In silico Compound Screening for Drug Discovery in the "Cloud"

03/09/2010

Gerald J. Wyckoff, Assoc. Prof, UMKC

Working with Vassa Informatics

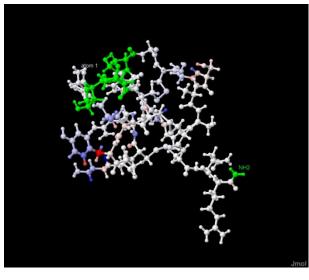
- Founded (2007) to develop information-theory based technologies that would provide additional tools for scientists studying the functional effects of differences between similar nucleotide and amino acid sequences
- BioVassa was the initial result of this work
 - Collaborations with Indiana University-Northwest, Washington University - St. Louis and the University of Chicago further refined BioVassa
- ChemVassa applies information content analysis to chemical sequences of arbitrary length with an eye towards small molecule screening for drug discovery

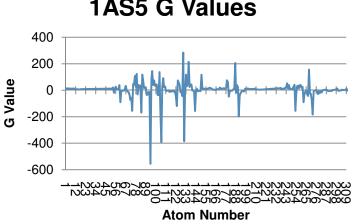
Development and initial proof of concept work complete

Information Content Overview

Information content is a measurement of a unit's (e.g., a small molecule) compressabili ty versus a theoretical maximum. Units with high information content are not as compressible as those with low information content.

We can present this information graphically in several ways; the important point (looking at Conotoxin, PDB: 1AS5 is that we are generally tracking binding or interaction sites.





ChemVassa Overview

- ChemVassa works by calculating the information content of a molecule, utilizing spatial information (taken from PDB, converted SMILES, or other structural information files) to locate an atom within the molecule
- Each atom is converted using a lexicon that accounts for the valence shell content, atomic number, and reactivity of the atom
- The location of each atom is then compared and the reactivity between adjacent atoms is compared
 - The average of the distance multiplied by the reactivity difference is the "G score"
- G scores for the backbone of the molecule are calculated as follows:
 - The average for connected non-main-chain molecules is added to the connected main carbon atom and summed across the backbone and averaged; this is the "M score"
- A string of G scores may then be searched across a database of compounds

ChemVassa Validation

Test Molecule: Lipitor

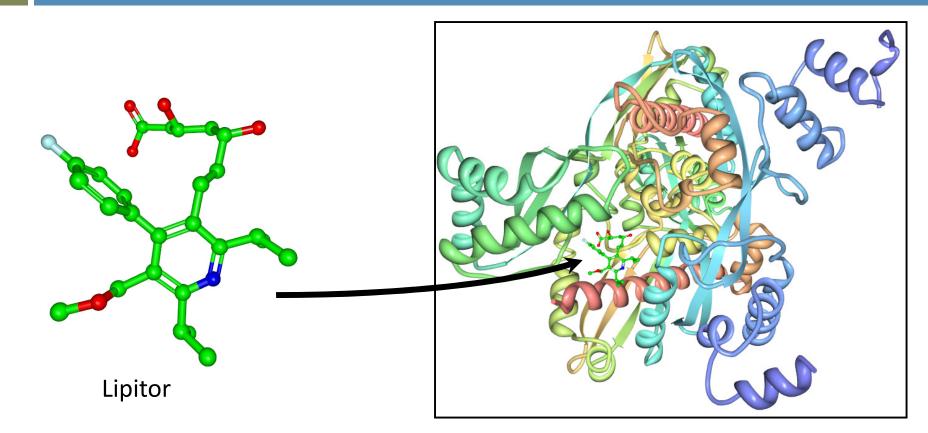
Question:

Is ChemVassa able to predict novel binding partners for a chemical ligand that cannot be predicted by existing methods *ab initio*?

Lipitor

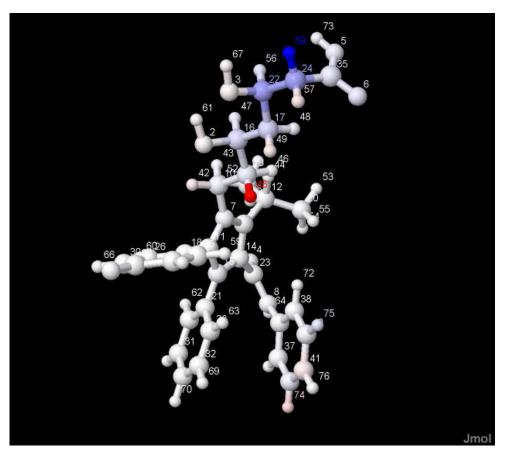
- Lipitor was chosen as:
- Commercially valuable
- Crystal structures of HMG-CoA reductase
 in complex with six statins are available
- All marketed HMG CoA reductase inhibitors are structurally similar – can we identify novel scaffolds and chemistry?

Lipitor Structure



Lipitor works by binding to and inhibiting the liver enzyme HMG-CoA reductase

VaSSA Analysis - Lipitor



- Red Regions are high information content
- Blue regions are low
- ChemVassa correctly identified the binding region where Lipitor interacts with its target (Hmg-CoA reductase) and predicts most of the import kint interacting atoms that were determined k2 experimentally

Slide 9	
LK1	is "most of the important interacting atoms" the best way to say this? Lisa Kenney, 1/29/2010
LK2	This should go on the Results slide (as written).
	I think this third bullet should provide additiona analysis information or explanation

Lisa Kenney, 1/29/2010

Results

- We searched a 600,000 ligand library using the Lipitor information signature
- We categorized the results as: Positive (Validation), Known Bikeders (Neutral), False Positive, or Novel
- Of these results, about 60% were k¹⁴³/₁₄₃wn binders or novel results; 40% were false positives
- We found 10 Novel, previously unknown results which can be tested for functionality at the bench
 - These novel compounds would not be able to be identified utilizing existing methods

- LK3 I rewrote this and it still isn't quite right. Theoretically, we should provide the breakdown by category... Lisa Kenney, 1/29/2010
- LK4 Are Known Binders Neural, or are they validation? Lisa Kenney, 1/29/2010

Positive (Validation) Results

- We utilized the search to see if it would identify other statins
- Creating a statin library, we reliably pulled statins as results if the binding region was used as search input
- This shows that there is a shared set of physical properties that ChemVassa is able to detect within the statins

Known Binders (Neutral)

- In some cases, we pulled results that were not statins and NOT structurally similar to lipitor that, however, are known binders of HmG-CoA Reductase.
- An example is Coenzyme A; it was returned as a search result though it is NOT structurally similar to Lipitor.
- However, as CoA binds HmG-CoA reductase, it is NOT a negative result and suggested that the algorithm is tracking a FUNCTIONAL property of HmG-CoA reductase binding, NOT just a physical one.

False Positives

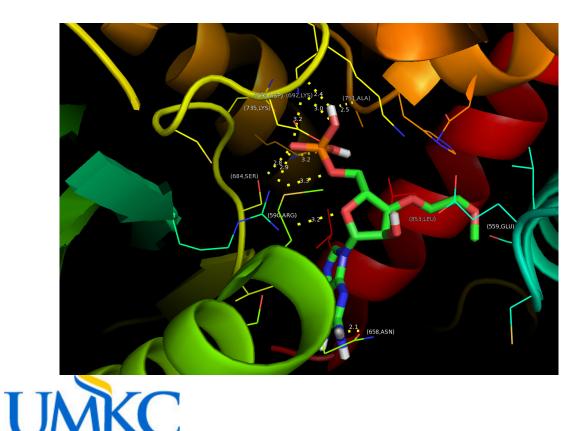
- Of course, we also returned some results that do NOT bind HmG-Coenzyme A reductase and are NOT structurally similar to Lipitor.
- An example is Vancomyacin; it was returned as a search result though it is NOT structurally similar to Lipitor and DOES NOT bind HmG-CoA reductase.
- These results fell into two categories; complete nonbinders, and cases where a portion of the molecule would likely bind except cannot due to steric hindrance.
- About 40% of the experimental search results fell into this category.

Novel Results

- These results are not structurally similar to Lipitor, but that appear to be capable of binding HmG-CoA reductase in a manner similar to Lipitor
- Modeling allowed us to look at affinity and electrostatic contacts of these results
- About 40% of the experimental search results fell into this category, most with exceptionally good binding.
- These included some hits where little biological information was present, and cases where biological information provided insight into the possible mechanism for the ligand function
- Currently, VaSSA Informatics is utilizing these results for partnership development with several interested parties.

Additional Results

G2L (3'-o-methyoxyethyl-guanosine-5'-monophosphate) also interacts with the Hmg-CoA reductase site. Although the compound is not well-studied, it is small and should be bio-accessible.



G2L	AVS
Glu:559	Y
Arg:590	Y*
Leu:658	N
Ser:684	Y*
Asp:690	Ν
Lys:692	Y*
Lys:735	Y*
Ala:751	Y*
Leu:853	Y*

Answer:

YES, our models show that ChemVassa can *ab initio** predict novel binding partners for chemical ligands that cannot be predicted by existing methods.

Cost Model Discussion

How are we moving forward?

- Develop a compound library of about 9 million compounds, including about 1.5 million "sweet-spot" that have good drug-like qualities.
- Developing the infrastructure for this quickly and on a limited budget for deployment, we explored several options:
 - Server purchase
 - Machine rental
 - Cloud services

Cloud computing

- We have two tasks:
 - Initial candidate screening, using ChemVaSSA to generate a compound library and screen the library
 - Modeling the results to see if they are compatible with binding.
- Project-based pricing
 - Creating the library: about \$300.
 - Screening the library: about \$30 per compound.

Modeling the results: about \$55 per 1000 models.

Conclusions

- Cloud computing may work for initial development of computing infrastructure.
 Not ideal for all cases
- Allows accurate prediction of project times
- Allows quick set-up/tear down of infrastructure
- Costs can be billed back to a source (grant, client, etc)
- Low overhead.

Future Directions

- Cloud computing for development of Bioinformatic teaching infrastructure
 - Non-persistant nature of facilities fits well with semester-to-semester changes in enrollment.
 - Cost basis can be readily understood.
 - Limiting student access to ensure effective use of resources
- Development of trial web-based resources for grants and exploratory research.

