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Abstract – The notion of apparent tissue surface tension offered a systematic way to interpret
certain morphogenetic processes in early development. It also allowed deducing quantitative
information on cellular and molecular parameters that is otherwise difficult to obtain. To
accurately determine such tensions we combined novel experiments with the exact solution of
the Laplace equation for the profile of a liquid drop under the employed experimental conditions
and used the exact solution to evaluate data collected on tissues. Our results confirm that tissues
composed of adhesive and motile cells indeed can be characterized in terms of well-defined apparent
surface tension. Our experimental technique presents a way to measure liquid interfacial tensions
under conditions when known methods fail.

Copyright c© EPLA, 2008

In the absence of external forces, embryonic tissue frag-
ments round up. Cells of two distinct tissues randomly
intermixed within a single multicellular aggregate sort into
separate regions. To account for such liquid-like phenom-
ena Steinberg introduced the notion of apparent tissue
surface tension. This quantity provides a measure to phys-
ically characterize tissue composed of motile cells with
distinct adhesive apparatus. According to the differential
adhesion hypothesis (DAH), on the other hand, differences
in adhesion drive certain morphogenetic processes in early
embryonic development [1,2]. Predictions of DAH have
been confirmed both in vitro [3] and in vivo [4–6]. The
apparent surface tensions of different embryonic tissues
(i.e. interfacial tensions with the surrounding culture
medium) were measured and the values accounted for
the observed mutual sorting behavior [3,7]. Importantly,
since surface tension is a measure of the liquid’s cohesiv-
ity, in the case of tissues it should be related to mole-
cular parameters. Indeed, it was shown on theoretical
grounds that σ∝ JN , where J andN are, respectively, the
bond energy between two homotypic cell adhesion mole-
cules (CAMs) and the surface number density of CAM [8].

(a)E-mail: kosztini@missouri.edu
(b)E-mail: forgacsg@missouri.edu

The linear dependence of the surface tension σ on N has
recently been confirmed experimentally [9]. Despite these
analogies, it has to be emphasized that tissues are not
liquids. The movement of loosely bound liquid particles is
driven by van der Waals forces and powered by thermal
energy with scale set by kT (k —Bolzmann constant,
T —absolute temperature). On the other hand the motion
of cells bound in tissues by cell adhesion molecules (CAMs)
or substrate adhesion molecules is powered by metabolic
energy, with scale set by ATP hydrolysis. Apparent tissue
surface tension however provides a useful means to system-
atically interpret equilibrium cellular arrangements and
distinguish between tissues containing motile and adhe-
sive cells.
Currently, the only available method to measure σ for

submillimeter size tissue aggregates is by compression
plate tensiometry [7,8,10]. The method, based on the
Laplace equation, so far relied on various approximations
of the geometrical profile of an equilibrated spherical
aggregate compressed between two parallel plates and
yielded σ values that can at best be considered relative
and their independence on aggregate size and compressive
force questionable.
The motivation for the present work was to establish

a method by which the absolute values of apparent tissue
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surface tensions can accurately and reliably be determined
and thus used to obtain biologically relevant information
on molecular quantities (such as J). To accomplish these
objectives we exactly solved the Laplace equation for
the profile of a droplet under the geometric conditions
of compression plate tensiometry. The analytic solution
allows to express σ in terms of easily and accurately
measurable geometric parameters. On the experimen-
tal side we extended the method to the simultaneous
compression of several droplets of different size and with
this considerably improved on the measurement statistics.
When tested on true liquids the method reproduced earlier
results on σ. Our findings on tissues and multicellular
aggregates indicate that these systems are incompressible
and their σ’s are independent of the magnitude of the
compressive force and the volume of the aggregates.
These results provide strong evidence for the concept of
tissue surface tension and support its usefulness for the
interpretation of early morphogenetic processes. They
furthermore illustrate the power of analogies (a commonly
used approach in physics), in the present case, to obtain
valuable information on the molecular level from biophys-
ical measurements performed at the multicellular level.
For a small liquid droplet compressed between two

parallel plates σ can be determined from its geomet-
ric shape (fig. 1A,B). We consider droplets with radius
R0 smaller than the millimetric capillary length Rc ≈
(σ/ρg)1/2, for which the effect of gravity can be neglected.
(For water Rc ≈ 2.6mm, while for cellular aggregates
considered here Rc > 1mm.) The shape of such a liquid
drop placed on a horizontal plate (fig. 1A) is a spherical
cap of radius R10 and height H0. In terms of these para-
meters, the (external) contact angle θ= cos−1(H0/R10−
1) and, assuming incompressibility, the radius of the
suspended drop, R0 =R10[(2− cos θ)cos4(θ/2)]. While H0
and R10 can be measured with high accuracy (e.g., ∼ 1%),
the relative error ∆θ/θ≈ [(1+ cos θ)/θ sin θ](∆H0/H0+
∆R10/R10) can still be very large (e.g., �130% for
θ < 10◦). Thus, to accurately determine σ it is desir-
able to avoid using quantities that explicitly contain the
contact angle.
The compressed drop has rotational symmetry about

the z-axis and reflection symmetry with respect to its
equatorial plane, in which it has the two principal radii of
curvatures R1 and R2 shown in fig. 1B. R3 is the radius of
the droplet’s circular area of contact with the compression
plates. The magnitude of compression depends on the
compression force F applied to the upper (or lower) plate.
In terms of R1 and R2 the excess pressure inside the drop
due to the surface tension is given by the Laplace formula
∆p= σ(1/R1+1/R2). For the system formed by the upper
plate and the portion, of thickness h (0� h�H/2), of
the compressed drop situated between the plate and
an arbitrary horizontal boundary plane, at mechanical
equilibrium, the vector sum of the compression force,
hydrostatic force (due to the excess pressure) and the
surface tension force vanishes. This equilibrium condition,
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Fig. 1: Schematic diagram of an (A) uncompressed and
(B) compressed liquid drop. (C) Snapshots of uncompressed
(top) and compressed (bottom) cushion tissue (CT) spheroids
in culture medium. (D) Same for water drops in olive oil
(W-O). The diameter of the uncompressed CT and the smaller
W-O drops were 0.402mm and 0.441mm, respectively.

when evaluated along the vertical axis, implies F =∆pA−
σ�sinϕ. Here A and � are, respectively, the cross-sectional
area and the perimeter of the liquid drop in the boundary
plane, and ϕ is the angle between the horizontal and the
tangent to the profile of liquid drop at the boundary plane.
For h= 0 (i.e., the horizontal boundary plane located just
underneath the upper plate), A= πR23, �= 2πR3 and ϕ=
θ. Thus, by using the Laplace formula for ∆p, one obtains

F = πσ
[
R23(1/R1+1/R2)− 2R3 sin θ

]
. (1a)

Similarly, for h=H/2 (i.e., the horizontal boundary plane
coinciding with the median plane of the compressed drop),
one has A= πR21, �= 2πR1 and ϕ= π/2, and as a result

F = πσR1(R1/R2− 1). (1b)

In addition to H, R1 and F (which can be accurately
measured), to determine σ directly from either of these
two equations, requires the quantities R2, θ and R3 that
can only be measured with large errors. In earlier studies
this problem has been circumvented by assuming θ= 0 (no
adhesion to the plates) and/or making approximations
on the lateral profile of the drop, e.g., R3 =R1−R2 (the
profile is a semicircle) or R3 =R1−R2+ [R22− (H/2)2]1/2
(the profile is a circular arc) [3,8]. Each of these schemes
fails to give consistent results in some range of the
compressive force or contact angle. For example, approx-
imating the lateral profile with a circular arc implies
that the contact angle depends on the magnitude of the
compressive force, an unphysical conclusion.
To determine R1, R2 and R3 requires the exact profile
z(r) of the compressed liquid droplet, which can be
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obtained by the exact integration of the Laplace equation

∆p= σ

[
z′

r(1+ z′2)1/2
+

z′′

(1+ z′2)3/2

]
= const, (2)

subject to the boundary conditions (see fig. 1B)

z(R3)= 0, z′(R3) = tan θ,
z(R1)=H/2, z′(R1) =∞ .

(3)

The terms in the square brackets in eq. (2) represent
the principal curvatures of the drop’s surface at a point
determined by z(r). In the above equations z′ and z′′

represent the first and second derivatives of the function
z(r).
We are now in the position to determine σ in terms

of the easily and accurately measurable quantities H, R1
and F . Equations (1) imply that both R2 and R3 can be
expressed in terms of R1

R2 =R1/(2α− 1) , R3 = βθR1 , (4a)

where the dimensionless parameters α and βθ are given by

α=∆p/(2σ/R1) , (4b)

βθ ≡ βθ(α) =
sin θ+

√
sin2 θ+4α(α− 1)
2α

. (4c)

Integrating eq. (2) with the boundary conditions (3) leads
to an implicit equation for α

H

2R1
= fθ(α)≡

1∫
βθ

z′(x)dx ,

z′(x) =

[(
x

αx2+1−α
)2
− 1
]−1/2

,

(5)

and the lateral profile of the compressed drop

z(r) =R1

∫ r/R1
βθ

z′(x)dx. (6)

The α-dependence of the functions fθ(α) and βθ(α) is
shown in fig. 2 for several values of the contact angle
(i.e., θ= 0◦, 10◦, . . . , 40◦). By simple inspection one can
see that βθ(α) has a much stronger θ-dependence than
fθ(α). In fact, one finds that fθ(α)≈ f0(α) is an excel-
lent approximation for θ� 20◦. Thus, for small contact
angles, it follows that α= f−10 (H/2R1) and, therefore,
R2 are relatively insensitive to even large (e.g., ∼ 10◦)
sample-to-sample fluctuations of θ (e.g., caused by local
inhomogeneities or impurities). By contrast, since βθ
itself strongly depends on θ, so does R3. This explains
why its determination by fitting the lateral profile of the
drop by circular arcs leads to sizable errors.
Finally, σ can be expressed from either eq. (1a) or (1b),

which in terms of α= f−1θ (H/2R1) (see eq. (5) and fig. 2a)
can be rewritten as

F/2πR1 = σ(α− 1). (7)
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Fig. 2: Plot of (a) fθ(α), and (b) βθ(α) for different values of
the contact angle θ.

For sufficiently weak adhesion between the liquid drop
and compression plates (i.e., θ� 20◦), this result provides
a simple recipe to evaluate σ from the measurement of
only H, R1 and F . Namely, σ is given by the slope of the
least square linear fit to the experimentally measured data
points {f−10 (H/2R1)− 1, F/2πR1}, that goes through
the origin. The efficiency of the proposed method for
measuring σ can be further enhanced by simultaneously
compressing several (n= 1, . . . , N) drops, as shown in
fig. 1D. For such compressions the quantities F/2πR1
and α in eq. (7) need to be replaced, respectively by
F/2πR̄1 and R̄

−1
1

∑
nR1nαn, with R̄1 =

∑
nR1n and αn =

f−10 (H/2R1n).
It should be emphasized that eq. (5) is valid for

incompressible and compressible liquids alike. For incom-
pressible liquids volume conservation yields

(R0/R1)
3 = gθ(α)≡ (3/2)

∫ 1
βθ

x2z′(x)dx. (8)

Similarly to the function fθ(α), for θ� 20◦, one finds that
to a very good approximation gθ(α)≈ g0(α). Eliminating
α between eqs. (5) and (8) leads to

H/2R1 =Uθ(H/2R0)≈U0(H/2R0), (9)

where U0 is a universal function defined through: U0(x) =
f0(α) and x= f0(α)[g0(α)]

1/3. Thus, for weak adhesion
between the drop and plates (i.e., θ� 20◦) there is a
universal relationship between H/2R1 and H/2R0, valid
for any incompressible liquid drop regardless of its type
or size.
We have tested the above theory to determine the

interfacial tension of true immiscible liquids (water in olive
oil (W-O) and turpentine (W-T)), where results obtained
by other methods are available. Subsequently, we applied
the analytical results to obtain the absolute values of tissue
surface tensions. Measurements were performed using a

46003-p3



C. Norotte et al.

0.0 0.2 0.4 0.6 0.8 1.0
α−1

5

10

15

20

F
/2

πR
1

CHO
CT
HUVEC

10
0

20
0

30
0

HUSMC

5

10

15

20
W-O
W-T

(a)

(b)

Fig. 3: Employing eq. (7) for data evaluation. The surface and
interfacial tensions are obtained from the slopes of the linear fit
to the data points including the origin: (a) pure liquid (W-O,
W-T), and (b) tissues and multicellular aggregates (CT, CHO,
HUVEC, HUSMC). As indicated by the arrow, the vertical axis
on the right corresponds to HUSMC.

specifically designed compression tensiometer (for details
see [10]). In the case of ordinary liquids compressions
were performed on one or simultaneously two spherical
water drops of various size (ranging from 0.4 to 1mm
in diameter) (fig. 1D). In each experiment, drops were
exposed to at least 3 successive compressions (up to 9)
of increasing force and their profile was recorded at shape
equilibrium.
For biological measurements we either used intact tissue

(fragments of excised embryonic chicken cardiac cush-
ions (CT) that round into spheres in about 12 hours)
or spherical aggregates composed of various cell types,
such as Human Umbilical Smooth Muscle Cells (HUSMC),
Human Umbilical Vein Endothelial Cells (HUVEC) and
Chinese Hamster Ovary cells (CHO)). The three cell
lines were chosen to sample cells with strongly differing
biological function. Aggregates were prepared as previ-
ously described [10]. Briefly, confluent cell cultures were
detached from the Petri dish. Cell solutions were subse-
quently centrifuged and the resulting pellets transferred
into capillary micropipettes of 300 and 500µm diameter
and incubated at 37 ◦C with 5% CO2 for 15 minutes. The
firm cylinders of cells removed from the pipettes were cut
into 250–600µm long fragments (to arrive at cylinders
with aspect ratio close to 1), then incubated on a gyratory
shaker with 5% CO2 at 37

◦C for 24–36 hours. This proto-
col reproducibly produced spherical aggregates of similar
size. Tissue spheroids were compressed in culture medium
at 37 ◦C (fig. 1C). One to six spheroids of each type were
compressed simultaneously. In order to avoid irreversible
damage to the cells, no more than 2 compressions were
performed on any one spheroid.
Upon compression cellular aggregates relax to equilib-

rium in a manner typical for viscoelastic materials [8]. As

Table 1: Interfacial tensions (in case of tissues and cell aggre-
gates between the biological material and the surrounding
culture medium) of the studied systems obtained from the data
shown in fig. 3. The absolute errors ∆σ are standard deviations.
The last two columns contain respectively the percentage rela-
tive errors and the number of data points.

System σ ∆σ ∆σ/σ Data
(mN/m) (mN/m) (%) points

W-O 18.6 2.4 12.9 56
W-T 12.4 1.5 12.1 60
CHO 22.8 3.0 13.2 22
CT 16.3 0.2 1.2 17
HUVEC 12.0 0.2 1.7 16
HUSMC 279 57 20.4 21

demonstrated earlier, by the end of this relaxation process
the initially compressed cells regain their pre-compressed
shape [11]. Since compression leads to the increase of the
surface area, provided volume remains the same, this find-
ing implies that cells from the interior of the aggregate
have to migrate to the surface.
According to equation (7), for liquids, the pairs of data

points {(α− 1), F/2πR1} should lie on a straight line
passing through the origin, with σ given by the slope of the
line. The data is shown in fig. 3 and the obtained results
are summarized in table 1. In addition to the values of σ,
the table also contains the standard deviation (∆σ), the
corresponding percentage relative errors (∆σ/σ) and the
total number of data points used in fig. 3. Results for W-O
(18.6± 2.4mN/m) and W-T (12.4± 1.5mN/m) compare
well with published data [12] (17mN/m and 13.7mN/m,
respectively). The corresponding relatively large errors
(∼ 12%) in table 1 reflect the sample sensitivity of σ and
not a deficiency of the method. Indeed, the large number
of W-O and W-T compression measurements (see table 1)
were done in the course of four days, each time using
different samples and compression plates. Most of these
experiments were carried out on single droplets, which
might have experienced somewhat different environmental
conditions (sample-to-sample fluctuations). The actual
errors ∆σ corresponding to drops from the same batch
were much smaller (∼ 1%). Another possible source of
error is related to the extent of compressions. Weaker
compressions result in larger errors. From eq. (7), ∆σ/σ=
∆F/F +∆R1/R1+∆α/(α− 1) which may become large
when F → 0 and α→ 1.
For tissue fragments and cell aggregates σs were

determined by a similar procedure, with the results shown
in fig. 3b and table 1, which clearly demonstrate that
embryonic tissues and cell aggregates have well defined
(apparent) surface tensions that are independent of their
size or extent of compression. Measurements on CT and
HUVEC were carried out with simultaneously prepared
spheroids, which explains the small ∆σ. These spheroids
were exposed to multiple multi-aggregate compressions:
five or six aggregates compressed twice. CHO aggregates
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Fig. 4: Scanning electron microscopy images of CHO (left) and
HUSMC (right) cell aggregate surfaces. The berry-like shape
of many of the CHO cells reveals limited adhesion between
surface and subsurface cells. The flattened shape of HUSMCs
implies that they strongly adhere to subsurface cells. These
surface morphologies are consistent with the measured values of
the corresponding surface tensions. The diameter of the shown
aggregates is about 500 micron.

also originated from a single batch, but compressions
were performed on both single and multiple (two to five)
aggregates, resulting in error similar to that of W-O and
W-T. For HUSMC four different batches of aggregates
were used and, due to the large forces needed, only single
aggregate compressions were performed. This may explain
the relatively large error (∼ 20%). The above results on
the values of the tensions suggest that multi-aggregate
compressions with aggregates from a single batch is the
most accurate way of experimentally determining σ. In
light of the earlier discussed relationship between tissue
surface tension and the intensity of binding between the
constituent cells, our results suggest that smooth muscle
cells adhere to each other with considerably greater
strength than the other cell types studied here. This
suggestion is further supported by fig. 4. The strong
adhesion between smooth muscle cells may be consistent
with their physiological role. These cells reside within
the walls of hollow organs (e.g. bladder, vasculature)
that are exposed to great mechanical load. Whereas it is
well demonstrated that most of the arterial wall stress is
supported by collagen fibers, it is also known that upon
arterial wall injury, smooth muscle cells quickly migrate
and proliferate at the lesion site. Thus one can hypoth-
esize that, because of their high cohesion (the strongest
that has ever been measured on a tissue or cell type by
tensiometry), they act as a first barrier (or “glue”) to
preserve the physical integrity of the vascular wall.
The fact that the data points {H/2R0,H/2R1} for all

our measurements fall on the universal curve predicted
by eq. (9) (fig. 5) confirms that the multicellular systems
studied here, similarly to water, are incompressible and
provides an additional validation for our method.
In summary, our results convincingly demonstrate that

embryonic tissues or multicellular aggregates composed
of embryonic cells (model tissues) can be characterized
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Fig. 5: Testing incompressibility through the universal function
given in eq. (9) (solid curve) to assess the incompressibility of
the (a) liquid and (b) tissue and multicellular spheroids used
in the compression measurements.

in terms of well-defined apparent surface tension that
can reproducibly be measured. The biological relevance
of these tensions is that they can be used to account
for observed morphogenetic tissue configurations as well
as quantitatively related to molecular parameters that
are difficult to evaluate by other methods. The compres-
sion plate tensiometry combined with the solution of the
Laplace equation presented here provides a novel, reli-
able and accurate way to determine interfacial tensions in
cases where most classical techniques fail (such as strongly
viscous or mutually buoyant liquids) and, to our knowl-
edge, the only method applicable to tissues.
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