic gravitomagnetic field is a direct consequence

of the Lorentz invariance of Einstein’s gravity field equations 8 and its experimental

testing is as important as that of the intrinsic gravitomagnetic field. The point is

that both the intrinsic and the extrinsic gravitomagnetic fields represent actually

different sides of a single gravitomagnetic field associated with g0i component of

the metric tensor which can be split in pure curl (intrinsic) and gradient (extrin-

sic) parts. Furthermore, detection of the extrinsic gravitomagnetic field probes the

Lorentz invariance of the gravitational field which determines its causal nature,

that is whether the fundamental speed limit cg for gravitational field (= the speed

of gravity) is the same as the fundamental speed limit c for electromagentic field

(= the speed of light). Experimental measurement of the intrinsic gravitomagnetic

field of the rotating Earth is currently under way by the Gravity Probe B mission 9

with the expected accuracy of 1% or better 10. Laser ranging of LAGEOS and other

geodetic satellites verify its existence as predicted by Einstein’s general relativity
11,12 although the claimed accuracy is rather controversial 13b

The goal of the present paper is to show that the extrinsic gravitomagnetic

field can be measured in high-precision relativistic time-delay experiments where

light (radio wave) interacts with the gravitational field of a moving massive body

(gravitational lens) c. Relativistic light deflection in the rest (static) frame of the

light-ray deflecting body was calculated in optics by Einstein 16 and Shapiro 17

had derived the relativistic time delay in radio. General relativistic problem of the

gravitational deflection and delay of light by an arbitrary moving body has been

solved in our papers 18,19 which did not discern relativistic effects associated with

the Lorentz-invariant properties of light and gravitational field, that is the metric

tensor gαβ , the affine connection Γα
βγ , and the curvature tensor 20,21. In the present

paper we use a standard PN expansion of general relativistic equations parametrized

aEnglish translation of the original Lense-Thirring paper is given by Mashhoon et al. in 4. More
recent derivations of the Lense-Thirring effect on the orbital motion of a test particle can be found
in 5,6. For detailed study of the Lense-Thirring effect caused by the rotational currents of matter
see the textbook 7.
bOther interesting proposals for measuring the intrinsic gravitomagnetism in the Solar system are
described in 13,14,15 .
cAshby and Sahid-Saless 8 discussed a similar idea for measuring the extrinsic gravitomagnetic
field by observing geodetic precession of a satellite’s orbit caused by orbital motion of a massive
body with respect to the local inertial frame of the satellite.
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by a speed-of-gravity parameter ǫ that allows us to clearly separate the relativistic

effects associated with the Lorentz boosts of the Einstein gravity field equations

from that of the Maxwell equations. Formally, the speed-of-gravity parametrization

in Einstein’s equations is achieved after replacing matter’s current j, velocity of the

matter v, and all partial time derivatives of the metric tensor in accordance to the

following rules (see 22,23 for more detail)

j → ǫj , v → ǫv ,
∂

∂t
→ ǫ

∂

∂t
. (1)

It is apparent that the replacements (1) do not change anything in the structure

of the general relativistic equations because it is fully equivalent 22,23 to introduc-

tion to these equations of the dynamic time coordinate x0 = cgt, where cg ≡ c/ǫ.

One should not think that the introduction of the parameter cg leads to the re-

placement of the Minkowski metric ηαβ = diag(−1, +1, +1, +1) to another one

fαβ = diag(−c2/c2
g, +1, +1, +1). The Minkowski metric ηαβ = diag(−1, +1, +1, +1)

of the background flat space-time remains fixed because we work with one and the

same value of the time coordinate x0. What changes is the character of the trans-

formation of the field variables (the metric tensor perturbation hαβ and the affine

connection Γα
µν) residing on the background when one goes from one reference frame

to another.

Parameter ǫ singles out the Lorentz group of transformation of the gravitational

field given by the matrix Λα
β(ǫ) depending on the parameter ǫ. Explicit dependence

of this matrix on parameter ǫ makes it look formally different from the Lorentz group

of transformation of electromagnetic field, described by the matrix λα
β ≡ Λα

β(ǫ = 1),

so that the effects associated with null characteristics of light and those of gravity

can not be confused. As long as one considers orbital motion of massive bodies

(artificial satellites, planets, binary pulsar, etc.) the difference between cg and c

shows up only in the relativistic effects of order (v/c)2 and higher, where v is a

characteristic velocity of the massive body. However, observing propagation of light

in the gravitational field of a massive moving body makes the difference between

cg and c to be measurable already in the linear terms of order v/c due to the

fundamental nature of the interaction of the electromagnetic field with the affine

connection in the equations of light geodesics.

The speed-of-gravity parameter ǫ is more general than the parameters α1, α2, α3

of the PPN formalism 24. This is because these parameters describe violation of the

Lorentz symmetry of the metric tensor alone. Linear space-time transformation of

the metric tensor tests the Lorentz invariance of the gravitational field locally at

a single point of the space-time manifold. The affine connection and curvature of

the manifold are formed from the metric tensor derivatives which must transform

in accordance with the group of the Lorentz transformations of the metric, that

is Λα
β(ǫ). Therefore, to preserve this property parameter ǫ must be introduced in

front of the time derivatives of the metric tensor (see equation (1)) that is in the

affine connection and the curvature. By construction the Lorentz violation of the
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affine connection and the curvature in the PPN formalism are due to the broken

symmetries of the metric tensor alone 24. PPN formalism postulates 24 that the met-

ric tensor derivatives are transformed in accordance with the group of the Lorentz

transformation of electromagnetic field. However, according to Einstein 20,21 and

results of all previous gravitational experiments 25 the metric tensor describes grav-

itational field alone and, hence, its derivatives must be normalized to the speed of

gravity cg and transformed in accordance with the Lorentz group of the gravita-

tional sector of the theory. According to Einstein 20,21 the Lorentz groups of the

transformation of both gravitational and electromagnetic fields must be identical

but this theoretical foresight must be tested experimentally. The compatibility of the

two groups can be tested if one performs a gravitational experiment in which both

gravitational and electromagnetic fields are transformed from one inertial frame to

another. This kind of experiments can be presently done with VLBI observations by

observing propagation of light in the gravitational field of a moving massive body

as demonstrated in 26,27.

In the rest of this paper we derive the ǫ-parametrized PN formula for the general-

relativistic time delay and apply it for analysis of the relativistic effect of the re-

tardation of gravity which has been measured recently in the Jovian experiment
26,27. We show that in the framework of the chosen ǫ-parameterization the observed

effect can be interpreted as: (1) measurment of the extrinsic gravitomagnetic field

of Jupiter caused by its orbital motion, (2) verification that gravity is Lorentz in-

variant, (3) proof that the fundamental speed cg for gravity does not exceed the

speed of light c in vacuum. Finally, we discuss a new VLBI experiment in the field

of the Sun in which the Lorentz invariance of gravity and the equality cg = c can

be measured with accuracy up to 1%.

2. Gravitomagnetism

Our parametrization scheme of the Einstein equations works in any approximation
23. For the sake of simplicity we shall work with the linearized PN equations of

general relativity which is sufficient for adequate treatment of the light-ray deflection

experiment. The PN expansion is done with respect to parameter ǫ = c/cg, where

cg is the fundamental speed limit for gravity. If cg → ∞ (that is ǫ → 0), the

general relativity collapses to the instantaneous speed-of-gravity limit where all

gravitomagnetic phenomena vanish and the gravitational interaction is immediate.

In the first PN approximation the metric tensor perturbation hαβ = gαβ − ηαβ

of the gravitational field contains both the gravitoelectric, Φ = (c2/2)h00 and the

gravitomagentic, Ai = −(c2/4)h0i potentials 1,2,3. The space-space components of

the metric tensor perturbation are hij = (2/c2)Φδij . The gravitoelectric, E, and

the gravitomagnetic, B, fields are defined as

E = −∇Φ −
ǫ

c

∂A

∂t
, (2)

B = ∇ × A , (3)
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where ∇ ≡ ∂/∂i is a spatial gradient and parameter ǫ is formally introduced in

accordance to Eq. (1). After imposing the de-Donder gauge condition

ǫ

c

∂Φ

∂t
+ ∇ · A = 0 , (4)

the Einstein equations lead to the system of the gravitomagnetic field equations

∇ · E = 4πGρ , (5)

∇ · B = 0 , (6)

∇ × E = −
ǫ

c

∂B

∂t
, (7)

∇ × B =
ǫ

c

∂E

∂t
+

4πGǫ

c
j , (8)

where ρ and j are the mass-density and mass-current of the gravitating matter

defined in terms of the energy-momentum tensor Tαβ of matter as ρ = (T 00 +

T ii)/(2c2) and ji = T 0i/c respectively 1,2,3,20,21.

By making use of Eqs. (2), (4), (5) and (8) one can derive the wave equations

for the potentials

(

−
ǫ2

c2

∂2

∂t2
+ ∇2

)

Φ = −4πGρ , (9)

(

−
ǫ2

c2

∂2

∂t2
+ ∇2

)

A = −
4πGǫ

c
j . (10)

These equations are of the hyperbolic type and describe propagation of gravitational

field with the speed cg = c/ǫ. In the case of the instantaneous speed-of-gravity theory

ǫ = 0, Eqs. (9),(10) are reduced to a single Laplace-type equation for the scalar

potential Φ and both the gravitomagnetic potential, A, and the gravitomagnetic

field, B, vanish.

3. The Lorentz Invariance and Aberration of Gravity

Let us neglect the intrinsic rotation of a light-ray deflecting body (Jupiter, Sun).

This is because the current light deflection experiments are not sensitive enough

to measure the deflection of light caused by the body’s spin d. Our assumption

eliminates from Eqs. (5)–(10) all currents associated with motion of matter around

body’s center of mass. Therefore, the intrinsic gravitomagnetic field of the light-ray

deflecting body caused by its rotation will not be discussed in the rest of the present

paper.

dSee however publications 19,28,29,30,31,32 where the measurement of the intrinsic gravitomagnetic
field in light-ray deflection experiments is discussed. We notice that recent proposal by Tartaglia
and Ruggiero 33,34 for measuring gravitomagnetic field in binary pulsars is impractical since it is
completely absorbed by the, so-called, bending effect predicted in 35 and further discussed in 36
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Gravity field equations (9), (10) are invariant with respect to the Lorentz group

with the matrix of transformation Λα
β(ǫ) having a standard form 20,21

Λ0
0(ǫ) = γǫ ≡

(

1 − β2
ǫ

)−1/2
, (11)

Λ0
i(ǫ) = Λi

0(ǫ) = −γǫβ
i
ǫ , (12)

Λi
j(ǫ) = δij + (γǫ − 1)

βi
ǫβ

j
ǫ

β2
ǫ

, (13)

where the boost parameter βi
ǫ = ǫvi/c, and v is the orbital velocity of the gravitat-

ing body (Jupiter, Sun). The matrix of the inverse transformation Λ̄α
β(ǫ) = Λα

β(−ǫ).

If ǫ 6= 1, the Lorentz transformation of the gravitational field is different from that

of the electromagentic field. Physically it means that weak gravitational waves must

propagate along the null cone which is different from the null cone for electromag-

netic signals. In the case of the instantaneous speed-of-gravity theory, when ǫ = 0,

the transformation (11)–(13) degenerates and the space-time manifold splits in ab-

solute time and absolute space with a single gravitational potential Φ residing on

it.

Equations (5)–(10) solved in the static frame of the light-ray deflecting body

(Jupiter, Sun) show that the potentials are: Φ′ = (c2/2)h′
00 = −GM/c2r′, A′ =

−(c2/4)h′
0i = 0, and the fields: E′ = −∇Φ′ 6= 0, B′ = ∇ × A′ = 0, where r′ is the

radial coordinate of a field point in the static frame. Transformation of the static

field potentials to the moving frame is obtained from the metric tensor Lorentz

transformation

hαβ = Λµ
α(−ǫ)Λν

β(−ǫ)h′

µν , (14)

and is given more explicitly by equations

Φ = γ2
ǫ

[(

1 + β2
ǫ

)

Φ′ + 4 (βǫ · A
′)

]

, (15)

A = γǫA
′ + γ2

ǫ

[

Φ′ +
2γǫ + 1

γǫ + 1
(βǫ · A

′)

]

βǫ . (16)

Comparison with PPN metric 24 shows that our approach yields the following values

of the PPN parameters 23: γ = β = 1, α1 = 8(ǫ − 1), ξ = ζ1 = ζ2 = ζ3 = ζ4 = α2 =

α3 = 0. We emphasize that measurement of ǫ is not equivalent to an independent

measurement of α1 in the PPN formalism framework 25. Measurement of α1 is not

possible without making an (artificial) assumption about existence of a preferred

frame usually associated with the isotropy of the cosmic microwave background

radiation 25. Measurment of ǫ does not rely upon this assumption and is fulfilled

through the measurement of the retardation of gravity effect as shown in 23,26,27.

The Lorentz transformation (16) generates the gravitomagnetic potential A and

the gravitomagnetic field B associated with the orbital motion of the light-ray

deflecting body with respect to the barycentric frame of the solar system. Neglecting

the quadratic terms in Eqs. (15), (16) one obtains in the linear approximation that
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in the barycentric frame of the solar system

Φ = −
GM

c2r
+ O

(

ǫ2
)

, A =
ǫ

c
Φv + O

(

ǫ2
)

, (17)

where r = |r|, r = x − z(t), and z(t) is a coordinate of the body’s center of mass

in the barycentric frame. We emphasize that the Lorentz transformations (15), (16)

assume that at each instant of time the motion of the body is considered as a

straight line with constant velocity v = dz/dt taken at time tA which can be chosen

arbitrary since we neglect acceleration of the body.

The Lorentz transformation of the static field E of the body generates the

gravitomagentic field

B =
ǫ

c
(v × E) , (18)

in accordance with its definition (3) and Eq. (17). The Lorentz transformations

(15), (16) describe changes (aberrations) in the structure of the gravitational field

of the body, measured in two different frames. Equations (17), (18) describe this

aberration of gravity effect in 1.5 PN approximation which is linear with repsect to

v/cg like the aberration of light is linear with respect to v/c.

In classical electrodynamics a uniformly moving charge generates magnetic field.

This is because the Lorentz transformation generates electric current which produces

the magnetic field. The resulting magnetic field is real and can be measured. Its ob-

servation confirms that electromagentic field is Lorentz-invariant and its speed of

propagation is c 37. Similarly, the gravitomagnetic potential (17) and the gravito-

magnetic field (18) are real and lead to observable effects which can be measured in

gravitational experiments, thus providing a test of the Lorentz invariance of gravi-

tational field and measurement of its fundamental speed limit cg = c/ǫ that must

be equal c in general relativity.

4. Gravitomagnetism and Time Delay

Equations of light propagation in vacuum are null geodesics. The unperturbed light

particle moves with the velocity c in any frame. Post-Newtonian equation of light

propagation parameterized by coordinate time t reads 23

d2xi

dt2
= c2kµkν

(

kiΓ0
µν − Γi

µν

)

, (19)

where kµ = (1, k) is a null four-vector, and k = ki is the unit Euclidean vector

being tangent to the unperturbed photon’s trajectory. The affine connection Γ′α
µν in

a static frame is given by equations

Γ′0
00 = Γ′0

ij = Γ′i
0j = 0 , (20)

Γ′0
0i = Γ′i

00 = −
∂Φ′

∂x′i
, (21)

Γ′i
jp = −δjp

∂Φ′

∂x′i
+ δip

∂Φ′

∂x′j
+ δij

∂Φ′

∂x′p
, (22)
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where Φ′ = (c2/2)h′
00 = −GM/c2r′, and r′ = |x′|. The affine connection is associ-

ated in general relativity with the gravitational force and its transformation from

the static to a moving frame must be done with the matrix Λα
β(ǫ), that is

Γα
βγ = Λα

σ(ǫ)Λµ
β(−ǫ)Λν

γ(−ǫ)Γ′σ
µν . (23)

Substituting matrix of the Lorentz transformation (11)–(13) to equation (23) and

making use of equations (20)–(22) along with (15),(16) yields

Γ0
00 = −

ǫ

c

∂Φ

∂t
, (24)

Γ0
0i = −

∂Φ

∂xi
, (25)

Γ0
ij = +2

(

∂Aj

∂xi
+

∂Ai

∂xj

)

+
ǫ

c

∂Φ

∂t
δij , (26)

Γi
00 = −

∂Φ

∂xi
− 4

ǫ

c

∂Ai

∂t
, (27)

Γi
0j = −2

(

∂Ai

∂xj
−

∂Aj

∂xi

)

+
ǫ

c

∂Φ

∂t
δij , (28)

Γi
jp = −δjp

∂Φ

∂xi
+ δip

∂Φ

∂xj
+ δij

∂Φ

∂xp
, (29)

where the parameter ǫ appears explicitly in front of the time derivatives present in

equations (24), (26)–(28) in agreement with the parametrization-of-gravity rule (1).

It is worthwhile to compare equations (24)–(29) with the definition of the affine

connection adopted in the PPN formalism 24 which postulates

Γ0
00 = −

1

c

∂Φ

∂t
, (30)

Γ0
0i = −

∂Φ

∂xi
, (31)

Γ0
ij = +2

(

∂Aj

∂xi
+

∂Ai

∂xj

)

+
1

c

∂Φ

∂t
δij , (32)

Γi
00 = −

∂Φ

∂xi
−

4

c

∂Ai

∂t
, (33)

Γi
0j = −2

(

∂Ai

∂xj
−

∂Aj

∂xi

)

+
1

c

∂Φ

∂t
δij , (34)

Γi
jp = −δjp

∂Φ

∂xi
+ δip

∂Φ

∂xj
+ δij

∂Φ

∂xp
, (35)

One notices that our ǫ-parametrization of the Einstein equations 23 makes all time

derivatives of the gravitational field vanish if the speed of gravity cg → ∞ (ǫ → 0).

This makes sense since the limit cg → ∞ corresponds to the case of the instanta-

neous speed-of-gravity theory where the gravitational interaction is immediate from

one place to another and both the gravity field equations and equations of motion

of test particles, which depend on the affine connection (24)–(29), do not contain

any time derivative of the gravitational field. In contrast to this line of reasoning
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the PPN formalism insists that the equations of motion of test particles depend on

the affine connection (30)–(35) that contains non-vanishing first time derivatives

of the gravitational field in the limit cg → ∞. We consider this postulate as go-

ing against physical intuition. Furthermore, we emphasize that the magnitude of

the time derivatives of the gravitational field in the affine connection has not been

known as previous experiments in the solar system had been done in the static

field approximation. The reader should also realize that in the PPN formalism the

Lorentz transformation of the affine connection (30)–(35) is identical with that for

electromagentic field which is given by the matrix λα
β ≡ Λα

β(ǫ = 1) depending on the

speed of light c alone. But the affine connection is a pure gravitational object having

nothing in common with electromagnetic field and, hence, its Lorentz transforma-

tion are to be given by the matrix Λα
β(ǫ), as it is adopted in our ǫ-parametrized PN

approach e.

Double intergation of Eq. (19) along the unperturbed light ray yields the time

of propagation of light from the point xi
0 to xi

1 = xi(t1)

t1 − t0 =
1

c
|x1 − x0| + ∆(t1, t0) , (36)

where the relativistic time delay 23

∆(t1, t0) =
c

2
kµkνkα

∫ t1

t0

dt

∫ t

−∞

dτ
[

Γα
µν(τ, x)

]

x=xN (τ)
. (37)

Integration in Eq. (37) is along a straight line of unperturbed propagation of photon

xN(t) = x0 + ck(t − t0) , (38)

where t0 is time of emission, xi
0 is coordinate of the source of light at time t0.

Substituting equations (24)–(29) to the time delay equation (37) and making use

of the gauge condition (4) in order to replace the time derivative of the potential Φ

to the divergence of the potential A, one recasts it into the following form

∆(t1, t0) = 2

∫ t1

t0

Φdt − 2

(

1 −
1

ǫ

)
∫ t1

t0

dt

∫ t

−∞

∇ · Adτ , (39)

where all terms unavailable to measurement with current VLBI technology are omit-

ted, the potentials Φ and A are given by Eq. (17) and are taken on the unperturbed

light-ray trajectory (38), that is x = xN(t).

Light is deflected the most strongly during a rather short interval of time when

it passes close to the light-ray deflecting body f . For this reason, integration of the

eThe nature of gravity is more rich and is not reduced to that adopted in the metric-based theories
of gravity – the only class of the gravity theories discussed in 24. Actually, the affine connection is an
independent geometric structure in more general class of the metric-affine gravity (MAG) theories
38 making absolutely clear that the affine connection has no any association with electromagnetism.
fPrecise determination of the size of the space region where the moving gravitational lens deflects
light can be done if one estimates the magnitude of the relativistic deflection of light given by the
acceleration-dependent terms in equation (40). Some research in this direction has been done in
18,39,40 .
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relativistic time delay equation (39) can be performed with a good approximation

under assumption of a uniform motion of the light-ray deflecting body (Jupiter,

Sun) with constant velocity v, that is

z(t) = z(tA) + v(t − tA) + O(t − tA)2 , (40)

where z(tA) is position of Jupiter at time tA and the acceleration-dependent terms

have been neglected. The calculation is tedious but straighforward, and can be found

in sections 3 and 4 of our paper 23. The result is given by 23,41

∆(t1, t0) = −
2GM

c3
ln

(

R1 − k · R1

R0 − k · R0

)

, (41)

where R1 = x(t1) − z(s1), R0 = x(t0) − z(s0), R1 = |R1|, R0 = |R0|, and the

coordinates of the body in Eq. (41) must be taken at the retarded time

s1 = t1 −
ǫ

c
|x1 − z(s1)| , (42)

s0 = t0 −
ǫ

c
|x0 − z(s0)| . (43)

Equations (42), (43) are null characteristics of the gravitational field equations (9),

(10). Their appearance in the time delay equation (41) is a direct consequence of the

fact that the affine connection (24)–(29) contains time derivatives which are nor-

malized to the speed of gravity cg = c/ǫ in accordance with the Lorentz-invariance

properties of the gravitational field. In other words, the Lorenzt invariance of grav-

ity and its finite speed of propagation are physically inseparable. This is the reason

why the null characteristics of the gravitational field show up already in the linear

terms beyond the static part of the Shapiro time delay. This part of the relativistic

theory of gravitational field has been greatly misunderstood in 42,43,44,45,46,47,48,49

who have missed the idea that the affine connection is a pure geometric object

whose Lorentz transformation is determined by the value of the fundamental speed

of gravity cg but not the speed of light c that defines the Lorentz transformation of

electromagentic field alone g.

Equations (41), (42) were used in the Jovian light deflection experiment in order

to measure the speed-of-gravity parameter ǫ 27. The goal of the October 2005 VLBI

experiment is to confirm that the retarded time equation (42) is valid with accuracy

about 1 %. Before discussing the October 2005 experiment we focus on the interpre-

tation of the Jovian deflection experiment 26,27 to clear out gravitational physics of

the relativistic time-delay measurements in the field of moving gravitational lenses

(see also 23,50).

gIt is also possible to look at this problem from the point of view of the affine-metric theories

of gravity 38. If the fundamental speed of gravity cg 6= c then the affine connection suggests the
presence of nonmetricity different from zero. A nonvanishing nonmetricity assumes violation of the
Lorentz invariance for gravity. Researchers in 42,43,44,45,46,47,48,49 postulate that the nonmetricity
is zero but this assumption is a matter of experimental testing but not a theoretical belief.
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5. Physical Interpretation of the Jovian Deflection Experiment

5.1. Relativistic Delay Measurement as a Null-Type Experiment

Equation (41) describes relativistic time delay of light (radio wave) caused by a

massive body moving with constant velocity v with respect to the rest frame of

observer located at the point x. Gravity is a long-ranged field and the time delay

given by Eq. (39) is effectively an integral effect of the gravitational force exerted

on the photon along its entire trajectory. However, the strongest impact of the

time-dependent gravitational field on the photon emitted at time t0 is when the

massive body is located in its retarded position z(s1) taken at the retarded time s1

determined by Eq. (42). If general relativity were correct, then, one had cg = c and

only the gravitoelectric potential Φ of the body would be essential for calculation

of the time delay (41). However, if cg 6= c (ǫ 6= 1) the gravitomagnetic potential

A gives additional contribution to the delay as shown by Eq. (39). This term is to

vanish in general relativity. Therefore, measuring divergence of parameter ǫ from

its general relativistic value, ǫ = 1, is a null test of general relativity. This idea was

not captured in 45,46 where equality ǫ = 1 is accepted as a postulate not requiring

experimental verification.

5.2. Measurement of the Gravitomagnetic Field

The second term (the double integral) in the right side of Eq. (39) is caused by

the gravitomagnetic field due to the orbital motion of the light-ray deflecting body

(Jupiter, Sun). This term leads to dependence of the retarded time (42) on the

parameter ǫ. If general relativity is correct the contribution of the double integral

in Eq. (39) to the time delay is identically zero, and the magnitude of the gravito-

magnetic field is given by Eqs. (17), (18) with ǫ = 1. By observing the relativistic

deflection of light by moving Jupiter we confirmed 27 that ǫ = 1 with precision 20%

which means that the extrinsic gravitomagnetic field given by Eq. (17) really exists

and works as predicted by general relativity. This point has been misinterpreted by

Pascual-Sanchez 47 who confused the effect of the relativistic gravitomagnetic field

with measurment of the classic Römer delay.

5.3. The Lorentz Invariance of Gravity

Parameter ǫ signifies the Lorentz transformation of gravitational field variables,

makes its effect clearly visible in theoretical calculations, and distinguishes the fun-

damental speed of gravity cg from the speed of light c because the matrix of the

Lorentz transformation of the gravitational field variables, Λα
β(ǫ), depends on the

speed of gravity cg = c/ǫ. If ǫ 6= 1, the Lorentz invariance of gravity is broken

with respect to the Lorentz invariance of electromagentic field. Thus, measuring ǫ

allows us to test the compatibility of the Maxwell and Einstein equations. Jovian

experiment confirmed that they are compatible as predicted by general relativity

with 20% of accuracy.
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5.4. The Aberration and the Speed of Gravity

The ǫ-parameterization of the Einstein equations with the single parameter ǫ helps

to keep track of any relativistic effect associated with the fundamental upper limit

on the speed of gravity cg = c/ǫ. Physically, if the fundamental upper limit on

the speed of gravity cg = ∞ all time derivatives of the gravitational field would

vanish and, hence, could not be detected. Any gravitomagnetic effect would be

completely supressed as well. However, the Jovian experiment confirmed that ǫ = 1

thus revealing that the time derivatives of the metric tensor in the affine connection

exist and give contribution to the relativistic deflection of light in the full agreement

with general relativity. Non-broken Lorentz invariance of gravity confirmed in the

Jovian experiment 27 also means that its speed of propagation is finite h. This

interpretation is in a full agreement with the causal (retarded) nature of gravity

which is revealed in Eqs. (42), (43) describing the null characteristics of the gravity

field equations (9), (10) connecting the field point x1 (x0) with the retarded position

z(s1) (z(s0)) of the light-ray deflecting body (Jupiter). The null characteristics of

gravity can not be confused with the null characteristics of light. Indeed, light

propagates from a source of light (quasar) to observer while, for example, the null

vector N1 = R1/R1, where R1 = x1−z(s1), points from observer, located at x1, to

the gravitating body (Jupiter) located at z(s1) along the null cone of propagation

of gravity. We measured 27 the retarded pozition of Jupiter z(s1) corresponding

to the time of observation t1 by two independent methods: (1) using radio waves

transmitted from the spacecrafts orbiting Jupiter, (2) using the gravitational time

delay of light of the quasar. The radio-tracking retarded position of Jupiter depends

on the speed of light c and can be read out of the JPL ephemeris 52. On the other

hand, the retarded position z(s1) of Jupiter in the gravitational time delay (41)

depends on the speed of gravity cg = c/ǫ and can be determined independently of

JPL ephemeris from precise measurement of the relativistic time delay by VLBI.

We have proved 27 that the time-delay retarded position of Jupiter due to the speed

of gravity cg is in accordance with its retarded position obtained independently

from the radio tracking of spacecrafts for ǫ = 1 which means that gravity does not

propagate faster than light. Briefly, the Jovian experiment measured the retardation

of gravity effect given by equation (42) with respect to the light travel time which

was read off from the JPL ephemeris of Jupiter.

The null-type character of the Jovian experiment closely associated with the

test of the Lorentz invariance of the gravitational field has been overlooked by

a number of researchers who claimed that the Jovian deflection expeirment mea-

sured the aberration (speed) of light 42,43,44,45,46,47. This claim is erroneous since

the aberration of light is special relativistic effect in flat space-time when gravity

is absent. The Jovian experiment, however, studies propagation of light in curved

hJovian experiment sets a rather stringent upper limit on the speed cgw of gravitational waves
since in general relativity and other valid gravitational theories cgw ≤ cg as proven in 51.
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space-time caused by the gravitational field of Jupiter and Sun. It measured the

retarded position of Jupiter on its orbit not by observing Jupiter’s own radio emis-

sion, as mistakenly assumed in 42,45,46, but from ultra-precise measurement of the

direction of the gravitational force exerted by moving Jupiter on the quasar’s pho-

tons in the plane of the sky 26,27,23. This result can be obtained theoretically in two

independent ways: (1) by making use of the retarded Lienard-Wiechert potentials

of Eqs. (9)-(10) 18,26, (2) by making use of the Lorentz transformation technique
53. The two methods lead to the same results given by Eqs. (41), (42), (43). The

Lorentz transformation of the time delay from static to a moving frame means that

both light and gravity field variables entering Eq. (37) must be transformed simul-

taneously. The aberration of light transforms vector kα = (1, k) of the light ray

propagation alone. If only the aberration of light is taken into account in equation

(37) without transforming the affine connection (gravitational force) the time delay

can not maintain its invariance and the terms proportional to δ = c/cg − 1 will

emerge. If the Lorentz transformation matrix of the affine connection is the same

as for light, then, δ = 0 and the time delay is Lorentz-invariant with the position of

the light-ray deflecting body taken at the retarded time s1 as given by Eq. (42) with

ǫ = 1. The Jovian experiment used the aberration of light exclusively as a calibrat-

ing standard whose characteristics (defined by the speed of light c) are known from

laboratory measurements. The speed of gravity cg was measured with respect to

this calibrating standard (the aberration of light effect) confirming that the Lorentz

transformation matrix of the gravitational field (the aberration of gravity effect) is

the same as that for light 54.

6. Measuring the Aberration of Gravity with the Quasar-Sun

Encounter

Accuracy in measuring the aberration of gravity effect can be significantly improved

by observing gravitational deflection of light on the limb of Jupiter and/or Saturn by

space missions SIM and/or GAIA. Another method is based on measuring quasar’s

gravitational time delay by the Sun directly in the geocentric reference frame. All

previous measurements of this effect had been done in the barycentric frame of the

solar system with respect to which the Sun is almost static and the dynamical effects

caused by time variations of its gravitational field are negligibly small. However,

Sun is a massive gravitational lens moving with respect to the geocentric frame and

it must deflect light in this frame from its retarded position defined by Eq. (42)

with ǫ = 1 if general relativity is valid. If the aberration of gravity is not taken into

account (that is, ǫ = 0) it will cause a small displacement δα of the quasar’s position

in the geocentric frame from that given by Einstein’s formula α = 4GM⊙/(c2d),

where M⊙ is mass of the Sun, and d is the impact parameter of the light ray with

respect to the Sun taken at the retarded instant of time. The aberration of gravity
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effect is estimated by Eq. 26

δα = α⊙

(

1AU

R⊙

) (

R⊙

d

)2
(v⊙

c

)

, (44)

where α⊙ = 1.75” is the light deflection on the solar limb, 1 AU is one astronomical

unit, R⊙ = 7 × 1010 cm is radius of the Sun, and v⊙ is velocity of the Sun relative

to the Earth, which is about the barycentric velocity of the Earth, vE ≃ 30 km/s.

Substituting the numbers one obtains

δα = 37.5

(

R⊙

d

)2

mas . (45)

In October 2005 quasar 3C279 will pass by the Sun at the distance of 2 solar radii 55.

If one takes the minimal value of the impact parameter allowed by the solar corona

as d ≃ 4R⊙, it yields for the aberration of gravity effect the maximal magnitude

of δα ≃ 2344 µarcseconds. Assuming that the precision of VLBI measurement of

the quasar’s position is 20 µarcseconds we shall be able to measure the aberration

of gravity effect (parameter ǫ = c/cg) with the accuracy approaching to 1% as

contrasted to 20% in the case of the Jovian deflection experiment 27.

We notice that the data from the recent Cassini mission experiment by Bertotti,

Iess and Tortora 56 can be used for measuring the aberration of gravity effect and

setting the upper limit on the violation of the Lorenzt invariance of gravity with

accuracy presumably approaching to 0.5 %. Space-based experiments like LATOR
31 and/or ASTROD 32 will help us to reduce this limit down to 10−4 i.
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