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CHARACTER VARIETIES AND HARMONIC MAPS TO R-TREES

G. DASKALOPOULOS, S. DOSTOGLOU, AND R. WENTWORTH

Abstract. We show that the Korevaar-Schoen limit of the sequence of equivariant harmonic maps

corresponding to a sequence of irreducible SL2(C) representations of the fundamental group of a

compact Riemannian manifold is an equivariant harmonic map to an R-tree which is minimal and

whose length function is projectively equivalent to the Morgan-Shalen limit of the sequence of

representations. We then examine the implications of the existence of a harmonic map when the

action on the tree fixes an end.

1. Introduction

For a finitely generated group Γ, Morgan and Shalen [MS] compactified the character variety of

equivalence classes of SL2(C) representations of Γ with projective limits of the length functions

associated to the representations. These limits turn out to be projectively equivalent to the length

functions of actions of Γ by isometries on R-trees. This built on earlier work of Culler and Shalen

[CS] who had identified the ideal points of a complex curve of SL2(C) representations with actions

on a simplicial tree. The tree arose from the Bass-Serre theory applied to the function field of the

curve with the discrete valuation corresponding to the point in question.

For unbounded sequences of discrete and faithful representations, Bestvina [B] and Paulin [P]

obtain an R-tree whose length function is in the Morgan-Shalen class and which appears as the

Gromov limit of convex hulls in H
3. The limit involves rescaling the metric on the hulls by the

maximum distortion at the center of the representation. Cooper [C] extends Bestvina’s construction

to obtain such a tree for sequences of representations that are not necessarily discrete and faithful.

Moreover, he uses length functions to show that if the sequence eventually lies on a complex curve

in the representation variety, then the limiting tree is in fact simplicial.
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In this paper we produce an R-tree for any unbounded sequence of irreducible representations

of the fundamental group of compact Riemannian manifolds along with an equivariant harmonic

map from the universal cover to the tree. The starting point for this is to regard representations

of the fundamental group as flat connections on SL2(C) bundles, or equivalently, as harmonic

maps from the universal cover to H
3. We first observe that the non-existence of any convergent

subsequence of a given sequence of representations is equivalent to the statement that the energy of

the corresponding harmonic maps along all such subsequences is unbounded. Then, after rescaling

by the energy, the recent work of Korevaar and Schoen [KS2] applies: The harmonic maps pull

back the metric from H
3 to a sequence of (pseudo) metrics which, under suitable conditions, have a

subsequence that converges pointwise to the pull back of a metric on some non-positive curvature

(NPC) space. In our case, the conditions are met thanks to the Lipschitz property of harmonic

maps. We then show that the NPC space is an R-tree with length function in the projective class

of the Morgan-Shalen limit. In this way, rescaling by energy turns out to be strong enough to give

convergence, but at the same time is subtle enough to give a non-trivial limiting length function.

The main result, which can also be thought of as an existence theorem for harmonic maps to certain

trees, is:

The Korevaar-Schoen limit of an unbounded sequence of irreducible SL2(C) representations of the

fundamental group of a compact Riemannian manifold is an equivariant harmonic map to an R-

tree. The image of this map is a minimal subtree for the group action, and the projective class of

the associated length function is the Morgan-Shalen limit of the sequence.

For harmonic maps into hyperbolic manifolds, Corlette [C1], [C2] and Labourie [L] have shown that

the existence of a harmonic map implies that the action is semi-simple. A partial analogue of this

is our Theorem 5.3 in the last section. This also suggests that there is no obvious generalization for

trees of Hartman’s result [H] about uniqueness of harmonic maps. Further results in this direction

for surface groups are discussed in [DDW].

We also note that this paper contains the work of Wolf [W] for surfaces. In the case considered

there, sequences of discrete, faithful SL2(R)-representations give equivariant harmonic maps H
2 →

H
2. The limiting tree then arises as the leaf space of the measured foliation coming from the

sequence of Hopf differentials. A generalization of this point of view to SL2(C) also appears in

[DDW].
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2. Background

A. Trees and Lengths: Recall that an R-tree is a metric space where any two points can be

joined by a unique arc, and this arc is isometric to an interval in R. For example, an increasing

union of simplicial trees is an R-tree. Given a representation ρ of a group Γ to the isometry group

of an arbitrary metric space X, the length function is defined as

lρ(g) = inf
x∈X

dX(x, ρ(g)x).

In the case when X is an R-tree, we will use the fact that the length function is identically zero

if and only Γ has a fixed point (see [CM]). Also recall that length functions determine actions on

trees, except in some degenerate cases: Suppose that two different actions of Γ on two trees have

the same, non-abelian length function (non-abelian means that l(g) is not of the form |h(g)| for

some homomorphism h : Γ → R). Then there is an equivariant isometry between the respective

(unique) minimal subtrees of the same length function [CM].

B. Character Variety: Now take Γ to be a finitely generated group. χ(Γ) will be its character

variety, i.e. the space of characters of representations of Γ into SL2(C). Whereas the space of

representations is merely an affine algebraic set and χ(Γ) is a closed algebraic set, the components

of χ(Γ) containing classes of irreducible representations are affine varieties (closed, irreducible

algebraic sets). Conjugacy classes of irreducible representations are characterized by their character

(see [CS]).

Given a representation ρ : Γ → SL2(C), for each g in Γ the image ρ(g) acts on H
3 by isometries.

Consider the corresponding length function

lρ(g) = inf
x∈H3

dH3(x, ρ(g)x).

We may think of lρ as a function on the generators γ1, ..., γr of Γ. For C the set of conjugacy

classes of Γ, the Morgan-Shalen compactification of the character variety is obtained by adding the

projective limits of all {lρ(γ), γ ∈ C} in the projective space (
∏

[0,∞) \ 0) /R
+ (see [MS]). Strictly

speaking, [MS] uses the traces to define the compactification. That this is equivalent to using length

functions follows from the fact that if trρ(g) ≥ 1 then |lρ(g) − 2 lntrρ(g)| ≤ 2, see [C]. Explicitly,

given a sequence of representations ρn : Γ → SL2(C), only one of the following can occur:

1. For some subsequence n′, all traces ρn′(γi) are bounded. Then ρn′ converges (possibly after

passing to a further subsequence) in χ(Γ) (see [CL]).
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2. For every subsequence n′ there is some i such that trρn′(γi) → ∞ as n′ → ∞. Then there is

an R-tree and a representation ρ : Γ → Iso(T ) such that lρ is not identically zero and lρn
→ lρ

projectively (possibly after passing to a subsequence).

C. Harmonic maps: Recall from [D] and [C1] that given a compact Riemannian manifold M

and an irreducible representation ρ of Γ = π1(M) into SL2(C), any ρ-equivariant map from the

universal cover M̃ to H
3 can be homotoped via the heat flow to a ρ-equivariant harmonic map from

the universal cover M̃ to H
3:

u : M̃ → H
3, u(gx) = ρ(g)u(x), D∗du = 0,

for du : TM̃ → TH
3 and D the pull-back of the Levi-Civita connection on H

3. This harmonic map

minimizes the energy on M ∫

M
|du|2dM

amongst all equivariant maps v : M̃ → H
3 (see p. 643 of [KS1]) and is unique up to R-translations

in some complete, totally geodesic submanifold Y × R of the target (see 4.4.B of [GP]).

Conversely, given a ρ-equivariant harmonic map u the representation ρ can be recovered as the

holonomy of the flat connection A + iΦ, for A the pull-back by u of the Levi-Civita connection on

TH
3 and Φ = −du/2. Hence, E(u) = 4‖Φ‖2

2 , where ‖ · ‖2 denotes the L2 norm. Flatness and

harmonicity now become the equations:

FA =
1

2
[Φ,Φ], dAΦ = 0, d∗AΦ = 0.(1)

We shall refer to Φ as the Higgs field of the representation ρ. Thinking of representations as flat

connections allows us to see easily that a sequence escapes to infinity only if the energy of u blows

up:

Proposition 2.1. Let ρi be a sequence of representations of Γ with Higgs fields Φi. If the energy

of the associated harmonic maps ui is bounded then there is a representation ρ and a subsequence

i′ such that ρi′ → ρ in χ(Γ).

Proof. Recall that any harmonic map u : M̃ → H
3 (or any target of non-positive curvature) has

the following property: For any x in M̃ and R > 0 there is constant C(R) independent of u such

that whenever d(x, y) < R,

|∇u|2(y) ≤ C(x,R)EB(x,R)(u).(2)
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This follows from the Bochner formula for |∇u|2 when the target has negative curvature, see [S].

Therefore E(ui) ≤ B implies uniform bounds on ‖Φi‖C0
. By the first of equations (1) this implies

uniform bounds on ‖FAi
‖C0

and hence uniform bounds on ‖FAi
‖p for any p. By standard application

of Uhlenbeck’s weak compactness theorem and elliptic regularity the result follows.

D. Korevaar-Schoen compactness: The previous section shows that in order to examine the

ideal points of the character variety one has to look at equivariant harmonic maps of arbitrarily

high energy. For this, we recall the construction in [KS2].

Let Ω be a set and u a map into an NPC space X. Use u to define the pull-back pseudometric

on Ω, du(x, y) = dX(u(x), u(y)), for any x and y in Ω. To achieve convergence in an NPC setting,

some convexity is needed. Korevaar and Schoen achieve this by enlarging (Ω, du) to a space Ω∞

obtained by adding the segments joining any two points in Ω, the segments joining any two points

on these segments, and so on. Then they extend the pull-back pseudometric from Ω to Ω∞ linearly.

After identifying points of zero pseudodistance in (Ω∞, du) and completing, one obtains a metric

space (Z, du) isometric to the convex hull C(u(Ω)) in the target X (and hence NPC).

It is a crucial point that certain inequalities (which carry over to pointwise limits) satisfied by pull-

back pseudodistances are enough for this Z to be an NPC space, regardless of the pseudodistance

being a pull-back or not (see Lemma 3.1 of [KS2]). The following summarizes the main results

from [KS2] needed here when Ω = M̃ is the universal cover of a compact Riemannian manifold:

Theorem 2.2. Let uk : M̃ → Xk be a sequence of maps on the universal cover of some Riemannian

manifold M̃ such that:

1. Each Xk is an NPC space;

2. The uk’s have uniform modulus of continuity: For each x there is a monotone function ω(x, )

so that lim
R→0

ω(x,R) = 0 , and max
B(x,R)

duk
(x, y) ≤ ω(x,R) .

Then

1. The pull-back pseudometrics duk
converge (possibly after passing to a subsequence) pointwise,

locally uniformly, to a pseudometric d∞;

2. The Korevaar-Schoen construction for (M̃ , d∞) produces a metric space (Z, d∞) which is

NPC;

3. If the uk : M̃ → Xk have uniformly bounded energies and are energy minimizers then the

projection u : (M̃ , d∞) → Z is also energy minimizer;
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4. If the uk’s are equivariant then u is also equivariant;

5. If lim
k→∞

E(uk) is not zero then u is not trivial.

Proof. 1. and 2. are contained in Proposition 3.7 of [KS2]. Given the locally uniform convergence,

3., 4. and 5. follow from Theorem 3.9 of [KS2].

3. Main Results

In this section, we let Γ be the fundamental group of a compact Riemannian manifold M , and

let ρk be a sequence of irreducible representations of Γ in SL2(C) with no convergent subsequence

in χ(Γ) (henceforth, an unbounded sequence). Let uk : M̃ → H
3 be the corresponding harmonic

maps. Rescale the metric dH3 on H
3 to

d̂H3,k =
dH3

E(uk)1/2

before pulling it back via uk to d̃k(x, y) = d̂H3,k(uk(x), uk(y)) on M̃ . Continue to denote the

harmonic maps into the rescaled targets by uk. With this understood, the first result of this paper

may be stated as follows:

Theorem 3.1. Let M be a compact Riemannian manifold and ρk an unbounded sequence of ir-

reducible SL2(C) representations of Γ = π1(M). Then the Korevaar-Schoen limit of the rescaled

harmonic maps uk : M̃ →
(
H

3, d̂H3,k

)
is an energy minimizing u : M̃ → T , for T an R-tree. In

addition, Γ acts on T without fixed points, and u is Γ-equivariant.

Proof. According to 1. of Theorem 2.2, to show convergence of the uk’s it is enough to show that

they have uniform modulus of continuity. Recall the estimate (2). With this, the rescaled sequence

uk satisfies the uniform modulus of continuity condition for ω(x,R) = R for all x: d̃k(uk(x), uk(y)) ≤

dM (x, y) . Therefore the pseudodistances d̃k converge pointwise and locally uniformly to a limiting

pseudodistance d̃ on M̃ . Let u be the projection u : M̃ → Z for Z the NPC metric space obtained

from (M̃ , d̃) by identifying points of zero distance and completing. Then u is energy minimizing by

3. of Theorem 2.2 and the harmonicity of the uk’s.

To show that the limiting NPC space Z is in fact an R-tree, we need to show that: a) Any two

points in Z can be joined by a unique arc; b) Every arc in Z is isometric to a segment in R. Part

b) follows immediately from the defining property of NPC spaces (any two points can be joined

by an arc isometric to a segment in R). For a) we must show that there are no more arcs. If dk is
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the pull-back of the standard metric on H
3 then for each k the metric space Zk =

(
M̃∞, dk

)
/ ∼

is, by construction, isometric to the convex hull of the image uk(M̃ ) in H
3. Therefore, for any two

points x, y ∈ M̃∞ the geodesic segment isometric to [uk(x), uk(y)] lies in Zk. Suppose z 6= x, y is

a third point on some other arc joining x and y, and consider the geodesic triangle with vertices

u(x), u(y), and u(z) in H
3. It is a standard fact that there is a constant C characteristic of H

3

such that in the standard metric dH3 any point in the interior of this triangle has distance less than

C from the edges (see the proof of Theorem 3.3 of [B]). Then in the rescaled pull-back metric d̃k,

any point in the interior has distance less than C/E(uk)1/2; hence, as E(uk) → ∞ this distance

becomes arbitrarily small. Therefore, all triangles become infinitely thin at the limit. This suffices

to show that there can be only one arc joining any two points, see Proposition 6.3.C of [Gr] and

page 31 of [GH].

In addition, because of the rescaling E(uk) = 1 for all k and using 5 of Theorem 2.2, the limit u

is also non-trivial. Therefore, T = Z is non-trivial.

The action of Γ on M̃ extends to an action on the whole of M̃∞ (this follows from a straightfor-

ward calculation using the fact that on each segment [x, y] of length d there is only one point λd

away from x and (1 − λ)d away from y). The equivariance of each uk and u implies that there are

actions σk on (M̃∞, d̃k) and σ on (M̃∞, d̃) by isometries. These clearly descend to the completed

quotients Zk and T . Now suppose that Γ acted on T with some fixed point t0 . Then the constant

map w(x) = t0 is equivariant with respect to σ and of zero energy. Then u, the energy minimizer,

also has zero energy; a contradiction. Hence, there are no points on T fixed by all elements of Γ,

which is equivalent to the length function ls being non-zero.

The pointwise convergence of the pseudometrics as k → ∞ implies that the length function

lσ(g) = inf
x∈Ω∞

dH3(u(x), u(gx))

is the pointwise limit of the length functions

lσk
(g) = inf

x∈Ω∞

dH3(uk(x), uk(gx)).

On the other hand the uk’s came from representations ρk, so let lρk
be the length function obtained

by the action of the ρ(g)’s on H
3

lρk
(g) = inf

v∈H3

dH3(v, ρk(g)v),
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Recall that the Morgan-Shalen limit of the ρk’s in χ(Γ) is the projective limit of the length functions

lρk
.

Theorem 3.2. The length function lσ of the action of Γ on the Korevaar-Schoen tree T is in the

projective class of the Morgan-Shalen limit of the sequence ρk.

Corollary 3.3. For a length function l appearing as the Morgan-Shalen limit of irreducible ele-

ments of χ(Γ), there is an R-tree T on which Γ acts by isometries with length function l, and an

equivariant harmonic map u : M̃ → T .

Proof of Theorem 3.2. Since lσ = limk→∞ lσk
, we only need to show that lρk

and lσk
converge

projectively to the same (non-trivial) limit. But

lσk
(g) = inf

x∈Ω∞

dH3(uk(x), uk(gx))

where the inf on the right hand side is over the lengths of the geodesics in H
3 joining uk(x) to

uk(gx). Now according to Lemma 2.5 of [C], and as a result of the property of thin triangles in H
3,

this geodesic contains a subgeodesic with end points A and B such that:

||[A,B]| − lρk
(g)| ≤ ∆ , dH3(B, ρk(g)A) ≤ ∆ .

This implies dH3(A, ρk(g)A) ≤ lρk
(g)+2∆ . Now by construction there is x ∈ Ω∞ such that uk(x) =

A, and therefore lσk
(g) ≤ lρk

(g) + 2∆ . It also follows from the definitions that lρk
(g) ≤ lσk

(g).

Dividing each side by E(uk) → ∞, we get the same limit. Since the action of Γ on T has no fixed

points, this limit is non-trivial. This completes the proof of Theorem 3.2.

4. Minimality of the tree

The purpose of this section is to show that the image of the equivariant harmonic map of the

previous section is a minimal tree, i.e. it does not contain any proper subtree invariant under the

action of Γ. The main idea is that there is not enough energy for such a subtree.

To begin, recall that given a closed subtree T1 of an R-tree T and a point p not in T1, there is a

unique shortest arc from p to T1, obtained as the closure of γ \ T1 for any arc γ from p to T1 (see

1.1 of [CM]). Call the endpoint of this unique arc π(p).

Lemma 4.1. The map π is distance decreasing.
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Proof. Given two points p and q not on T1, the unique arc in T joining them either contains π(p)

or not. If it does, then it also contains π(q), since T1 is a subtree. Therefore d(π(p), π(q)) < d(p, q).

If it doesn’t, then d(π(p), π(q)) = 0.

Lemma 4.2. Suppose Γ acts on T . If T1 is Γ-invariant, then π is Γ-equivariant.

Proof. To prove equivariance note that by invariance of the subtree, if p is not in T1 then gp is not,

either. Then if π(gp) 6= gπ(p), by definition d(π(gp), gp) < d(gπ(p), gp), and since g is an isometry

d(g−1π(gp), p) < d(π(p), p), which contradicts the definition of π(p).

Now suppose that u : M̃ → T is an equivariant harmonic map.

Lemma 4.3. If T1 is a proper subtree of T invariant under the action of Γ, and u(M̃) ∩ T1 6= ∅,

then u(M̃ ) ⊂ T1.

Proof. Suppose that there is a point u(x) not in T1. The image of a closed ball around x in M̃ ,

large enough to enclose a fundamental domain, consists of finitely many arcs starting from u(x) in

T . Therefore, there is ε such that for any w1 and w2 in the image of u and within distance ε of

u(x) we have

d(π(w1), π(w2)) ≤
1

2
d(w1, w2).

Then by the definition of the energy density

|du|2(x)dµ = lim
ε→0

1

ωn

∫

S(x,ε)

d2(u(x), u(y))

ε2

dσ(y)

εn−1

(see [KS2], pp. 227-228) we have |d(π ◦ u)|dµ ≤ 1
2 |du|dµ on u−1

(
Bu(x)(ε)

)
. Since u is an en-

ergy minimizer, this implies that u is constant. Therefore, the image of u cannot intersect T1; a

contradiction.

As a consequence, we have the following:

Theorem 4.4. Let M be a compact Riemannian manifold. For u : M̃ → T a Γ-equivariant

harmonic map, the image of u is a minimal subtree of T . In particular, the image of u in the

Korevaar-Schoen tree in Theorem 3.1 is minimal.

Corollary 4.5. Suppose that the sequence of representations lies on a complex curve in the char-

acter variety. Then its Korevaar-Schoen limit is a simplicial tree.



10 DASKALOPOULOS, DOSTOGLOU, AND WENTWORTH

Proof. If the sequence or representations lies on a curve then the limit tree T contains an invariant

simplicial subtree T0, see [CS], [C]. The corollary follows by the minimality of the image of u and

the uniqueness of minimal subtrees (Proposition 3.1 of [CM]).

5. Actions with fixed ends

Recall that a ray in a tree T is an arc isometric to [0,+∞) in R. Two rays are said to be

equivalent if their intersection is still a ray, and an equivalence class of rays is an end. An end is

fixed under Γ if gR∩R is a ray for any g in Γ and ray R in the end. An action of Γ on an R-tree T

is said to be semi-simple if either T is equivariantly isometric to an action on R, or Γ has no fixed

ends.

Suppose that the action of Γ is such that it fixes some end. Given a ray R in the fixed end,

let π(x) denote the projection of any point x to R as above, and let Rπ(x) be the sub-ray of R

starting from π(x). Then Rx = [x, π(x)] ∪ Rπ(x) is the unique ray starting from any given point x

and belonging to the given end. Now define φε : T → T by taking φε(x) to be the unique point of

distance ε from x on Rx.

Lemma 5.1. φε is equivariant.

Proof. Since the end is invariant, gRx = Rgx, and Rgx starts from gx. Now the point gφε(x) is on

Rgx and is a distance ε from gx. Then by definition φε(gx) = gφε(x).

Lemma 5.2. φε is distance decreasing.

Proof. For x and y with Rx subray of Ry, φε is shift by distance ε along the ray and d(φε(x), φε(y)) =

d(x, y). If Rx and Ry intersect along a proper subray of both, let p be the initial point of this subray.

Then the arc from x to y contains p and d(x, y) = d(x, p)+d(p, y). There are three cases to consider:

1. d(x, p) ≥ ε, d(y, p) ≥ ε. Then d(φε(x), φε(y)) = d(x, p) − ε + d(y, p) − ε ≤ d(x, y).

2. d(x, p) ≤ ε, d(y, p) ≤ ε. Then d(φε(x), φε(y)) = |d(x, p) − ε − (d(y, p) − ε)| ≤ d(x, y).

3. d(x, p) ≤ ε ≤ d(y, p) (or symmetrically, d(y, p) ≤ ε ≤ d(x, p)). Then d(φε(x), φε(y)) =

(ε − d(x, p)) + (d(y, p) − ε) = d(y, p) − d(x, p) ≤ d(x, y).

Now, arguing as in the proof of Lemma 4.3 applied to φε ◦ u, and using Lemma 5.2, we conclude

the following:
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Theorem 5.3. Let M be a compact Riemannian manifold, T an R-tree on which Γ = π1(M)

acts minimally and non-trivially via isometries, and suppose that there is a Γ-equivariant energy

minimizing map u : M̃ → T . Then either the action of Γ on T is semi-simple, or u is contained in

a continuous family of distinct Γ-equivariant energy minimizers.
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