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CHAPTER 1 

 
 

INTRODUCTION 
 
 
 

1.1 Copper: an essential yet potentially toxic nutrient 
 
 
 
Copper (Cu) is an essential micronutrient and contributes to various enzymatic 

processes involved in health, development and disease conditions. As a 

transition metal, Cu can exist in two oxidation states, Cu1+ or Cu2+ and thus 

serves as an important structural component and as a cofactor to numerous 

enzymes that catalyze oxygen utilization, electron transfer, and hydrolytic 

reactions. These copper-dependent enzymes include cytochrome c oxidase 

(CCO), the last enzyme involved in electron transfer and oxygen utilization at 

complex IV of the mitochondrial respiratory chain; copper/zinc superoxide 

dismutase (Cu/Zn SOD), involved in antioxidant defense; lysyl oxidase, essential 

for the cross-linking of elastin and collagen fibrils in connective tissue; dopamine 

β hydroxylase; required for the synthesis of catecholamines; and tyrosinase 

enzyme, involved in pigmentation (1). Imbalances in mammalian Cu homeostasis 

can lead to defects in connective tissue formation, loss of pigmentation, 

neurological disorders, toxicity and others. Excess Cu causes toxicity due, in 

part, to the ability of Cu to non-specifically displace other metal ions from 

enzymes, leading to loss of enzyme activity (2). Excess Cu is also toxic due to its 
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ability to generate reactive oxygen species (ROS). The redox activity of the Cu 

ion, although essential for its function as a cofactor for several enzymes, also 

allows it to participate in the Fenton reaction and to generate the highly 

damaging hydroxyl radical (OH•), thus increasing the need for a tight regulation 

of copper homeostasis (2).  

 
 
1.2 Dietary copper sources 
 
 
 
The dietary reference intakes of Cu in adults are between 0.7 mg/day and 1.3 

mg/day with potential toxic intakes levels set at doses exceeding 5 mg/day. The 

total body Cu content for an adult human varies between 70 mg-100 mg (3-6).  

The highest concentration of Cu in organs of healthy adult individuals is in the 

liver, kidneys, brain, heart, and gastrointestinal tract, with the lowest 

concentrations in the spleen and lungs (3-6). Most of the daily requirements for 

copper in humans and animals are met by dietary intake. Foods rich in copper 

include organ meat, especially liver and kidneys, shellfish, nuts, grains and 

chocolate. Drinking water contaminated by copper pipes is also a significant 

source of dietary copper (3-6).  
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1.3 Copper deficiency. 
 
 
 
1.3.1 Acquired copper deficiency. 
 
 
 
Copper deficiency has two possible etiologies, acquired or genetic. In humans, 

acquired copper deficiency is a known cause of sideroblastic anemia, and has 

been increasingly associated with neurological degeneration (7-14). Acquired 

copper deficiency in humans is rare, owing to copper’s ubiquitous distribution and 

low daily requirements (15). Known causes of acquired copper deficiency include 

excess zinc ingestion, use of copper chelators, malabsorption, nephritic 

syndrome, copper-deficient parenteral nutrition and enteral feeding, and 

gastrectomy (15, 16). Copper deficiency may also occur in premature and 

malnourished infants (15, 16).  

 

The anemia associated with copper deficiency can be attributed to impaired iron 

absorption, reduced iron transfer from the reticuloendothelial system to the 

circulation and decreased cytochrome c oxidase activity in the mitochondria (17). 

Iron homeostasis is severely affected by copper deficiency, mainly owing to the 

important role of the copper-dependent ferroxidases hephaestin and 

ceruloplasmin in iron uptake and tissue distribution. Hephaestin, which is 

expressed in the duodenal mucosa, oxidizes ferrous iron to the ferric form, thus 

facilitating its transfer across the basolateral membrane for loading onto apo-

transferrin in the blood (17, 18). On the other hand, oxidation of iron by 
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ceruloplasmin facilitates its transfer from reticuloendothelial cells to apo-

transferrin in the circulation (17, 18). The anemia associated with copper 

deficiency is associated with the formation of ring sideroblasts owing to the 

accumulation of iron in the mitochondria (19). This is due to the suppressed 

activity of cytochrome c oxidase, resulting in insufficient generation of reducing 

equivalents necessary to reduce mitochondrial iron from the ferric to ferrous state 

(20, 21). Since only ferrous iron can by used by ferrochelatase for heme 

synthesis (22, 23), the defect in cytochrome c oxidase activity ultimately results in 

intramitochondrial iron accumulation and consequently in increased production of 

reactive oxygen species (ROS) and damage to the mitochondrial DNA (24, 25). 

The hematological manifestations caused by copper deficiency are quickly 

reversed by copper supplementation (16, 26, 27). 

 

Copper is an important cofactor in several enzymatic processes important for the 

function of the central nervous system. These include cytochrome c oxidase, 

copper-zinc superoxide dismutase (SOD1), and dopamine ß-hydroxylase (1). 

The association of neurological symptoms with copper deficiency has been 

increasingly recognized over the past decade (9, 10, 13, 14, 27, 28). The most 

common neurological symptom is ataxic myelopathy with or without neuropathy 

(7, 9-14, 16, 27-30). This clinical picture is similar to the progressive ataxic 

myelopathy or “swayback” in ruminant animals fed copper-deficient diets. Other 

neurological disorders associated with copper deficiency are central nervous 

system demyelination (13), peripheral neuropathy (31), and optic neuropathy 
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(31). Acute optic myeloneuropathy is a recognized adverse side effect of the 

copper-zinc chelator clioquinol (32). Correction of the hypocupremia in acquired 

copper deficiency usually arrests the neurological deterioration and may result in 

clinical improvement (11, 16, 26, 27).  

 
 
1.3.2 Genetic copper deficiency – Menkes disease. 
 
 
 
Despite the recent recognition of the neurological manifestations of acquired 

copper deficiency, there exists a well-documented precedent in the clinical 

syndrome Menkes disease. Menkes disease is an X-linked inherited disorder of 

copper malabsorption which develops in infancy and results in various 

neurological and systemic symptoms (33-42). In 1972, David Danks made the 

critical connection between the kinky/steely hair in Menkes patients and that of 

lambs grazing on grass grown in copper-depleted soil (38, 39). His research 

provided the first evidence that Menkes patients had abnormally low serum 

copper levels, while biopsies from patients’ guts revealed unusually high levels of 

accumulated copper, establishing the fact that a defect in copper transport was 

the underlying cause of Menkes disease. This work finally led to the identification 

and cloning of the Menkes gene (43).  

 

The Menkes gene codes for the Cu transporting P-type ATPase, ATP7A, also 

known as MNK protein (43-45). ATP7A is ubiquitously expressed in the human 

body except in the liver, where the related ATP7B or Wilson protein is expressed 
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(discussed later). ATP7A is essential for the intestinal uptake of copper and its 

delivery to the circulation (Fig. 1.1). Menkes disease is characterized by reduced 

transport of dietary copper across the basolateral membrane of intestinal 

enterocytes to the hepatic portal circulation, resulting in the hyperaccumulation of 

copper within the intestinal mucosa and the deficiency of copper in the circulation 

and peripheral organs (38). This copper deficiency is further exacerbated by 

reduced copper transport into the central nervous system across the blood brain 

barrier (38). Furthermore, copper transport across fetally derived placental cells 

is also impaired, resulting in defective transport of copper from the mother to the 

Menkes fetus during gestation (46, 47). The incidence of Menkes disease has 

been reported to vary between 1:50,000 to 1:100,000 (36). The copper deficiency 

symptoms associated with Menkes disease are exhibited starting the second or 

third month of life. These symptoms include skin laxity, hypopigmentation, 

kinky/steely hair, neurological impairment and convulsions (46). Autopsies of 

Menkes patients have revealed demyelination in spinal cord white matter, 

reminiscent of that observed in copper-deficient ruminants suffering from 

“swayback” (48). The copper-dependent enzyme lysyl oxidase is important in the 

cross-linking of collagen and elastin (49), and its deficient activity in Menkes 

disease results in vascular and microvascular system abnormalities (50). These 

include tortuous blood vessels, particularly affecting the blood flow in the brain 

(51).  

 

Another significant defect of Menkes disease is immune system dysregulation. 
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Menkes patients are prone to infections, particularly of the lungs and urinary tract 

(52-55). Copper is critical for the function of the immune system (discussed later) 

(56) however, it is unknown whether the immune deficiencies in Menkes patients 

may be attributed to a direct role for ATP7A in immune defense. Most Menkes 

patients die during early childhood, however mild allelic forms of the disease 

exist, such as occipital horn syndrome (57) and mild Menkes disease, which are 

caused by a similar abnormality in copper metabolism but differ in clinical 

presentation and survival potential (34, 58-63). OHS is characterized by 

prominent protuberance of the occipital bone, which is absent in classical 

Menkes disease. Other OHS symptoms include skeletal abnormalities and 

connective tissue abnormalities, including skin laxity and blood vessel tortuosity 

(62, 63). OHS patients exhibit borderline average intelligence and often survive 

until adulthood. Mild Menkes disease patients typically lack the connective tissue 

defects of classical Menkes disease and present with neuro-developmental 

delays and mild ataxia (34, 58-61).  

 

Despite studies identifying the mutations affecting the Menkes gene in each 

variation of the disease, the biochemical basis for this clinical diversity is still 

unknown. The current accepted treatment for Menkes disease is parenteral 

administration of copper (i.e. intravenous copper injections). When initiated in 

newborn Menkes disease babies, parenteral copper nutrition can prevent 

neurological degeneration in some, but not all, cases. Unfortunately, if treatment 

is started in babies with classical Menkes disease above the age of 2 months, it 
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does not improve the neurological degeneration. Moreover, early copper 

parenteral administration does not improve the non-neurological defects such as 

connective tissue laxity. Further studies are needed to develop alternative 

therapies for Menkes disease and occipital horn syndrome (64-66). 
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FIGURE 1.1 The ATP7A protein is critical for the entry and distribution of 

dietary copper. Copper transport across the basolateral membrane of 

enterocytes occurs via the ATP7A protein. ATP7A is required to transport copper 

across the blood-brain barrier, and across the placenta. The locations of copper 

transport pathways mediated by ATP7A are based on sites of copper 

accumulation in patients with Menkes disease, and animal models. Copper is 

secreted from the liver in the bile via the Wilson disease protein (not shown). 
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Fig. 1.1 
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1.4 Copper toxicity 
 
 
 
As with copper deficiency, copper toxicity can be either acquired or genetic. 

Acquired copper toxicity may be caused by excessive copper supplementation, 

food contamination, and low dietary zinc levels (67, 68). Long-term exposure to 

high levels of copper causes tissue damage and liver cirrhosis due to excess 

tissue copper accumulation. This is also true for Wilson disease, an autosomal 

recessive disorder of copper metabolism which results in hepatic damage 

presenting as progressive hepatic cirrhosis and rapidly progressive liver failure 

and liver fibrosis (69). Patients suffering from Wilson disease carry mutations in 

the gene encoding the Cu-ATPase ATP7B, or Wilson protein (69, 70). ATP7B is 

highly homologous to ATP7A, sharing 57% sequence identity, and is mainly 

expressed in the liver and brain (71). In the liver, ATP7B functions in delivering 

copper to the secretory pathway and also in copper export into the bile. ATP7B-

dependent copper export into the bile and subsequently through the bowel is the 

major route of copper excretion from the body. Wilson disease greatly impairs 

copper transport to the secretory pathway and copper release into the bile, 

resulting in marked accumulation of copper in the liver, low serum levels of 

copper-bound ceruloplasmin and low biliary copper content (72-74). ATP7B 

inactivity is also associated with copper accumulation in the brain, resulting in 

severe neurological abnormalities such as movement disorders and psychiatric 

manifestations (69, 75, 76). The neurological disorders in Wilson disease 

patients are often accompanied with accumulation of copper deposits in the 
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cornea resulting in the Kayser-Fleischer corneal pigment ring, which is a 

characteristic and diagnostic sign of the disease (77, 78). This is likely due to the 

lack of ATP7B, which is normally expressed in the retinal pigment epithelium and 

the ciliary body during retinal development (77, 78). 

 

The treatment of copper toxicosis in Wilson disease involves copper chelation 

therapy using D-penicillamine, which binds copper and facilitates its secretion in 

urine (79). However, D-penicillamine administration is not always successful and 

may have severe side effects (80-82), which has prompted the development of 

alternative therapeutic treatments, such as chelation with trientine, 

tetrathiomolybdate (TTM) or the administration of zinc salts (83-85). Further 

evaluation of the efficacy and potential side effects of these alternative therapies 

remains to be performed.   

 
 
 1.5 Intestinal copper absorption 
 
 
 
Absorption of dietary copper in mammals occurs exclusively through the 

digestive tract. Occasionally, copper may enter the body through the skin if 

applied in high concentrations in the form of ointment or if copper bracelets are 

worn (4, 68, 86). Copper absorption occurs primarily in the small intestine 

through a highly efficient mechanism. At moderate dietary intakes, 55-75% of 

copper is absorbed in adults, and this percentage does not drop significantly with 

advanced age (4, 68, 87). Interestingly, intestinal copper reabsorption from saliva 
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(0.33-0.45 mg/d), gastric juices (1 mg/d), pancreatic fluids (0.4-1.3 mg/d) and 

duodenal fluids (0.4-2.2 mg/d), contributes a total of 4-7.5 mg/d additional Cu to 

the digestive tract, compared to an average of 1 mg/d available from dietary 

sources (4, 68, 87). Copper excretion occurs mainly through the bile and sheds 

an average of 0.5-1.5 mg/d of body copper.  

 
 
1.5.1 Absorption at the apical membrane of intestinal enterocytes. 
 
 
 
The process of copper absorption at the apical side of intestinal epithelial cells is 

the subject of on-going studies. It has been suggested that intestinal Cu 

absorption occurs via a carrier-mediated saturable process (67, 68). 

Furthermore, the efficiency of Cu uptake is regulated by dietary Cu levels, i.e. 

efficiency of absorption increases when dietary Cu content is low (88). This 

suggests the presence of one or more specific molecules responsible for 

intestinal copper absorption, and the possibility that dietary copper levels 

regulate the expression, activity or localization of these molecules. One potential 

candidate is the broad spectrum metal transporter DMT1 (divalent metal 

transporter, also known as Nramp2/DCT1), which shows specificity for divalent 

metal ions such as Fe2+, Mn2+, Zn2+, Co2+, Cd2+ and Cu2+ (89), and studies have 

shown that DMT1 transports Cu1+ into cultured polarized epithelial cells (90, 91). 

However, mammalian cell culture studies strongly support a role for the high-

affinity copper transporter CTR1 in Cu uptake (92-94). CTR1 is expressed in the 

intestines, and is localized to the apical membrane of intestinal enterocytes (94). 
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CTR1 transports Cu with high specificity at a Km of ∼1 µM in an ATP-

independent manner. There is strong accumulating evidence suggesting that 

CTR1 specifically transports Cu1+, because yeast CTR1 requires the cell-surface 

Cu2+/Fe3+ metalloreductases Fre1 and Fre2 for its optimal activity (95). 

Furthermore, the reducing agent ascorbate has been shown to enhance 64Cu 

uptake in yeast and cultured mammalian cells (93). Most copper in food is 

present in the cupric (Cu2+) form, which requires its reduction to the cuprous form 

(Cu1+) prior to its uptake by CTR1 (68). In order to maintain copper in its reduced 

form in the presence of oxygen, it has been suggested that intestinal 

metalloreductases, possibly located in close proximity to CTR1 at the apical 

membrane, serve to reduce the copper and hand it off to CTR1 (96). dCytb is a 

duodenal metalloreductase localized at the apical membrane of intestinal 

enterocytes (97), and has been proposed to facilitate CTR1-mediated Cu1+ 

absorption. It is also possible that an unidentified ligand binds copper following its 

reduction and delivers it to CTR1 (96). Mammalian CTR1 constitutively 

undergoes rapid clathrin-mediated endocytosis at Cu concentrations near the Km 

for transport, leading to the degradation of CTR1 (98, 99). The endocytosis and 

degradation of CTR1 in intestinal epithelial cells may provide a mechanism to 

regulate Cu uptake in response to elevated dietary copper content.  

 

The current model suggests that copper absorption at the intestinal apical 

membrane is primarily mediated by CTR1. A recent study using conditional 

intestinal knockout of CTR1 in mice (CTR1int-/int-) demonstrates a critical role for 
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CTR1 in intestinal copper absorption (100). CTR1int-/int- mice have decreased 

copper accumulation in peripheral organs and deficient activities of Cu-

dependent enzymes, leading to severe hyperaccumulation of liver Fe. The 

knockout mice suffer severe post-natal growth retardation, and usually die 10 to 

21 days postpartum unless rescued with an intraperitoneal (IP) injection of Cu at 

days 5 or 6 after birth. The CTR1int-/int- mice also exhibit symptoms reminiscent of 

those seen in Menkes disease, such as skin laxity, hypopigmentation, and 

vascular defects, as well as cardiac hypertrophy. Surprisingly, intestinal epithelial 

cells from CTR1int-/int- mice reveal an unexpected hyperaccumulation of 

intracellular Cu (7-fold) that is not biologically available, suggesting a critical role 

for CTR1 in copper distribution to intracellular chaperones (100). Decreased 

activities of the Cu-dependent enzymes (such as cytochrome c oxidase), and the 

accumulation of the copper chaperone CCS, which is degraded under elevated 

Cu levels (discussed later), serve as indices for the low bioavailability of Cu in the 

knockout mice enterocytes. These findings suggest an alternative mechanism for 

Cu transport across the apical membrane. It is possible that DMT1 plays the role 

of secondary intestinal copper transporter in the absence of CTR1, however, 

CTR1-mediated transport appears to be critical for the bioavailability of 

intracellular copper pools.  

 
 
1.5.2 Transport across the basolateral membrane of intestinal enterocytes. 
 
 
 
Copper absorption across the basolateral membrane of intestinal epithelial cells 
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occurs via ATP7A. ATP7A is strongly expressed in the duodenum and the upper 

jejunum, suggesting that these are the primary sites of intestinal Cu absorption 

(101). Mutations in the ATP7A gene in Menkes disease result in Cu overload in 

intestinal epithelial cells and copper deficiency in the circulation and peripheral 

organs (discussed earlier) (102, 103). Exposure of intestinal enterocytes to 

dietary copper stimulates the trafficking of ATP7A from its steady-state 

localization in the trans-Golgi network (TGN) to the basolateral membrane, where 

it exports copper into the circulation (101). This provides a regulated mechanism 

of Cu transport from the site of absorption at the apical membrane to the site of 

exit into the hepatic portal circulation (102).  

 
 
1.6 Copper transport and distribution to tissues 
 
 
 
On exiting the GI tract through the basolateral membrane of enterocytes into the 

hepatic portal blood, copper is initially bound to albumin, transcuprein and low 

molecular-weight amino acids such as histidine (68, 104). Albumin and 

transcuprein have been shown to bind Cu with high affinity and copper is readily 

exchanged by these 2 proteins (105). Copper-bound albumin, transcuprein and 

histidine are preferred substrates for the liver (68, 104), where they rapidly 

deliver their bound copper (68, 106, 107). A minor fraction of this copper pool is 

diverted to the kidneys. Copper uptake by the liver and the kidneys is thought to 

be mediated by CTR1 (68, 104). The liver is the major storage site of copper in 

mammals. In the liver, copper is either delivered to copper-dependent enzymes, 

incorporated into metallothionein (MT) and glutathione (108), or, when in excess, 
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released into the bile via ATP7B or Wilson protein (109, 110). This mechanism is 

mediated by copper-dependent trafficking of ATP7B in hepatocytes. ATP7B 

maintains a steady-state localization in the TGN and delivers Cu to the secretory 

compartment to be incorporated into copper-dependent enzymes, including 

ceruloplasmin. In response to elevated Cu levels, ATP7B relocalizes to 

intracellular vesicles near canalicular membranes and pumps excess copper into 

the bile ducts. In the bile, copper is bound to unidentified complexes that render it 

unavailable for intestinal reabsorption (109, 110). ATP7B represents the major 

route of Cu removal in mammals. Genetic ATP7B mutations causing Wilson 

disease are associated with copper toxicosis, due to the inability of ATP7B to 

remove excess Cu from the liver and to incorporate Cu into ceruloplasmin for 

delivery to peripheral tissues.  

 
 
1.6.1 Ceruloplasmin is the major carrier of copper in the circulation. 
 
 
 
Ceruloplasmin-bound Cu is not part of the exchangeable plasma Cu pool, nor 

does ceruloplasmin readily bind or incorporate Cu when exposed to the metal. 

During its synthesis in hepatocytes, 6 copper atoms are incorporated into apo-

ceruloplasmin via copper delivery into the secretory pathway by ATP7B to form 

holo-ceruloplasmin. Although Cp is primarily synthesized in the liver, other cell 

types express the protein, including macrophages, monocytes, astrocytes, and 

Sertoli cells, where ATP7A may function in delivering copper to the enzyme 

(111). Holo-ceruloplasmin (holoCp) is the major carrier of copper in the blood 
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(112-115), and serves to distribute the newly acquired/recycled copper to all 

peripheral organs and tissues. Cp binding has been reported in a range of 

tissues and cells including erythrocytes, aorta and heart, liver endothelium, 

leukocytes, kupffer cells and human placental cells (111). In endothelial cells, Cp 

binding occurs through the galactosyl recognition system (115). Also, a 

glycosylphosphatidylinositol-anchored form of Cp (GPI-linked Cp) has been 

identified in monocytes and astrocytes (116, 117). In addition to its role in copper 

transport, ceruloplasmin also serves to regulate cellular Fe release through its 

ferroxidase activity, and is thought to modulate coagulation, angiogenesis, and 

aid in defense against oxidative stress (111, 118-123).  

 
 
1.6.2 Regulation of ceruloplasmin.  
 
 
 
The concentration of holoCp in the plasma positively correlates with copper 

availability in the liver. However, Cu does not regulate the synthesis or the 

secretion of ceruloplasmin. Physiological conditions that increase the synthesis 

and secretion of ceruloplasmin include the acute-phase inflammatory response 

and relative oxygen depletion or hypoxia (124-132). Cp is an acute-phase 

reactant, and its expression is increased 2- to 3-fold in the plasma during 

infection, suggesting a possible antibacterial role (124-129). It has been 

suggested that Cp may serve as a radical scavenger, however conflicting reports 

have suggested a pro-oxidant role for Cp in the etiology of cardiovascular 

disease and diabetes (124-129). Further evidence is needed to support these 
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hypotheses.  

 

On the other hand, the importance of Cp activity as a ferroxidase in hypoxia has 

been well described (130-132). Hypoxia is a serious condition that threatens cell 

survival, and can cause severe organ damage and injury in human disease (133-

138). Among the physiologic responses to hypoxia is the stimulation of 

erythropoiesis, or the increase in the O2-carrying capacity in the circulation via an 

increase in the number of circulating erythrocytes (139-142). This process 

stimulates hemoglobin synthesis, and thus elevates the demand for iron 

incorporation into heme (130-132). The increased demand for iron by 

erythrocytes is met by an efflux of iron from macrophages, which can store large 

amounts of iron due to their ability to phagocytose senescent red blood cells and 

to recycle the iron bound to hemoglobin (130-132). The export of iron from 

macrophages occurs via the ferroportin protein, and requires the oxidation of 

Fe2+ to Fe3+ by the ferrroxidase ceruloplasmin (130-132). The importance of the 

role of ceruloplasmin in iron efflux is underlined in humans and animals affected 

by a lack of ceruloplasmin (aceruloplasminemia) that results in the inability to 

export iron from tissues, and causes iron overload in parenchymal tissues, in the 

liver, and in the brain, often leading to severe neurological disorders (143, 144). 

Because ceruloplasmin is a copper-dependent protein, copper deficiency limits 

the incorporation of copper into the enzyme in the secretory pathway, and results 

in anemia due to decreased iron efflux to the circulation. Therefore, in the face of 

elevated demand for iron in the circulation, it is not surprising that relative oxygen 
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depletion or hypoxia induces ceruloplasmin expression in macrophages and 

other cell types (145, 146), as well as enhances its ability to oxidize Fe, thus 

allowing iron export via the ferroportin protein (147, 148). 

 

Interestingly, although Cp carries ∼95% of plasma Cu, and is a preferred 

substrate for non-hepatic tissues, the lack of ceruloplasmin protein or 

aceruloplasminemia in human patients does not compromise Cu-dependent 

enzyme activities (144, 149). This suggests that other Cu-binding proteins such 

as albumin can compensate for the lack of Cp and maintain copper transport and 

distribution to peripheral tissues. The copper taken up in peripheral tissues is 

mostly recycled within cells, and its turnover rate is slow. Excess Cu is released 

back into the circulation via ATP7A or ATP7B and recycled in the liver (150).  

 
 
1.7 Distribution of copper in mammalian cells 
 
 
 
Three regulated processes contribute to maintaining intracellular copper 

homeostasis, namely, Cu uptake, intracellular Cu distribution and storage, and 

Cu export (Fig. 1.2). The CTR1 protein is the major copper importer in 

mammalian cells, and serves to shuttle copper through the plasma membrane 

from the extracellular space into the cell cytosol (151). Following its translocation 

into the cytoplasm, copper is immediately sequestered and bound to small 

cytoplasmic proteins known as copper chaperones. It has been suggested that, 

in eukaryotes, cytoplasmic copper does not exist in the free unbound form (152). 
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The cytoplasm offers a reducing environment where Cu1+ can readily interact 

with hydrogen peroxide (H2O2) via the Fenton reaction to produce the highly 

reactive hydroxyl radical (OH•) (153-155). Because of its potential to enhance the 

generation of oxidative stress, Cu is quickly delivered and bound to three known 

copper chaperones ATOX1, CCS, and COX17 which in turn deliver the Cu to the 

ATP7A copper transporter, to Cu/Zn superoxide dismutase (SOD1) and to 

mitochondrial cytochrome c oxidase, respectively (156-159) (Fig. 1.2). Excess 

copper is exported via copper-dependent trafficking of ATP7A to the plasma 

membrane (Fig. 1.2).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 22 

FIGURE 1.2. Mammalian cellular copper homeostasis. Copper uptake occurs 

via the copper importer CTR1. Copper is then bound to the copper chaperones 

Cox17, CCS and ATOX1, which deliver copper to cytochrome c oxidase, Cu/Zn 

superoxide dismutase (SOD1), and Menkes (ATP7A) protein, respectively. The 

ATP7A protein resides mainly in the trans-Golgi network (TGN) and delivers 

copper to copper-dependent enzymes like ceruloplasmin (Cp). Elevated copper 

levels stimulate the endocytosis of the Ctr1 and the trafficking of ATP7A to the 

plasma membrane. Together, Ctr1 and ATP7A function as the key regulators of 

mammalian cellular copper homeostasis. Both proteins are ubiquitous except in 

the liver where ATP7A is not expressed, and the Wilson protein (ATP7B) 

functions in copper export (not shown). 
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Fig. 1.2 
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1.7.1 Copper uptake. 
 
 
 
Copper import into eukaryotic cells occurs via the specific high-affinity Cu 

transporter CTR1 (151). CTR1 is an integral membrane protein that is structurally 

and functionally conserved from yeast to humans (94, 160, 161). In biological 

molecules, Cu atoms show high binding affinity to histidine nitrogen, cysteine 

sulfur, and methionine sulfur. The CTR1 polypeptide contains three 

transmembrane domains, a methionine-rich N terminus, two cysteine-histidine 

motifs in the C terminus and a methionine-containing MX3M motif in the second 

transmembrane domain (162). Mutagenesis and functional studies of yeast and 

human CTR1 have shown that the MX3M motif in the second transmembrane 

domain is essential for Cu uptake, and may serve as a Cu ligand during the 

transport of Cu across the plasma membrane (162). On the other hand, the N-

terminal methionine-rich motifs are dispensable under Cu-replete conditions, but 

essential under copper-limiting conditions, suggesting that these sequences 

function in scavenging copper ions when extracellular copper levels are low 

(162). 

 

Genetic and biochemical studies of yeast and human CTR1 suggest that this 

protein can form homotrimeric complexes (93, 163). Indeed human CTR1 

(hCTR1) resolves as a 35-kDa and a 70-kDa band on non-reducing 

polyacrylamide gels, and as a 110-kDa complex when treated with crosslinking 

agents in vitro, suggesting that these bands represent the monomeric, dimeric 
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and trimeric forms of the protein, respectively. Recent two-dimensional 

crystallography and electron microscopy studies confirm that CTR1 is present as 

a homotrimer on the plasma membrane. This configuration of the protein is 

thought to form a pore or channel of nine transmembrane domains that would 

allow the passage of Cu ions across the lipid bilayer (100, 163-165).  

 

Although Ctr1 is most highly expressed in the liver, its expression is ubiquitous, 

suggesting that it mediates copper uptake in all cells of the body (151, 166).  

CTR1 specifically transports Cu+1 at a Km of ∼1-5 µM in a pH-dependent manner 

(2). Copper does not regulate the mRNA levels of CTR1 in cultured cells and 

animal models. However, studies in our lab have demonstrated that elevated Cu 

levels induce the trafficking of a functional epitope–tagged version of CTR1 from 

the plasma membrane to endosomal compartments (99). The steady-state 

localization of the CTR1 protein may vary depending on cell type; it may be 

localized to the plasma membrane or to cytoplasmic vesicles (93, 167-169). In 

HEK293 and CHO cells, CTR1 is mainly localized to the plasma membrane (93, 

167-169). In response to elevated copper levels in these cell types, CTR1 

undergoes rapid endocytosis and degradation in a time- and dose-dependent 

manner, suggesting that this is a mechanism by which cells regulate high-affinity 

Cu uptake (99, 170).  

 

Another protein with homology to CTR1 is the Cu transporter CTR2 (151). In the 

yeast saccharomyces cerevisiae, CTR2 responds to Cu deficiency by releasing 
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Cu from the vacuole into the cytoplasm (171). It is possible that the mammalian 

CTR2 protein is similarly involved in the release of Cu from intracellular stores 

such as lysosomes and other compartments into the cytoplasm. Interestingly, a 

mammalian CTR2 homologue has been identified in mice and humans, and its 

function is currently not well-understood (151). Epitope-tagged mammalian CTR2 

has been localized to the plasma membrane and to the late endosome and 

lysosomes. However, the functionality of these fusion proteins has yet to be 

demonstrated, as well as the localization of endogenous CTR2. Future studies 

and genetic animal knockout models will help elucidate the role of CTR2 in 

copper homeostasis.  

 

Interestingly, recent evidence has emerged that points to a potential role for 

CTR1 in intracellular Cu trafficking. It has been suggested that, in addition to its 

role in Cu uptake at the plasma membrane, CTR1 may function in mobilizing Cu 

out of the endosomal compartment into the cytosol, where it would be available 

for binding Cu chaperones and for incorporation into Cu-dependent enzymes. 

This model is based on recent findings in mice bearing a specific knockout of 

CTR1 in the intestines (100). The knockout mice exhibited severe Cu deficiency 

in peripheral tissues, consistent with a critical role for CTR1 in dietary Cu 

absorption. Surprisingly, intestinal epithelial cells from the knockout mice 

exhibited 8- to 10-fold hyperaccumulation of Cu compared to wild type, 

suggesting alternative pathways for Cu uptake. However, despite the elevated 

levels of intracellular Cu in these cells, the activity of Cu-dependent enzymes 
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such as mitochondrial cytochrome c oxidase was depressed. It is possible that 

the accumulated copper may be trapped in the endosomal compartment owing to 

the lack of CTR1 in these cells, rendering it biologically unavailable.  

 

It is worth noting that no known genetic diseases associated with CTR1 

mutations in humans have been identified to date. This may be attributed to the 

essential function of CTR1 in mammalian embryonic development. Indeed, this is 

underscored in studies of mice carrying null mutations of CTR1, which die in 

utero due to severe copper deficiency (172). 

 
 
1.7.2 Intracellular copper pathways. 
 
 
 
1.7.2.1 Delivery of copper to Cu/Zn superoxide dismutase (SOD1).  
 
 
 
Superoxide dismutases (SODs) are a family of metalloenzymes widely 

distributed in prokaryotic and eukaryotic cells that includes the Cu/Zn SOD (or 

SOD1) (173). These enzymes catalyze the conversion of superoxide anion O⋅ to 

hydrogen peroxide (H2O2) in a two-step reaction of O⋅ with SOD. The first step 

begins with the binding of the oxidized form of the enzyme (Cu2+-bound) to O⋅, 

acquiring a proton, and releasing molecular oxygen. The reduced form of the 

enzyme (Cu+1-bound) then binds a second superoxide anion, and liberates H2O2, 

returning to its oxidized state. H2O2 immediately becomes a substrate for the 

enzymes catalase and glutathione peroxidase (174). Thus, SOD enzymes play 
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an important role in cellular defense against superoxide-mediated oxidative 

stress (175).  

 

SOD1 is a homodimeric protein located mainly in the cytosol, with a fraction 

located in the mitochondrial intermembrane space (176, 177, 178). Incorporation 

of Cu into SOD1 requires the copper chaperone for SOD1, called CCS (179, 

180). The transfer of Cu from CCS to SOD1 occurs either in the cytosol, or the 

mitochondrial IMS since SOD1 can only cross the mitochondrial membrane as an 

apo-enzyme (181). The CCS protein comprises 3 domains (domains I, II and III) 

that carry out distinct functions during the transfer of Cu to SOD1. The N-terminal 

domain I is important for the capture of Cu ions through its MXCXXC Cu-binding 

motif. Docking of CCS to SOD1 and formation of a heterodimeric complex occurs 

via binding of domain II to a homologous highly conserved region in SOD1 (182, 

183). Following the formation of this heterodimeric intermediate, Cu is transferred 

within the CCS protein from domain I to the C-terminal domain III that 

translocates the Cu ion to SOD1 (182-184). Domain III also functions in the Cu-

dependent regulation of CCS protein ubiquitination and degradation (185). The 

Cu-dependent degradation of CCS is dose-dependent and serves as an indicator 

of intracellular copper levels. Studies in the CCS knockout mouse model (CCS-/-) 

underscore the importance of CCS for SOD1 function. CCS-/- mice exhibit normal 

levels of SOD1 protein in various tissues (brain, spinal cord, muscle, liver, lung, 

heart and kidney). However, SOD1 activity is significantly lower in these animals 

compared to wild-type littermates (181).  
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Dietary copper deficiency in animals has been associated with selective and 

organ-specific regulation of SOD1 transcript, protein, and activity levels. In rats 

fed a copper-deficient diet for 4 weeks, SOD1 activity was diminished in the 

heart, despite a high expression of both mRNA and apo-protein. On the other 

hand, a decrease in SOD1 activity, as well as a decrease in transcript and 

protein levels was observed in the livers of the Cu-deficient animals. However, no 

effect of dietary copper restriction was observed on SOD1 activity or expression 

levels in the brain of the same animals (186). The outcome of this study suggests 

that dietary copper deficiency results in tissue- and organ-specific regulation of 

SOD1 expression and activity levels.  

 

Dysregulation of SOD activity has been observed in human pathologies. 

Deficiency in SOD1 activity plays a central role in the etiology of hepatocellular 

carcinoma (187). Mice deficient in SOD1 (SOD1-/-) do not show any 

abnormalities during development, however, they exhibit significantly lower life 

spans compared to wild-type mice, as well increased neoplastic changes in the 

liver (188). Additionally, cancer cells generally have diminished SOD1 activity 

(189, 190). At the other end of the spectrum of SOD1 deficiency-associated 

pathologies is amyotrophic lateral sclerosis (ALS), where mutations within the 

SOD1 gene result in “gain of function” toxicity (191-193). ALS, or “Lou Gehrig’s 

disease”, is a selective neurodegenerative disease of motor neurons in the brain 

and spinal cord in which approximately 5% of cases are caused by SOD1 

mutations. Symptoms include generalized weakness, muscle atrophy, and 
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progressive paralysis. Over 90 distinct mutations have been identified, further 

complicating the understanding of the underlying causes of this disease (194, 

195). One potential associated mechanism is H2O2-mediated cell damage and 

toxicity caused by excess mutant SOD activity (191, 196). 

 
 
1.7.2.2 Copper delivery to the mitochondria.  
 
 
 
The mitochondrial respiratory complex IV enzyme cytochrome c oxidase (CCO) 

is a Cu-dependent integral membrane protein complex of the mitochondria 

involved in respiration and ATP synthesis. CCO is the only respiratory complex 

that requires copper for its function (197). The CCO complex is comprised of 13 

subunits, with 3 of them (COX1-COX3) forming the core of the enzyme being 

encoded by the mitochondrial genome (197). COX1 and COX2 also constitute 

the copper-binding subunits of CCO, with 1 Cu atom incorporated into the CuB 

site of COX1, and 2 Cu atoms incorporated into the CuA site of COX2 (197). 

Since COX1 and COX2 are encoded by the mitochondrial genome, copper 

metallation must occur within the organelle. The only other known copper-

dependent protein within the mitochondrion is SOD1, localized in the IMS. As 

previously mentioned, SOD1 enters the mitochondrion in its apo-form, and 

receives its copper within the IMS (178). The presence of 2 metalloenzymes that 

are metallated within the mitochondrion requires copper transport into this 

organelle. While CCS chaperones Cu into the mitochondrial IMS for incorporation 

into SOD1 (182), the Cu chaperone COX17 is required for the delivery of Cu to 



 31 

CCO through a complex series of events (198). Although COX17 is present in 

both the cytosol and the mitochondrial IMS, it is not an obligate mitochondrial 

copper chaperone (197, 199). This was demonstrated in experiments tethering 

COX17 to the IMS by a heterologous IM-binding domain, which resulted in the 

exclusive localization of COX17 to the mitochondria. In these experiments, 

tethered COX17 reversed the respiratory defect of cox17Δ yeast cells and 

restored CCO activity (200). Additionally, cox17Δ cells contained mitochondrial 

Cu levels similar to wild type. Exactly how Cu makes its way from CTR1 at the 

plasma membrane into the mitochondrion is still unclear. The inability of CCS to 

overcome COX17 deficiency even when overexpressed at supraphysiological 

levels suggests the presence of one or more alternative molecules that shuttle 

Cu from the cytosol into the mitochondrion (96). Recently, a small Cu ligand has 

been identified in the cytosol and the mitochondrial matrix of yeast and mouse 

liver extracts (199, 201). Future studies will aim at understanding the potential 

role of this ligand in intracellular copper homeostasis. 

 

The incorporation of Cu into CCO is a multi-step event that is not well understood 

and is the subject of ongoing studies. Evidence suggests that insertion of Cu into 

the CuB site of COX1 occurs via a transfer of Cu from COX17 to the integral 

membrane COX11 protein, which facilitates the insertion of Cu into COX1 (199, 

201). Two additional metallochaperones have been identified, SCO1 and SCO2 

that assist in the incorporation of Cu into the CuA site of COX2 (202-205). 

Another Cu-binding protein, COX19, localized to the IMS and structurally similar 
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to COX17, has been suggested as an additional player in the incorporation of Cu 

into CCO (206). 

 

Although the pathways of Cu delivery into the mitochondrion and CCO are not 

well understood, the significance of this topic is underscored by inherited 

deficiencies in CCO in humans with mutations in copper assembly proteins. In 

yeast, mutations in the cox17 gene result in a respiratory defect owing to a lack 

of CCO activity, since CCO depends on Cu for its activity (156, 198, 207). 

Additionally, COX17 knockout mice die in utero, revealing an essential role for 

COX17 in embryonic development (208). Recent studies in patients carrying 

mutations in either SCO1 or SCO2 revealed that liver, heart and skeletal muscle 

samples contained significantly lower amounts of copper compared to tissues 

from control subjects (209). Significantly, this effect was associated with 

increased copper efflux via the ATP7A protein. The authors also showed that this 

effect was independent of defects in CCO assembly, suggesting a novel role for 

the SCO1 and SCO2 proteins in the regulation of copper homeostasis via a 

mitochondrial signaling pathway.  

 
 
1.7.2.3 Delivery of copper to the secretory pathway. 
 
 
 
The transport of Cu from the site of CTR1-mediated uptake at the plasma 

membrane to the secretory pathway occurs via the Cu chaperone ATOX1. In the 

cytosol, ATOXI delivers Cu to one of two Cu-ATPases, ATP7A known as Menkes 
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protein, or ATP7B or Wilson protein, which in turn actively transport Cu into the 

TGN. Delivery of Cu to the secretory pathway allows its incorporation into 

cuproenzymes, as well as regulates its trafficking-mediated export when 

intracellular Cu levels are in excess. 

 
 
1.7.2.3.1 The copper chaperone ATOX1. 
 
 
 
ATOX1, also known as HAH1, is a cytosolic protein that plays a key role in 

delivering Cu to ATP7A and ATP7B (70, 110). Deletion of the ATOX1 gene in 

mice results in intracellular copper accumulation and a decrease in the activity of 

Cu-dependent enzymes (210), suggesting deficient Cu-ATPase transport activity. 

Furthermore, the offspring of ATOX1 knockout mice suffer growth retardation, 

hypopigmentation and skin laxity phenotypes and increased perinatal mortality 

similar to Menkes patients (210), owing to impaired transfer of Cu from the 

placenta to the embryo.  

 

Yeast Atx1 was originally identified as a small antioxidant protein that 

suppressed oxygen toxicity in yeast mutants lacking SOD1. Atx1 was 

subsequently shown to be a copper chaperone (211). Shortly following this 

discovery, a homologue in humans and other mammals was identified and 

named ATOX1 (212). The yeast Atx1 has been shown to facilitate the function of 

the P-Type Cu-ATPase Ccc2, which transports copper into the late Golgi 

compartment (213). Mammalian ATOX1 is a small cytosolic protein with striking 



 34 

structural homology to the metal-binding domains (MBD) of the Cu ATPases  

(214). ATOX1 contains a single repeat of the MXCXXC Cu-binding domain, and 

this MBD has been shown to bind one Cu1+ molecule (215). Both ATP7A and 

ATP7B carry 6 repeats of the MBD in their N-terminal regions, and, as in ATOX1, 

each of these MBDs binds a single Cu1+ molecule. The MBDs are thought to play 

a critical role in the direct interaction between ATOX1 and the ATPases during 

the Cu transfer process. In vitro, Cu-ATOX1 has been demonstrated to transfer 

Cu directly to the MBDs of ATP7B in a dose-dependent manner (215-219). All 6 

sites on the ATP7B protein can be filled via this interaction; however, a significant 

excess (5- to 50-fold) of ATOX1 over ATP7B is needed to achieve complete 

saturation of the N-terminal MBDs. In vitro studies in embryonic fibroblasts from 

ATOX1 knockout mice show that ATOX1 plays an important role in the Cu-

induced trafficking of ATP7A (158).  

 
 
1.7.2.3.2 The Cu-ATPase ATP7A or Menkes protein. 
 
 
 
The Menkes protein is encoded by the ATP7A gene and is expressed in most 

mammalian tissues expect the liver (43-45, 220). This copper transporter 

contains eight membrane-spanning domains and six cysteine-rich copper binding 

sites at the amino terminal region that are required for high affinity copper 

transport. ATP7A belongs to the P-type ATPase family whose members utilize 

the energy derived from ATP hydrolysis to transport cations (221). During each 

catalytic cycle, which results in the transport of Cu, the ATP7A protein undergoes 
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rapid auto-phosphorylation at a conserved aspartic acid residue, followed by de-

phosphorylation to complete the cycle (222, 223). As discussed above, Menkes 

disease is a lethal genetic disease caused by mutations in the ATP7A protein, 

and is characterized by overall copper deficiency and severe pathophysiological 

consequences such as neurological impairment, convulsions, connective tissue 

abnormalities, skin laxity and hypopigmentation (46). These mutations in the 

ATP7A protein result in the reduced efflux of copper from cells (224), and the 

inability of the ATP7A MNK protein to transport Cu across the enterocytic 

basolateral membrane into the bloodstream. Mutations in the ATP7A protein may 

affect its copper transport activity and/or its ability to traffic to the plasma 

membrane (169, 225-228). Menkes disease is primarily a defect in copper efflux. 

Skin fibroblasts, lymphoblasts and amniocytes isolated from human Menkes 

patients and cultured in vitro accumulate copper in essential medium without 

additional copper. Thus, mutations in the ATP7A protein disrupt normal cellular 

copper homeostasis (221, 229, 230). 
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FIGURE 1.3. Menkes protein traffics in response to copper in cultured 

human fibroblasts. A, Topology of the ATP7A protein. B, Copper treatment of 

cultured fibroblasts induces the relocalization of ATP7A from the trans-Golgi 

network (TGN) to post-Golgi vesicles and the plasma membrane. This process 

results in the net export of copper and prevents the accumulation of potentially 

toxic excess copper. Immunofluorescence labeling of the ATP7A protein is 

shown in green. The nucleus is stained red with propidium iodide.  
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Fig. 1.3  
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The steady-state subcellular localization of the ATP7A protein is within the final 

compartment of the Golgi apparatus, also known as the trans-Golgi network 

(TGN) (1, 231). ATP7A transports copper from the cytoplasm across the Golgi 

membrane and delivers it to copper dependent enzymes within the TGN (232-

237). The subcellular localization of ATP7A is regulated by copper (Fig. 1.3). In 

response to elevated copper levels in the cytoplasm, the ATP7A protein traffics 

within post-Golgi vesicles to the plasma membrane (1, 169, 238, 239). The 

copper-stimulated trafficking of ATP7A is a defense mechanism that protects the 

cell from excess copper toxicity. However, ATP7A mRNA and protein levels in 

cultured cells and mouse tissues do not change in response to copper availability 

(1, 240). Consistent with its role in transporting copper into the bloodstream from 

enterocytes and kidney tubules, and into the central nervous system across the 

blood brain barrier, the ATP7A protein traffics to the basolateral membrane in 

response to elevated copper concentrations in cultured polarized epithelial cells 

(241). 

 
 
1.7.2.3.3 Mutational analyses of copper-stimulated ATP7A protein 

trafficking. 

 
 
Previous studies have demonstrated that the trafficking of ATP7A is dependent 

on copper-binding sites closest to the first membrane-spanning domain (228). 

Studies in our laboratory have demonstrated that mutations that prevent the 

formation of the phosphorylated catalytic intermediate of the ATP7A protein also 
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block the ability of the protein to traffic in response to copper (169). Moreover, 

certain Menkes disease mutations, including the mutation in the Brindled mouse, 

totally abolish the trafficking of ATP7A in response to elevated copper (225, 226, 

242). Based on these findings, it is suggested that the catalytic activity of ATP7A 

is essential for its trafficking function (169). However, catalysis is not a 

prerequisite for trafficking since our laboratory has identified a mutation that 

blocks the trafficking response but does not inhibit normal copper transport 

activity into the Golgi (226).  

 
 
1.7.2.3.4 Mouse models of Menkes disease. 
 
 
 
The murine model of Menkes disease is a collection of mice called the “mottled” 

mice. Each mottled mouse variant is caused by a mutation in the X-linked 

mottled gene (Atp7aMo or Mnk), which is the orthologue of the human ATP7A 

gene (243-250). These mutations block copper transport activity of the ATP7A 

protein, as evidenced by the accumulation of copper in cultured fibroblasts from 

mottled mice (242, 251). The mottled mice have considerable phenotypic 

variability, however, each mutant exhibits symptoms of copper deficiency similar 

to the human disease. For example, the Brindled mouse, a model of the classical 

disease in humans (243), carries an in-frame deletion of two codons resulting in 

the deletion of two amino acids in a cytoplasmic loop of the ATP7A protein (243). 

This mutation inhibits copper transport to cuproenzymes and copper-stimulated 

trafficking, despite the normal localization of the ATP7A protein in the TGN (227, 
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252). Brindled mice usually die within three weeks of birth, but this can be 

prevented by a single subcutaneous copper injection (50 µg) administered within 

10 days of birth (234, 253-256). The timing of this injection is critical, since 

treatments that are delayed beyond the 10th day do not extend life expectancy. 

The copper injections have been shown to correct the neurological symptoms, 

such as tremors and spasms seen in untreated mutants (234), and to rescue 

some of the copper deficiency in peripheral tissues, although liver copper levels 

remain below normal (254, 256). In contrast to wild type mice in which copper 

injections have no lasting effect on organ copper levels (234, 253, 254), the 

copper-treated brindled mice exhibit patterns of Cu maldistribution similar to 

those seen in Menkes patients, including above-normal copper levels in 

enterocytes and kidneys, and reduced levels in serum and the liver. Interestingly, 

macrophages from the copper-treated Brindled mouse also accumulate copper 

(254). Although the growth of copper-rescued Brindled mice is significantly 

retarded in the first weeks of life, these animals reach normal weight by 60 days 

of age (234).  
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1.8 Copper homeostasis during the inflammatory response. 
 
 
 
Infection or tissue injury promotes a variety of inflammatory responses. 

Monocytes accumulate at the site of inflammation where they differentiate into 

macrophages. Macrophages and other phagocytes, such as neutrophils, ingest 

microbes into the phagosome, which is accompanied by a toxic “respiratory 

burst” of superoxide (257). Other products of the respiratory burst include 

hydrogen peroxide and the hydroxyl radical (258-260). These processes are part 

of the innate immune response. Interestingly, the acute phase response to 

infections and inflammation in humans and animals is marked by changes in 

circulating metal levels. Both zinc and iron levels are significantly decreased, 

resulting the classical hypozincemia and hypoferremia, two hallmark events of 

the acute-phase response (261, 262). In contrast, inflammation results in an 

increase in copper levels in the serum, or hypercupremia (263-274). 

Ceruloplasmin is an acute phase protein, and the rise in serum copper levels 

during inflammation may be partially attributed to increased circulating holo-Cp 

levels (120). Indeed, it has been shown that inflammation also promotes the 

accumulation of the non-protein bound fraction of copper in the serum (263). 

Radiotracer studies with 64Cu have demonstrated that copper accumulates at 

sites of inflammation (275), and within the exudates of wounds and burns relative 

to serum (276, 277).  
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Unlike copper, iron and zinc levels in the serum are reduced during inflammation, 

presumably to starve microbes of these essential nutrients. The expression of the 

zinc importer ZIP14 is elevated in the liver during inflammation. This is thought to 

increase zinc uptake into the liver and lowers its concentration in the serum 

(278). In the case of iron, the decrease in serum iron levels may be attributed to 

regulation by the peptide hormone hepcidin, which is secreted from the liver 

during inflammation. Hepcidin has been shown to trigger the endocytosis and 

reduced expression of the iron exporter ferroportin-1 in enterocytes and 

macrophages (116, 279), thus reducing the transport of dietary iron into the blood 

and the export of iron from macrophages of the reticuloendothelial system. These 

responses are among several others that function to limit iron as a nutrient for 

microbial growth (280). 

 
 
1.8.1 Copper is a bactericidal agent. 
 
 
 
Mild copper deficiency has been associated with impaired function of neutrophils 

and macrophages (281-284). Moreover, in cultured peritoneal macrophages, 

phagosomal copper levels are increased ten-fold when cells are infected with 

Mycobacterium avium in the presence of the cytokine IFN-gamma (285). Thus, 

copper levels may become elevated in the serum during inflammation to promote 

anti-microbial functions of these phagocytic cells. Consistent with this hypothesis, 

evidence suggests that the ability of pathogenic bacteria to export copper 

influences their virulence in the host. The virulence of Pseudomonas aeruginosa 
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is severely decreased (20-fold) by mutations in the copper exporter, CueA (286), 

and a similar attenuation of pathogenicity occurs in Listeria monocytogenes 

carrying a mutation in the copper exporter, CtpA (287). Also, the expression of 

several metal ion exporters including two putative copper efflux transporters, 

CopA1 and CopA2, are induced in Legionella pneumophila upon phagocytosis by 

macrophages (288).  

 

Copper owes its bactericidal activity to its ability to transition between Cu1+ and 

Cu2+. This property of the copper ion allows it to participate in the Fenton 

reaction, whereby hydrogen peroxide H2O2 is quickly converted to the highly 

reactive hydroxyl radical OH• (153-155). Reactive oxygen species (ROS), and 

more specifically OH• greatly contribute to the killing of bacteria within the 

phagosomal compartment of immune cells. OH• is highly toxic to cells due its 

ability to react with and oxidize organic molecules, such as membrane lipids, 

proteins and DNA, thereby compromising membrane fluidity and other essential 

cellular functions (289). It is not surprising, therefore, that phagocytic cells of the 

immune system have harnessed this property of ROS, and use it as a first line of 

attack against pathogens within the phagosomal compartment. This is known as 

the respiratory or oxidative burst, and it occurs in phagocytic cells as they initiate 

the degradation of internalized pathogens (257). 
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1.9 A role for copper in the cellular response to hypoxia. 
 
 
 
1.9.1 Physiological and cellular responses to hypoxia. 
 
 
 
Oxygen (O2) utilization by cells of the body normally serves to regenerate energy 

in the form of ATP. Hydrolysis of ATP provides the necessary energy for 

maintenance, self-repair and for sustenance of tissue- and organ-specific 

functions. Although cells have a limited ability to generate ATP in the absence of 

O2 via anaerobic respiration, the loss of O2 supply, even for a short period of 

time, can threaten cell survival. Therefore, organisms have developed a number 

of adaptive responses to defend the O2 supply in response to environmental 

changes, or to diseases that decrease the delivery of O2 to tissues. Specialized 

O2-sensing systems have evolved to detect subtle changes in O2 tension. Among 

these are the arterial chemoreceptors that monitor O2 levels in the blood and 

signal to the respiratory system to increase the levels of alveolar ventilation when 

arterial O2 tension is too low. The liver and kidneys secrete erythropoietin, a 

hormone that signals to increase the number of circulating erythrocytes and the 

O2–carrying capacity in the circulation (139). In addition, cells protect themselves 

during limitations in O2 supply by downregulating O2 utilization (140-142).  

 

Rapid responses are required on the cellular level in order to protect the cell from 

prolonged O2 depletion. These responses are mediated by the hypoxia-inducible 

factor transcription factor (discussed below), and lead to the upregulation of 
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genes involved in glucose uptake, cell survival, cytoskeletal organization, 

extracellular matrix remodeling, cell adhesion, vascular tone, iron metabolism, 

and apoptosis (290-294). On the physiological level, responses to limitations in 

O2 supply ultimately result in vascular remodeling, formation of new blood 

vessels or angiogenesis, and cell migration and proliferation. 

 
 
1.9.2 Transcriptional responses to hypoxia.  
 
 
 
Hypoxia, or low oxygen tension, is a common feature of many solid tumors (295), 

and has also been implicated in the etiology and the progression of Alzheimer’s 

disease (296). In cancer, hypoxia has been linked to malignant transformation, 

metastasis, and treatment resistance (295). The cellular adaptation responses to 

hypoxia are mediated via the hypoxia-inducible factor 1 (HIF-1), a transcription 

factor often named “the master regulator of hypoxic responses”, that upregulates 

hypoxia response element- (HRE-) dependent gene expression. Among HRE-

dependent genes are several genes involved in glycolytic energy metabolism, 

angiogenesis, cell survival and erythropoiesis. Some of these are glucose 

transporters (GLUT), vascular endothelial growth factor (VEGF), erythropoietin, 

and other glycolytic genes (297, 298). 

 

HIF-1 is a heterodimer composed of two subunits, an oxygen-regulated α subunit 

(HIF-1α) and a constitutively expressed β subunit (HIF-1β), both of which are 

ubiquitously expressed in mammalian cells (299). The HIF-1 complex regulation 
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is dependent on the stability of the HIF-1α subunit. HIF-1α is constitutively 

expressed; however, under normoxic conditions, the protein undergoes 

ubiquitination and is targeted for proteosomal degradation (300, 301). This 

involves the binding of the von Hippel-Lindau tumor suppressor protein (VHL) to 

an oxygen-dependent degradation domain on the HIF-1 protein. The binding of 

VHL to HIF-1α is regulated via hydroxylation of key proline residues on the HIF-1 

protein, which is carried out by a family of HIF prolyl hydroxylases (HIF-PHs) 

(108, 302-304). HIF-PHs require oxygen and iron binding for their activity. Thus, 

during hypoxia, or in the presence of iron chelators such as desferrioxamine 

(DFO) or iron-displacing metals such as cobalt, HIF-PHs are inactivated, and this 

leads to a stabilization and accumulation of the HIF-1α protein. Thus, HIF-1 acts 

as a sensor of cellular oxygen tension and iron homeostasis in all cell types.  

 

HIF-1 activation in cancer cells is highly associated with cell growth and survival, 

tumor development, tumor angiogenesis and poor clinical prognosis (305-308). 

Histopathological studies in primary tumors of the breast, colon, brain, lung, 

ovary and prostate have detected HIF-1 expression that could not be seen in 

corresponding normal tissues (308). Although hypoxia is the ubiquitous inducer 

of HIF-1 expression, constitutive HIF-1 expression has been detected in several 

nonhypoxic cancer cell lines (305) and normal tissues (309). In fact, in several 

cell types, other stimuli have been reported to stabilize and activate HIF-1, 

including epidermal growth factor (EGF), insulin, insulin-like growth factor 1 (IGF-

1), angiotensin II and others (310-312). Altogether, these observations suggest a 
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role for distinct signaling mechanisms in the regulation of HIF-1 activity. Of 

relevance here are the effects of copper and mitochondrially-generated reactive 

oxygen species on HIF-1 expression.  

  
 
1.9.3 Cu- and ROS-mediated activation of HIF-1 and HRE-dependent genes.  
 
 
 
Transition metals have long been used as molecular mimics of hypoxia. Co2+, 

Ni2+ and Mn2+ salts induce the expression of erythropoietin in the hepatoma cell 

lines HepG2 and Hep3B under normoxic conditions (313). CuCl2 also stabilizes 

HIF-1 under normoxic conditions and stimulates the expression of HRE-

dependent genes. Martin et al. (314) have suggested that copper activates HIF-1 

by inhibiting prolyl hydroxylase activity independent of iron availability. Their 

experiments in hepatoma cells suggest that both copper and hypoxia increase 

the ceruloplasmin, VEGF and GLUT-1 mRNA levels. The authors propose that 

HIF-1 activation and HRE-dependent gene regulation not only serves as a 

sensing system for oxygen tension and iron availability, but also regulates copper 

metabolism.  

 

The mechanism by which copper and other transition metals regulate HIF-1 is 

unknown. Several studies have implicated reactive oxygen species (ROS) in 

transition-metal dependent HIF-1 activation (315-319). As a transition redox 

metal, copper can participate in Fenton reactions, thereby catalyzing the 

conversion of molecular oxygen (O2) into the powerful oxidant superoxide (O•). In 
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the cellular environment, superoxide is rapidly converted to hydrogen peroxide 

(H2O2) by superoxide dismutase (SOD). Copper then catalyzes the conversion of 

hydrogen peroxide into the harmful hydroxyl radical (OH•) (154, 155).  

 

Increasing evidence suggests that it is the accumulation of ROS produced mainly 

by the mitochondria during low oxygen tension that mediates the activation of 

HIF-1. In particular, H2O2 has been linked to the stabilization of HIF-1 and the 

induction of HRE-dependent genes during hypoxia (139, 320-323). Grzenkowicz-

Wydra et al. (323) have shown that overexpression of the human Cu/Zn 

superoxide dismutase SOD1 in NIH3T3 fibroblasts leads to enhanced 

intracellular production of H2O2 and stimulation of VEGF synthesis. In their study, 

H2O2 increased VEGF promoter activity, VEGF mRNA expression and VEGF 

protein synthesis. This effect was blocked by the simultaneous overexpression of 

catalase, an enzyme involved in antioxidant defense that scavenges H2O2 and 

converts it to H2O. This is supported by further evidence that the overexpression 

of the antioxidants catalase and glutathione peroxidase during hypoxia prevents 

the stabilization of HIF-1α (324, 325). 

 

It has been suggested that ROS stabilize HIF-1 indirectly via activation of kinase 

signaling cascades. Three pathways have been identified that can be activated 

by ROS, and in turn activate HIF-1. These are small GTPases (such as Rac or 

Rho), c-Src kinase, and p38a MAPK (326-328). However, the direct mechanisms 

by which ROS activate these signaling pathways that ultimately stabilize HIF-1α 
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during hypoxia have not been determined yet. In summary, it is possible that 

copper activates HIF-1 directly by binding and inhibiting the HIF-prolyl 

hydroxylases, and indirectly via its redox potential to generate ROS.  

 
 
1.9.4 Generation of ROS during hypoxia.  
 
 
 
Relative O2 depletion can cause severe organ damage in human disease. 

Hypoxic tissue injury occurs during respiratory failure, systemic hypotension, and 

regional hypoperfusion of organs. Reactive oxygen species have been implicated 

in the lethal cell injury resulting from relative hypoxia and following reperfusion of 

ischemic heart, brain and organs (329-332). Studies have also shown that severe 

high-altitude hypoxia can increase the generation of cellular oxidative stress, thus 

causing damage to lipids, proteins and DNA (133-138).  

 

Several cellular mechanisms for O2-sensing and generation of ROS during 

hypoxia have been investigated, including NADPH oxidase (333) and 

cytochrome p450 (334). Diphenyleneiodonium (DPI) is a non-specific inhibitor of 

flavoprotein oxidases. DPI interferes with HIF1-mediated responses to hypoxia 

(335). Thus, it has been concluded that NADPH oxidase and/or cytochrome p450 

regulate O2 sensing and participate in HIF-1 activation during hypoxia (336). 

However, DPI also inhibits mitochondrial complex I (337). Inhibition of complex I 

suppresses ROS production by complex III (see below for further discussion; 

reviewed in (139)). Moreover, in B cell lines deficient in either the p22phox or the 
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gp91phox subunits of the NADPH oxidase, the VEGF and aldolase mRNA 

responses to hypoxia are intact, suggesting that O2-sensing mechanisms 

independent of NADPH oxidase exist (321, 338). The roles of NADPH oxidase 

and cytochrome p450 certainly require further investigation.  

 
 
1.9.5 Mitochondrial ROS production regulates the responses to hypoxia. 
 
 
 
Mitochondria are classically considered the subcellular organelles in eukaryotes 

that are responsible for energy production. Mitochondria consume oxygen and 

generate the ATP required for energy utilization, thus O2 deprivation threatens 

cell survival. Recent emerging evidence now implicates mitochondria as a major 

source of free radicals, and as the source of signaling that regulates cell cycle, 

proliferation, and apoptosis. In 1973, Boveris and Chance described the 

production of H2O2 by mitochondria, and characterized H2O2 as a by-product of 

the auto-oxidation of components of the respiratory electron transport chain 

(339). This process, the “electron leak”, occurs during respiration under 

conditions of sufficient O2 supply.  

 

New evidence now points to the mitochondria as the site of O2 sensing during 

hypoxia. It has been proposed that the electron transport chain senses 

decreases in O2 supply and produces ROS in response to hypoxia. The ROS 

released from the mitochondria act as signaling molecules and activate HIF-1 

(139, 321, 324, 325, 340-344). The importance of mitochondrial signaling in the 
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cellular responses to hypoxia is emphasized by studies using ρ0 cells which have 

been depleted of their mitochondrial DNA. ρ0 cells lack mitochondrial DNA-

derived proteins and are therefore deficient in key components of the electron 

transport chain, which renders them incapable of mitochondrial respiration (321). 

Contrary to wild-type cells, ρ0 cells fail to stabilize HIF-1-dependent gene 

expression as well as fail to produce ROS during hypoxia (321, 340).  

 

It is now widely accepted that ROS production during hypoxia primarily originates 

at complex III of the respiratory chain. Eukaryotic complex III is an assembly of 

11 proteins encoded by nuclear and mitochondrial genes (345). Complex III 

accepts electrons from ubiquinol, and transfers these to cytochrome c. The Q 

(Ubiquinone) cycle is a major component of complex III. A pair of electrons is 

transferred to ubiquinone from complexes I and II. This yields ubiquinol. As 

cytochrome c and cytochrome c oxidase (CCO) accept single electrons 

sequentially, the Q cycle within complex III converts the paired transfers of 

complexes I and II into the sequential transfers needed for complex IV (346). 

This sequential transfer of electrons at complex III temporarily yields the 

univalently reduced ubisemiquinone. The relatively unstable ubisemiquinone 

radical is repeatedly generated at complex III during the electron transport 

process. Molecular O2 within the mitochondrial membrane can potentially capture 

the electron from ubisemiquinone, yielding superoxide. The probability of this 

event occurring increases as the lifetime of the ubisemiquinone radical increases 

(342-344) . Mitochondrial inhibitors, such as Antimysin A, which increase the 
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half-life of ubisemiquinone, increase superoxide production at complex III (339). 

Genetic evidence for the requirement of complex III in the cellular responses to 

hypoxia is provided by studies using RNA interference against the Rieske 

protein. The Rieske protein is a subunit of complex III that plays a central role in 

generating ubisemiquinone during the electron transfer process. siRNA knockout 

of the Rieske protein prevents the formation of ubisemiquinone, and significantly 

attenuates ROS production compared to controls. Significantly, siRNA against 

the Rieske protein prevents the stabilization of HIF-1α during hypoxia (324, 325).  

 
 
1.10 Potential role for copper in human disease. 
 
 
 
The importance of copper as a nutrient has been underlined in this review. In 

addition to illnesses directly related to defects in the various copper homeostatic 

pathways, new connections have been drawn between copper and disease 

conditions such as inflammation, angiogenesis, and Alzheimer’s disease. 

Inflammation is accompanied by an increase in serum copper levels (263-267), 

and copper has been shown to play a role in the proper functioning of the 

immune system (281-284).  

 

A hallmark of many chronic inflammatory illnesses such as cancer, Alzheimer’s 

disease, atherosclerosis and others is a decrease in the availability of oxygen at 

the site of inflammation. This lower-than-normal oxygen tension induces a wide 

array of cellular and physiological responses, including an increase in oxidative 
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stress in the inflammatory milieu, and the formation of new blood vessels along 

with the restructuring of the surrounding extracellular matrix. Copper availability 

during low oxygen tension may influence the outcome of such cellular and 

physiological processes and may tip the balance towards either the resolution or 

the exacerbation of the disease condition.  

 

Angiogenesis, or the process of new blood vessel formation, serves to provide 

nutrients and oxygen to tissues where blood flow has been obstructed, and is an 

important component in the mechanism of tumor growth and metastasis. Copper 

is essential for the angiogenic process, not only in the cross-linking of newly 

formed extracellular matrix, but also in the transcriptional regulation of certain 

angiogenic responses. Copper chelation therapy has been successfully used in 

animal trials in the inhibition of angiogenesis in cancer (347-352). Copper is also 

an important component of Aβ plaques, as it serves to cross-link and aggregate 

the Aβ protein in the extracellular milieu, thus rendering it toxic to surrounding 

neurons (353-357).  

 

Despite the emerging knowledge of a role for copper in these disease conditions, 

very little is understood about the role and contribution of the major regulators of 

copper homeostasis, CTR1 and ATP7A, in these pathophysiological events. The 

goal of my studies is two-fold: 1) To investigate the changes in copper 

homeostasis in macrophages during inflammation and gain an understanding of 

the contribution of these changes to the bactericidal activity of this cell type. 2) To 
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investigate the effect of hypoxia on the copper homeostatic pathways in 

macrophage cells and gain some insight into the potential regulatory role of 

oxidative stress in governing these cellular adaptations.  
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CHAPTER 2 
 
 
 

A ROLE FOR THE ATP7A COPPER TRANSPORTING ATP7ASE IN 

MACROPHAGE BACTERICIDAL ACTIVITY 

 
 

2.1 Abstract 
 
 
 
Copper is an essential micronutrient required for healthy immune function. This 

requirement is underscored by increased susceptibility to bacterial infection in 

copper deficient animals, however, a molecular understanding of copper’s 

importance in immune defense is unknown. To elucidate the role of copper in 

innate immune function, we investigated the effect of pro-inflammatory agents on 

copper homeostasis in RAW264.7 macrophages. Interferon-gamma was found to 

increase expression of the high affinity copper importer, CTR1, and stimulate 

copper uptake. This was accompanied by copper-stimulated trafficking of the 

ATP7A copper exporter from the Golgi to vesicles that partially overlapped with 

phagosomal compartments. Silencing of ATP7A expression attenuated bacterial 

killing, suggesting a role for ATP7A-dependent copper transport in the 

bactericidal activity of macrophages. Significantly, a copper sensitive mutant of 

Escherichia coli with a defect in copper export was hypersensitive to killing by 

RAW264.7 macrophages, and this phenotype was dependent on ATP7A 

expression. Together, these data reveal a critical role for copper transport via the 
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ATP7A protein in macrophage-dependent bactericidal activity and demonstrate a 

unique role for copper in host-pathogen interactions. 

 
 
2.2 Introduction 
 
 
 
Copper is an essential nutrient for aerobic organisms. Its ability to exchange 

electrons as it cycles between cuprous and cupric states has been harnessed by 

enzymes that catalyze a wide variety of biochemical processes (96).  However, 

these same redox properties also confer copper with toxic properties when it is 

present in the free ionic form.  Free copper can participate in Haber-Weiss 

chemistry to produce the highly toxic hydroxyl radical from hydrogen peroxide 

and superoxide (2-4).  It is, therefore, not surprising that organisms have evolved 

tightly regulated mechanisms for copper transport and intracellular distribution.  

 

The importance of micronutrient intake for optimal immune function is an area of 

intense research, and several studies have demonstrated the importance of 

copper. Studies in animals fed copper-deficient diets have shown impaired 

animal resistance to a number of pathogens including Candida albicans (5, 6), 

Pasteurella haemolytica (358), Trypanosoma lewisi (359) and Salmonella 

typhimurium (9). Other studies have shown that copper supplementation is 

protective against Escherichia coli induced mastitis in dairy cattle (10). In vitro 

studies have shown that copper deficiency impairs the bactericidal activity of 

neutrophils and macrophages (11-13). Moreover, a recent study demonstrated 
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that copper concentrations are markedly increased within the phagosomal 

compartment of macrophages activated by interferon-gamma (IFN-γ) and 

Mycobacterium avium (14).    

 

The potential toxicity of copper can be attributed to its ability to transition 

between the cuprous (Cu1+) and the cupric (Cu2+) states. This property of the 

copper ion allows it to participate in the Fenton reaction, whereby hydrogen 

peroxide (H2O2) is quickly converted to the highly reactive hydroxyl radical OH• 

(153-155). Reactive oxygen species (ROS), and more specifically OH• greatly 

contribute to the killing of bacteria within the phagosomal compartment of 

immune cells (257). OH• is highly toxic to cells due its ability to react with and 

oxidize organic molecules, such as membrane lipids, proteins and DNA, thereby 

compromising membrane fluidity and other essential cellular functions (289). It is 

not surprising, therefore, that phagocytic cells of the immune system have 

harnessed this property of ROS as a first line of attack against pathogens within 

the phagosomal compartment. This is known as the respiratory or oxidative 

burst, and it occurs in phagocytic cells as they initiate the degradation of 

internalized pathogens (257). Interestingly, the acute-phase response to 

infections and inflammation in humans and animals is marked by changes in 

circulating metal levels. Both zinc and iron levels are significantly decreased, 

resulting in the classical hypozincemia and hypoferremia, two hallmark events of 

the acute-phase response to inflammation (261, 262). In contrast, inflammation 

results in an increase in copper levels in the serum, or hypercupremia (263-274, 
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360-364). Collectively, these studies provide compelling evidence of a role for 

copper in innate immune defense, however, an understanding of the underlying 

processes at a molecular level is lacking. 

 

On the cellular level, mammalian copper homeostasis is maintained by the 

concerted regulation of copper uptake and copper export. The copper importer 

Ctr1 is ubiquitously expressed. It is localized to the plasma membrane and 

transports copper across the membrane into the intracellular milieu (151, 166). 

Copper export from the cytoplasm is mediated by ATP7A, also known as Menkes 

protein. In steady-state conditions, ATP7A resides in the Trans-Golgi network 

(TGN) (1, 365), and delivers copper to copper-containing proteins and enzymes 

(232-237). Under excess copper conditions, ATP7A relocates from the TGN to 

the plasma membrane where it exports copper, thus protecting the cell from 

potential copper-mediated toxicity (1). ATP7A cycles between the TGN and the 

plasma membrane as it exports copper, and returns to its TGN localization (169, 

238, 366) once steady-state copper homeostasis is re-established. CTR1 and 

ATP7A protein and mRNA levels do not respond to changes in copper 

concentrations. Overall, mammalian copper homeostasis is maintained via post-

translational regulation of the localization of the copper importer CTR1 and the 

copper exporter ATP7A. However, little is known about how these major players 

in cellular copper homeostasis are regulated during inflammation.  
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The fact that inflammation is accompanied by hypercupremia, and that copper 

exhibits bactericidal properties suggests that immune cells of the phagocytic type 

may benefit from this increased availability of copper and use it as an advantage 

to speed up the killing of pathogens. Here, we report dramatic changes in copper 

homeostasis triggered by the inflammatory response in macrophages. These 

include elevated expression of the CTR1 copper importer, increased copper 

uptake, and copper-stimulated trafficking of the ATP7A copper exporter from the 

Golgi to vesicles that overlap with the phagosomal compartment. Significantly, 

RNAi-mediated depletion of ATP7A in RAW264.7 cells reduced bactericidal 

activity, suggesting that this process was dependent on copper transport via 

ATP7A. Consistent with this role, a copper-sensitive mutant of E. coli with a 

defect in copper export was significantly more sensitive to macrophage-mediated 

killing, and this sensitivity was dependent on ATP7A expression. These findings 

reveal ATP7A-mediated copper transport as a novel determinant of macrophage 

bactericidal activity and identify a unique interplay between copper transport 

activities of host and pathogen. 

 
 
2.3 Materials and Methods 
 
 
 
Preparation of stock solutions— The stock solutions of LPS, IFN-γ and Ebselen 

were prepared as follows: 

LPS (Sigma) stock was 1000 µg/ml in 10 mg/ml bovine serum albumin solution 

(BSA, prepared in PBS). It is not recommended to store LPS in stock solutions 
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with concentrations lower than 1000 µg/ml. Stock solutions were stored at -80oC 

and each tube went through the thaw-refreeze cycle no more than twice. Stock 

solution was spun at high speed (≥10,000 x g) for 2 minutes following thawing.  

 

Mouse IFN-γ (BD Biosciences) stock was 25 µg/ml in 10 mg/ml BSA solution. 

Storage and centrifugation conditions are the same as for LPS stock.  

 

Ebselen (Sigma) solution was 50 mM in 1:1 DMSO:ethanol. The stock was 

stored at 4oC. It is worth noting that the Ebselen solution can undergo light- and 

air-induced oxidation, which reduces the shelf life of the stock solution. 

Therefore, it may be necessary to monitor the decline of the antioxdiant property 

of Ebselen and use prepare fresh stocks periodically. 

 
 
Cell Culture— RAW264.7 cells were obtained from the American Type Culture 

Collection and were maintained in Dulbecco’s modified Eagle’s medium 

(Invitrogen, Carlsbad, CA) containing 10% (v/v) fetal bovine serum and 100 

units/ml penicillin and streptomycin (Invitrogen) in 5% CO2 at 37°C. Primary 

macrophages from C57BL/6J mice were isolated by peritoneal lavage 72 h 

following intraperitoneal injection with 2 ml of thioglycolate medium. ATP7A-

depleted RAW264.7 cells (ATP7A-RNAi) were generated by stable transfection 

of a pRS vector harboring a 29 nucleotide short hairpin RNA against ATP7A 

(Origene, Rockville, MD) and selected in 25 µg/ml puromycin (Invitrogen).  

Control cells were transfected with the same vector expressing shRNA against 
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GFP (Origene). Lipofectamine 2000 (Invitrogen) was used for all transfections.  

Copper Uptake Studies— Radioactive copper (64Cu) was purchased from the 

Mallinckrodt Institute of Radiology, Washington University (Saint Louis, MO). 

64Cu uptake was assayed as described previously (93).  RAW264.7 macrophage 

cells were grown in triplicate 6 well trays and cultured overnight in serum-free 

medium in the presence or absence of 25 ng/ml IFN-γ (BD Biosciences, Franklin 

Lakes, NJ).  Cells were washed with serum-free DMEM medium and then 

exposed to 1 µM 64Cu for 5 min, washed extensively in ice-cold PBS and 

radioactivity was measured using a gamma counter.  Counts were normalized 

against total protein. 

 
 
Bacterial Survival Assay— RAW264.7, control-RNAi or ATP7A-RNAi 

macrophage cells were activated by overnight treatment in serum-free DMEM 

medium with or without 25 ng/ml IFN-γ. Where indicated, either 20 µM CuCl2 or 

50 µM Ebselen was also added to the cells. Macrophages were then detached by 

scraping into ice-cold serum-free media, washed twice, and resuspended in 

triplicate in serum-free medium at a concentration of 4 x 106 cells/ml. E. coli wild-

type strain W3110 and the copA knockout strain DW3110 (367, 368) were grown 

to stationary phase and mixed with macrophages at a macrophage:bacteria ratio 

of 1:10 or 1:1. Bacterial phagocytosis was allowed to proceed for 30 min at 37oC 

and extracellular bacteria removed by two washes with phosphate buffered 

saline containing 12.5 µg/ml Gentamicin (Gibco). One set of samples (uptake 

group) was lysed in 0.1% (v/v) Triton X-100 solution and plated onto LB-agar 
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plates for counting to provide bacterial uptake values.  The remaining set (kill 

group) was incubated for 1-2 hours as indicated at 37oC in serum-free media to 

allow bacterial killing to occur, lysed, and then plated onto LB-agar. Colony 

numbers were normalized against the total protein content of each sample and 

bacterial survival was determined by dividing the number of colonies in the killing 

group by those in the uptake group.  

 
 
In vitro bacterial ROS survival assay This protocol is based on previously 

published methods (369). Wild-type E. coli W3110 was grown overnight to 

stationary phase. The next day, 1 ml of bacterial solution was diluted into 4 ml LB 

and grown for 2-3 hours to exponential phase (OD600 = 0.2 - 0.3). The bacterial 

solution was then pelleted and the LB discarded.  

The bacterial pellet was washed twice with PBS + 67 µM EDTA followed by one 

wash with PBS only. The bacterial pellet was then re-suspended in buffer 

containing 0.1M sodium phosphate pH 7.4, and 0.15 M sodium chloride in water. 

The bacterial suspension was then aliquoted into 1 ml samples. Samples were 

run in triplicates. The sample treatments were as follows: 

- Buffer only (designated as untreated group in results section) 

- Buffer + 500 µM ascorbic acid 

- Buffer + 500 µM ascorbic acid + 10 µM CuCl2 (copper group) 

- Buffer + 500 µM ascorbic acid + 500 µM H2O2 (H2O2 group) 

- Buffer + 500 µM ascorbic acid + 10 µM CuCl2 + 500 µM H2O2 (H2O2 + copper 

group) 
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- Buffer + 10 µM CuCl2 

- Buffer + 500 µM H2O2 

The treatments were added to the bacterial solutions in the following order: 1) 

ascorbic acid, 2) copper, 3) H2O2. The samples were incubated at 37oC for 20 

min. A 1/1000 dilution of each sample was plated on LB + ampicillin and bacterial 

survival rates were calculated and expressed as percentage survival compared 

to the untreated group. 

 
 
Immunofluorescence Microscopy— RAW264.7 cells or primary peritoneal 

macrophages were grown overnight on sterile glass coverslips in serum-free 

media. The next day, all treatment groups received a change of serum-free 

media, and where indicated, were treated with 100 ng/ml LPS, 25 ng/ml IFN-γ, or 

20 µM CuCl2, in the presence or absence of 50 µM Ebselen for 24 hours. Cells 

were then washed in ice-cold PBS, fixed in 4% (w/v) paraformaldehyde, 

permeabilized in 0.05% Triton X-100, and blocked overnight in 1% (w/v) casein 

solution. Cells were then incubated for 1 hour in the presence of primary 

antibodies against the C-terminal portion of ATP7A, and against mouse GM130. 

This was followed by three 10-minute washes in PBS, and a 1-hour incubation 

with the following secondary antibodies: anti-rabbit IgG conjugated to Alexa-488 

(green) and anti-mouse IgG conjugated to Alexa-594 (red) (Molecular Probes). 

Cells received 2 washes in PBS followed by a 15-minute incubation in PBS 

containing the nuclear stain 4',6-diamidino-2-phenylindole (DAPI, 1:12,500 

dilution), and another wash in PBS. Cells were then given a long wash in PBS 
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overnight at 4oC. The next day, slides were mounted on glass plates using the 

mounting medium Mowiol and allowed to dry before microscopy.  

 
 
Immunoblot Analysis—Cells cultured in 6-well trays were scraped into ice-cold 

phosphate-buffered saline (PBS) and pelleted by centrifugation. After several 

washes in ice-cold PBS, the cells were lysed by one of two methods: 1) for 

ATP7A protein detection, cells were lysed by sonication in lysis buffer containing 

62.5 mM Tris-Cl, pH 6.8, 2% (w/v) SDS, 1 mM EDTA, and protease inhibitor mix 

(Roche Applied Science) 2) for CTR1 protein detection, cells were lysed on ice 

for 20 min in lysis buffer containing 62.5 mM Tris-Cl, pH 6.8, 1% (v/v) Triton X-

100, 0.1% (w/v) SDS, 1 mM EDTA, and protease inhibitor mix. Samples were 

centrifuged for 10 min at 16,000 x g, and the protein concentration of the lysates 

was determined using a DC protein assay kit (Bio-Rad). Twenty µg of protein 

lysates were resuspended in loading buffer containing 100 mM dithiothreitol, 

separated using SDS-PAGE, transferred to nitrocellulose membranes, and 

detected by chemiluminescence (370). As a loading control, the same 

membranes were stripped and re-probed with mouse anti-tubulin antibody. For 

the detection of secreted ceruloplasmin, conditioned media were collected and 

concentrated (Amicon Ultra). The corresponding sample lysates were used to 

measure protein content and adjust sample loading and to probe for tubulin as a 

loading control.  

The antibody dilutions in 1% (w/v) casein solution and incubation times were as 

follows: 1) for detection of ATP7A protein, an antibody against the C-terminal end 
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of the protein was raised by our laboratory and named MNK.  Membranes were 

probed with a 1:5,000 dilution of this antibody for 2 hours at room temperature, 2) 

for detection of CTR1 protein the anti-Ctr1 antibody (a gift of Dennis Thiele, Duke 

University) was used at 1:500 dilution overnight at room temperature, or 3) the 

sheep anti-ceruloplasmin antibody (Abcam) was used at 1:250 dilution overnight 

at 4oC. Western blot bands were quantified using the Quantity One software 

(Biorad). Each band expression was normalized against its own tubulin control, 

and expression is expressed as relative to the untreated control.  

 
 
Latex Bead Phagocytosis and Phagosome Purification— RAW264.7 cells were 

activated by overnight treatment with 25 ng/ml IFN-γ and exposed to a 1/200 

dilution of 3 µm latex beads (Sigma) for 90 min at 37oC to allow phagocytosis to 

proceed.  Cells were then washed with PBS to remove extracellular beads and 

fixed in paraformaldehyde and processed for immunofluorescence, as above.  In 

other experiments, phagosomes were purified by sucrose gradient centrifugation, 

as previously described (371). 

 
 
Ceruloplasmin Activity— Conditioned media was used to assess ceruloplasmin 

activity. The media was concentrated using Amicon Ultra-4 filter tubes (Millipore) 

and ceruloplasmin’s p-phenylenediamine oxidase activity was assessed, as 

previously described (372). Ceruloplasmin activity values were normalized 

against total cell protein content. It is to be noted here that serum-containing 

media should be used for the successful detection of ceruloplasmin activity.  
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2.4 Results 
 
 
 
Copper enhances the bactericidal activity of macrophages— We began this 

study by determining the impact of copper supplementation on the bactericidal 

activity of the murine macrophage cell line, RAW264.7. The cells were treated 

overnight with the pro-inflammatory cytokine interferon-gamma (IFN-γ) in the 

presence or absence of 20 µM copper added to the medium, and their ability to 

kill E. coli was determined the following day. Bacterial survival was significantly 

reduced in copper-treated RAW264.7 macrophages relative to control cells (Fig. 

2.1A), suggesting that copper potentiated the bactericidal activity of these cells. 

One suggested mechanism for copper-mediated bacterial killing is through 

Fenton chemistry. The oxidative burst that follows bacterial phagocytosis by 

macrophages leads to the rapid production of hydrogen peroxide (H2O2), which 

can interact with intracellular copper to produce the highly reactive and toxic 

hydroxyl radical (OH•) (2-4). Indeed, the potentiation of bactericidal activity by 

copper was prevented by the antioxidant, Ebselen, (Fig. 2.1B), suggesting that it 

was dependent on reactive oxygen species (ROS). Copper or Ebselen 

treatments did not alter the phagocytosis of E. coli compared to control 

RAW264.7 cells (data not shown). Furthermore, in vitro exposure of E. coli to 

hydrogen peroxide (H2O2) in the presence of copper significantly reduced the 

rate of bacterial survival compared to H2O2 or copper alone (Fig. 2.1C).  These 

findings suggest that copper can promote the bactericidal activity of RAW264.7 

macrophages in a ROS-dependent manner.    
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FIGURE 2.1. Copper enhances bacterial killing by RAW264.7 macrophage 

cells. A, RAW264.7 macrophages were treated with IFN-γ in the presence of 

absence of 20 µM copper prior to exposure to E. coli for 30 min to allow 

phagocytosis to occur. After removal of extracellular bacteria, bacterial survival 

was measured after incubations for 1 h and 2 h at 37oC and expressed as a 

percentage of initial internalized E. coli (mean ± SD; n = 3; p<0.05). B, Bacterial 

survival was assayed in IFN-γ-treated RAW264.7 macrophages in the presence 

or absence of 20 µM copper and 50 µM Ebselen (mean ± SD; n = 3; p<0.05). C, 

Bacterial survival was assessed following exposure of E. coli to 500 µM H2O2, 10 

µM CuCl2 or H2O2 and CuCl2 combined in the presence of 500 µM ascorbic acid 

(mean ± SD; n = 3; p<0.05). Different letters signify values of significant 

difference. 
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Fig. 2.1 
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Inflammatory mediators induce the expression of CTR1 and ATP7A copper 

transporters— Since copper potentiated the bacteridical activity of RAW264.7 

cells, we investigated whether copper homeostasis might be altered in these 

cells following stimulation with pro-inflammatory agents. Treatment with IFN-γ 

was found to stimulate copper uptake activity in RAW264.7 cells (Fig. 2.2A) and 

immunoblot analysis revealed an increase in the expression of the copper 

importer, CTR1 (Fig. 2.3A). CTR1 expression was also induced in RAW264.7 

cells exposed to lipopolysaccharide (LPS), a bacterial cell wall component (Fig. 

2.3B). LPS and IFN-γ also stimulated CTR1 expression in primary macrophages 

isolated from the peritoneum of mice (Fig. 2.3C). These findings suggest that the 

inflammatory response of macrophages stimulates CTR1-mediated copper 

uptake. Consistent with this hypothesis, the total cellular copper concentrations 

were elevated in LPS- and IFN-γ-treated RAW264.7 cells (Fig. 2.2B). Further 

evidence of elevated intracellular copper content was the finding of reduced 

expression of CCS in IFN-γ-treated RAW264.7 cells, a protein that is known to be 

proteolytically degraded in response to elevated levels of copper (185) (Fig. 

2.2C). We then investigated the effect of pro-inflammatory agents on another 

copper transporter, ATP7A. The ATP7A protein is a copper transporting P-type 

ATPase responsible for delivering copper from the cytoplasm into secretory 

compartments and is located in the trans-Golgi network. ATP7A protein 

expression was increased in response to IFN-γ and LPS in RAW264.7 cells 

(Figs. 2.4A and 2.4B) and in primary peritoneal macrophages (Fig. 2.4C). 
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FIGURE 2.2. IFN-γ  alters copper homeostasis in RAW264.7 macrophages.  

A, Copper uptake activity. RAW264.7 cells were pre-treated with serum-free 

media ± 25 ng/ml IFN-γ for 24 hours and copper uptake in the presence of 1 µM 

64Cu was measured over 5 min and normalized against total protein (mean ± SD; 

n = 3). B, Atomic absorption spectrometry (AAS) analysis of total copper content 

of RAW264.7 cells treated with serum-free media, 100 ng/ml LPS or 25 ng/ml  

IFN-γ for 24 h. Values for copper content were normalized against total protein 

content of cell lysates (mean ± SD; n = 3). C, Western blot analysis of CCS 

protein expression in RAW264.7 macrophage cells exposed to 100 ng/ml LPS or 

25 ng/ml IFN-γ. Tubulin was detected as a loading control.  
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Fig. 2.2 
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FIGURE 2.3. Inflammatory mediators increase the expression of CTR1 in 

RAW264.7 and primary peritoneal macrophages. Western blot analysis of 

CTR1 protein expression in: A, RAW264.7 macrophage cells exposed to a range 

of IFN-γ concentrations; B, RAW264.7 macrophage cells exposed to a range of 

LPS concentrations; C, Primary peritoneal murine macrophages cultured in 

serum-free media ± 100 ng/ml LPS or 25 ng/ml IFN-γ. Tubulin was detected as a 

loading control. The numbers shown under the immunoblot bands represent 

relative expression, as calculated using Quantity One software (Biorad). The 

expression level of each sample was first normalized against its own tubulin 

control. BSF (Basal serum-free media). 
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Fig. 2.3 
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FIGURE 2.4. inflammatory mediators increase the expression of ATP7A in 

RAW264.7 and primary peritoneal macrophages. Western blot analysis of 

ATP7A protein expression in: A, RAW264.7 macrophage cells exposed to a 

range of IFN-γ concentrations; B, RAW264.7 macrophage cells exposed to a 

range of LPS concentrations; C, Primary peritoneal murine macrophages 

cultured in serum-free media ± 100 ng/ml LPS or 25 ng/ml IFN-γ. Tubulin was 

detected as a loading control. The numbers shown under the immunoblot bands 

represent relative expression, as calculated using Quantity One software 

(Biorad). The expression level of each sample was first normalized against its 

own tubulin control. 
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Fig. 2.4 
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Another noteworthy finding is that both LPS and IFN-γ induced an increase in 

mRNA levels of the CTR1 and ATP7A transporters (Fig. 2.5). It is unknown 

whether this increase in mRNA levels is due to transcriptional or post-

transcriptional regulation. Further studies are needed to elucidate the underlying 

mechanisms. Together, these results suggest that the stimulation of 

macrophages by inflammatory agents promotes copper uptake and increased 

expression of CTR1 and ATP7A proteins. 
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FIGURE 2.5. Inflammatory mediators increase the expression levels of 

CTR1 and ATP7A mRNA. RAW264.7 cells were grown in serum-free media ± 

100 ng/ml LPS or 25 ng/ml IFN-γ for 0, 2, 6, 12 or 28 hours. RNA was purified 

and mRNA expression of CTR1 (A) and ATP7A (B) was quantified by real-time 

PCR. CTR1 and ATP7A mRNA levels were normalized against GAPDH. Fold 

expression is relative to a basal treatment at each time point (mean ± SD; n = 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 78 

Fig. 2.5 
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IFN-γ and LPS stimulate copper-dependent ATP7A trafficking to post-Golgi 

vesicles that overlap with the phagosome— Previous studies have demonstrated 

that elevated intracellular copper levels stimulate the trafficking of the ATP7A 

protein from the trans-Golgi network to post-Golgi vesicles in a variety of cell 

types (16-19). Based on these findings, we hypothesized that ATP7A trafficking 

might also be stimulated by the increased uptake and accumulation of copper in 

RAW264.7 cells treated with IFN-γ or LPS. Immunofluorescence microscopy was 

used to localize the ATP7A protein in the perinuclear region of RAW264.7 

macrophages, consistent with its location in the trans-Golgi network (Fig. 2.6A, 

upper panel). As expected, the addition of copper to the culture medium 

stimulated the trafficking of ATP7A to post-Golgi vesicles (Fig. 2.6A, upper 

panel). Interestingly, when RAW264.7 cells were exposed to IFN-γ or LPS 

without copper supplementation, the ATP7A protein was also distributed to post-

Golgi vesicles (Fig. 2.6A, upper panel). IFN-γ and LPS did not alter the location of 

the Golgi matrix marker protein GM130, suggesting that the shift in ATP7A 

distribution was not a result of a general Golgi disruption (Fig. 2.6A, lower panel).  

ATP7A trafficking was also observed in primary peritoneal macrophages in 

response to LPS and IFN-γ stimulation (Fig. 2.6B). Since the trafficking of ATP7A 

is known to be responsive to copper, we examined whether these effects of IFN-γ 

could be inhibited using the membrane permeable copper chelator, 

tetrathiomolybdate (TTM). Treatment of RAW264.7 cells with TTM suppressed 

the trafficking of ATP7A in response to IFN-γ consistent with a role for copper in 

this process (Fig. 2.7A). Interestingly, Western blot analysis indicated that the 
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increased levels of ATP7A in response to either IFN-γ or LPS were not blocked 

by TTM (Fig 2.7B). Taken together, these findings suggest that IFN-γ stimulates 

ATP7A trafficking in a copper-dependent manner that is different from the 

copper-independent mechanism by which it stimulates ATP7A expression.  
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FIGURE 2.6. Inflammatory mediators stimulate trafficking of the ATP7A 

protein in RAW264.7 and primary peritoneal macrophage cells. A, 

Immunofluorescence analysis of ATP7A protein in RAW264.7 cells grown for 24 

h in the presence or absence of 100 ng/ml LPS, 25 ng/ml IFN-γ, or 20 µM CuCl2. 

Cells were fixed, permeabilized and probed with antibodies against ATP7A and 

anti-rabbit antibodies conjugated to Alexa-488 (green; upper panel) or antibodies 

against GM130 and anti-mouse IgG antibodies conjugated to Alexa-594 (red; 

lower panel). Nuclei were labeled with DAPI (blue). B, ATP7A traffics in response 

to LPS and IFN-γ in thioglycollate-elicited primary peritoneal macrophages 

derived from C57BL/6 mice.   
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Fig. 2.6 
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FIGURE 2.7. The IFN-γ-stimulated trafficking of ATP7A is mediated by 

copper. A, IFN-γ-induced trafficking of ATP7A is inhibited by the copper chelator 

tetrathiomolybdate (TTM). RAW264.7 macrophage cells were cultured in the 

presence of IFN-γ ± 10 nM TTM. Cells were fixed, permeabilized and probed with 

antibodies against for ATP7A and anti-rabbit IgG antibodies conjugated to Alexa-

488 (green). Nuclei were labeled with DAPI (blue). B, the copper chelator TTM 

does not inhibit the increase in ATP7A protein expression in response to IFN-γ. 

RAW264.7 cells were treated with serum-free media or 25 ng/ml IFN-γ in the 

presence or absence of 10 nM TTM. ATP7A protein was detected by Western 

blot analysis. Tubulin was detected as a loading control. The numbers shown 

under the immunoblot bands represent relative expression, as calculated using 

Quantity One software (Biorad). The expression level of each sample was first 

normalized against its own tubulin control. 
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Fig. 2.7 
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We then examined whether IFN-γ stimulates the trafficking of ATP7A to a 

vesicular population that overlaps with the phagosomal compartment in 

RAW264.7 cells. Phagocytosis of latex beads by IFN-γ-stimulated RAW264.7 

cells was used to label the phagosomal compartment, and the intracellular 

location of ATP7A was then examined in the same cells using 

immunofluorescence microscopy. As shown in Figure 2.8, ATP7A was partially 

distributed to compartments that also phagocytosed latex beads seen in the 

bright field panel (Fig. 2.8A). In separate experiments, the subcellular 

phagosomal membrane compartment containing the internalized latex beads was 

isolated from RAW264.7 cells. Western blot analysis of these preparations 

demonstrated a marked enrichment of the LAMP-1 protein, a phagosomal 

marker, relative to total cell lysate (Fig. 2.8B). Significantly, the ATP7A protein 

was also abundant in the phagosomal fraction, which lacked a marker of the 

Golgi matrix, GM130. Taken together, these studies suggest that pro-

inflammatory stimuli cause the increased flux of copper to the ATP7A protein and 

its partial redistribution to phagosomal compartments.  
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FIGURE 2.8. IFN-γ  induces the redistribution of ATP7A into the phagosomal 

compartment of RAW264.7 macrophage cells. A, Partial co-localization of 

ATP7A with phagocytosed latex beads. RAW264.7 macrophages were 

stimulated overnight with IFN-γ and allowed to phagocytose latex beads. After 

fixing cells, ATP7A was detected as described above. The bright field panel 

shows phagocytosed beads with the adjacent panel and inset showing the 

localization of ATP7A (α-MNK). B, Co-fractionation of ATP7A with the 

phagosome. The phagosomal compartment was isolated via subcellular 

fractionation of membranes containing the internalized latex beads from 

RAW264.7 cells. This fraction (Beads) was subjected to SDS-PAGE as well as 

the total protein fraction (Total). Immunoblot analysis revealed abundant ATP7A 

in the Lamp-1 positive bead fraction, which lacked the Golgi marker protein 

GM130.  Note that Lamp-1 was poorly detected in total lysates. 
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Fig. 2.8 
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ATP7A-dependent copper transport is required for bactericidal activity of 

RAW264.7 macrophages— The above findings highlight the possibility that 

ATP7A-dependent copper transport into the phagosome is important for 

macrophage microbiocidal activity. To test this hypothesis, we investigated the 

effect of RNAi-mediated depletion of ATP7A expression on bacterial killing by 

RAW264.7 cells. RAW264.7 cells were stably transfected with a construct 

harboring a 29-nucleotide short hairpin against ATP7A (ATP7A-RNAi). This 

resulted in robust silencing of ATP7A gene expression in the ATP7A-RNAi cells, 

relative to control cells transfected with an irrelevant RNAi against GFP (Fig. 

2.9A). ATP7A gene silencing did not prevent the upregulation of the inducible 

nitric oxide synthase (iNOS) associated with IFN-γ (373) (Fig. 2.9B). However, 

the activation of secreted ceruloplasmin induced by IFN-γ was suppressed in the 

ATP7A-RNAi cells compared to the control cells (Fig. 2.9D), whereas secreted 

ceruloplasmin protein levels were not affected by ATP7A gene silencing (Fig. 

2.9C). This suggests that, while copper delivery to the secretory pathway is 

deficient in the ATP7A-RNAi cells, thereby suppressing the activity of copper-

dependent enzymes such as ceruloplasmin, non copper-dependent pathways 

are not affected in this cell line. Significantly, ATP7A silencing reduced the 

bactericidal activity of RAW264.7 cells, as evidenced by the higher bacterial 

survival in ATP7A-RNAi cells relative to control cells (Fig. 2.10A). Moreover, the 

addition of copper to ATP7A-RNAi cells bypassed this reduction in bactericidal 

activity (Fig. 2.10A). These findings support the hypothesis that ATP7A-
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dependent copper transport into the phagosome is important in bactericidal 

activity of macrophages.   
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FIGURE 2.9. ATP7A gene silencing by siRNA suppresses copper delivery to 

ceruloplasmin but does not alter iNOS expression during inflammation.  

A, RNAi-mediated silencing of the ATP7A protein. Western blot analysis of 

ATP7A protein levels in RAW264.7 cells stably transfected with either ATP7A-

RNAi or control-RNAi against GFP. B, ATP7A-RNAi does not suppress the IFN-γ-

induced upregulation of iNOS protein expression. Western blot analysis of iNOS 

protein expression in control-RNAi and ATP7A-RNAi cells treated with 25 ng/ml 

IFN-γ for 24 hours. C, ATP7A-RNAi does not suppress the increase in secreted 

ceruloplasmin protein associated with IFN-γ treatment of RAW264.7 

macrophages. Western blot analysis of ceruloplasmin protein in conditioned 

media from control-RNAi and ATP7A-RNAi cells treated with 25 ng/ml IFN-γ for 

24 h. D, ATP7A-RNAi suppresses the increase in secreted ceruloplasmin activity 

associated with IFN-γ treatment of macrophages. Ceruloplasmin activity from 

concentrated conditioned media from control-RNAi and ATP7A-RNAi 

macrophages exposed to IFN-γ   ± 2 µM CuCl2 was assessed. Values for 

ceruloplasmin activity were normalized against total protein content of each 

sample (mean ± SD; n = 3; p<0.05). The numbers shown under the immunoblot 

bands represent relative expression, as calculated using Quantity One software 

(Biorad). The expression level of each sample was first normalized against its 

own tubulin control. 
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Fig. 2.9 
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We further explored this hypothesis by testing whether the ability of E. coli to 

export copper would influence its susceptibility to killing by RAW264.7 

macrophages. The CopA protein is a copper exporting P-type ATPase in E. coli 

similar to the ATP7A protein of mammals, and the ∆copA mutant is 

hypersensitive to elevated copper concentrations (20). Interestingly, the ∆copA 

mutant was more susceptible to killing by RAW264.7 macrophages compared to 

its parental wild type E. coli strain (Fig. 2.10B). Moreover, the survival of the 

∆copA strain was increased within the ATP7A-RNAi cells relative to control cells 

(Fig. 2.10C), indicating that the increased susceptibility of the ∆copA mutant was 

dependent on the level of ATP7A expression within its macrophage host. In 

addition, in vitro exposure to a H2O2 and copper cocktail significantly reduced the 

survival of the ΔcopA mutant bacteria compared to wild type, suggesting that the 

increased copper sensitivity of the ΔcopA mutant may be ROS-mediated (Fig. 

2.10D). These data suggest that copper homeostasis within both bacteria and 

macrophages is a determinant of bacterial survival, and identify copper as an 

unexpected nexus of host pathogen interactions.  
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FIGURE 2.10. Bactericidal activity of RAW264.7 macrophages is dependent 

on ATP7A-mediated copper transport. Control-RNAi and ATP7A-RNAi 

macrophage cells stimulated with IFN-γ were compared in their bactericidal 

activity against W3110 E. coli or WD3110 E. coli harboring a deletion of the copA 

gene. A, Percent survival of W3110 E. coli in control-RNAi or ATP7A-RNAi 

macrophages stimulated with IFN-γ ± 20 µM CuCl2. The rate of bacterial survival 

was significantly increased in ATP7A-RNAi compared to control-RNAi 

macrophages. The presence of copper significantly reduced bacterial survival in 

both RNAi cell lines  (mean ± SD; n = 3; p<0.05). B, The survival of W3110 E. 

coli in RAW264.7 macrophages was compared to that of the copA knockout 

WD3110 E. coli. Percent survival data is shown for 1 and 2 h kill times (post-

uptake) (mean + SD; n = 3; p<0.05). C, The susceptibility of WD3110 E. coli is 

attenuated in the absence of ATP7A. Percent survival of WD3110 E. coli was 

significantly increased in ATP7A-RNAi macrophages compared to control-RNAi 

macrophages (mean ± SD; n = 3; p<0.05). D) Bacterial survival of W3110 E. coli 

and WD3110 (ΔCopA) E. coli was assessed following exposure of E. coli to 500 

µM H2O2 and 10 µM CuCl2 combined in the presence of 500 µM ascorbic acid. 

Bacterial survival rates were calculated and expressed as percentage survival 

compared to the untreated group (mean ± SD; n = 3; p<0.05). 
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Fig. 2.10 
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2.5 Discussion 
 
 
 
Copper is an essential nutrient. Its deficiency has been linked to disorders such 

as anemia, neurodegenerative and cardiovascular defects and other illnesses 

(1). Inadequate copper nutrition in human patients is often associated with a 

decrease in the number of circulating white blood cells or neutropenia (281-284). 

Copper deficiency in macrophage cells results in their inability to adequately fight 

pathogens. Not only is copper essential for the function of the immune system, 

but inflammatory conditions and infections raise the body’s physiological need for 

copper, as illustrated by the associated rise in serum copper levels in human 

patients (265-272, 360, 362). Furthermore, copper has long been recognized as 

a biocidal agent (374).  

 

In this study, we find evidence that the biocidal property of copper has been 

harnessed by cells of the immune system to kill bacteria. We demonstrate for the 

first time that specific changes in macrophage copper homeostasis occur in 

response to inflammatory stimuli, and promote copper-dependent bacterial 

killing. Under inflammatory conditions, macrophage cells increase both uptake 

and retention of copper. We observe an increase in CTR1 protein levels in both 

the RAW264.7 murine macrophage cell line and primary peritoneal murine 

macrophages in response to the pro-inflammatory agents IFN-γ and LPS. This 

increase in CTR1 protein expression is associated with increased 64Cu uptake by 

macrophage cells, as well as increased total copper content during inflammation. 
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Interestingly, inflammation also results in an increased expression of ATP7A 

protein, along with a copper-dependent relocalization of ATP7A from the TGN 

into a vesicular compartment. This trafficking process is dependent on increased 

flux of copper to the ATP7A protein, since it is blocked by copper chelation by 

TTM. Our finding of elevated expression of the CTR1 copper importer and 

increased copper uptake activity in response to IFN-γ, suggests that this pathway 

is a likely source of copper for ATP7A. Additionally, the accumulation of copper 

within activated macrophages suggests that the trafficking of ATP7A is 

associated with redistribution of copper into intracellular compartments rather 

than copper export.  

 

We hypothesized that one such compartment could be the phagosome. Previous 

studies using x-ray microprobe analysis have demonstrated that copper levels 

within the phagosome increase 10-fold to approximately 180 µM in IFN-γ-

stimulated macrophages exposed to Mycobacterium avium (285). However, no 

known copper transporter associated with the phagosome has been identified. 

Exactly how copper finds its way into the phagosomal compartment during 

inflammatory conditions was unknown. We hypothesized that the trafficking of 

ATP7A associated with inflammation would serve to partially redistribute 

intracellular copper into the phagosome, where there is an increased need for 

copper. Indeed, our studies show that ATP7A-rich vesicles partially overlap with 

the phagosomal compartment, as revealed by immunofluorescence microscopy 

and subcellular fractionation.   
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Our most significant finding sheds light on the role of ATP7A in bacterial killing by 

macrophages. Consistent with the observed pattern of ATP7A trafficking, we 

show that macrophage-mediated bacterial killing is dependent on the expression 

of the ATP7A copper transporter, as evidenced by the attenuated bactericidal 

activity when ATP7A is silenced. These findings suggest that copper transport 

into the phagosome via the ATP7A protein is a novel determinant of bacterial 

killing by macrophages.  

 

The role of copper in bacterial killing has been attributed to its property as a 

transition metal and its ability to participate in Fenton reactions. During the 

oxidative burst associated with bacterial phagocytosis, superoxide production 

increases dramatically within the phagosomal compartment. Hydrogen peroxide 

is generated spontaneously from superoxide created by the respiratory burst; 

however, hydrogen peroxide is only lethal at supraphysiological millimolar 

concentrations that are several orders of magnitude greater than those found 

within activated leukocytes (375). On the other hand, studies have shown that 

physiological concentrations of hydrogen peroxide plus cuprous ions are lethal to 

E. coli (369), presumably owing to the formation of the OH• radical, the most toxic 

of all reactive oxygen species (257, 289). Copper enrichment of the phagosome 

is thus important in providing the transition metal catalyst required for OH• radical 

production during the oxidative burst. We propose that a lethal cocktail of copper 

and hydrogen peroxide may be the underlying mechanism by which ATP7A-

dependent copper transport into the phagosome promotes bacterial killing. Such 
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a model is consistent with our finding that the combination of H2O2 and copper is 

significantly more effective at killing E. coli in vitro compared to H2O2 or copper 

alone. Furthermore, the enhanced bactericidal activity in copper-treated 

RAW264.7 macrophages is attenuated by the antioxidant Ebselen, a mimic of 

glutathione peroxidase that reduces the levels of intracellular H2O2 (376-379), 

suggesting a requirement for reactive oxygen species.  The increased acquisition 

of copper by the phagocytic compartment of the macrophage host cells is 

accompanied by a compensatory increase in copper efflux in the ingested 

bacteria. Indeed, a notable finding of our study is that the copper-sensitive ΔcopA 

mutant of E. coli is more susceptible to macrophage-mediated killing than the 

wild type strain. Since the CopA protein functions in the export of cytoplasmic 

copper across the plasma membrane (380), these findings suggest that copper 

export is a bacterial defense mechanism against macrophage-mediated killing. 

Consistent with this hypothesis, the susceptibility of the ΔcopA mutant to killing is 

reduced by depletion of ATP7A in the macrophage host. These intriguing findings 

argue that copper transport by both host and pathogen is a unique and mutually 

opposing tactic in the struggle for supremacy; i.e., ATP7A-mediated copper 

transport into the phagosome is countered by copper export by the bacterium 

(Fig. 2.11). This concept of copper export as a defense strategy is not unique to 

E. coli. Indeed, the virulence of Pseudomonas aeruginosa in mice is severely 

decreased (20-fold) by mutations in the bacterial copper exporter, CueA (286). 

Additionally, the expression of several metal ion exporters including two putative 

copper efflux transporters, CopA1 and CopA2, are induced in Legionella 
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pneumophila upon phagocytosis by macrophages (288). Moreover, plasmids that 

increase the virulence of Klebsiella pneumoniae and Shigella sonnei harbor 

putative copper resistance genes (381, 382).  

 

Changes in the serum concentrations of micronutrients following infection are 

characteristic of the acute phase inflammatory response. Serum levels of iron, 

zinc, selenium, retinol, riboflavin, and pyridoxine are all reported to decrease 

following inflammatory insult (262). The proposed physiological rationale for 

these changes is nutrient deprivation that would serve to limit proliferation of the 

invading microbe (262). A well-documented example is the contest between host 

and pathogen over limiting iron stores, which plays a critical role in determining 

the outcome of infection (261, 262). In contrast to the above micronutrients, 

systemic copper concentrations are widely reported to increase in response to 

acute and chronic inflammation (263-274, 360-364). While the secreted copper-

containing protein, ceruloplasmin, is partially responsible for this rise in serum 

copper (120), the non-protein bound fraction of copper in the serum is also 

increased during inflammation (263). Moreover, radiotracer studies with 64Cu 

have demonstrated that copper accumulates at sites of inflammation (275), and 

within the exudates of wounds and burns relative to serum (276, 277). Although 

the physiological rationale of these systemic increases in copper concentration 

are unclear, our findings point to the possibility that such changes may provide 

localized reserves of copper for macrophage-mediated bactericidal activity.   
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FIGURE 2.11. Model of copper-mediated bacterial killing by macrophages.  

Stimulation of macrophage cells by inflammatory signals or bacterial particles 

induces copper uptake via increased expression of the copper importer CTR1. 

The increase in intracellular copper content induces the trafficking of the copper 

exporter ATP7A into post-Golgi vesicles that partially overlap with the 

phagosomal compartment. Together with the increased expression of ATP7A 

protein, the trafficking of ATP7A to the phagosome drives copper transport into 

this compartment, where copper contributes to bacterial killing via Fenton 

chemistry and production of the hydroxyl radical (OH•). The attack on the 

bacteria in the phagosomal compartment induces copper export as a pathogen 

defense mechanism. 
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Fig. 2.11 
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CHAPTER 3 

 
 

OXYGEN IS A NOVEL REGULATOR OF COPPER METABOLISM 

IN MACROPHAGES 

 
 

3.1 Summary 
 
 
 
 Copper is an essential cofactor of enzymes involved in a variety of important 

metabolic processes including ATP production, iron transport, and antioxidant 

defense. The maintenance of copper homeostasis requires a balance of copper 

uptake and export, as well as the appropriate partitioning of copper between the 

cytoplasm, mitochondria and secretory compartments. Although many of the 

proteins involved in copper homeostasis have been identified, it is unknown 

whether specific pathophysiological conditions lead to compensatory changes in 

the intracellular copper distribution. In this study, we identify striking alterations in 

copper homeostasis in response to hypoxia in RAW264.7 macrophage cells. 

Hypoxia induced the expression of the copper importer, CTR1, resulting in 

increased copper uptake. However, the activities of cuproenzymes superoxide 

dismutase and cytochrome c oxidase were inhibited by hypoxia. Significantly, 

copper delivery into secretory compartments via the ATP7A copper transporter 

was increased as evidenced by the enhanced activity of the ferroxidase 

ceruloplasmin, and trafficking of ATP7A to post-Golgi compartments in hypoxic 

macrophages in vitro and in vivo. The trafficking of ATP7A was dependent on 
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mitochondria-generated reactive oxygen species in hypoxic macrophages, 

suggesting that this process is mediated by oxidative stress. Collectively, these 

findings demonstrate that hypoxia alters the intracellular copper hierarchy in 

macrophages to favor copper delivery to the secretory pathway, and underscores 

the potential for other pathophysiological conditions to regulate adaptive 

responses involving altered copper distribution to cuproenzymes. 

 
 
 3.2 Introduction 
 
 
 
Copper is a trace element that is critical for aerobic life. Its ability to accept and 

donate electrons has been harnessed by a select group of enzymes that function 

in mitochondrial respiration, connective tissue formation, pigmentation, iron 

oxidation, neurotransmitter processing, and antioxidant defense (110, 114, 383). 

However, this same redox property of copper and its ability to generate reactive 

oxygen species, also underscores its potential toxicity. For this reason, copper-

handling pathways have evolved to deliver copper to specific sites of utilization, 

thereby preventing the formation of potentially damaging free ionic copper in the 

cytoplasm. Copper uptake in mammalian cells is mediated by CTR1, a 

ubiquitously expressed homotrimeric transporter (151). Once in the cytoplasm, 

small cytoplasmic proteins known as copper chaperones deliver copper linearly 

to distinct target enzymes via direct protein-protein interactions. The copper 

chaperones, CCS and COX17 are involved in copper delivery to Cu/Zn 

superoxide dismutase in the cytoplasm (SOD1) and to cytochrome c oxidase 

(CCO) in the mitochondria, respectively (156, 179).  SCO1 and SCO2 are also 
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involved in copper delivery to cytochrome c oxidase via a process that is poorly 

understood (205). The third target for copper delivery is the ATP7A protein (or 

closely related ATP7B protein), a copper transporter located in the Golgi complex 

that receives copper from the ATOX1 copper chaperone in the cytoplasm (1, 

159, 365). ATP7A transports copper into the Golgi lumen to supply copper to a 

select group of copper-dependent enzymes, which are either secreted from cells, 

or reside within vesicular compartments (232, 233, 235, 384). In addition to 

providing copper to secreted cuproenzymes, ATP7A is also responsible for 

copper export from cells. This export activity is associated with copper-stimulated 

trafficking of ATP7A to post-Golgi compartments, which include cytoplasmic 

vesicles and the plasma membrane (1). The trafficking of ATP7A is triggered 

when cytoplasmic copper levels are elevated (158), and this process requires 

both copper binding to cytoplasmic regions of the ATPase as well as its catalytic 

turnover (169, 228). These essential functions of the ATP7A protein are 

illustrated by Menkes disease, a lethal disorder of copper deficiency caused by 

ATP7A mutations (145).   

 

Despite advances in our understanding of the intracellular routes of copper 

transport, it is unknown whether copper is differentially allocated along the three 

chaperone-mediated pathways to its respective targets, or whether such a 

hierarchy is altered by certain physiological conditions. In this study, we 

demonstrate using cultured RAW264.7 macrophage cells that hypoxia results in 

profound changes in copper homeostasis including enhanced expression of 

CTR1 and ATP7A proteins, copper-stimulated trafficking of ATP7A to post-Golgi 
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compartments, increased copper delivery to ceruloplasmin, and depletion of 

alternative copper targets, CCS, SOD1, and COX1, the copper-binding subunit of 

cytochrome c oxidase. Both the trafficking of ATP7A and the activation of 

ceruloplasmin were dependent on the production of mitochondrial reactive 

oxygen species. These findings suggest that oxygen status can regulate copper 

allocation to the secretory pathway for hypoxia-induced cuproenzymes, and 

reveal hypoxia as a unique pathophysiological regulator of intracellular copper 

hierarchy.  

 
 
3.3 Materials and methods 
 
 
 
Reagents and Antibodies All reagents were from Sigma, unless otherwise 

indicated. The rabbit polyclonal Ctr-1 antibody (100) was a kind gift of Dennis 

Thiele (Duke University, Durham NC). The rabbit polyclonal ATP7A antibody 

raised against the C-terminal portion of the protein and was a generous gift of Dr. 

Elizabeth Eipper (252). Additional affinity purified anti-ATP7A antibodies were 

raised in rabbits against the synthetic peptide NH2-CDKHSLLVGDFREDDDTTL-

COOH (Bethyl Laboratories, Mongomery TX). Mouse anti-tubulin antibody, and 

secondary HRP-conjugated IgG antibodies were purchased from Roche 

Molecular Biochemicals. Monoclonal antibody against COX I, and rabbit and 

mouse IgG antibodies conjugated with fluoresecent Alexa-488 and Alexa-594 

were from Invitrogen (Carlsbad, CA). Antibodies against mouse GM130 and 

syntaxin-6 were purchased from BD Transduction Laboratories (San Jose, CA). 
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Antibodies against CD68 and HIF-1α were purchased from Serotec (Raleigh, 

NC) and Novus Biologicals (Littleton, CO) respectively. Antibodies against Cu/Zn 

SOD, CCS, and ceruloplasmin were purchased from Stressgen (383, 385), Santa 

Cruz Biotechnology (Santa Cruz, CA), and Abcam (Cambridge, MA), 

respectively.  

 
 
Cell Lines All cell lines were obtained from the American Type Culture 

Collection and were maintained in Dulbecco’s modified Eagle’s medium 

(Invitrogen) containing 10% (v/v) fetal bovine serum and 100 units/ml penicillin 

and streptomycin (Invitrogen) in 5% CO2 at 37°C. Primary macrophages were 

isolated by peritoneal lavage. C57BL/6J mice were injected with 0.5 ml of 

thioglycolate medium into the peritoneum to elicit macrophage infiltration. After 72 

h, macrophages were isolated by peritoneal lavage using ice-cold PBS. Cells 

were seeded in six-well trays for each experiment, as described below. Hypoxia 

experiments were conducted at 37oC using a hypoxic incubator in which oxygen 

levels were lowered by air displacement with N2 and CO2 gas. Mitochondrial 

DNA-depleted RAW/Rho- cells were generated by culturing RAW264.7 cells for 

26 days in media supplemented with 1 mM sodium pyruvate in the presence of 

50 ng/ml ethidium bromide and confirmed by the loss of mitochondria-encoded 

cytochrome c oxidase subunit I (COX-1) protein from mitochondrial extracts. 

RNAi-mediated silencing of ATP7A in RAW264.7 cells was performed as 

described in Chapter 2. Lipofectamine 2000 (Invitrogen) was used in all 

transfections.  
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Copper uptake Radioactive copper (64Cu) was purchased from the Mallinckrodt 

Institute of Radiology, Washington University (Saint Louis, MO). Cells were pre-

cultured in triplicate for 72 h in 6-well trays under either normoxic (21% O2) or 

hypoxic (4% O2) conditions, exposed to 1 µM 64Cu for 5 min, washed extensively 

in ice-cold PBS and radioactivity was measured using a gamma counter. Counts 

were normalized against total protein. 

 
 
Immunological techniques and PC-3 tumor growth Immunofluorescence 

microscopy and Western blot analysis were performed as described in Chapter 

2. PC-3 prostate carcinoma cells (5 x 106) were injected subcutaneously in one 

flank of each anesthetized four-week-old ICRSC-M SCID outbred mice obtained 

from Taconic (Germantown, NY). Mice were maintained in an approved 

pathogen-free institutional housing. Animal studies were conducted as outlined in 

the NIH Guidelines for the Care and Use of Laboratory Animals and the Policy 

and Procedures for Animal Research of the Harry S. Truman Veterans Memorial 

Hospital. Over a period of 4 weeks solid tumors of approximately 1-cm diameter 

were excised from anesthetized SCID mice and flash frozen in fixative. Frozen 

tumors were cryosectioned, fixed in acetone for 10 minutes, washed in 

phosphate buffered saline (PBS) and blocked overnight in 1% (w/v) casein 

buffer. Immunostaining was performed using antibodies against ATP7A, CD68 

and HIF-1α overnight, followed by staining with Alexa 488-conjugated anti-rabbit 

and Alexa 594-conjugated anti-mouse IgG antibodies for one hour. Nuclei were 

stained with 4’,6-diamidino-2-phenylindole (DAPI). 
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Enzyme Assays  Cytochrome c oxidase activity assays were performed using 

mitochondrial preparations from RAW264.7 cells. Cells were grown in 75-cm2 

flasks and scraped using ice-cold PBS. Mitochondrial fractions were collected 

using the Cell Mitochondria Isolation Kit from Sigma. Cytochrome c oxidase 

activity was assessed using the Cytochrome c Oxidase Assay Kit from Sigma. 

Cytochromes c oxidase activity was normalized against mitochondrial protein 

content. For the cytochrome c oxidase subunit I immunoblot, mitochondrial 

extracts were fractionated on 4-20% (w/v) SDS-PAGE gels and probed with anti-

COX-1. Superoxide dismutase assays were performed as described previously 

(386, 387). RAW264.7 cell lysates were fractionated using nondenaturing 12% 

(w/v) polyacrylamide gel electrophoresis and superoxide dismutase activity was 

detected by incubation of gels in nitro blue tetrazolium at room temperature. 

Ceruloplasmin activity in concentrated conditioned media was determined by its 

p-phenylenediamine oxidase activity, as previously described (179). RAW264.7 

cells were grown in 6-well plates and conditioned media were collected and 

concentrated using Amicon Ultra-4 filter tubes (Millipore). Ceruloplasmin activity 

was normalized against total protein content in the cell pellets. Ceruloplasmin 

protein levels were detected in concentrated media using immunoblot analysis.  
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3.4 Results 
 
 
 
Oxygen limitation stimulates the expression of CTR1 and ATP7A copper 

transporters in macrophages We began this study by investigating the 

relationship between oxygen availability and copper homeostasis in the 

macrophage cell line, RAW264.7. Macrophages are phagocytotic cells of the 

adaptive immune system that are commonly recruited to hypoxic tissues. 

Exposure of RAW264.7 macrophages to mild hypoxia (4% O2) increased copper 

uptake relative to normoxia (21% O2) (Fig. 3.1A). Consistent with this increase in 

copper uptake, hypoxia stimulated the expression of the CTR1 protein within    

24 h relative to normoxia (21% O2) (Figs. 3.1B, and 3.1C). Interestingly, the 

expression of the ATP7A copper transporter in RAW264.7 cells and primary 

peritoneal macrophages was also stimulated by hypoxia, although the rate of 

induction was slower than for CTR1 (Fig. 3.2A, and 3.2B).  
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FIGURE 3.1. Hypoxia alters copper homeostasis in RAW264.7 

macrophages. A, Copper uptake activity. RAW264.7 cells were pre-exposed to 

normoxia (21% O2) or hypoxia (4% O2) for 72 h and copper uptake in the 

presence of 1 µM 64Cu was measured over 5 min and normalized against total 

protein (mean + SD; n = 3). B-C, The effect of hypoxia on CTR1 protein levels in 

RAW264.7 cells and thioglycollate-elicited primary peritoneal macrophages 

(TPECs) under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions.  B, 

Immunoblot analysis of Ctr1 protein in lysates from normoxic and hypoxic 

RAW264.7 cells, and C, cultured primary peritoneal macrophages. Tubulin was 

detected as a loading control. 
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Fig. 3.1 
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FIGURE 3.2. Hypoxia increases the expression of ATP7A in macrophages. 

Effect of hypoxia on ATP7A protein levels in RAW264.7 cells and primary 

peritoneal macrophages under normoxic (N; 21% O2) or hypoxic (H; 4% O2) 

conditions. A, Immunoblot analysis of ATP7A protein in lysates from normoxic 

and hypoxic RAW264.7 cells, and B, cultured primary peritoneal macrophages. 

Tubulin was detected as a loading control. 
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Fig. 3.2 
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Hypoxia stimulates copper-dependent trafficking of the ATP7A protein in 

RAW264.7 macrophages Since the trafficking of ATP7A from the trans-Golgi 

network is known to be triggered by increased copper delivery to this transporter 

(1), we investigated whether reduced oxygen tension might alter the localization 

of the ATP7A copper transporter in the murine macrophage cell line, RAW264.7. 

The relocalization of ATP7A from the trans-Golgi network is a key biological 

indicator of increased cytoplasmic copper availability and has been documented 

in several different cell types (1, 71, 388). Using immunofluorescence 

microscopy, the ATP7A protein was localized within the perinuclear region of 

RAW264.7 cells exposed to normoxic conditions (21% O2), consistent with its 

location in the trans-Golgi network (Fig. 3.3A). As expected, treatment of these 

cells with copper resulted in the trafficking of ATP7A from the perinuclear region 

to cytoplasmic vesicles (Fig. 3.3A). Significantly, when these cells were exposed 

to chronic hypoxia (4% O2 for 96 h), the ATP7A protein was also dispersed to 

post-Golgi vesicles (Fig. 3.3A). This redistribution of the ATP7A protein required 

at least 48 h of hypoxia and was not accelerated by lower levels of oxygen (data 

not shown). The return of hypoxic cells to normoxic conditions restored the 

location of the ATP7A protein to the perinuclear region, indicating that the effect 

of hypoxia on ATP7A was reversible (Fig. 3A). The intracellular location of the 

trans-Golgi marker protein, syntaxin 6, and the Golgi matrix protein, GM130, 

were not altered by hypoxia in RAW264.7 cells (Fig. 3.3B, and 3.3C), suggesting 

that the effects of hypoxia on ATP7A were not the result of a general alteration of 

Golgi structure. These hypoxic conditions did not alter the viability of RAW264.7 
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cells, which could be passaged continuously at 4% oxygen (data not shown). 

Interestingly, ATP7A trafficking to post-Golgi compartments in response to 

hypoxia was not observed in a range of other cells types, including N2a, NIH3T3, 

DLD1, HT1080 (Fig. 3.13), HEK293, HeLa, NRK, human primary aorta 

endothelial cells (HAEC), and rat primary smooth muscle cells (SMC) (not 

shown).   

 

We further tested whether the membrane-permeable copper chelator, 

tetrathiomolybdate, could suppress ATP7A trafficking to post-Golgi in response 

to hypoxia in RAW264.7 cells. As shown in Figure 3.3D, TTM inhibited ATP7A 

relocalization in response to hypoxia. These findings support the hypothesis that 

oxygen limitation increases copper binding to the ATP7A protein resulting in its 

trafficking from the Golgi. 
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FIGURE 3.3. Hypoxia stimulates trafficking of the ATP7A protein.                

A, Immunofluorescence analysis of ATP7A protein in RAW264.7 cells grown 

under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions for 96 h. 

Relocalization of the ATP7A protein from the perinuclear region is shown in 

hypoxic cells and normoxic cells exposed to copper (second panel). Restoration 

of perinuclear labeling of ATP7A occurred upon the transfer of hypoxic cells to 

normoxic media for 30 min (fourth panel). Cells were fixed, permeabilized and 

probed with antibodies against for ATP7A and anti-rabbit IgG antibodies 

conjugated to Alexa-488 (green).  Nuclei were labeled with DAPI (blue). B-C, 

Analysis of Golgi marker proteins in hypoxic RAW264.7 cells. RAW264.7 cells 

were cultured under hypoxic or normoxic conditions as described in (A) and 

probed using antibodies against the trans-Golgi network marker protein Syntaxin 

6 (B), and the Golgi matrix protein, GM130 (C). Nuclei were labeled with DAPI 

(blue). D, Hypoxia-induced trafficking of ATP7A to post-Golgi compartments is 

inhibited by the copper chelator, tetrathiomolybdate.  RAW264.7 cells were 

cultured under hypoxic or normoxic conditions as described in (A), in the 

presence or absence of tetrathiomolybdate (TTM, 5 nM).  ATP7A protein was 

detected as described in (A). 
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Fig. 3.3 
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Hypoxia stimulates trafficking of the ATP7A protein in tumor-associated 

macrophages Since previous studies have demonstrated that macrophages 

are recruited to the hypoxic regions of solid tumors (reviewed in (389)), the use of 

a human prostate tumor xenograft provided an opportunity to investigate the 

intracellular distribution of ATP7A in hypoxic macrophages in vivo. The 

tumorigenic human prostate cell line, PC-3, was chosen for these studies since 

ATP7A expression is very low in these cells, thus allowing for easy identification 

of ATP7A in tumor-associated macrophages. PC-3 tumors were grown in nude 

mice to approximately 2-cm diameter, excised and cryosectioned. 

Immunofluorescence analysis of ATP7A expression in PC-3 tumors 

demonstrated that there was abundant expression in macrophages identified 

using the macrophage-specific marker CD-68 (Figure 3.4A). As expected, there 

was little if any ATP7A expression in PC-3 tumor cells. Consistent with previous 

studies, these tumor-associated macrophages were concentrated at the tumor 

edges, with occasional infiltration into the tumor body (390-392). Significantly, we 

noticed that in some macrophages the location of ATP7A was restricted to the 

Golgi complex, whereas in other macrophages it appeared to be relocalized in a 

manner reminiscent of the trafficking seen in cultured RAW264.7 cells (Figure 

3.4A, lower panel; arrows). Further analysis demonstrated that ATP7A was 

dispersed only in macrophages that co-expressed the HIF-1α protein (Figure 

3.4B), a key transcriptional regulator of hypoxic gene responses whose 

abundance is increased in tumor-associated macrophages (393, 394). These 
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findings provide evidence that the hypoxia-stimulated trafficking of ATP7A occurs 

in macrophages in vivo.  
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FIGURE 3.4. ATP7A trafficking in HIF-1α-positive macrophages in tumor 

xenografts. A, ATP7A is strongly expressed in tumor-associated macrophages. 

Human prostate cell PC-3 tumors from SCID mice were cryosectioned and 

probed with antibodies against ATP7A (green) or antibodies against the 

macrophage marker CD68 (red). Upper panels are a low power magnification 

showing both the tumor mass and tumor edge (x200).  Note the propensity of 

ATP7A and CD68 staining in cells associated with the tumor edge. A higher 

magnification of the tumor edge region reveals extensive co-expression of 

ATP7A in CD68-positive macrophages, as indicated by yellow signal in the 

merged image. Nuclei were stained using DAPI (blue).  Arrow and arrowhead 

(lower left panel) reveals heterogeneous localization of the ATP7A in 

macrophages, in either a perinuclear or dispersed distribution. B, The dispersed 

distribution of the ATP7A occurs in HIF-1α-positive macrophages. PC-3 cell 

tumors were immunostained for ATP7A (green) and HIF-1α (red). ATP7A was 

restricted to the perinuclear region of cells negative for HIF-1α expression 

(arrows), whereas a dispersed distribution of ATP7A was detected in cells that 

were positive for HIF-1α (arrow heads) (x600). 
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Fig. 3.4 
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Hypoxia stimulates copper transport to ceruloplasmin via ATP7A The major 

function of ATP7A is to pump copper into the secretory pathway and supply 

copper to secreted cuproenzymes. We hypothesized that a potential target for 

this copper delivery in response to hypoxia might be ceruloplasmin, a 

cuproenzyme that depends on copper delivery for its activity. Ceruloplasmin is a 

ferroxidase secreted from macrophages and hepatocytes whose expression and 

activity are stimulated by hypoxia (146, 314, 395). Hypoxia was found to increase 

both the abundance and activity of ceruloplasmin secreted into the culture 

medium of RAW264.7 cells relative to normoxia (Figs. 3.5A, and 3.5B). To 

examine whether the increase in ceruloplasmin activity was dependent on 

ATP7A copper transport activity, we measured ceruloplasmin activity in the 

ATP7A-depleted cell line (described in Chapter 2). Compared to control cells, 

ceruloplasmin activity in ATP7A-RNAi cells was markedly reduced under hypoxic 

conditions suggesting that ATP7A copper transport activity was required for 

copper delivery to ceruloplasmin (Fig. 3.5D). Consistent with this postulate, the 

addition of copper to the media of these cells bypassed the requirement for 

ATP7A and restored ceruloplasmin activity, indicating that the effect of ATP7A 

gene silencing was due to a blockage of copper delivery to ceruloplasmin (Fig. 

3.5D). Control experiments indicated that ATP7A silencing did not alter 

ceruloplasmin protein levels in the medium relative to control cells in either 

hypoxic or normoxic conditions (Fig. 3.5C). Taken together with our earlier 

results, these findings suggest that hypoxia stimulates an increase in copper 
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delivery to ceruloplasmin via increases in CTR1-mediated copper uptake as well 

as ATP7A-dependent copper delivery into secretory compartments. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 124 

FIGURE 3.5. The stimulation of ceruloplasmin activity by hypoxia is 

dependent on the ATP7A protein. A, Ceruloplasmin (Cp) abundance in 

hypoxia. Conditioned media was collected from RAW264.7 cells grown under 

normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions for the indicated times. 

The media was concentrated and subjected to non-denaturing SDS-PAGE and 

immunoblot analysis with anti-Cp antibody. Immunoblot of tubulin from 

corresponding cell lysates is shown. Lane 1 shows ceruloplasmin levels in 

concentrated growth media alone (M). B, Analysis of ceruloplasmin activity. 

Ceruloplasmin activity (p-phenylenediamine oxidase activity) was determined in 

the concentrated conditioned media from RAW264.7 cells following exposure to 

normoxia (N; 21% O2) or hypoxia (H; 4% O2) for 72 h. Activity was normalized 

against total protein content of the corresponding cell lysates (mean + SD; n = 3). 

C, Cp abundance in conditioned media from ATP7A-RNAi and control-RNAi 

RAW264.7 cells following exposure to normoxia (N; 21% O2) or hypoxia (H; 4% 

O2) for 72 h. The media was concentrated and subjected to non-denaturing SDS-

PAGE and immunoblot analysis with anti-Cp antibody. Immunoblot of tubulin 

from corresponding cell lysates is shown. D, Ceruloplasmin activity was 

assessed in conditioned media from ATP7A-RNAi, ATP7A-RNAi + 20 µM CuCl2, 

or control-RNAi RAW264.7 cell lines, as described in (B) (mean + SD; n = 3). 
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Fig. 3.5 
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Hypoxia alters copper metabolic pathways in hypoxic macrophages As 

mentioned earlier, intracellular copper delivery to cuproenzymes occurs via three 

copper known chaperone-mediated pathways, namely CCS to SOD1, COX17 to 

CCO, and ATOX1 to ATP7A. To further characterize the impact of hypoxia on 

copper metabolism, we tested whether the abundance and activities of SOD1 

and CCO were altered in hypoxic RAW264.7 macrophages. The activity of SOD1 

was reduced after 48 h exposure to 4% O2 and completely abolished by 96 h 

(Figure 3.6A, upper panel). This was also accompanied by a reduction in the 

levels of both the SOD1 and CCS proteins over the same time period (Figure 

3.6A lower panel and 3.6B). The activity of CCO was also markedly reduced in 

mitochondrial preparations isolated from hypoxic RAW264.7 macrophages 

(Figure 3.7A), and this was accompanied by the decreased expression of  the 

COX1 subunit of CCO which contains the CuB copper binding site (Fig. 3.7B). 

Together with the above experiments, these findings suggest that hypoxia 

suppresses copper delivery to SOD1 and CCO in RAW264.7 macrophages, and 

enhances copper delivery to the ATP7A/ceruloplasmin pathway. 
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FIGURE 3.6. Hypoxia alters the CCS/SOD pathway in RAW264.7 

macrophages. A, Effect of hypoxia on SOD1 protein expression and activity. 

RAW264.7 cells were grown under normoxic (N; 21% O2) or hypoxic (H; 4% O2) 

conditions for the indicated times. Cell lysates were subjected to non-denaturing 

SDS-PAGE for the in-gel SOD1 activity assay (top panel).  Immunoblots from the 

same lysates were probed with anti-SOD1 antibodies to detect SOD1 protein 

(lower panel). Tubulin was detected as a loading control. B, Effect of hypoxia on 

the abundance of CCS, the copper-chaperone for SOD1.  The same lysates as in 

(A) were subjected to SDS-PAGE and immunoblot analysis with anti-CCS 

antibodies.  
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Fig. 3.6 
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FIGURE 3.7. Hypoxia alters cytochrome c oxidase expression and activity 

in RAW264.7 cells. A, Analysis of cytochrome c oxidase activity in hypoxic 

(shaded bars) and normoxic (solid bars) conditions. Activity was measured in 

mitochondrial preparations isolated from RAW264.7 cells cultured under 

normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions for the indicated times. 

Values were normalized against total mitochondrial protein (mean + SD; n = 3).  

*p<0.05. B, Analysis of COX1 protein levels. Mitochondrial preparations from (A) 

were subjected to SDS-PAGE and probed with antibodies against COX1, the 

copper-binding subunit I of the cytochrome c oxidase complex. Immunoblots 

were probed with an antibody against mouse porin to indicate protein loading. 
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Fig. 3.7 
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The hypoxia-induced trafficking of ATP7A and ceruloplasmin activation are 

dependent on mitochondria and reactive oxygen species  Recent studies have 

demonstrated that the mitochondria are an important sensor of oxygen limitation 

in mammalian cells. Mitochondrial oxygen sensing involves the generation 

reactive oxygen species (ROS) by the respiratory complex III of the electron 

transport chain which are required for the stabilization and activation of HIF-1α, 

the master transcriptional regulator of hypoxic responses (393, 394). To test 

whether ROS are required for the hypoxia-induced trafficking of ATP7A, we 

investigated whether a membrane-permeable antioxidant could suppress this 

trafficking process. Ebselen treatment of RAW264.7 cells prevented the hypoxia-

induced trafficking of ATP7A (Fig. 3.8A). This suppression of ATP7A trafficking 

by Ebselen was not due to an inhibition of the trafficking machinery because the 

addition of copper elicited ATP7A trafficking in Ebselen-treated cells (Fig. 3.8A). 

Moreover, the addition of the oxidizing agent hydrogen peroxide to RAW264.7 

cells under normoxic conditions also resulted in ATP7A trafficking (Fig. 3.8B). 

These findings suggest that reactive oxygen species generated by hypoxia are 

involved in ATP7A trafficking in RAW264.7 cells. Since the increase in 

ceruloplasmin activity during hypoxia requires the delivery of copper to the 

enzyme via ATP7A, we hypothesized that, along with inhibiting the trafficking of 

ATP7A, Ebselen would also inhibit the increase in ceruloplasmin activity in 

hypoxic macrophages. Indeed, as shown in Figure 3.8C, Ebselen suppressed the 

increase in ceruloplasmin activity associated with hypoxia, an effect that was 

overcome by the addition of copper to the Ebselen-treated cells. Interestingly, 
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Ebselen treatment did not inhibit the hypoxia-induced increase in CTR1 and 

ATP7A expression (Fig. 3.10A, and 3.10B) nor the suppression of the CCS/SOD 

(Fig. 3.11) and COX (Fig. 3.12) activities associated with hypoxia. 

 

Next, we investigated the contribution of mitochondria-generated ROS to the 

hypoxia-induced ATP7A trafficking. Rho-minus RAW264.7 cells (RAW/Rho-) 

lacking functional mitochondria were isolated by selection in ethidium bromide, 

and the depletion of the mitochondria-encoded protein, COX-1, but not the 

nuclear-encoded mitochondrial protein, porin was detected (Fig. 3.9A). 

Significantly, the trafficking of ATP7A to post-Golgi in response to hypoxia was 

suppressed in RAW/Rho- cells suggesting that this process is dependent on 

mitochondria (Fig. 3.9B). The ATP7A trafficking machinery was not compromised 

in the RAW/Rho- cells because exogenous copper was able to stimulate ATP7A 

trafficking. Ceruloplasmin activation under hypoxic conditions, shown earlier to 

be ATP7A-dependent, was also suppressed in RAW/Rho- cells exposed to 

hypoxia, but not when copper was provided to the media (Fig. 3.9C). Taken 

together, these findings suggest that mitochondrially-generated ROS may 

facilitate the delivery of copper to ATP7A during hypoxia, thereby mediating 

ATP7A-dependent copper transport to ceruloplasmin. 
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FIGURE 3.8. The hypoxia-induced trafficking of ATP7A and activation of 

ceruloplasmin are mediated by reactive oxygen species. A, RAW264.7 cells 

were exposed to normoxia or hypoxia for 96 h ±10 µM Ebselen and/or 20 µM 

CuCl2. Immunofluorescence staining shows ATP7A in green. B, RAW264.7 cells 

were exposed for 2 h to hydrogen peroxide (H2O2, 500 µM). ATP7A is shown in 

green. C, Ceruloplasmin activity in conditioned media of RAW264.7 cells 

exposed to normoxia or hypoxia for 72 h ±10 µM Ebselen and/or 20 µM CuCl2. 

Ceruloplasmin activity values were normalized against total protein content of 

corresponding cell lysates (mean + SD; n = 3). Different letters above each value 

indicate significant differences p<0.05. 
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Fig. 3.8 
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FIGURE 3.9. The hypoxia-induced trafficking of ATP7A and activation of 

ceruloplasmin are mediated by reactive oxygen species generated in the 

mitochondria. RAW264.7 cells were treated with ethidium bromide to deplete 

their mitochondrial DNA and designated RAW/Rho-. A, Immunoblot of COX-1 

from mitochondrial extracts of RAW264.7 and RAW/Rho- cells shows loss of 

expression of mitochondrially-encoded COX-1 in RAW/Rho- cells. Porin was 

detected as loading control. B, Immunofluorescence imaging of ATP7A in 

RAW264.7 and RAW/Rho- cells exposed to normoxia or hypoxia for 96 h ± 20 

µM CuCl2. C, Ceruloplasmin activity was measured in conditioned media of 

RAW264.7 and RAW/Rho- cells exposed to normoxia or hypoxia for                  

72 h ± 20 µM CuCl2. Values were normalized against total protein content of 

corresponding cell lysates (mean + SD; n = 3). Different letters above each value 

indicate significant differences p<0.05. 

 

 

 

 

 

 

 

 

 

 



 136 

Fig. 3.9 
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FIGURE 3.10. Ebselen does not inhibit the increases in CTR1 and ATP7A 

protein expression associated with hypoxia. RAW264.7 cells were cultured 

under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions ± 50 µM Ebselen. 

Immunoblot analysis of A, CTR1 protein and B, ATP7A protein. Tubulin was 

detected as a loading control. 
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Fig. 3.10 
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FIGURE 3.11. Ebselen does not inhibit the hypoxia-induced changes in 

CCS/SOD pathway in RAW264.7 macrophages. RAW264.7 cells were cultured 

under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions ± 50 µM Ebselen. 

A, Cell lysates were subjected to non-denaturing SDS-PAGE for the in-gel SOD1 

activity assay (top panel).  Immunoblots from the same lysates were probed with 

anti-SOD1 antibodies to detect SOD1 protein (lower panel). B, The same lysates 

as in (A) were subjected to SDS-PAGE and immunoblot analysis with anti-CCS 

antibodies. Tubulin was detected as a loading control. 
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Fig. 3.11 
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FIGURE 3.12. Ebselen does not inhibit the hypoxia-induced changes in the 

cytochrome c oxidase pathway in RAW264.7 macrophages. RAW264.7 cells 

were cultured under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions ± 50 

µM Ebselen. A, Analysis of COX1 protein levels. Mitochondrial preparations were 

isolated from RAW264.7 cells cultured under normoxic (N; 21% O2) or hypoxic 

(H; 4% O2) conditions for 72 h and subjected to SDS-PAGE and probed with 

antibodies against COX1, the copper-binding subunit I of the cytochrome c 

oxidase complex. Immunoblots were probed with an antibody against porin to 

indicate protein loading. B, Analysis of cytochrome c oxidase activity in hypoxic 

(shaded bars) and normoxic (solid bars) conditions. Activity was measured in 

mitochondrial preparations from (A). Values were normalized against total 

mitochondrial protein (mean + SD; n = 3).  *p<0.05.  
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Fig. 3.12 
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Effect of hypoxia on the copper pathways in non-macrophage cell lines  We 

investigated whether the observed changes in copper pathways induced by 

hypoxia in macrophage cells also occur in other cell lines. Interestingly, ATP77A 

did not traffic to post-Golgi in response to hypoxia in N2a, NIH3T3, DLD1, 

HT1080 cells (Fig. 3.13), HEK293, human primary aortic endothelial cells 

(HAECs), and rat primary smooth muscle cells (SMCs) (not shown). 

Furthermore, hypoxia did not induce the coordinated increases in CTR1 and 

ATP7A protein expression, along with the suppression of the activities of the two 

other copper pathways, i.e. the CCS/SOD and the cytochrome c oxidase 

pathways in any of the cell lines tested (Fig. 3.14, 3.15, and 3.16). These 

observations suggest that the observed changes in copper homeostasis in 

response to hypoxia are unique to macrophages. Further studies are required to 

determine whether these effects also occur in other cells of the myeloid lineage.  

It is worth noting that although hypoxia did not induces changes in the copper 

pathways in N2a cells that were similar to those observed in macrophage cells, 

there were some interesting changes that may be of relevance to neuron biology. 

In response to hypoxia, the expression of CTR1, CCS, SOD1, as well as the 

activity of SOD1 were induced in N2a cells.  
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FIGURE 3.13. ATP7A does not traffic in response to hypoxia in various cell 

lines. Immunofluorescence analysis of ATP7A protein in in N2a, NIH3T3, DLD1, 

and HT1080 cells grown under normoxic (N; 21% O2) or hypoxic (H; 4% O2) 

conditions for 96 h. Cells were fixed, permeabilized and probed with antibodies 

against ATP7A and anti-rabbit IgG antibodies conjugated to Alexa-488 (green). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 145 

Fig. 3.13 
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FIGURE 3.14. Effect of hypoxia on CTR1 and ATP7A protein expression 

levels in various cell lines. N2a, NIH3T3, DLD1, HT1080 and HEK293 cells 

were cultured under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions. 

Immunoblot analysis of A, CTR1 protein and B, ATP7A protein. Tubulin was 

detected as a loading control. CTR1 protein levels were too low to detect in N2a, 

NIH3T3 and HEK293 cells. 
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Fig. 3.14 
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FIGURE 3.15. Effect of hypoxia on the CCS/SOD pathway in various cell 

lines. N2a, NIH3T3, DLD1, HT1080 and HEK293 cells were cultured under 

normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions. A, Cell lysates were 

subjected to non-denaturing SDS-PAGE for the in-gel SOD1 activity assay (top 

panel).  Immunoblots from the same lysates were probed with anti-SOD1 

antibodies to detect SOD1 protein (lower panel). B, The same lysates as in (A) 

were subjected to SDS-PAGE and immunoblot analysis with anti-CCS 

antibodies. Tubulin was detected as a loading control. 
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Fig. 3.15 

 

 
 
 



 150 

FIGURE 3.16. Effect of hypoxia on the cytochrome c oxidase pathway in 

various cell lines. N2a, NIH3T3, DLD1, HT1080 and HEK293 cells were 

cultured under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions. A, 

Analysis of COX1 protein levels. Mitochondrial preparations isolated from cells 

cultured under normoxic (N; 21% O2) or hypoxic (H; 4% O2) conditions were 

subjected to SDS-PAGE and probed with antibodies against COX1, the copper-

binding subunit I of the cytochrome c oxidase complex. Immunoblots were 

probed with an antibody against porin to indicate protein loading. B, Analysis of 

cytochrome C oxidase activity in hypoxic (shaded bars) and normoxic (solid bars) 

conditions. Activity was measured in mitochondrial preparations from (A). Values 

were normalized against total mitochondrial protein (mean + SD; n = 3).  *p<0.05.  
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Fig. 3.16 
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3.5 Discussion 
 
 
 
Hypoxia, or relative O2 depletion, is a serious condition that threatens cell 

survival, and can cause severe organ damage and injury in human disease. 

Respiratory failure, systemic hypotension and ischemia promote hypoxic tissue 

injury in great part mediated by oxidative stress (133-138). Therefore, 

physiological and cellular responses have evolved to defend the oxygen supply 

(139-142). Rapid responses are required on the cellular level to protect the cell 

from prolonged O2 depletion. These responses are mediated by the hypoxia-

inducible factor transcription factor 1 alpha (HIF-1α), and lead to the upregulation 

of genes involved in glucose uptake, cell survival, cytoskeletal organization, 

extracellular matrix remodeling, vascular tone, iron metabolism, and apoptosis 

(290-294). On the physiological level, responses to limitations in O2 supply 

ultimately result in vascular remodeling, cell migration and proliferation, and 

formation of new blood vessels or angiogenesis. 

 

Macrophage cells commonly encounter hypoxia as they migrate away from the 

vasculature, therefore, these cells have developed unique adaptive mechanisms 

allowing them to function in a hostile environment. We have identified a series of 

unexpected changes in macrophage intracellular copper metabolism in response 

to hypoxia, as illustrated by the model in Figure 3.17. These include the elevated 

expression of the CTR1 copper transporter and increased copper uptake; a 

decrease in the abundance and/or activity of CCS, SOD1 and CCO; and 
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increased copper delivery to ATP7A and ceruloplasmin in the secretory pathway.  

Significantly, such changes provide the first evidence that the hierarchy of 

intracellular copper distribution is subject to modulation by environmental stimuli.   

 

Our findings suggest that this coordinate reprogramming of copper metabolism 

functions to enhance copper availability to the ATP7A protein for copper delivery 

to the secretory pathway. This was evidenced by the requirement for ATP7A for 

ceruloplasmin activation in response to hypoxia as well as the copper-dependent 

relocalization of the ATP7A protein from the TGN to a post-Golgi compartment, a 

well-described indicator of increased copper flux to ATP7A. Ceruloplasmin is a 

ferroxidase synthesized in the liver and macrophages that plays a critical role in 

cellular iron export by oxidizing iron, a necessary step in the iron loading of 

transferrin in the blood (396).  This function of ceruloplasmin is particularly critical 

during hypoxia where the mobilization of iron into the blood is important for 

hematopoeisis (146).    

 

Further evidence for a shift in the intracellular hierarchy of copper metabolism in 

response to hypoxia was our finding of decreased levels of CCS protein and 

SOD1 activity. By diminishing the flux of copper from CCS to SOD1, this would 

allow more copper to be conserved for the ATP7A protein.  Whether such 

adaptations respond directly to reduced oxygen levels is unknown, however, 

CCS degradation may be triggered in hypoxic macrophages in response to the 

higher copper uptake activity (Fig. 3.1), since elevated intracellular copper 
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concentrations are known to cause CCS degradation in other cells (185). Like 

SOD1, the activity of cytochrome c oxidase was also diminished by hypoxia in 

RAW264.7 cells and this was associated with a decrease in COX1 protein levels, 

the CuB-site containing subunit of cytochrome c oxidase. A decrease in 

cytochrome c oxidase activity has been observed in hypoxic macrophages in 

previous studies as part of a metabolic shift from oxidative phosphorylation to 

glycolysis for the bulk of ATP production (397, 398). By eliminating intracellular 

copper delivery to COX1, this may serve the dual purpose of preventing wasteful 

copper delivery to cytochrome c oxidase as the cell undergoes a metabolic shift 

to glycolysis, as well as diverting precious copper stores to secretory 

compartments via ATP7A. 

 

A particularly notable finding of this study was the requirement for reactive 

oxygen species and mitochondrial function for both the activation of 

ceruloplasmin in hypoxic RAW264.7 macrophages, and the induction of ATP7A 

trafficking. Recent studies indicate that the mitochondria are a critical sensor of 

oxygen in mammalian cells and communicate this information to a master 

regulator of hypoxia-responsive gene expression, the HIF-1α protein (139, 321, 

324, 325, 340-344). HIF-1α is constitutively degraded under oxygen-replete 

conditions, however, the stimulated production of ROS at complex III of the 

mitochondrial electron transport chain is essential for HIF-1α stabilization under 

hypoxic conditions (139, 321, 324, 325, 340-344). Based on these findings, the 

ability of mitochondrial ROS to stimulate ceruloplasmin activity and ATP7A 
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trafficking may occur via a HIF-1α-dependent mechanism. Alternatively, the ROS 

may function indirectly by displacing labile copper ions from intracellular ligands, 

thereby increasing copper availability for ATP7A. Although this latter mechanism 

would be the first such type of ROS-mediated regulation of copper homeostasis 

in mammalian cells, a precedent exists in yeast where nitric oxide alters copper 

homeostasis by displacing copper from the AceI transcription factor (35). Other 

examples of ROS-mediated regulation of iron and zinc homeostasis also exist. 

For example, NO and H2O2 can displace iron from the IRP1/2 proteins, thereby 

allowing these proteins to regulate a select group of mRNAs encoding proteins 

involved in iron homeostasis (36-39). In the case of zinc, several studies have 

demonstrated that NO and H2O2 release labile zinc from metallothionein which 

then stimulates the activity of the metal-responsive transcription factor, MTF-1, a 

major regulator of zinc homeostasis (40, 41). Interestingly, the ROS generated 

during hypoxia in macrophage cells did not mediate the downregulation of the 

CCS/SOD and COX17/CCO pathways. Further studies are required to elucidate 

the mechanisms by which hypoxia downregulates these copper pathways.  

 

It appears that the above reported changes in copper homeostasis are somewhat 

unique to macrophages. ATP7A trafficking and/or changes in SOD1 and CCO 

activity were not observed in our analysis of cultured cells from a variety of 

sources including HeLa (cervical carcinoma), HEK293 (human embryonic 

kidney), N2a (neuroblastoma), primary human aortic endothelial cells, and 

primary rat smooth muscle cells. The reasons for this are not fully understood. 
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The macrophage-specific effects of hypoxia on copper homeostasis may be 

attributable to inflammatory responses, which in these cells overlap with 

responses to hypoxia (42, 43). Consistent with this postulate, our studies 

demonstrate that pro-inflammatory agents can stimulate copper-dependent 

ATP7A trafficking in macrophages under normoxic conditions.  

 

Macrophages are highly adapted to hypoxic environments and are prominent in 

avascular sites of diseased tissue, and the hypoxic regions of different types of 

tumors (391). By releasing pro-angiogenic cytokines that promote vascularization 

of hypoxic tissues, macrophages promote tissue repair and tumor growth (44-

47). This property is thought to underlie the positive relationship that exists 

between the macrophage content of tumors and a poor clinical outcome (48-53). 

It is, therefore, intriguing that copper also possesses pro-angiogenic and 

tumorigenic properties, and several studies have demonstrated that copper 

chelation is an effective suppressor of tumor vascularization and growth (54-57). 

Whether the adaptive changes in macrophage copper metabolism described in 

this study underlie copper’s role in tumor growth is unknown, and the subject of 

on-going experiments. 

 

The prioritization of copper distribution to ATP7A is a finding that is novel in 

mammals, but has parallels in microorganisms. For example, in the 

photosynthetic microbe Chlamydomonas reinhardtii, the copper-containing 

protein plastocyanin is degraded in response to copper-deficiency, which is 
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thought to be an adaptive process to preserve copper for more critical enzymes 

such as cytochrome c oxidase (399). It will be of interest to determine whether 

redistribution of intracellular copper is stimulated by pathophysiological 

conditions in other mammalian cell types. For example, copper is required for 

melanin production via tyrosinase, norepinephrine synthesis via dopamine b 

hydroxylase, and collagen cross-linking via lysyl oxidase, and the activity of each 

of these biochemical pathways can be initiated by several physiological or 

developmental cues in specific cell types (reviewed in (4)). The challenge of 

future studies will be to address whether this adaptive upregulation of 

cuproenzyme activity is achieved via adaptive changes in pathways that 

intracellular copper distribution. 
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FIGURE 3.17. Schematic model of macrophage copper homeostasis 

pathways altered by hypoxia. Effects of hypoxia (H) on specific steps in 

intracellular copper handing are shown based on the findings of this study. 

Hypoxia-stimulated expression of the CTR1 copper importer and copper uptake 

(1). Hypoxia-stimulated decrease in CCS expression (2) and activity of SOD1 (3). 

Mitochrondrial CCO activity was diminished by hypoxia associated with reduced 

expression of COX1 (4). The hypoxia-induced increase in ATP7A expression (5), 

copper-dependent trafficking of ATP7A (6), and ATP7A-dependent copper 

transport to ceruloplasmin (7), are ROS-dependent (8,9). 
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Fig. 3.17 
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CHAPTER 4 
 
 
 

SUMMARY AND FUTURE PERSPECTIVES 

 
 

4.1 ATP7A-mediated copper transport into the phagosome enhances the 

bactericidal activity of macrophages. 

 
 
Copper has long been recognized as a bactericidal agent. Its modern day uses in 

fungicides, antimicrobial surfaces and fabrics, anti-fouling marine paints and 

hygienic medical devices can be traced back to its early uses in ancient 

civilizations (374, 401). The uses of copper as a sanitizing agent in ancient 

Egyptian and Roman civilizations ranged from its addition to drinking water, to its 

topical administration to sores and skin infections (374). Today, the effectiveness 

of copper as a bactericidal agent has further expanded its uses in the healthcare 

industry (401). Brass, an alloy of 67% copper and 33% zinc, is the metal of 

choice for the manufacture of hospital doorknobs (402, 403), owing to its proven 

self-sanitizing properties. Copper is also increasingly incorporated into the fibers 

used in the manufacture of hospital beddings and linens, as well as the 

facemasks, gloves and clothing worn by healthcare professionals (404, 405). 

Several studies have highlighted the importance of copper for the function of the 

immune system (281-284). Our data provide exciting new evidence of a novel 

role for ATP7A in promoting bacterial killing via transport of copper into the 

phagosome of macrophage cells. We also show changes in copper homeostasis 
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that accommodate the increased need for copper in macrophage cells during 

bacterial killing. These changes include a higher rate of copper uptake via 

increased expression of the CTR1 copper importer. Another novel finding is the 

increases of CTR1 and ATP7A mRNA levels that occur in response to 

inflammation. It is unknown whether the elevated mRNA levels are due to 

transcriptional or post-transcriptional regulation by inflammatory mediators. 

Further studies are needed to elucidate the mechanisms mediating these 

responses in macrophages.  

 

Our findings suggesting that transport of copper to the phagosome via ATP7A is 

an important player in macrophage bactericidal activity are consistent with 

previous reports of common bacterial infections, especially those of the 

respiratory tract in Menkes disease infants carrying genetic mutations in the 

ATP7A gene (50, 406-408). However, it is uncertain whether this susceptibility to 

infection arises from defects in ATP7A-dependent activities of macrophages, or 

impairment of other processes such as connective tissue formation (114). 

Clearly, a more direct test of the importance of ATP7A in innate immune function 

in vivo will be to generate a myeloid-specific ATP7A knockout mouse model. An 

additional model for testing the importance of copper in macrophage bactericidal 

activity will be a myeloid-specific CTR1 knockout mouse. If copper is of 

importance in bactericidal activity of macrophages in vivo we anticipate the 

following outcomes in ATP7A and CTR1 myeloid knockout mice: 1) decreased 

clearance of intraperitoneally-injected bacteria in the myeloid ATP7A-/- and 
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myeloid CTR1-/- mice as compared to wild type controls; 2) decreased viability of 

the myeloid ATP7A-/- and myeloid CTR1-/- mice as compared to wild type controls 

following bacterial infection.  

 

Our findings also indicate interplay of opposing copper regulatory mechanisms in 

bacteria and host. The transport of copper into the phagosome via ATP7A is 

opposed by the export of copper from the cytoplasm of E. coli mediated by the 

CopA copper exporter. Deletion of the copA bacterial gene severely impaired the 

resistance of E. coli to killing within the macrophage phagosome. Microbial 

copper export in response to phagoctosis by macrophages has been previously 

demonstrated in several bacterial species (288, 381, 382). Understanding 

microbial resistance mechanisms is of great importance in designing new 

preventative and therapeutic avenues, particularly in the health care industry 

where pathogen infections severely compromise patient welfare and recovery, 

spurring the increased use of copper in alloys for the manufacture of hospital 

surfaces over the past decade (reviewed in (401)). Copper has become popular 

in the biomedical environment as the bactericidal and fungicidal metal of choice 

and copper alloys are the only solid surface currently approved by the FDA as 

“antimicrobial”. However, intriguing new evidence for a potential role for copper in 

promoting fungal survival within the phagosome has emerged. In contrast to 

bacteria which upregulate the expression of copper export mechanisms as a 

protection against copper-mediated toxicity within the phagosome, the fungus 

Cryptococcus neoformans responds to phagosomal stress by increasing its 
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copper acquisition (409, 410). In fact, the expression of the copper importer 

CTR4 was increased in Cryptococcus neoformans following phagocytosis by 

J774A.1 macrophage cells (410). This was accompanied by an increase in the 

expression of copper-dependent cryptococcal antioxidant systems, suggesting a 

role for copper in promoting cryptococal resistance to killing by macrophages 

(410). Neurological infections with Cryptococcus neoformans resulting in 

meningitis are common in AIDS patients, who are often vulnerable to such 

infections due to their high levels of serum copper. This emerging new evidence 

suggests that although copper status of the host might be beneficial in the case 

of bacterial infection, this may not be the case for fungal infections. When 

considering the use of copper supplementation of patients or animals as a 

treatment strategy, it will be important to tailor such treatments to the particular 

infective agent.. Clearly, further work is needed to comprehensively assess of the 

role of copper in various bacterial and fungal species of significance to human 

health. Understanding the role of phagosomal copper in the killing or survival of 

different pathogenic species can ensure tailored treatments of human infections 

as well as better understanding of the impact of copper nutrition and 

physiological copper status on human health.  

 
 
4.2 Hypoxia modulates copper homeostasis in macrophage cells.  
 
 
 
One of the earliest physiological responses to tissue injury and infection is an 

increase in vascular permeability and blood flow to the affected area (411, 412). 
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Macrophage cells migrate away from the vasculature into the sites of injury or 

infection and commonly encounter varying degrees of oxygen depletion (391). 

Rapid cellular responses are initiated that allow these cells to cope with the low 

oxygen tension in the extravascular milieu (290-294). The HIF-1α transcription 

factor coordinately upregulates the expression of genes involved in metabolism 

and angiogenesis, among many other processes (290-294). These cellular 

responses ensure adaptation to the hypoxic conditions, as well as increased 

oxygen flow to the microenvironment via promoting neo-vascularization. 

Interestingly, accumulating evidence suggests that inflammatory mediators 

stabilize HIF-1α in the presence of oxygen (411, 412). Furthermore, inflammatory 

mediators and hypoxia activate common signaling pathways and often lead to 

converging biological outcomes (reviewed in (411, 412)). Following our 

observation that inflammatory mediators regulates copper homeostasis in 

macrophages, we investigated the effect of relative hypoxia on copper 

homeostatic pathways in these cells. 

 

Our studies indicate that hypoxia induces an increased flux of copper into the 

cell, associated with an increase in CTR1 protein expression. The increase in 

copper flux resulted in copper-dependent trafficking of the ATP7A protein, as well 

as increased ATP7A-dependent copper delivery to the secretory pathway, as 

evidenced by the enhanced ceruloplasmin activity in hypoxia. Interestingly, 

hypoxia led to the downregulation of the two other cellular copper pathways, i.e. 

the CCS/SOD1 and the mitochondrial cytochrome c oxidase pathways. We 
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suggest that the downregulation of these alternative cellular copper pathways 

might allow for the prioritization of copper flux into the secretory pathway via 

ATP7A. Ceruloplasmin and lysyl oxidase are two examples of secreted copper-

dependent enzymes that may benefit from this increased copper delivery, since 

the expression of both proteins is enhanced under hypoxic conditions (146, 314, 

395, 413, 414).  

 

Our finding that ceruloplasmin is a target of increased copper delivery to the 

secretory pathway during hypoxia is in agreement with the function of this protein 

in iron homeostasis. Ceruloplasmin is a ferroxidase required for cellular iron 

export, which is a critical step in the loading of iron onto transferrin in the blood 

(396). This process is also an adaptive response to hypoxia to meet the 

increased iron demand of hematopoeisis (146). Thus, the prioritization of copper 

delivery to ceruloplasmin via ATP7A may ultimately function to regulate iron 

homeostasis in response to hypoxia.  

 

Other hypoxia-induced cuproenzymes that are also potential targets of ATP7A-

dependent copper delivery into secretory compartments include the lysyl oxidase 

family of enzymes. These proteins function in the cross-linking of collagen and 

elastin within connective tissue (1) and, importantly, play a key role in hypoxia-

induced tumor metastasis (31). It would be of interest to test the ATP7A 

dependency for lysyl oxidase activation in hypoxia, as this may provide potential 

future therapeutic avenues in the prevention of tumor growth and metastasis, 
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since lysyl oxidase expression during hypoxia is associated with tumor 

metastasis. Another important copper-dependent role for the lysyl oxidase 

enzymes is in embryogenesis and development. LOX-/- mice suffer from impaired 

connective tissue formation resulting in cardiovascular and diaphragm instability, 

leading to perinatal death (415, 416). Interestingly, connective tissue and 

cardiovascular defects are associated with Menkes disease (417), and were 

recently observed in CTR1int-/Int- mice which lack CTR1 in the intestine (100). It is 

possible that low oxygen availability encountered by the embryo especially in the 

early days of gestation may drive both lysyl oxidase expression and copper 

delivery to the enzyme via the adaptive responses observed in our studies. It 

would be interesting to investigate the regulation of copper homeostasis in 

developing embryos undergoing adaptation to low oxygen availability in vivo.  

 
 
4.3 ATP7A traffics in response to hypoxia in tumor-associated 
macrophages.  
 
 
 
A particularly intriguing finding of our study was the strong expression of ATP7A 

in tumor-associated macrophages. Several studies have shown that copper 

induces proliferation of human endothelial cells in the absence of exogenous 

cytokines (418, 419), and copper chelation prevents endothelial cell proliferation 

in vitro (420, 421) and in vivo (422). Copper is also known to promote the 

expression and secretion of pro-angiogenic cytokines from endothelial cells and 

other cell types (423, 424). Moreover, copper has been shown to play an 

important role in angiogenesis, and copper chelation via TTM has proven to be 
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an effective suppressor of tumor growth in animals (347-352, 421, 425, 426). It 

is, therefore, possible that the adaptive changes in macrophage copper 

homeostasis described in this study underlie copper’s role in tumor growth. 

Additionally, our studies suggest that the changes affecting the copper 

homeostatic pathways in response to hypoxia are specific to macrophages.  

 

Macrophages are highly prominent in tumors, constituting up to 80% of the cell 

mass in breast carcinoma (427) and their presence in high numbers is 

associated with poor prognosis (reviewed in (428)). Exposure of tumor-

associated macrophages to the hypoxic milieu activates their pro-angiogenic 

properties (429). Future studies in our lab will aim at investigating the role of 

macrophage copper homeostasis in promoting tumor growth and angiogenesis. 

Does copper delivery to avascular tumor sites occur via macrophage recruitment 

and copper release? Studies that test this hypothesis will include measuring 

tumor growth in myeloid-specific ATP7A and CTR1 knockout mice. If indeed 

macrophage copper contributes to tumor growth, we expect tumor growth rates 

and tumor sizes to be significantly reduced in the knockout mice as compared to 

wild type. It will also be interesting to investigate whether the previously reported 

expression (314) and secretion (430, 431) of pro-angiogenic cytokines induced 

by hypoxia could be suppressed by the knockdown of ATP7A and CTR1 proteins 

in cultured macrophages. The effect of ATP7A and CTR1 knockdown on 

angiogenesis could be determined both in vitro and in vivo. The in vitro studies 

involve testing the ability of conditioned media from ATP7A-siRNA, CTR1-siRNA, 
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or control-siRNA RAW264.7 macrophages, to promote endothelial tube formation 

when co-cultured with endothelial cells (432, 433). A role of ATP7A and CTR1 in 

promoting tumor angiogenesis would be supported by the reduced pro-

angiogenic activity of conditioned media ATP7A-RNAi, and CTR1-RNAi as 

compared to control-RNAi RAW264.7 cells. The extent of vascularization in 

tumors grown in myeloid-specific ATP7A and CTR1 knockout mice as compared 

to wild type mice is another means of assessing the contribution of macrophage 

copper to tumor angiogenesis in vivo.  

 
 
4.4 ATP7A trafficking in response to hypoxia is stimulated by mitochondrial 
oxidative stress. 
 
 
 
Another novel finding in our study is the trafficking of ATP7A in response to 

oxidative stress. Additionally, the ATP7A trafficking, as well as the activation of 

ceruloplasmin during hypoxia,were inhibited by the antioxidant Ebselen and by 

depletion of mitochondrial DNA in RAW267.4 cells (RAW/Rho-). As discussed in 

chapter 1, ROS generated at complex III of the respiratory chain has recently 

been shown to be the major contributor in the stabilization of HIF-1α (324, 325, 

342-344). Further in-depth studies of the effect of mitochondrial ROS on ATP7A 

trafficking and the activation of its potential target in the secretory pathway are 

required. For this, I propose using siRNA interference against the Rieske iron-

sulfur protein. This will inhibit the formation of ubisemiquinone at complex III and 

thus will inhibit ROS generation by the mitochondria during hypoxia. Genetic 

knockdown of the Rieske protein has been successfully achieved elsewhere 
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(324, 325). Other chemical methods of inhibiting the mitochondrial respiratory 

chain at specific complexes exist, such as the use of rotenone (complex I 

inhibitor), myxothiazol (complex III inhibitor), Antimysin A (complex III inhibitor), 

potassium cyanide and sodium azide (complex IV inhibitors). However, these 

drugs are extremely toxic to cells when used for long durations of time. My 

preliminary experiments using varying dosages of these drugs suggest that the 

health of macrophage cells is severely compromised when exposed to such 

chemicals for 96 h, which is the time required to induce significant trafficking of 

the ATP7A protein.  

 
 
4.5 Conclusion 
 
 
 
Our studies provide exciting new evidence that macrophage copper homeostasis 

is regulated by pro-inflammatory agents. Importantly, we show that ATP7A-

mediated copper transport serves to enhance the bactericidal activity of 

macrophages. We also demonstrate that hypoxia regulates intracellular copper 

delivery in macrophages, including a downregulation of the CCS/SOD1 and 

mitochondrial CCO pathways, and the upregulation of the CTR1/ATP7A axis, 

resulting in increased copper uptake, as well as increased activity of the copper-

dependent enzyme ceruloplasmin.  

 

Our data provide exciting new insight into the roles played by CTR1 and ATP7A 

proteins and copper in cancer and chronic inflammatory diseases that are often 
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accompanied by poor oxygen supply and an increase in cellular oxidative stress 

levels. Future studies will provide a better understanding of the molecular 

mechanisms by which copper homeostasis is regulated by inflammation and 

hypoxia, and may provide insight into potential future therapeutic avenues in the 

treatment of chronic inflammatory diseases with obstructive ischemic 

components and angiogenesis in cancer. 
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