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Abstract. We discuss three conceivable scenarios of extension and/or modification of the IAU
relativistic resolutions on time scales and spatial coordinates beyond the Standard IAU Frame-
work. These scenarios include: (1) the formalism of the monopole and dipole moment transforma-
tions of the metric tensor replacing the scale transformations of time and space coordinates; (2)
implementing the parameterized post-Newtonian formalism with two PPN parameters – β and
γ; (3) embedding the post-Newtonian barycentric reference system to the Friedman-Robertson-
Walker cosmological model.
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1. Introduction
Fundamental scientific program of detection of gravitational waves by the space in-

terferometric gravitational wave detectors like LISA is a driving motivation for further
systematic developing of relativistic theory of reference frames in the solar system and
beyond. LISA will detect gravitational wave sources from all directions in the sky. These
sources will include thousands of compact binary systems containing neutron stars, black
holes, and white dwarfs in our own Galaxy, and merging super-massive black holes in
distant galaxies. However, the detection and proper interpretation of the gravitational
waves can be achieved only under the condition that all coordinate-dependent effects
are completely understood and subtracted from the signal. This is especially important
for observation of gravitational waves from very distant sources located at cosmological
distances because the Hubble expansion of our universe affects propagation of the waves.

New generation of microarcsecond astrometry satellites: SIM and a cornerstone mission
of ESA – Gaia, requires a novel approach for an unambiguous interpretation of astro-
metric data obtained from the on-board optical instruments. SIM and Gaia complement
one another. Both SIM and Gaia will approach the accuracy of 1 μas. Gaia will observe
all stars (∼109) between magnitude 6 and 20. The accuracy of Gaia is about 5μ as for
the optimal stars (magnitude between 6 and 13). SIM is going to observe 1̃0000 stars
with magnitude up to 20. The accuracy of SIM is expected to be a few μas and can be
reached for any object brighter than about 20 provided that sufficient observing time
is allocated for that object. At this level the problem of propagation of light rays must
be treated with taking into account relativistic effects generated by non-static part of
the gravitational field of the solar system and binary stars (Kopeikin & Gwinn 2000).
Astrometric resolution in 1 μas forces us to change the classic treatment of parallax,
aberration, and proper motion of stars by switching to a more precise definition of ref-
erence frames on a curved space-time manifold (Kopeikin & Schäfer 1999, Kopeikin &
Mashhoon 2000, Kopeikin et al. 2006). Advanced practical realization of an inertial ref-
erence frame is required for unambiguous physical interpretation of the gravitomagnetic
precession of orbits of LAGEOS satellites (Ciufolini & Pavlis 2004) and GP-B gyroscope,
which is measured relative to a binary radio star IM Pegasi that has large annual parallax
and proper motion (Ransom et al. 2005).
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Recent breakthroughs in technology of drag-free satellites, clocks, lasers, optical and ra-
dio interferometers and new demands of experimental gravitational physics (Lämmerzahl
et al. 2001, Dittus et al. 2008) make it necessary to incorporate the parameterized post-
Newtonian formalism (Will 1993) to the procedure of construction of relativistic lo-
cal frames around Earth and other bodies of the solar system (Klioner & Soffel 2000,
Kopeikin & Vlasov 2004). The domain of applicability of the IAU relativistic theory of
reference frames (Soffel et al. 2003) should be also extended outside the boundaries of
the solar system (Kopeikin & Gwinn 2000).

In what follows, Latin indices takes values 1,2,3, and the Greek ones run from 0 to
3. Repeated indices indicate the Einstein summation rule. The unit matrix is denoted
δij = diag(1, 1, 1) and the fully anti-symmetric symbol εijk is subject to ε123 = 1. The
Minkowski metric is ηαβ = diag(−1, 1, 1, 1). Greek indices are raised and lowered with
the Minkowski metric, Latin indices are raised and lowered with the unit matrix. Bold
italic letters denote spatial vectors. Dot and cross between two spatial vectors denote
the Euclidean scalar and vector products respectively. Partial derivative with respect to
spatial coordinates xi are denoted as ∂/∂xi or 	∇.

2. Standard IAU Framework
New relativistic resolutions on reference frames and time scales in the solar system were

adopted by the 24-th General Assembly of the IAU in 2000 (Soffel et al. 2003, Soffel 2009).
The resolutions are based on the first post-Newtonian approximation of general relativity.
They abandoned the Newtonian paradigm of space and time and required corresponding
change in the conceptual basis and terminology of the fundamental astronomy (Capitaine
et al. 2006).

Barycentric Celestial Reference System (BCRS), xα = (ct,x), is defined in terms of a
metric tensor gαβ with components

g00 =−1 +
2w

c2 − 2w2

c4 + O(c−5), (2.1)

g0i =−4wi

c3 + O(c−5), (2.2)

gij =δij

(
1 +

2w

c2

)
+ O(c−4). (2.3)

Here, the post-Newtonian gravitational potential w generalizes the Newtonian potential,
and wi is a vector potential related to the gravitomagnetic effects (Ciufolini & Wheeler
1995). These potentials are defined by solving the field equations

�w=−4πGσ, (2.4)
�wi =−4πGσi, (2.5)

where � ≡ −c−2∂2/∂t2 + ∇2 is the wave operator, σ = c−2(T 00 + T ss), σi = c−1T 0i ,
and Tμν are the components of the stress-energy tensor of the solar system bodies,
T ss = T 11 + T 22 + T 33 .

Equations (2.4), (2.5) are solved by iterations

w(t,x)=G

∫
σ(t,x′)d3x′

|x − x′| +
G

2c2

∂2

∂t2

∫
d3x′σ(t,x′)|x − x′| + O(c−4), (2.6)

wi(t,x)=G

∫
σi(t,x′)d3x′

|x − x′| + O(c−2), (2.7)
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which are to be substituted to the metric tensor (2.1)–(2.3). Each of the potentials, w
and wi , can be linearly decomposed in two parts

w=wE + w̄, (2.8)
wi =wi

E + w̄i , (2.9)

where wE and wi
E are BCRS potentials depending on the distribution of mass and current

only inside the Earth, and w̄E and w̄i
E are gravitational potentials of external bodies.

Geocentric Celestial Reference System (GCRS) is denoted Xα = (cT,X). GCRS is
defined in terms of the metric tensor Gαβ with components

G00 =−1 +
2W

c2 − 2W 2

c4 + O(c−5), (2.10)

G0i =−4Wi

c3 + O(c−5), (2.11)

Gij =δij

(
1 +

2W

c2

)
+ O(c−4). (2.12)

Here W = W (T,X) is the post-Newtonian gravitational potential and Wi(T,X) is a
vector-potential both expressed in the geocentric coordinates. They satisfy to the same
type of the wave equations (2.4), (2.5).

The geocentric potentials are split into two parts: potentials WE and Wi
E arising from

the gravitational field of the Earth and external parts associated with tidal and inertial
effects. IAU resolutions implied that the external parts must vanish at the geocenter and
admit an expansion in powers of X (Soffel et al. 2003, Soffel 2009)

W (T,X)=WE (T,X) + Wkin(T,X) + Wdyn(T,X), (2.13)
Wi(T,X)=Wi

E (T,X) + Wi
kin(T,X) + Wi

dyn(T,X). (2.14)

Geopotentials WE and Wi
E are defined in the same way as wE and wi

E (see equations
(2.6)–(2.7)) but with quantities σ and σi calculated in the GCRS. Wkin and Wi

kin are
kinematic contributions that are linear in spatial coordinates X

Wkin = QiX
i, W i

kin =
1
4

c2εipq (Ωp − Ωp
prec) Xq , (2.15)

where Qi characterizes the minute deviation of the actual world line of the geocenter
from that of a fiducial test particle being in a free fall in the external gravitational field
of the solar system bodies (Kopeikin 1988)

Qi = ∂iw̄(xE ) − ai
E + O(c−2). (2.16)

Here ai
E = dvi

E /dt is the barycentric acceleration of the geocenter. Function Ωa
prec de-

scribes the relativistic precession of dynamically non-rotating spatial axes of GCRS with
respect to reference quasars

Ωi
prec =

1
c2 εijk

(
−3

2
vj

E ∂k w̄(xE ) + 2 ∂k w̄j (xE ) − 1
2

vj
E Qk

)
. (2.17)

The three terms on the right-hand side of this equation represent the geodetic, Lense-
Thirring, and Thomas precessions, respectively (Kopeikin 1988, Soffel et al. 2003).

Potentials Wdyn and Wi
dyn are generalizations of the Newtonian tidal potential. For

example,
Wdyn(T,X) = w̄(xE + X) − w̄(xE ) − Xi∂iw̄(xE ) + O(c−2). (2.18)

It is easy to check out that a Taylor expansion of w̄(xE +X) around the point xE yields
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Wdyn(T,X) in the form of a polynomial starting from the quadratic with respect to X
terms. We also note that the local gravitational potentials WE and Wi

E of the Earth are
related to the barycentric gravitational potentials wE and wi

E by the post-Newtonian
transformations (Brumberg & Kopeikin 1989, Soffel et al. 2003).

3. IAU Scaling Rules and the Metric Tensor
The coordinate transformations between the BCRS and GCRS are found by matching

the BCRS and GCRS metric tensors in the vicinity of the world line of the Earth by
making use of their tensor properties. The transformations are written as (Kopeikin
1988, Soffel et al. 2003)

T =t − 1
c2 [A + vE · rE ] +

1
c4

[
B + Biri

E + Bij ri
E rj

E + C(t,x)
]

+ O(c−5), (3.1)

Xi =ri
E +

1
c2

[
1
2
vi

E vE · rE + w̄(xE )ri
E + ri

E aE · rE − 1
2
ai

E r2
E

]
+ O(c−4), (3.2)

where rE = x − xE , and functions A,B,Bi,Bij , C(t,x) are

dA

dt
=

1
2

v2
E + w̄(xE ), (3.3)

dB

dt
=−1

8
v4

E − 3
2

v2
E w̄(xE ) + 4 vi

E w̄i +
1
2

w̄2(xE ), (3.4)

Bi =−1
2

v2
E vi

E + 4 w̄i(xE ) − 3 vi
E w̄(xE ), (3.5)

Bij =−vi
E Qj + 2∂j w̄

i(xE ) − vi
E ∂j w̄(xE ) +

1
2

δij ˙̄w(xE ), (3.6)

C(t,x)=− 1
10

r2
E (ȧE · rE ). (3.7)

Here again xi
E , vi

E , and ai
E are the barycentric position, velocity and acceleration vectors

of the Earth, the dot stands for the total derivative with respect to t. The harmonic
gauge condition does not fix the function C(t,x) uniquely. However, it is reasonable to
fix it in the time transformation for practical reasons (Soffel et al. 2003).

Earth’s orbit in BCRS is almost circular. This makes the right side of equation (3.3)
almost constant with small periodic oscillations

1
2

v2
E + w̄(xE ) = c2LC + (periodic terms), (3.8)

where the constant LC and the periodic terms have been calculated with a great precision
in (Fukushima 1995). For practical reason of calculation of ephemerides of the solar
system bodies, the BCRS time coordinate was re-scaled to remove the constant LC from
the right side of equation (3.8). The new time scale was called TDB

tT DB = t (1 − LB ) , (3.9)

where a new constant LB is used for practical purposes instead of LC in order to take into
account the additional linear drift between the geocentric time T and the atomic time
on geoid, as explained in (Brumberg & Kopeikin 1990, Irwin & Fukushima 1999, Klioner
et al. 2009). Time re-scaling changes the Newtonian equations of motion. In order to
keep the equations of motion invariant scientists doing the ephemerides also re-scaled
spatial coordinates and masses of the solar system bodies. These scaling transformations
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are included to IAU2000 resolutions (Soffel et al. 2003) but they have never been explic-
itly associated with transformation of the metric tensor. It had led to a long-standing
discussion about the units of measurement of time, space, and mass in astronomical
measurements (Klioner et al. 2009).

The scaling of time and space coordinates is associated with a particular choice of the
metric tensor corresponding to either TCB or TDB time. In order to see it, we notice
that equation (2.15) is a solution of the Laplace equation, which is defined up to an
arbitrary function of time Q. If one takes it into account, equations (2.15), (3.3) can be
re-written as

Wkin =Q + QiX
i, (3.10)

dA(t)
dt

=
1
2

v2
E + w̄(xE ) − Q, (3.11)

and, if we chose Q = c2LC , it eliminates the secular drift between times T and t with-
out explicit re-scaling of time, which is always measured in SI units. It turns out that
Blanchet-Damour (Blanchet & Damour 1989) relativistic definition of mass depends on
function Q and is re-scaled in such a way that the Newtonian equations of motion remain
invariant. Introduction of Q to function W brings about implicitly re-scales spatial co-
ordinates as well. We conclude that introducing function Q = c2LC to the metric tensor
without apparent re-scaling of coordinates and masses might be more preferable for IAU
resolutions as it allows us to keep the SI system of units without changing coordinates
and masses made ad hoc “by hands”. Similar procedure can be developed for re-scaling
the geocentric time T to take into account the linear drift existing between this time and
the atomic clocks on geoid (Brumberg & Kopeikin 1990, Irwin & Fukushima 1999).

4. Parameterized Coordinate Transformations
This section discusses how to incorporate the parameterized post-Newtonian (PPN)

formalism (Will 1993) to the IAU resolutions. This extends applicability of the resolutions
to a more general class of gravity theories. Furthermore, it makes the IAU resolutions
fully compatible with JPL equations of motion used for calculation of ephemerides of
major planets, Sun and Moon.

These equations of motion depend on two PPN parameters, β and γ (Seidelmann
1992) and they are presently compatible with the IAU resolutions only in the case of
β = γ = 1. Rapidly growing precision of optical and radio astronomical observations as
well as calculation of relativistic equations of motion in gravitational wave astronomy
urgently demands to work out a PPN theory of relativistic transformations between the
local and global coordinate systems.

PPN parameters β and γ are characteristics of a scalar field which makes the metric
tensor different from general relativity. In order to extend the IAU 2000 theory of ref-
erence frames to the PPN formalism we employ a general class of Brans-Dicke theories
(Brans & Dicke 1961). This class is based on the metric tensor gαβ and a scalar field φ
that couples with the metric tensor through function θ(φ). We assume that φ and θ(φ)
are analytic functions which can be expanded in a Taylor series about their background
values φ̄ and θ̄.

The parameterized theory of relativistic reference frames in the solar system is built
in accordance to the same rules as used in the IAU resolutions. The entire procedure is
described in our paper (Kopeikin & Vlasov 2004). The parameterized coordinate trans-
formations between BCRS and GCRS are found by matching the BCRS and GCRS
metric tensors and the scalar field in the vicinity of the world line of the Earth. The
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transformations have the following form (Kopeikin & Vlasov 2004)

T =t − 1
c2 [A + vE · rE ] +

1
c4

[
B + Bi ri

E + Bij ri
E rj

E + C(t,x)
]

+ O(c−5), (4.1)

Xi =ri
E +

1
c2

[
1
2
vi

E vj
E rj

E + γQri
E + γw̄(xE )ri

E + ri
E aj

E rj
E − 1

2
ai

E r2
E

]
+ O(c−4) (4.2)

where rE = x − xE , and functions A(t), B(t), Bi(t), Bij (t), C(t,x) are

dA

dt
=

1
2

v2
E + w̄ − Q(xE ), (4.3)

dB

dt
=−1

8
v4

E −
(

γ +
1
2

)
v2

E w̄(xE ) + 2(1 + γ) vi
E w̄i +

(
β − 1

2

)
w̄2(xE ), (4.4)

Bi =−1
2

v2
E vi

E + 2(1 + γ) w̄i(xE ) − (1 + 2γ) vi
E w̄(xE ), (4.5)

Bij =−vi
E Qj + (1 + γ)∂j w̄

i(xE ) − γvi
E ∂j w̄(xE ) +

1
2

δij ˙̄w(xE ), (4.6)

C(t,x)=− 1
10

r2
E (ȧE · rE ). (4.7)

These transformations depends explicitly on the PPN parameters β and γ and the scaling
function Q, and should be compared with those (3.1)-(3.7) adopted in the IAU resolu-
tions.

PPN parameters β and γ have a fundamental physical meaning in the scalar-tensor
theory of gravity along with the universal gravitational constant G and the fundamental
speed c. It means that if the parameterized transformations (4.1)-(4.7) are adopted by the
IAU, the parameters β and γ must be included to the number of the astronomical con-
stants which values must be determined experimentally. The program of the experimental
determination of β and γ began long time ago and it makes use of various observational
techniques. So far, the experimental values of β and γ are indistinguishable from their
general-relativistic values β = 1, γ = 1.

5. Matching IAU Resolutions with Cosmology
BCRS assumes that the solar system is isolated and space-time is asymptotically flat.

This idealization will not work at some level of accuracy of astronomical observations
because the universe is expanding and its space-time is described by the Friedman-
Robertson-Walker (FRW) metric tensor having non-zero Riemannian curvature (Misner
et al. 1973). It may turn out that some, yet unexplained anomalies in the orbital motion of
the solar system bodies (Anderson 2009, Krasinsky & Brumberg 2004, Lämmerzahl et al.
2006) are indeed associated with the cosmological expansion. Moreover, astronomical
observations of cosmic microwave background radiation and other cosmological effects
requires clear understanding of how the solar system is embedded to the cosmological
model. Therefore, it is reasonable to incorporate the cosmological expansion of space-
time to the IAU 2000 theory of reference frames in the solar system (Kopeikin et al.
2001, Ramirez et al. 2002).

Because the universe is not asymptotically-flat the gravitational field of the solar sys-
tem can not vanish at infinity. Instead, it must match with the cosmological metric tensor.
This imposes the cosmological boundary condition. The cosmological model is not unique
has a number of free parameters depending on the amount of visible and dark matter,
and on the presence of dark energy. We considered a FRW universe driven by a scalar
field imitating the dark energy φ and having a spatial curvature equal to zero (Dolgov
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et al. 1990, Mukhanov 2005). The universe is perturbed by a localized distribution of
matter of the solar system. In this model the perturbed metric tensor reads

gαβ = a2(η)fαβ , fαβ = ηαβ + hαβ , (5.1)

where perturbation hαβ of the background FRW metric tensor ḡαβ = a2ηαβ is caused by
the presence of the solar system, a(η) is a scale factor of the universe depending on the,
so-called, conformal time η related to coordinate time t by simple differential equation
dt = a(η)dη. In what follows, a linear combination of the metric perturbations

γαβ = hαβ − 1
2
ηαβ h, (5.2)

where h = ηαβ hαβ , is more convenient for calculations.
We discovered a new cosmological gauge, which has a number of remarkable proper-

ties. In case of the background FRW universe with dust equation of state (that is, the
background pressure of matter is zero (Dolgov et al. 1990, Mukhanov 2005) this gauge
is given by (Kopeikin et al. 2001, Ramirez et al. 2002)

γαβ
|β = 2Hϕδα

0 , (5.3)

where bar denotes a covariant derivative with respect to the background metric ḡαβ ,
ϕ = φ/a2 , H = ȧ/a is the Hubble parameter, and the overdot denotes a time derivative
with respect to time η. The gauge (5.3) generalizes the harmonic gauge of asymptotically-
flat space-time for the case of the expanding non-flat background universe.

The gauge (5.3) drastically simplifies the linearized Einstein equations. Introducing
notations γ00 ≡ 4w/c2 , γ0i ≡ −4wi/c3 , and γij ≡ 4wij /c4 , and splitting Einstein’s
equations in components, yield

�χ − 2H∂ηχ +
5
2
H2χ=−4πGσ, (5.4)

�w − 2H∂ηw =−4πGσ − 4H2χ, (5.5)
�wi − 2H∂ηwi + H2wi =−4πGσi, (5.6)
�wij − 2H∂ηwij =−4πGT ij , (5.7)

where ∂η ≡ ∂/∂η, � ≡ −c−2∂2
η + ∇2 , χ ≡ w − ϕ/2, the Hubble parameter H = ȧ/a =

2/η, densities σ = c−2(T 00 + T ss), σi = c−1T 0i with Tαβ being the tensor of energy-
momentum of matter of the solar system defined with respect to the metric fαβ . These
equations extend the domain of applicability of equations (2.4), (2.5) of the IAU standard
framework (Soffel 2009) to the case of expanding universe.

First equation (5.4) describes evolution of the scalar field while the second equation
(5.5) describes evolution of the scalar perturbation of the metric tensor. Equation (5.6)
yields evolution of vector perturbations of the metric tensor, and equation (5.7) describes
generation and propagation of gravitational waves by the isolated N-body system. Equa-
tions (5.4)–(5.7) contain all corrections depending on the Hubble parameter and can be
solved analytically in terms of generalized retarded solution. Exact Green functions for
these equations have been found in (Kopeikin et al. 2001, Ramirez et al. 2002, Haas &
Poisson 2005). They revealed that the gravitational perturbations of the isolated system
on expanding background depend not only on the value of the source taken on the past
null cone but also on the value of the gravitational field inside the past null cone.

Existence of extra terms in the solutions of equations (5.4)–(5.7) depending on the
Hubble parameter brings about cosmological corrections to the Newtonian law of grav-
ity. For example, the post-Newtonian solutions of equations (5.5), (5.6) with a linear
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correction due to the Hubble expansion are

w(η,x)=G

∫
σ(η,x′)d3x′

|x − x′| +
G

2c2

∂2

∂η2

∫
d3x′σ(η,x′)|x − x′| (5.8)

−GH

∫
d3x′σ(η,x′) + O

(
c−4) + O

(
H2) ,

wi(η,x)=G

∫
σi(η,x′)d3x′

|x − x′| + O
(
c−2) + O

(
H2) . (5.9)

Matching these solutions with those defined in the BCRS of the IAU 2000 framework
in equations (2.6), (2.7) is achieved after expanding all quantities depending on the
conformal time η in the neighborhood of the present epoch in powers of the Hubble
parameter.

Current IAU 2000 paradigm assumes that the asymptotically-flat metric, fαβ , is used
for calculation of light propagation and ephemerides of the solar system bodies. It means
that the conformal time η is implicitly interpreted as TCB in equations of motion of light
and planets. However, the physical metric gαβ differs from fαβ by the scale factor a2(η),
and the time η relates to TCB as a Taylor series that can be obtained after expanding
a(η) = a0 + ȧη + . . . , in polynomial around the initial epoch η0 and defining TCB at the
epoch as TCB=a0η. Integrating equation dt = a(η)dη where t is the coordinate time,
yields

t = TCB +
1
2
H · TCB2 + . . . , (5.10)

where H = H/a0 and ellipses denote terms of higher order in the Hubble constant H.
The coordinate time t relates to the atomic time TAI (the proper time of observer)
by equation, which does not involve the scale factor a(η) at the main approximation.
It means that in order to incorporate the cosmological expansion to the equations of
motion, one must replace TCB to the quadratic form

TCB −→ TCB +
1
2
H · TCB2 . (5.11)

Distances in the solar system are measured by radio ranging spacecrafts and planets.
Equations of light propagation preserve their form if one keeps the speed of light con-
stant and replace coordinates (η,x) to (t,Ξ), where the spatial coordinates Ξ relate to
coordinates x by equation dΞ = a(η)dx. Because one uses TAI for measuring time, the
values of the spatial coordinates in the range measurements are given in terms of the
capitalized coordinates Ξ. Therefore, the ranging measurements are not affected by the
time transformation (5.10) in contrast to the measurement of the Doppler shift, which
deals with time only. This interpretation may reconcile the “Quadratic Time Augmen-
tation” model of the Pioneer anomaly discussed by Anderson et al. (2002) in equation
(61) of their paper.
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Kopeikin, S. M. & Schäfer, G. 1999, Phys. Rev. D, 60, 124002
Kopeikin, S. M. & Gwinn, C. R. 2000, In: Towards Models and Constants for Sub-Microarcsecond

Astrometry, eds. K.J. Johnston, D.D. McCarthy, B.J. Luzum and G.H. Kaplan (USNO,
Washington DC, 2000), pp. 303–307

Kopeikin, S. M., Ramirez, J., Mashhoon, B., & Sazhin, M. V. 2001, Phys. Lett. A, 292, 173
Kopeikin, S. M. & Mashhoon, B. 2002, Phys. Rev. D, 65, 064025
Kopeikin, S. & Vlasov, I. 2004, Phys. Reports, 400, 209
Kopeikin, S., Korobkov, P., & Polnarev, A. 2006, Class. Quant. Grav., 23, 4299
Krasinsky, G. A. & Brumberg, V. A. 2004, Cel. Mech. Dyn. Astron., 90, 267
Lämmerzahl, C., Everitt, C. W. F., & Hehl, F. W. (eds.) 2001, Gyros, Clocks, Interferometers:

Testing Relativistic Gravity in Space, Lecture Notes in Physics, Vol. 562 (Springer: Berlin,
2001)

Lämmerzahl, C., Preuss, O., & Dittus, H. 2006, In: Lasers, Clocks, and Drag-Free: Technolo-
gies for Future Exploration in Space and Tests of Gravity Proc. of the 359th WE-Heraeus
Seminar, eds. H. Dittus, C. Lämmerzahl, W.-T. Ni, & S. Turyshev (Springer: Berlin, 2006)

Misner, C. W., Thorne, K. S., & Wheeler, J. A. 1973, Gravitation (Freeman: San Francisco,
1973)

Mukhanov, V. 2005, Physical Foundations of Cosmology, (Cambridge University Press: Cam-
bridge, 2005)

Ramirez, J. & Kopeikin, S. 2002, Phys. Lett. B, 532, 1
Ransom, R. R., Bartel, N., Bietenholz, M. F., Ratner, M. I., Lebach, D. I., Shapiro, I. I., &

Lestrade, J.-F. 2005, In: Future Directions in High Resolution Astronomy: The 10th An-
niversary of the VLBA, ASP Conf. Proc., 340. Eds. J. Romney and M. Reid, pp. 506–510

Seidelmann, P. K. 1992, Explanatory Supplement to the Astronomical Almanac (University Sci-
ence Books: Mill Valley, California, 1992) pp. 281–282

Soffel, M., Klioner, S. A., Petit, G., Wolf, P., Kopeikin, S. M., Bretagnon, P., Brumberg, V. A.,
Capitaine, N., Damour, T., Fukushima, T., Guinot, B., Huang, T.-Y., Lindegren, L., Ma,
C., Nordtvedt, K., Ries, J. C., Seidelmann, P. K., Vokrouhlický, D., Will, C. M., & Xu, C.
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