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 1. Introduction 

1.1 Motivation 

Proteins are one of the most important molecules in life. They play a variety of roles 

depending on their types including structural proteins, catalytic proteins, storage and 

transport proteins, regulatory proteins, immune system proteins, signaling proteins, and 

so on. A protein is a sequence of amino acids that are linked by peptide bonds to form a 

poly-peptide chain called its primary structure.  Short runs of these amino acids form 

regular structures called secondary structures. There are three types of secondary 

structures, i.e., Helices, Strands, and Coils. The secondary structure elements are packed 

together into compact tertiary structure of the protein. Sometimes multiple tertiary 

structure elements from different poly-peptide chains are packed into a complex called 

quaternary structure. Various levels of protein structures are illustrated in Figure 1.1.  

The shape and the function of a protein are related. For example, the structure of 

hemoglobin with four poly-peptide chains allows it bind and transport oxygen; collagen 

in its triple helix confirmation has high tensile strength, making it suitable for connecting 

tissue; insulin fits in spaces like a key in a keyhole, by which it controls the sugar levels. 

Therefore, the structure of a protein is essential for understanding its function at the 

molecular level. Anfinsen [Anfinsen et al., 1961] discovered that all information required 

for a protein to fold in to a unique confirmation, in a given environment, is fully encoded 

in its sequence. Theoretically, a given protein sequence with 100 amino acids could fold 

into any of its 10020 (there are 20 naturally occurring amino acids) possible 



conformations. However, only a few hundred to few thousand folds are observed in 

nature [Levinthal, 1968]. Lot of research [Li and Sheraga, 1987; Bowie and Eisenberg, 

1991; Ring and Cohen, 1993; Simmons et al, 1997; Bystroff and Baker, 1999; Inbar et al, 

2003; Chikenji et al, 2003; Lee et al, 2004; Ginalski et al, 2005; Moult 2005; Moult, 

2006; Baker, 2006] was put into understanding the sequence-structure relationship.  

 

Figure 1.1: Protein structure hierarchy. The illustrated protein is an arsenate reductase from the species Archaeoglobus 

(PDB code 1Y1L). 

 

The ability to determine/predict the structures of proteins from their amino acid 

sequences is of central importance to contemporary molecular biology. Traditionally, 

protein structures are solved using the X-ray crystallography or NMR methods. It can 
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take months or even years to solve one structure, which can cost hundreds of thousands 

of dollars. An alternative approach for protein structure solution is through computational 

prediction. The key advantages of computational methods are their speed and cost – the 

solution time can be reduced to hours or even minutes with little cost. Although current 

prediction methods can often provide useful structural information, they are unable to 

consistently produce structures of comparable quality to those produced by experimental 

methods. Protein structure prediction remains one of the most important and challenging 

problems in computational biology [Ginalski et al., 2005; Moult, 2005; Aloy et al., 2005; 

Dunbrack, 2006; Ginalski, 2006]. 

Research in protein structure prediction is especially timely because of rapid 

advancements being made in the Human Genome Project and other genome sequencing 

projects.  These efforts are devoted to sequence DNA fragments, i.e., to determine the 

order of nucleic acids therein.  The sequence largely consists of a set of blueprints for 

proteins.  Once the sequence of a gene is known, the amino acid sequence for the protein 

coded by that gene can be annotated.  Various genome projects have produced millions of 

new proteins, whose structures are unknown experimentally but could be predicted 

computationally. The ability to predict protein structure has a proven impact on 

pharmaceutical and biotechnological research. The 3D structure of protein holds the key 

in understanding its biological function at the molecular level. Knowledge of protein 

structure also allows researchers to identify and characterize disease targets and provides 

a rational approach to drug design. For example, effective drugs were derived to target 

the AIDS virus based on the structure of HIV protease [Kitchen et al., 2004]. 
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1.2 Novel Framework for Protein Structure Prediction 

In this dissertation, we present a novel framework we developed that can be used to 

predict many aspects of protein structure. Our framework is a suite of programs that 

perform general tasks, whose output will be used by other programs to predict specific 

aspects of protein structures. We have used the framework successfully in three 

applications, two of which have the state-of-the-art performance, i.e., protein secondary 

structure prediction and protein solvent accessibility prediction. The other application 

with great potential and some promising results is protein tertiary structure prediction. 

We expect that the same frame-work can be used for contact map prediction.  

The role of our framework can be briefly explained in the following phrase “fast 

and efficient remote compatible fragment finder and assembler for a given sequence to 

infer structural information”. Like the phrase suggests, given a query protein sequence, 

our application retrieves compatible fragments that are similar to the sub-sequences of the 

query protein from the database of proteins, whose structures were determined 

experimentally. This framework will enable the applications to avoid time consuming 

systematic search in the database for homologous fragments. It relies on high-speed 

heuristic based algorithms to retrieve the compatible fragments from large sequence 

databases.  The applications use these compatible fragments to predict specific structural 

aspects of proteins. These fragments will be used to predict the features of the protein for 

which there are no sequence level homologs in the database of known protein structures. 

The framework has parsers to fetch all the available structural information for the 

compatible fragments. The structural information will allow the applications to use as 
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much information as possible from the database of protein structures.  The framework 

also retrieves the statistical significance of the sequence alignment that produced the 

compatible fragment. In addition to the compatible fragments, the framework also has 

parsers to retrieve the sequence profile information of the query sequence. The sequence 

profile captures the evolutionary history of the sequence and this information was proved 

to boost to performance of many bioinformatics applications, including the structural 

applications.  

All the programs that are designed to use our framework have some application-

specific components like the fundamental algorithm of the specific application, protein 

sequence databases used, scoring schemes and the benchmark datasets for comparing the 

application’s performance with existing methods. 

1.3 Organization 

In Chapter 2, we explain our framework in detail. Specifically, we discuss the need for 

such a framework, the analysis that lead to discovery of optimal parameters, the 

components of the framework and the information produced by our framework. In 

Chapter 3, we explain the application of our framework for protein secondary structure 

prediction. We explain the fundamental concepts of protein secondary structure, the need 

for a method, our algorithm, results that include the performance comparison with 

existing methods.  In Chapter 4, we describe application of our framework for protein 

solvent accessibility prediction. We elucidate the deficiencies in the existing method and 

how our method overcomes such deficiencies. In Chapter 5, we introduce a novel tertiary 

structure prediction method, based on our framework. We explain the novel formulation 
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of our method for protein tertiary structure prediction and explain how our method 

overcomes most of the problems in the existing methods. In Chapter 6, the dissertation is 

concluded and directions for possible future work are suggested.   
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2. A Novel Framework for Protein Structure Prediction 

2.1 Motivation 

For proteins that have close sequence level homologs in the database of proteins with 

known structures such as Protein Data Bank (PDB) [Berman et al., 2000], almost all 

aspects of the structure can be predicted very reliably, including the secondary and 

tertiary structure. On the other hand, most proteins do not share significant sequence 

similarity with any other sequences that have their three-dimensional structures 

determined experimentally. Predicting structural aspects of such proteins is a challenging 

and unsolved problem [Ginalski et al., 2005; Moult, 2005; Aloy et al., 2005].  

Specifically, many existing methods for protein secondary structure and solvent 

accessibility prediction rely on the position specific scoring matrix (PSSM) [Altschul et 

al., 1997] alone (more details on PSSM below in this chapter). For the sequences that 

have homologs in the database of known sequences such as nr (a large nucleotide 

database available through NCBI at http://www.ncbi.nlm.nih.gov. The name nr is derived 

from "non-redundant", but this is historical only, because this database is no longer non-

redundant), the profile is well-defined. Otherwise, the profile is not well-defined and the 

predictions are unreliable [Geourjon and Deleage, 1994; Salamov and Solovyev, 1995; 

Adamczak et al., 2004]. Relying on profile alone means inefficient use of the structural 

information in the PDB. These methods predict the structural features of proteins without 

using available structural information. We want to answer the following: can the methods 



  8

that predict the local structural features of the proteins take advantage of the structural 

information in conjuction with the sequence profile information? If yes, what kind of 

structural features are important? If the structural information is incorporated into the 

prediction system, what is extent of improvement?  

In case of tertiary structure prediction, on one extreme, ab initio [Li and Sheraga, 

1987; Pedersen and Moult, 1997] methods predict the structure of a protein from first 

principles, using neither structural nor profile information. Ab initio methods demand 

huge computing power and the results are generally unreliable.  On the other extreme, 

homology modeling methods [Bowie and Eisenberg, 1991; Ring and Cohen 1993; 

Chivian and Baker, 2006] rely on close homologs. In absence of close homologs, these 

methods fail. Mini-threading [Simmons et al, 1997; Bystroff and Baker, 1999; Inbar et al, 

2003; Chikenji et al, 2003; Lee et al, 2004] methods are a compromise between these two 

methods, where the structure of the query protein is predicted by assembling similar 

fragments. Existing methods that use this approach rely on slow systematic search of the 

fragments in the database. Is there a computationally efficient and faster way to search 

for similar fragments than systematic database search? Can we use the available 

structural information better than the existing methods?   

In the light of above questions, we propose a framework that can do the following 

tasks: For a given query protein sequence, 

1) quickly search for similar fragments and fetch all the available structural 

information of these fragments; 
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2) generate profile information and parse it into easily usable information by 

applications; 

3) perform above tasks using minimum computing resources (CPU and RAM); 

4) help build the applications that bridge the gap between various methods that rely 

on only one type of information (either profile or structure). 

2.2 BLAST programs 

The problem of finding common subsequence of two strings is a challenging. This 

problem was effectively tackled by the dynamic programming approach.  The generalized 

form the problem, finding a common subsequence (or approximate substring) of many 

strings, however, is a bigger challenge that dynamic programming cannot solve 

efficiently. Several programs were written to address the problem. The development of 

the Basic Local Alignment and Sequencing Tool (BLAST) [Altschul et al, 1990] and 

Position Iterated BLAST (PSI-BLAST) [Altschul et al, 1997] has revolutionized several 

areas in bioinformatics.  

The BLAST program is widely used tool for searching protein and DNA 

databases for sequence similarities. It is a heuristic based, efficient algorithm that 

performs approximate sequence alignments to search for fragments in the database 

quickly. It emphasizes regions of local alignment to detect relationships among sequences 

which share only isolated regions of similarity.  The sequence alignments of various 

lengths generated by BLAST are accompanied by various statistics that include sequence 

similarity, percentage of identical amino acids in the alignment region, alignment length, 

raw and scaled scores of alignment and finally the expectation value (E-value). E-value is 
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a statistical significance measure that indicates the number of different alignments with 

scores as good as or better than S that are expected to occur in a database search by 

chance. The lower the E-value, the significant the alignment.  

PSI-BLAST is an iterative search using the BLAST algorithm. A profile is built 

after the initial search, which is then used in subsequent searches. The process may be 

repeated, if desired with new sequences found in each cycle used to refine the profile. 

Profile or PSSM of a protein represents the position-dependent amino acid distribution 

derived from the multiple sequence alignments. An amino acid at a particular position 

that is highly conserved receives a higher score than one that is less conserved at that 

position. A protein of length l has a PSSM of dimension lx20. The PSSM gives the log-

odds score for finding a particular matching amino acid in a target sequence. 

           For a given query sequence, we first construct the profile of the query sequence 

using PSI-BLAST and the nr database. We then use the generated profile to perform a 

profile-sequence alignment to search for homologous fragments. The multiple sequence 

alignment derived profile incorporates evolutionary information into the search process. 

This information will make the search process more sensitive and return remote similar 

fragments. 

2.2.1 Issues to consider 

The BLAST package from NCBI (http://www.ncbi.nlm.nih.gov) is a large (approximately 

90,000 lines) suite of programs with many options to fine tune the behavior of the 

program.  Some of the issues that need to be addressed are: 
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1. What mutation matrix is the best for PSI-BLAST and BLAST, respectively? 

2. How many iterations of PSI-BLAST are the best to produce the PSSM? 

3. What is the best E-value threshold for PSI-BLAST to produce the PSSM? 

4. Can we guarantee a good coverage of hits throughout the length of sequence? 

5. How much information is there in these hits? Can we estimate the secondary 

structure identity in the alignment region? Can we estimate the mean absolute 

error of the solvent accessibility in the alignment region? How similar are tertiary 

structures in the alignment region? 

2.2.2 Large-scale experiments to discover parameters 

In order to address the issues discussed above, Tran HN Nguyen, a graduate student in 

our laboratory has helped us in conducting large-scale experiments to discover the 

optimal parameters and to estimate the upper bounds of the information contained in the 

similar fragments. We need the following components for our experiments: BLAST suite 

of programs, a large database of sequences to build a profile and a database of proteins 

with known structures.   

We experimented with BLAST suite versions 2.2.10, 2.2.11 and 2.2.12 

(ftp://ftp.ncbi.nlm.nih.gov/blast/executables).  We used the nr database for building the 

profile. We need a representative protein set (RPS) to search for the similar fragments. 

For this, we used the March 2006 release of PDBSelect [Hobohm and Sander, 1994] 

database. This database consists of representative proteins such that the sequence identity 

between any two proteins in the database is not more than 25%. Initially, the database has 

3080 chains. This database was filtered to select high-quality structures. In particular, 
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only structures that are generated using the X-ray crystallography method with a 

resolution of 3 Å or less were selected. Of these, proteins with incomplete backbone 

atoms were discarded. Proteins that are shorter than 40 residues were also removed. 

Furthermore, if less than 90% of the protein residues are composed of regular amino 

acids, they are discarded too. Finally, the remaining 1998 proteins after the filtering 

process constitute our RPS. We use the following procedure to generate hits: 

For i = 1 to 1998 

1. Split the RPS in to two files. The first file contains the ith sequence and is 

used as the query sequence. The second file contains the remaining 1998 

sequences and is used as the database of representative proteins. 

2. Generate a BLAST-compatible search database for file containing the 

representative proteins, using the ‘formatdb’ program in the BLAST suite.  

3. Build the profile of the query sequence using the PSI-BLAST program 

and the nr database. 

4. Use the generated profile to perform profile-sequence alignment to search 

for similar fragments, using PSI-BLAST the second time. 

5. Parse the output of the PSI-BLAST to collect the hits and statistics like 

alignment length, percentage sequence similarity, percentage sequence 

identity, raw scores and E-value. 

6. For the hit fragments, get the following structural information: secondary 

structures, Φ/Ψ angles, solvent accessibility and Cartesian coordinates.  

End For 
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            The following parameters were employed to generate the profile: j(number of 

iterations to construct the profile) = 3, e(expectation value threshold) = 0.001, and 

M(scoring matrix) = BLOSUM90. We use the BLOSUM90 substitution matrix as we 

want only the hit fragments that are close to the subsequences of the query protein to 

contribute to the PSSM being generated. When the profile of the query protein is used to 

search for the similar fragments in RPS by running the PSI-BLAST the second time, the 

threshold value of e was set to 11,000 when searching the RPS. The selection of the 

threshold is based on two considerations. On one hand, lower threshold for the E-value 

will result in few, highly significant hits. On the other hand, a higher threshold leads to a 

larger number of hits that include both truly homologous fragments and noise from the 

database. Too much noise will lead to decreased prediction accuracy [Bondugula and Xu, 

2007]. Further in the chapter, we will discuss the effect of varying these parameters. The 

structural information of the hit fragments is obtained from the DSSP [Kabsch and 

Sander, 1983] files of the protein in the RPS. The DSSP standard of eight secondary 

structures were reduced to the CASP standard of three-state secondary structures as 

follows: {H, G, I}→Helix, {E, B}→Strand, and {C, T, S}→Coil. 

The above procedure resulted in 1,411,333 hit fragments (excluding the hits that 

are shorter than 3 residues in length). We analyzed these hits and generated various 

distributions. The distribution of hits of various lengths is presented in Figure 2.1. The 

average number of hits per protein is 680. The average length of hits is 18.26 residues 

with 14 residues as median hit length.  Next, we analyzed the distribution of the statistical 

significance (E-values) of the hits. The distribution is presented in Figure 2.2. The hits 



represented by the left most bars have high E-values, therefore low significance. The 

rightmost bars represent the most significant hits, which are highly informative. We now 

proceed to distributions of the structural information. First, we examine the distribution 

of hits with various secondary structure similarity percentages in the alignment regions.  

The percentage similarity is calculated using the following formula: 

100
lengthalignment 

structuresecondary  same with residues of no.similarity structuresecondary ×= .  (2.1) 

It can be noticed that hits having almost all percentages of similarities can be found. We 

present the actual estimations further in the chapter.  Second, we examine the dihedral 

angle deviation distribution. Figures 2.4 and 2.5 contain Φ angle and Ψ angle 

distributions, respectively. We used the following formulae to calculate the dihedral 

angle deviations:  

lengthalignment

lengthalignment

hitquery∑ Φ−Φ
=ΔΦ 1 ,      (2.2)  

lengthalignment

lengthalignment

hitquery∑ Ψ−Ψ
=ΔΨ 1 .      (2.3)  

It can be noticed from these distributions that most of hits have Φ/Ψ deviations of about 

50 and also that the φ angle has a narrower distribution. Next, we move on to present the 

distribution of mean average error (MAE) of the relative solvent accessibility (RSA). The 

RSA can be calculated by dividing the absolute solvent accessibility returned by the 

DSSP with their maximum solvent accessibility. We use the maximum solvent 

accessibilities from [Rost and Sander, 1994]. The MAE is calculated as follows: 
  14



lengthalignment

RSARSA
MAE

lengthalignment

hitquery∑ −
= 1 .       (2.4)  

The distributions of MAE are presented in Figure 2.6. Finally, we present the distribution 

of root mean square deviation (RMSD) between the protein fragments in the alignment 

regions.  The RMSD was calculated using the VMD program 

(http://www.ks.uiuc.edu/Research/vmd). The distribution is presented in Figure 2.7.  

 

 

Figure 2.1: The distribution of hits of various lengths.  
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Figure 2.2: The distribution of E-values of the hits. The hits represented by the left most bars have high E-values, 

therefore low significance. The rightmost bars represent the most significant hits, which are highly informative. 
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Figure 2.3: The distribution of hits with various secondary structure similarity percentages.  The hits span all regions of 

similarity percentages. 
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Figure 2.4: Distribution of Φ angle deviation across all hits. 

 

 

Figure 2.5: The distribution of Ψ angle deviation across all hits.  
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Figure 2.6: The distribution of mean absolute difference of the solvent accessibilities between the query fragments and 

the hits.  

 

 

Figure 2.7: The distribution of RMSD values between the query fragments and the hits.  
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While the distributions presented so far give us estimates about some specific structural 

aspect, we now examine the number of alignments found in each position of the query 

sequence. The sequences in the RPS vary in length from 50 amino acids to more than 

1,300 amino acids. In order to dissociate length as a variable, we present the results using 

normalized position. The plot is given in the Figure 2.8. From this plot, we can observe 

that uniform number of hits can be obtained for about 80% of the sequence length, with 

reduced number of hits in the termini of the protein. 

 

 

Figure 2.8: The plot depicts the number of alignments found in each position, normalized by the length of the protein. 

About 80% of the protein sequences have a uniform coverage of alignments. SD stands for standard deviation at each 

position. 

 

We now present some plots that give us specific estimates of various structural features, 

for a hit with a given E-value. We also study the effect of various parameters for the PSI-
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BLAST program. First, we present the plot (Figure 2.9) that gives us an estimated 

secondary structure similarity and MAE of the solvent accessibility of a given fragment 

with a certain E-value. The secondary structure similarity on the vertical axis on the left 

is plotted with negative logarithm of E-value on the horizontal axis. The mean absolute 

error of the solvent accessibility is plotted using the vertical axis on the right and the log-

transformed E-value on the horizontal axis. On average, for hits on the higher end of 

statistical significance, the secondary structure similarity is 80% and the MAE of solvent 

accessibility is 0.18. These numbers are helpful in estimating the accuracies of the 

secondary structure and solvent accessibility predictions. We will see that the 

applications based on our framework reached or exceeded these estimates. Next, we 

present a plot that is useful to estimate the dihedral angle (Φ/Ψ) deviation, given a 

fragment with an E-value in Figure 2.10. It can be noticed that in general, the Φ angle has 

lower deviation than the Ψ angle. We now proceed to present the plot to estimate RMSD 

between the fragments in the alignment region. This plot is different from other feature 

plots, as the RMSD also depends on the alignment length (hits of same statistical 

significance have different RMSD for alignments of different lengths). For this purpose, 

we first found the minimum alignment length that shows correlation with the E-value. 

We found that alignments with length of 8 or more show clear correlation between 

RMSD and the E-value. We then divided all hits into bins of different lengths and plotted 

the relationship. The plots are depicted in Figure 2.11. This information is useful in 

protein tertiary structure prediction. These plots suggest us excluding fragments that are 



too small to contribute usefully to the prediction system, there by increasing the speed 

and efficiency.  

 

 

 

Figure 2.9: The plot showing the relationship between the log transformed E-value, secondary structure similarity and 

the mean absolute error of the solvent accessibility. The secondary structure similarity on the vertical axis on the left is 

plotted with negative logarithm of E-value on the horizontal axis. The mean absolute error of the solvent accessibility is 

plotted using the vertical axis on the right and the log-transformed E-value on the horizontal axis. SD stands for 

standard deviation in each bin. 

 

  22



 

Figure 2.10: The mean deviation of Φ and Ψ angles in the alignment regions are plotted against the negative logarithm 

of E-value. 

 

Figure 2.11: The plots depicting the relationship between the log-transformed E-value and the RMSD of the structural 

alignment for a BLAST hit. The hits of alignment length less than 8 were found to have no correlation between RMSD 

and the E-value.   
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We now discuss the effect of parameters of the PSI-BLAST algorithm. 

Specifically, we will discuss the effect of substitution matrices and the number of 

iterations of PSI-BLAST to run for building the profile. A substitution matrix contains 

the scores for amino acid substitutions. The score is proportional to the probability that 

amino acid i mutates into amino acid j for all pairs of amino acids. These matrices are 

constructed by performing statistical analysis of large number of sequences. The number 

of sequences is large enough to be statistically significant and the resulting matrices 

reflect the probabilities of mutations occurring through evolution. Two types of 

substitution matrices are used by the BLAST program, i.e., the PAM [Dayhoff et al., 

1978] and BLOSUM [Henikoff and Henikoff, 1992] matrices. PAM (Percent Accepted 

Mutation) substitution matrix is a look-up table in which scores for each amino acid 

substitution have been calculated based on the frequency of that substitution in closely 

related proteins that have experienced a certain amount of evolutionary divergence. 

BLOSUM stands for Block Substitution Matrix. It is a scoring matrix in which the 

substitution values are derived from the frequencies of substitutions in blocks of local 

alignments in related proteins. There are different BLOSUM and PAM matrices. We 

choose three matrices from each of PAM and BLOSUM matrices that represent the 

spectrum of these matrices. In PAM, we experimented with PAM250 (liberal of all PAM 

matrices, that allows for approximate alignments), PAM70 (facilitates alignments of 

intermediate homology) and PAM30 (facilitates exact alignments). In BLOSUM, we 

experimented with BLOSUM45 (allows liberal local alignments), BLOSUM62 (the most 

widely used substitution matrix, that produces intermediate local alignments) and finally 
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BLOSUM90 (favors exact local alignments). We present the effect of the substitution 

matrix on the secondary structure similarity. The plots are depicted in Figure 2.12.  We 

next changed the number of iterations used to build the profile by PSI-BLAST. Once 

again, the effect of this parameter is studied on the secondary structure similarity. The 

plots are illustrated in Figure 2.13. It is not obvious from these plots which PSI-BLAST 

parameters are the best. We went further to analyze the number of hits in different bins of 

E-value using each of the parameter. As the previous plots showed, the lower the E-

value, the more informative the alignments are. We therefore examined the number of 

hits in the more informative regions. The distribution of hits in various bins with the 

substitution matrix is presented in Table 2.1. Clearly, the hits generated with 

BLOSUM90 have more hits in the significant bins. The distribution of hits in various 

bins with different number of iterations to build the profile is presented in Table 2.2. 

Looking at both the quality (significance) and quantity (number) of the hits in various 

regions, the optimal number of iterations to build the profile is 3.  

 



 

Figure 2.12: The effect of the various substitution matrices on the secondary structure similarity 

 

 

Figure 2.13: The effect of the number of iterations to build the profile on the secondary structure similarity 
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Table 2.1: The distribution of hits in various bins of significance for different substitution matrices 

 

-log(E-value) BLOSUM45 BLOSUM62 BLOSUM90 PAM250 PAM70 PAM30 

(-∞, -3) 393,045 516,570 617,607 339,111 785,776 872,770 

[-3, -2) 458,752 480,120 484,585 427,839 484,131 493,242 

[-2, -1) 165,292 220,967 264,290 170,830 361,926 382,662 

[-1, 0) 22,225 30,157 36,237 24,757 53,474 55,071 

[0, 1) 3,142 4,151 4,876 3,563 7,373 6,953 

[1, 2) 774 922 980 795 1,282 1,140 

[2, 3) 329 389 432 320 381 307 

[3, ∞) 2,150 2,384 2,345 1,925 2,094 1,453 

Total 1,045,709 1,255,660 1,411,352 969,140 1,696,437 1,813,598 

 

 

Table 2.2: The distribution of hits in various bins of significance for different number of iterations to build the profile 

 

-log(E-value) j = 2 j = 3 j = 4 j = 5 

(-∞, -3) 688,746 617,607 598,175 591,848 

[-3, -2) 490,830 484,585 484,189 483,400 

[-2, -1) 282,166 264,290 256,946 254,565 

[-1, 0) 37,050 36,237 35,627 35,331 

[0, 1) 4,733 4,876 4,825 4,949 

[1, 2) 883 980 1,070 1,096 

[2, 3) 307 432 425 447 

[3, ∞) 1,619 2,345 2,699 2,815 

Total 1,506,334 1,411,352 1,383,956 1,374,451 

2.3 Our Framework 

The qualitative and quantitative analysis presented in the previous section indicates that 

the PSI-BLAST program is a good choice for searching for homologous fragments for a 

given query sequence. We were also able to experimentally discover optimal parameters 
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for running the PSI-BLAST programs. With these results in hand, we implemented a 

suite of programs to retrieve the compatible fragments and the associated structural 

information for a given protein sequence.  

The profile of the query protein is first calculated using nr database with the PSI-

BLAST program. The following parameters are employed to generate the profile: j=3, e= 

0.001, and M=BLOSUM90. The other parameters are left to their default values. The 

profile is then used for searching the representative protein sequence database for 

compatible fragments. During profile-sequence alignment, the threshold value of e was 

set to 11,000 when searching the RPS. The main components of the framework are three 

programs and three databases. These programs, in order of their usage are PSI-BLAST, 

‘BLAST output parser’ and the ‘DSSP parser’. The output (default output format) of the 

PSI-BLAST program is processed by the ‘BLAST output parser’. For all the hit 

fragments, the program collects the alignment statistics and structural information by 

calling ‘DSSP parser’. The ‘DSSP parser’ program collects the information from the 

DSSP file of the hits, at the request of ‘BLAST output parser’. It also takes care of the 

mapping of eight secondary structure classes to three secondary structure classes and also 

the calculating the relative solvent accessibilities from their absolute solvent 

accessibilities. The PSI-BLAST program is the most important and most time consuming 

of all the three programs. On average, PSI-BLAST takes about 0.55 second/residue 

[Bondugula and Xu, 2007] and the remaining part takes as little as 3 seconds.   All of 

these programs are implemented in C/C++.  Given a query sequence, the framework 

outputs the following information into plain text files: 
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1. profile 

2. homologous sequence fragments 

3. alignment length 

4. alignment score 

5. amino acid identity percentage in the alignment region 

6. amino acid similarity percentage in the alignment region 

7. raw scores 

8. E-values 

9. secondary structures of the homologous fragments 

10. relative solvent accessibilities 

11. dihedral angles (Φ and Ψ) 

12. Cartesian co-ordinates 

 

The block diagram of our framework is depicted in Figure 2.14.  

 



 

Figure 2.14: Our framework for protein structure prediction. The profile of the query protein is first calculated using nr 

database with the PSI-BLAST program. The profile is then used for searching the representative protein sequence 

database for compatible fragments. These fragments are parsed and the structural information of these fragments is 

collected from their respective DSSP files. The framework contains three programs (grey) and three databases (blue). 

  30



  31

 

3. Application of Our Framework for Protein Secondary 

Structure Prediction 

3.1 Introduction 

Protein secondary structure is defined by the conformation of protein backbone. The 

backbone of a protein or peptide consists of repeated units with the amide nitrogen N(H), 

the carbon Cα, and the carbonyl carbon C(═O). An α-helix is a major secondary 

structure, which is almost always right handed as found in the threads of standard wood 

screw. A helix is formed when the hydrogen in the N─H of the nth amino acid makes a 

hydrogen bond with oxygen in the C═O of the (n+4)th amino acid. This pattern of 

repeated bonding results in a stable α-helix. On average, there are 3.6 amino acids per 

turn in an α-helix. Other varieties of helices exist with slightly more or slightly less 

amino acids per turn. The schematics of an α-helix is illustrated in Figure 3.1.  

The second major type of secondary structure is β-strand (see Figure 3.1). In a β-

strand, usually 5-10 consecutive amino acids are in almost fully extended conformation. 

When more than one β-strand lie adjacent in space, a pleated β-sheet is formed. These are 

held by the hydrogen bonding between C═O groups of one strand and the N─H of the 

adjacent strand. If all the strands in a β-sheet run in the same biochemical direction from 

the start (amino terminal) to the end (carboxy terminal) of the protein, parallel β-sheets 

are formed. If alternating strands in the β-sheet run in opposite directions, anti-parallel 

sheets are formed. 



 

Figure 3.1: Protein secondary structure. A α-helix is formed when hydrogen bonds (blue) are formed between the 

hydrogen of N-H in residue ‘n’ and  the oxygen of C=O of the residue ‘n+4’.  The β-sheets are held by the hydrogen 

bonds between the hydrogen atoms of N-H of one strand and the oxygen atoms of C=O of an adjacent strand in space. 

 

In a folded protein, each amino acid adopts one of the following eight secondary 

structure classes: H (α-helix), G (310-helix), I (π-helix), B (isolated β-bridge), E (β-

strand), S (bend), T (turn), and C (rest). Generally, researchers focus on a simplified 

version of the problem that contains only three secondary structure classes (see Chapter 

2). Given an amino acid sequence, the aim of protein secondary structure prediction is to 

computationally assign each residue into one of the three secondary structure classes. An 

example is illustrated in Figure 3.1. 
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Figure 3.2: A protein fragment and its corresponding secondary structure. 

 

Secondary structure prediction plays an important role in characterizing protein 

structures and providing a basis for tertiary structure prediction [Rost, 2001; Meiler and 

Baker, 2003]. The secondary structure of the protein provides the computational methods 

with constraints that reduce the search space greatly and therefore making the prediction 

more efficient and faster. Predicting the secondary structure of the protein before 

predicting the tertiary one mimics the natural order of events in the folding pathway, i.e., 

the secondary structure formation is followed by folding the protein into a three-

dimensional compact structure. Therefore, the study of secondary structure prediction is a 

crucial part in protein three-dimensional structure prediction. 

 

3.2 Secondary Structure Prediction  

MUPRED [Bondugula and Xu, 2007] is the secondary predicted system that is based on 

our framework. It mainly consists of a neural network that uses two types of features. The 

first type of features is class membership values at each residue position generated by 

fuzzy k-nearest neighbor (FKNN) algorithm, a generalized form of KNN method, while 

the second type of features is normalized PSSM.  The output of our framework provides 

the necessary information for MUPRED for feature generation. In the following sub-
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sections, we explain the secondary structure specific components that are part of 

MUPRED in addition to our framework. 

3.2.1 Fundamental Algorithm 

Currently, the most successful methods depend on machine learning techniques such as 

neural networks [Holly and Karplus, 1989; Rost and Sander, 1994; Chandonia and 

Karplus 2005; Jones, 1999; Baldi et al., 1999], nearest neighbor methods [Salamov and 

Solovyev, 1995; Salamov and Solovyev, 1997; Bondugula et al., 2005] and hidden 

Markov models [Karplus et al., 1998].  

In neural network methods, each amino acid of the query sequence is represented 

either by a 21-dimension binary vector such that only the dimension corresponding to the 

current amino acid is one and the rest are zero. Recent methods incorporate multiple 

sequence alignment information by using the column corresponding to the current amino 

acid in the PSI-BLAST profile. A sliding window scheme that includes neighbors on the 

both sides is used to classify each amino acid. Basic methods use a single feed forward 

networks, while more advance methods use multi-stage neural networks. In the nearest 

neighbor methods, the PSSM of the query protein is first divided into rectangular blocks, 

using a sliding window scheme. Each block represents an amino acid in the query 

protein. The dimension of each block is 21xW, where W is dependent on the number of 

neighbors to consider on each side (if n neighbors are considered, W = 2n+1) and the 21 

rows have the same interpretation as in PSSM, i.e., each position represents the 

propensity of amino acids to be found at that particular position.  The position weight is 

such that the center position receives the highest weight and the weight gradually 
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decreases on each side of the center position. In order to predict the class of each amino 

acid, k blocks that represent the amino acids with known solvent accessibilities are 

selected form the database. These k blocks are selected such that the sum of the position-

weighted, element wise differences of the elements in the block (distance measure) is 

lowest of all other blocks. Using the classes of neighbors and their distances from the 

block representing the current residue are used to predict the state of the current residue 

using the nearest neighbor algorithms. HMM methods create a hidden Markov model 

from a single target sequence by iteratively finding homologs in a protein database and 

refining the model. A hidden Markov model is a sequence of nodes that correspond to a 

column in a multiple sequence alignment. The three states used by the model are match 

state, insert state and a delete state. Each position has a distribution of bases, as do 

transitions between states. That is, these linear HMMs have position-dependent character 

distributions and position-dependent insertion and deletion gap penalties. The alignment 

of each of a family to a trained model automatically yields a multiple alignment among 

those sequences.  Each sequence can be represented by a series of such states. In many 

ways, these models correspond to profiles. For a given query sequence, the HMM 

methods attempt to find and multiply align a set of homologs and then create an HMM 

from that multiple alignment. The resulting HMM is then used for database search and 

the state of the each residue is predicted based on the matches in the databases.  

Each of these techniques has its own strengths and weaknesses. For example, in 

general, neural networks perform better in case where the complex patterns recognition is 

involved. Similarly, hidden Markov models are good at capturing the first order 



relationships between the various states of the models. K-nearest neighbor (KNN) 

methods are sub-optimal methods and the 1-NN rule is bounded above by no more than 

twice the optimal Bayes error rate [Keller et al., 1985]. Nearest neighbor models are 

simple and transparent models that do not require retraining whenever new data is 

available. On the other hand, the systems based on neural network methods and the 

hidden Markov models perform well if the test data is similar to the training data, 

specifically in the context of protein secondary structure prediction, the systems perform 

well if query protein has homologs in the database [Zhang et al., 1992; Yi & Lander, 

1993], where as some models based on nearest neighbor methods are not limited by 

absence of homologs in the database.  

         Hybrid models provide us with methods to combine the strengths of the individual 

methods and overcome their weaknesses to some extent. In this chapter we introduce a 

hybrid method for protein secondary structure prediction, in which we closely integrate 

the FKNN and the neural network method into the same system to provide a balanced 

prediction for both the queries with homologs in the database and the queries without 

homologs in the database. The server can be accessed by general public at 

http://digbio.missouri.edu/mupred.  

3.2.2 Scoring Scheme 

The compatible fragments returned by our framework are scored using the following 

equation: 

( ){ }Evaluelog7,1maxS 10+=     (3.1) 

  36



  37

The above expression was designed so that it roughly emulates the notion of the 

‘dissimilarity’. Matching fragments whose similarities to the segments of query sequence 

are statistically significant have high expectation values and therefore low scores. 

Similarly, for matching fragments whose similarities are not significant, the scores are 

high.  

3.2.3 Databases 

The RPS described in Chapter 2 was divided into two parts. The first part is used for 

training MUPRED and the second, for testing. The proteins were sorted according to the 

PDB release dates.  We chose the oldest (according to the PDB release dates) 1,000 

proteins for tuning the FKNN algorithm and for training the neural networks. The latest 

200 proteins in this database were used as the first benchmark dataset to test and compare 

the performance of MUPRED with other secondary structure prediction systems. The 

training proteins contained 335,531 residues with 35.14% Helix residues, 23.75% Strand 

residues and 39.43% Coil residues. We used the Astral SCOP [Brenner et al., 2000] 

protein domain database version 1.69 to derive a second protein set for benchmarking 

purposes. Each protein sequence of the original database, which contained 5,457 protein 

domains, was searched for homologs in the training sets of MUPRED and other 

prediction software. If a homolog was found with a statistical significance value (E-

value) of less than or equal to 0.1, the query sequence was discarded from the benchmark 

set. Similar to earlier dataset, protein domain sequences that are shorter than 40 residues 

were removed and sequences that are composed of less than 90% of regular amino acids 

are discarded too. After this filtration process, only 1,934 domain sequences remained in 
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the second benchmarking protein set. The authors preferred the above method to evaluate 

and compare the performance of MUPRED with existing software to standard cross-

validation schemes for the following reason: the earlier methods did not have access to 

large numbers of proteins, both for building the PSSM and the training data sets.   

3.2.4 Method  

MUPRED incorporates PSSM of the query protein for secondary structure prediction 

through PSI-BLAST and the nr database. The PSSM returned by our framework is used 

to generate the first set of features. We converted the PSSMs into vectors that are suitable 

for training the neural networks. First, these values were scaled into [0 1] using the 

maximum and minimum in the PSSMs of all the proteins in the database. Each position 

in the query sequence is represented by a 20-dimensional vector representing the 

likelihood of each amino acid occurring at that position. An additional bit is used to mark 

the termini of the protein, resulting in a 21-dimensional vector per position. These scaled 

PSSM values are converted into vectors suitable for neural networks using the sliding 

window scheme, i.e., the vector that represents the profile values of the current residue is 

flanked by its neighbors on the both sides. The rationale for this process is that the 

secondary structure of an amino acid is not only based on the current amino acid, but also 

on its neighbors. The number of residues that will be flanked on each side is determined 

by the window size W. The authors experimentally found that W= 13 worked the best. 

Therefore, the first feature set consists of 21x13 = 273 features per residue. 

          The second set of features is generated from the compatible fragments returned by 

our framework.  These fragments are treated as nearest neighbors. The secondary 



structures associated with the fragments are used as the labels of these neighbors. These 

labeled neighbors are then used to calculate the membership value of the current residue 

in three classes. These membership values represent the confidence with which the 

current residue belongs to the three secondary structure classes. Figure 3.3(a) illustrates 

the database fragments for a typical query protein. The highlighted column depicts the 

neighbors using the multiple sequence alignments of the hits with the query protein. The 

secondary structures, E-values and the scores corresponding to the database fragments are 

displayed in Figure 3.3(b), 3.3(c) and 3.3(d) respectively.  

 

 

 

Figure 3.3: Calculation of the membership value of each residue in secondary structure classes. The query protein is 

shown in the top row. (a) Database fragments from the PSI-BLAST matches; (b) corresponding secondary structures of 

the database matches; (c) corresponding expectation value of the hits; (d) scores of the hits calculated from their 

respective expectation values. 

3.2.5 Nearest Neighbor Method 

Given a set of feature vectors X = {x1, x2,…, xn},  xj∈ Rd and their corresponding class 

labels uij, i = 1, 2, …, C the task of the nearest neighbor algorithm is to find the class 
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label of a new vector y, using the labeled data X. In the crisp case, the uij has ‘1’ in only 

one class and ‘0’ every where else, i.e., the constraints uij ∈{0,1} and ∑ for each j, 

hold. By relaxing the first constraint that a feature can have real membership value in [0 

1], we obtain the fuzzy nearest neighbor algorithm. Relaxing the second constraint is also 

possible and it results in possibilistic nearest neighbor algorithm. In the crisp nearest 

neighbor algorithm, given a vector x, the nearest k neighbors are found based on some 

predefined distance metric. The x is assigned to a class to which majority of neighbors 

belong to.  In the current work, we use the FKNN algorithm to predict the secondary 

structure of each residue. The rationale behind the choice of FKNN is explained later in 

the paragraph. 

=

=
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The secondary structure state of each residue can be predicted from class 

membership values of the neighbors with the FKNN algorithm. The following technique 

adopted and modified from [Keller et al., 1985] provides the procedure to calculate the 

membership values of the current residue from the labeled neighbors.  Let 

represent a protein with l residues. Each residue r has k-nearest 

neighbors, i.e., hit fragments that have a residue aligned with the current residue (see 

Figure 3.3). Also, let be the membership in the ith class (

},....,,{ 21 lrrrP =

iju { }CoilstrandHelixi ,,∈ ) of 

the jth neighbor. For each r, the predicted membership value in class i can be calculated 

using the following algorithm: 

ju
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BEGIN 

   Initialize i = 1. 

   DO UNTIL (r assigned membership in all classes) 

      Compute  using:  ( )rui
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      Increment i. 

   END DO UNTIL 

END 

 

It can be noticed from Equation 3.2 that the contribution of each neighbor (hit ) 

in the calculation of membership value of the current residue in each class is determined 

by the score S, which in turn is determined by the significance of the hit retuned by our 

framework. The influence of the score can be controlled by the fuzzifier ‘m’ [Keller et al., 

1985]. If the value of fuzzifier is set to 1.5, the class membership value of the residue is 

proportional to the inverse of the fourth power of score and so on. In this case, we 

experimentally found that m = 1.5 yields the best results.  For each position, there are 

three numbers indicating how much each residue belongs to each of the three secondary 

structure classes according to the FKNN algorithm. Similar to the first feature set, a 

sliding window with W = 11 was used to generate the second feature set. They also 

included an additional bit to mark the end of the protein. This feature set therefore 

consists of vectors that contain11×4 = 44 features per residue. 

jr
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A neural network is used to integrate the information from the normalized profiles 

and the FKNN algorithm. The network is a fully connected feed forward network with 

one hidden layer. The features are fed into the input layer. The hidden layer consists of 

300 units and was experimentally determined. The output layer consists of three nodes, 

one for each of the Helix, Strand and the Coil classes. The final architecture of the 

network is as follows: (273+44)×300×3 (input nodes × hidden nodes × output nodes). 

The values generated by the output nodes are the final class membership values of the 

current residue in each of the three secondary structure classes. We trained 100 networks 

and use the average value of the top four networks to determine the membership values. 

The block diagram of the MUPRED is depicted in Figure 3.4. 

 

 



 

Figure 3.4: The block diagram of the MUPRED protein secondary structure prediction system. The profile of the query 

protein is used to generate two types of features. The first feature set consists of fuzzy class memberships of each 

residue in the three secondary structure classes. The second feature set consists of normalized profile. The features are 

transformed into vectors suitable for neural network training using a sliding-window scheme of window length W. For 

the profile-derived feature-set, W=13 is used. An extra bit is used to mark the termini of each protein. The PSSM 

feature-set, therefore, consists of 13x21=273 features. For the fuzzy memberships, W=11 is used and, similar to the 

PSSM feature set, an extra bit is used to mark the termini of the protein, resulting in 11x4=44 features. The dotted 

separates the components of the system that are contributed by the common framework and the components that are 

specific to protein secondary structure prediction system. 
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The advantage of FKNN over the traditional (crisp) KNN algorithms is that 

residues are assigned a membership value in each class rather than binary decision of 

‘belongs to’ or ‘does not belong to’. Such an assignment allows us to use these 

membership values as (quantitative) strength or confidence with which the current 
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residue belongs to a particular class. These strengths when fed to neural network along 

with the PSSM resulted in better performance when compared with existing methods. In 

the traditional (crisp) KNN, all the neighbors are weighted equally, which is not 

necessarily true in the context of proteins i.e., some protein fragments are more similar to 

the sub-sequences of the query protein than other fragments. This similarity is captured in 

the formulation of expectation value (E-value), which in turn is transformed in to score 

‘S’ in MUPRED.  FKNN was formulated such that these relative distances (score S in 

this case) are weighted while the query vector (current amino acid) is classified (into one 

of the three secondary structure classes).  Another advantage of using FKNN over the 

traditional crisp version is that the membership values of the residues along the sequence 

of the protein show a smooth transition from state to another, accurately representing the 

state transitions in real proteins. The superiority of FKNN over the traditional KNN 

algorithm for protein secondary structure prediction was also demonstrated in earlier 

work that lead to the development of MUPRED [Bondugula et al., 2005]. 

3.3 Results 

There are two popular methods to measure the accuracy of secondary structure prediction 

systems. They are Q-measures [Rost and Sander, 1994a] and Matthew’s correlation co-

efficient [Matthews, 1975]. We used these two measures to evaluate the performance of 

MUPRED and compared it with other existing software. The Q- measures are defined as 

follows:  



     
T
CQ =3 ,         (3.3) 

    
structure

structure
structure T

CQ = ,         (3.4) 

where C is the number of amino acids correctly classified in all three classes, T is the 

total number of amino acids, structure is one of {Helix, Strand, Coil}, CHelix is the 

number of amino acids in Helix configuration that are correctly classified, while THelix is 

the total number of amino acids in the Helix configuration and so on. The Matthew’s 

correlation coefficients are defined as follows: 
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where structure is one of {Helix, Strand, Coil}, TP is the number of positive cases that 

are correctly predicted, TN is the number of negatives that are correctly rejected, FP is 

the number of false positive cases and FN is the number of false negative cases. For 

example, if residue in Helix is correctly predicted as Helix then it is a true positive case. 

If a non-Helix (either Strand or Coil) residue is correctly predicted as a non-Helix, then it 

is the case of true negative. If a Helix residue is predicted as a non-Helix residue, then it 

the case of false negative. Finally, if a non-Helix residue is predicted as Helix residue, it 

is case of false positive. 

We compare the performance of MUPRED with PSIPREDv1 [Jones, 1999] and 

SSPro4 [Baldi et al., 1999]. Both of them use PSSMs and neural networks and were also 
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trained on the training sets that contained similar number of sequences as in training set 

for MUPRED. The performance of the MUPRED version that contained only FKNN 

algorithm (PSSM is used only to search the database) followed by a neural network filter 

is also reported. We present these results in Table 3.1. The prediction accuracy of our 

method on the training set is presented in Table 3.2.  

 

Table 3.1: The performance comparison of various algorithms on the two benchmark sets. 

 

Algorithm Test set Q3 QHelix QStrand QCoil MHelix MStrand MCoil

FKNN+NN B1 73.9% 76.2% 67.2% 76.1% 0.66 0.61 0.54 

MUPRED B1 79.2% 80.9% 72.4% 82.0% 0.74 0.69 0.62 

PSIPREDv1 B1 75.9% 78.4% 68.3% 78.6% 0.70 0.63 0.56 

SSPro4 B1 77.4% 82.7% 66.7% 79.5% 0.73 0.65 0.59 

FKNN+NN B2 76.1% 80.0% 68.2% 76.8% 0.69 0.63 0.57 

MUPRED B2 80.1% 83.9% 72.6% 80.8% 0.75 0.69 0.63 

PSIPREDv1 B2 77.1% 80.2% 68.3% 79.0% 0.72 0.63 0.58 

SSPro4 B2 78.4% 84.4% 67.3% 79.0% 0.74 0.65 0.60 

  

Q3 is the fraction of amino acids whose secondary structures have been accurately predicted in all three classes. QHelix, 

QStrand and QCoil are the fraction of amino acids that are accurately predicted in Helix, Strand and Coil classes 

respectively. Similarly, MHelix, MStrand and MCoil stand for Matthew’s correlation coefficient for Helix, Strand and Coil 

classes respectively. B1- the 200 protein benchmark set derived from the March 2006 release of PDBSelect database. 

B2- the 1934 protein domain benchmark set derived from Astral SCOP database version 1.69. 

 

Table 3.2: The performance of FKNN+NN system and the MUPRED prediction system on the 1798 training protein set. 

 

Algorithm Q3 QHelix QStrand QCoil MHelix MStrand MCoil

FKNN+NN 74.93% 77.45% 68.06% 76.83% 0.68 0.62 0.55 

MUPRED 81.19% 83.04% 74.22% 83.76% 0.77 0.72 0.65 

 



In order to assess the quality of the predictions, we divided the final membership 

values generated by MUPRED for the proteins in the test protein set into bins in each 

class, as shown in the third column of Table 3.3, such that the average probability that the 

given prediction is accurate falls into intervals shown in the fourth column. Depending on 

the final membership values in each class, a confidence score (shown in column 5 of 

Table 3.3) will be assigned to that prediction. This confidence values enable the users to 

identify the regions of the protein for which the prediction is more likely to be accurate. 

For a given class membership value, the probability that the prediction is accurate can be 

looked up using the plot in Figure 3.5 or the values in Table 3.3. For example, if the 

confidence value is 4 for a predicted helix, we know that the probability for this 

prediction to be true is 75%-80%. 

  

 

Figure 3.5: The probability for the prediction of a secondary structure to be accurate vs. class membership value. 
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Table 3.3: Confidence value to assess the quality of a prediction. Column 1: secondary structure class; column 2: number 

of samples that were used to derive the confidence values; column 3: the range of the class membership values to which 

the confidence corresponds to; column 4: the range of probabilities within which the predicted structure is accurate and 

column 5: the output confidence value that will be assigned to the residue. 

 

secondary structure 

class 

number of 

samples 

membership 

values 

probability of accurate 

prediction 

assigned 

confidence 

Helix 301    [0.00 0.417) [0.0 0.3) 0 

 1689 [0.417 0.629) [0.3 0.55) 1 

 823 [0.629 0.707) [0.55 0.65) 2 

 1300 [0.707 0.812) [0.65 0.75) 3 

 762 [0.812 0.872) [0.75 0.85) 4 

 1060 [0.872 0.915) [0.85 0.90) 5 

 2060 [0.915 0.965) [0.90 0.95) 6 

 201 [0.965 0.969) [0.95 0.98) 7 

 2309 [0.969 0.991) [0.98 0.99) 8 

 1176 [0.991 1.000) [0.99 0.996) 9 

Strand 322 [0.00 0.422) [0.0 0.3) 0 

 1206 [0.422 0.590) [0.3 0.55) 1 

 1257 [0.590 0.711) [0.55 0.65) 2 

 58 [0.711 0.717) [0.65 0.75) 3 

 1265    [0.717 0.832) [0.75 0.80) 4 

 2200 [0.832 0.954) [0.80 0.90) 5 

 100 [0.954 0.958) [0.90 0.95) 6 

 700 [0.958 0.976) [0.95 0.96) 7 

 633 [0.976 0.988) [0.96 0.97) 8 

 1218 [0.988 1.000) [0.97 0.985) 9 

Coil 240 [0.00 0.355) [0.0 0.43) 0 

 1688 [0.355 0.501) [0.43 0.50) 1 

 4587 [0.501 0.687) [0.50 0.60) 2 

 877 [0.687 0.717) [0.60 0.70) 3 

 5455    [0.717 0.880) [0.70 0.80) 4 

 2580 [0.880 0.951) [0.80 0.90) 5 

 133 [0.951 0.955) [0.90 0.94) 6 

 200 [0.955 0.963) [0.94 0.975) 7 

 467 [0.963 0.992) [0.975 0.98) 8 

 400 [0.992 1.000) [0.98 1.00) 9 
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The program was written in the ANSI standard compatible C programming 

language. The Windows version of the program was tested on a desktop PC with 3.2 GHz 

Intel Pentium-4 processor and 2 GB RAM. On average, the time required to predict the 

secondary structure was found to be 0.55 sec/residue, including running PSI-BLAST. 

3.4 Summary 

MUPRED, based on our novel framework bridges the gap between the template based 

methods that find alignments between the whole query sequence or its short fragments 

and sequences in the protein structure database PDB and sequence profile based methods 

in which the sequence profile is derived from the similar sequences (typically without 

structural information). Template based methods are successful when sequences similar 

to the query sequence can be found in PDB, but have limited performance otherwise, 

mainly due to lack of using sequence profile information of the query protein. In contrast, 

sequence profile based methods take advantage of the sequence profile information but 

use the structure information in PDB indirectly. MUPRED, using the framework, 

overcomes this limitation by looking for fragments in the database that are similar to the 

segments of the query sequence rather than sequence-level homologs. Integrating these 

two fundamentally different models into a single model enables MUPRED to provide 

balanced predictions for queries with or without homologs in the sequence database. The 

notable feature of MUPRED prediction system is that the accuracy of the prediction 

increases as more and more protein structures become available without retraining or 

retuning. The system also outputs the confidence values for each residue in the sequence, 
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which enables users to determine the regions where the prediction is more likely to be 

correct.  
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4. Application of the Framework for Solvent Accessibility 

Prediction 

4.1 Introduction 

While secondary structure captures some aspects of the protein structure, the solvent 

accessibility (SA) captures different kinds of features. The concept of the SA was 

introduced by Lee and Richards [1971] and may be defined as the extent to which the 

molecules of the solvent can access a residue or an atom of the proteins (Figure 4.1). The 

knowledge of SA of proteins helped to further the understanding of protein structure 

[Chotia, 1976; Janin 1976; Janin 1979; Wodak and Janin, 1980, Miller et al., 1987; Eyal 

et al., 2004, Yahyanejad et al., 2006; Jacob and Unger, 2007], antigenic determinants 

[Thronton et al., 1986; Novotny et al., 1986;Huang et al., 1990; Pavlink et al., 2003; 

Kulkarni-Kale et al., 2005], protein stability analysis [Saraboji et al., 2005; Huang et al., 

2007;David et al., 2007], protein structure classification [Gromiha and Suwa, 

2003;Sujatha and Balaji, 2004, Yu et al., 2006], protein interaction analysis [Ahmed et 

al., 2004; Chen and Zhou, 2005; Hoskins et al, 2006], etc. For a given sequence, the 

target could be to predict either relative SA of a residue or as two or three state 

classification, in real value of area (Figure 4.1).   

 



 

Figure 4.1: The protein solvent accessibility. Top- typical amino acid sequence. Middle- observed relative solvent 

accessibility profile. The pink and red dotted lines represent two possible thresholds for classification.   Bottom- each 

residue is classified in to either a buried (B) or an exposed (E) residue.  Sometimes, an additional class called 

intermediate (I) is also used. In the two-class classification illustrated above, the red dotted line is used as threshold to 

divide the buried and exposed classes. In case of three class classification, the red dotted line is used as a threshold for 

classifying buried and intermediate classes, while the pink dotted line is used to classify the intermediate and exposed 

classes.   

4.2 Solvent Accessibility Prediction  

Many approaches like support vector machines (SVM) [Yuan and Huang, 2004; Kim and 

Park, 2004], neural networks [Holbrook et al., 1990; Rost and Sander, 1994; Ahmed and 

Gromiha, 2002; Adamczak et al., 2004; Garg et al., 2005], information theory [Manesh et 

al., 2001] and nearest-neighbor methods [Sim et al., 2005] have been proposed for SA 

prediction. Almost all of these methods rely on PSSM from multiple sequence alignments 

for the prediction of SA. There are at least two drawbacks of all these approaches. First, 

they all predict the structural features of the proteins without using the structural 
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information available in the PDB. Second, in case of proteins sequences that do not have 

close homologs in the database of known sequences (for example nr), the PSSM will not 

be well defined, making the predictions unreliable [Adamczak et al., 2004].  

SVM methods originate in computational learning theory and are based on 

structural risk minimization principle. In SVM, the samples are mapped in to high-

dimensional feature space and an optimal hyper-plane that separates two classes is 

constructed. A small sample of the training points, known as support vectors, gives the 

hyper plane output and these vectors are closest to the hyper plane. Support vectors 

correspond to points that are hardest to classify. Each amino acid of the query sequence is 

represented either by a 21-dimension binary vector such that only the dimension 

corresponding to the current amino acid is one and the rest are zero. Recent methods 

incorporate multiple sequence alignment information by using the column corresponding 

to the current amino acid in the PSI-BLAST profile. A sliding window scheme that 

includes neighbors on the both sides is used to classify each amino acid. When protein 

solvent accessibility is classified into m states by m-1 cut-off thresholds, m SVMs are 

needed to predict m states. For each state, a SVM is trained on the samples of this state as 

positive and all samples of other states as negative. Neural networks methods use similar 

methods to generate the training vectors. The only difference is the underlying algorithm. 

Basic methods use simple feed forward networks, while more advance methods use 

recurrent neural networks. Some methods train multiple networks and use the average 

output of these networks as the final output. Some recent variants use multi-stage SVMs 

or neural networks. In information theory approach, the propensity of single-residue and 
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pair-wise residue interactions to adopt a conformational state are used. In order to use 

pair-wise residue interactions, the confirmation states of the neighboring residues are also 

used. In the nearest neighbor methods, the PSSM of the query protein is first divided in to 

rectangular blocks, using a sliding window scheme. Each block represents an amino acid 

in the query protein. The dimension of each block is 21xW, where W is dependent on the 

number of neighbors to consider on each side (if n neighbors are considered, W = 2n+1) 

and the 21 rows have the same interpretation as in PSSM i.e., each position represents the 

propensity of amino acids to be found at that particular position.  The position weight is 

such that the center position receives the highest weight and the weight gradually 

decreases on each side of the center position. In order to predict the class of each amino 

acid, k blocks that represent the amino acids with known solvent accessibilities are 

selected form the database. These k blocks are selected such that the sum of the position-

weighted, element wise differences of the elements in the block (distance measure) is 

lowest of all other blocks. Using the classes of neighbors and their distances from the 

block representing the current residue are used to predict the state of the current residue 

using the nearest neighbor algorithms.  

Based on our framework, we propose a new method in which both the structural 

information and the sequence profile information are used. Unlike many approaches that 

classify each residue in either two or three classes based on predetermined thresholds, we 

predict the real solvent accessibility. The user may choose any threshold based on his/her 

specific needs, if the residues have to be classified into multiple classes. Also, most of the 

current methods were tested on small data sets containing up to a few hundred sequences. 
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These results on small sets vary a lot, depending on the kind of data set used. In order to 

overcome this problem, we tested our method on a large scale independent data set to 

measure the stable performance. The prediction program is implemented into the 

MUPRED package as a public web server at http://digbio.missouri.edu/mupred along 

with the secondary structure prediction server. 

4.2.1 Fundamental Algorithm 

We first build a structural profile by estimating the relative solvent accessibility of the 

query protein using fuzzy mean operator (FMO) from the solvent accessibilities of 

proteins with known structures. We then integrate the estimated SA and the PSSM using 

a neural network. The output of the neural network is the predicted relative solvent 

accessibility of the current residue.  

The compatible fragments generated by our framework are scored based on the 

scoring function used in the secondary structure prediction application (Chapter 2). The 

relative solvent accessibility (RSA) of each residue of the query protein is calculated 

from the RSAs of hits that have a residue aligned with the current residue. The SAs of the 

hit fragments are calculated using DSSP program. For each residue, the absolute SA 

retuned by the DSSP program is transformed into RSA by dividing it with the maximum 

SA given in [Rost and Sander 1994]. The RSA of the query protein is calculated using 

the following expression for FMO:  
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where r is the current residue, K is number of hits that have residue aligned with the 

current residue, RSAj is the relative solvent accessibility of the residue in the jth hit that is 

aligned with the current residue, S is score of the hit fragment, and m is a fuzzifier that 

controls the weight of the dissimilarity measure S. The optimal value of fuzzifier was 

experimentally determined to be 1.5. Note that the Equation (4.1) is a special case of the 

FKNN algorithm described in Chapter 3, it is classifier with only one class the class 

membership value is used as the predicted RSA. 
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Figure 4.2: The block diagram of the MUPRED solvent accessibility prediction system. The profile of the query protein 

is first calculated and used to generate two feature sets. The first set consists of vectors derived from the normalized 

and rescaled PSSM using a sliding window scheme with window length (W) 15. This set consists of 15x21 =315 

features/residue. The second feature set is generated by searching the local database of representative proteins by 

profile-sequence alignment. The compatible fragments returned by the search process are used to estimate the relative 

solvent accessibility of each residue using the fuzzy mean operator. The vectors representing the second feature set 

consist of 26 features, resulting in 341 features altogether, representing each residue. The neural network consists of 

240 hidden units and a single output neuron that produces the predicted solvent accessibility. The components above 

the dotted line are part of our common framework while, the components below are specific to the solvent accessibility 

prediction application. 
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4.2.2 Databases 

We use the RPS described in Chapter 2 to estimate the relative solvent accessibility of the 

query protein. We employed two widely used datasets (benchmark sets) to compare the 

performance of MUPRED with other methods. The first database was introduced by the 

Rost and Sander in the context of the protein secondary structure prediction [Rost and 

Sander, 1994]. It contains 126 representative proteins with 23,426 residues (hereafter 

referred as RS126). The second data set was introduced by Naderi-Manesh [Manesh et al, 

2001] in the context of information theory based solvent accessibility prediction method. 

The database consists of 215 representative proteins with 51,939 residues (hereafter 

referred as MN215). The proteins in RPS that are similar to the proteins in the benchmark 

sets are eliminated using the procedure explained in Chapter 3 (i.e., each sequence in the 

RPS database was queried against proteins in the benchmark sets using the BLAST 

program. If a hit with an e-value less than 0.01 is found, the query sequence was 

eliminated from the RPS). This procedure further reduced the number of proteins in RPS 

to 1657.  In addition to testing our method on the two benchmark sets, we employed a 

third dataset derived from the Astral SCOP domain database version 1.69. The proteins in 

Astral SCOP dataset that are similar to the proteins in the RPS are discarded using the 

same procedure outlined above. The same filtration criteria were used to filter the third 

benchmark data set. The remaining 3386 domain sequences with 636,693 residues after 

the filtering make up the independent benchmark set. 



4.2.3 Method 

In the PSSM, each residue is represented by a 21 dimensional vector representing the 

likelihood of each of the 20 amino acids in that position. The profiles are first normalized 

and then rescaled in to [-1 1] before converting them into vectors suitable for neural 

network training. We found that the maximum and minimum values in the profiles of all 

proteins in the RPS were -10 and 12, respectively.  Therefore, the profiles were 

normalized and rescaled using Equation (4.2) below: 

12),( −← xjiPSSM , where ( )
22

10),( +
←

jiPSSMx ,                       (4.2) 

where i∈[1,…,n], n is the length of the query protein and j ∈ 

{A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y}. To create the first feature set, the 

transformed PSSM values are converted into vectors suitable for neural network training 

using a sliding window scheme i.e., vector representing the current residue is flanked by 

the vectors representing the neighbors on the both sides. This scheme allows us to capture 

the idea that a particular residue’s solvent accessibility is dependent on the solvent 

accessibility states of its neighbors [Manesh et al, 2001, Ahmed et al 2002]. The number 

of neighbors on each side is determined by parameter W. The termini information of the 

protein is encoded in the vector using an additional bit. We arbitrarily choose 1 to 

represent the ends of protein, while 0 is used for representing the interior of the protein. 

We experimentally determined that the optimal number of neighbors on each side of the 

current residue to consider for this feature set is 7 and therefore the total number of 

features in this set is 21x15=315.  
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Similar to the PSSM feature set, the fuzzy means are first rescaled and converted 

into vectors suitable for training the neural network using the sliding window scheme. 

Again, we use an extra bit to indicate the termini of the protein using the same encoding 

as the PSSM feature set. We experimentally determined that the optimal window size is 

13 and therefore the total number of features in this feature set is 2x13=26. These two 

feature sets together (26+315 = 341 features/residue) are used to train the neural 

networks. The neural network to integrate the fuzzy means and PSSM is a fully 

connected feed-forward neural network with one hidden layer, trained using standard 

back-propagation learning. We trained the networks with different number of nodes, 

starting at 170 and increase 10 units at a time. We found that 240 nodes result in an 

optimal performance. The output layer consists of a single neuron that produces the 

predicted RSA. The neural network has the following architecture 341×240×1 (input 

nodes × hidden nodes × output node). We randomly selected 50 of RPS proteins for 

generating the validation vectors and used the rest for training the neural networks. The 

networks were trained until the performance using the validation vectors started to 

decline. A total of 100 networks were trained using random initialization and the top 6 

networks were retained for the prediction purposes. Each of the query protein is 

simulated on all 6 networks and the average of the 6 networks is taken as the output of 

the prediction system.  

4.3. Results 

In this section, we first discuss the metrics to measure the performance of our prediction 

system and then discuss the performance of the fuzzy mean operator, fuzzy mean 



operator followed by and neural network and finally, MUPRED that uses both fuzzy 

mean operator and PSSM on the RPS, independent SCOP derived set and the two 

benchmark sets. We then proceed to compare the performance of MUPRED with the 

performance of the existing methods on the two benchmarking datasets.  

  

If the system is used as a classifier to group the residues into two classes (buried and 

exposed), the Q2 and MCC were used to assess the performance: 

  

t
npQ +

= )(Accuracy 2 ,                                                      (4.3) 

In order to assess the performance of the real value SA prediction ability of the system, 

the (MAE) as defined below is used: 

∑ −= predictedobserved RSARSA
N

MAE 1 ,                                    (4.4) 

where RSAobserved is the experimental RSA obtained by dividing the actual solvent 

accessibility (from DSSP files) by their respective maximum SA. 

 

When we tested the SA profile generated by the fuzzy mean operator alone, we 

noticed that the trend of predicted SA profile resembles the actual SA profile, except that 

dynamic range of the predicted SA profile is consistently smaller. Since the neural 

networks function well as the signal amplifiers, we trained a neural network using the 

sliding window scheme described in Section 4.2.3 with the window size 13.  This 

network was not used in the final MUPRED as both the features are being integrated 
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using a neural network, and there seems to be no practical advantage in amplifying 

signals before integrating [Bondugula and Xu, 2007]. The performances of our systems 

as a two class-classifiers on the various datasets are given in Figure 4.3 (a), 4.3(b), 4.3(c) 

and 4.3(d). The plot on the left illustrates the distribution of the RSA in the corresponding 

dataset, while the plot on the right contains the classification accuracies and the 

Matthew’s correlation coefficients at various classification thresholds. In the plots 

depicting the accuracies, the two-class classification accuracy is plotted using the 

horizontal axis and vertical axis on the left while, the Matthew’s correlation coefficient is 

plotted using the horizontal axis and vertical axis on the right. Note that the results in 

Figure 4.3 (a) are not re-substitution errors as the query protein is eliminated from RPS 

when its RSA is being predicted.  

 

    

(a) 
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(b) 

     

(c) 

   

(d) 

Figure 4.3: The histograms of the RSA in various data sets (Left). Performance of our methods on each of the data sets 

(Right). The classification threshold is varied along the horizontal axis, while the two-class classification accuracy is 

plotted using the vertical axis on the left while, the Matthew’s correlation coefficient is plotted using the vertical axis 

on the right. (a) Training set of 1657 proteins, (b) SCOP data set with 3457 proteins, (c) Rost and Sander 126 protein 

set, and (d) Manesh 215 protein set.  
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We compare the performance of MUPRED to existing methods on the two most widely 

used sets. The comparison of existing methods with our method on the RS126 dataset is 

presented in Table 4.1, while the comparison on the MN215 dataset is presented in Table 

4.2. We convert the RSA to various classes based on the thresholds used by the other 

methods. From Table 4.1, it can be noticed that the performance of MUPRED is slightly 

inferior to other methods at lower thresholds. We believe the small size of the database 

(only 126 proteins) played a role in this regard, as the same trend is not seen in Table 4.2. 

In fact, MUPRED has a higher accuracy than all other methods at all thresholds, with the 

exception at threshold 64%, where the methods based on information theory by Manesh 

et al., [2001] has higher accuracy. Also, MUPRED has higher accuracy than other 

methods when three-class classification is used (last row in Table 4.1).  

 

 

Table 4.1: The performance comparison of MUPRED with existing methods on the RS126 data set 

Threshold/Method MUPRED PHDAcc IT SVMPsi FKNN 

0 87.1 86.0  86.2 87.2 

5 76.8   79.8 82.2 

9 77.9 74.6 78.2   

16 79.2 75.0 77.5 77.8 79.0 

23 79.1  77.4   

25 79.2   76.8 78.3 

9/36 (three class) 68.5 57.5 61.5 59.6 63.8 

           PHDAcc – Rost and Sander, 1994 

           IT- Manesh et al., 2001 

           SVMPsi- Kim and Park, 2004 

           FKNN – Sim et al., 2005 
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Table 4.2: The performance comparison of MUPRED with existing methods on the MN215 data set 

Threshold/Method MUPRED IT NETASA SABLE SARPred 

4 76.9 75.1    

5 76.9  74.6 76.8 74.9 

9 77.9 75.9    

10 78.1  71.2 77.5 77.2 

16 79.2 75.5    

20 79.1   77.9 77.7 

25 79.2 74.4 70.3 77.6  

30 79.3    77.8 

36 79.6 74.1    

40 79.6    78.1 

49 81.2 79.9    

50 81.5  75.9  80.5 

60 86.2    85.3 

64 87.8 97.2    

70 90.9    90.7 

80 95.2    95.1 

81 95.6 80.5    

                    NETASA- Ahmed and Gromiha, 2002 

                    SABLE-Adamczak et al., 2004 

                    SARPred- Garg et al., 2005  

 

The MAEs of MUPRED on RPS, the SCOP derived independent set, RS126 and 

MN215 are 14.17, 15.29, 14.31 and 13.6, respectively. The Pearson correlation 

coefficients of our method on RPS, the SCOP derived independent set, RS126 and 

MN215 are 0.72, 0.69, 0.71 and 0.72, respectively. Garg et al. [2005] reported the 

Pearson correlation coefficient of 0.67 on the MN215 dataset. The MAE and the Pearson 

correlation coefficient on the RPS and the SCOP derived set indicate that the overtraining 

did not occur when we trained our neural networks.  
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The software for MUPRED SA prediction system is more than 98% similar to the 

MUPRED SSP program. In fact, we extended our MUPRED SSP program by integrating 

the SA prediction specific code and we now make combined prediction of secondary 

structure and solvent accessibility. The addition of SA specific code increases the 

prediction time only by a few hundredths of a second. So, our average prediction time of 

0.55 sec/residue still holds.   

4.4 Summary 

We propose a novel SA prediction system that is similar to our secondary structure 

prediction system, the difference being, the former is a function approximation, while the 

later is a classification problem.   The method is based on our framework for protein 

structure prediction. Our method uses the structural information in the PDB more 

efficiently than the existing methods and therefore, reduces the dependence on the 

homologous sequences in the databases for a well defined profile. Our system provides a 

balanced predicted for the sequences that have homologs in the database of proteins with 

known structures and for sequences that have no close homologs. Our results prove that 

the additional information provided by using the structural information has boosted the 

prediction accuracy considerably. In case of sequences with many homologs, the profile 

(PSSM) is well defined and to the prediction, along with the fuzzy means. In other cases 

where the sequence does not have close homologs, the system predicts the SA from the 

homologous fragments and hence the prediction is heavily influenced by the FMO.  The 

system with fuzzy mean operator followed by a neural network, emulates an extreme case 

of MUPRED where there is no information from the PSSM and the prediction is solely 
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based on the homologous fragments. The results of this system help us estimate the lower 

bound of accuracy in such cases. One of the appealing features of our systems is that our 

system never needs to re-trained or re-tuned. As more and more representative structures 

are solved, their sequences just need to be added to the RPS and the algorithm will use 

the new information immediately. Using our system, in addition to obtaining the RSA, 

the user can multiply the RSA by their maximum solvent accessible areas of respective 

amino acids to obtain the real solvent accessibility values.  
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5. Application of Our Framework for Protein Tertiary 

Structure Prediction 

5.1 Motivation 

Traditionally, the X-Ray diffraction patterns or the spectral properties of the folded 

proteins are used to determine the structure of the proteins experimentally. These 

methods are often time consuming and expensive. Due to rapid advancements in the 

sequencing technologies, many new complete genomes are available each year, there by 

contributing more proteins that need to be structurally characterized. It will take many 

years and cost millions of dollars if we rely on experimental methods alone. The field of 

protein structure prediction has offered an alternative solution to this problem by 

computationally predicting the structure of a protein from its sequence. There are two 

popular computational methods for protein structure prediction. They are Ab initio [Li 

and Sheraga, 1987; Pedersen and Moult, 1997; Bradley et al., 2005], homology modeling 

[Bowie and Eisenberg, 1991; Ring and Cohen 1993; Chivian and Baker, 2006]. Ab initio 

method is structure prediction from first principles by minimizing an energy function that 

includes the physical and statistical properties of amino acids. In homology modeling, the 

structural information from close homologs of the query protein is used to predict the 

structure of the query protein. Homology modeling works with the assumption that at 

least one close homolog of the query protein exists in the database of proteins with 
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known structures. Ab initio methods often demand huge computational resources and are 

seldom accurate.  

 

5.2 Tertiary structure prediction 

5.2.1 Main method 

A hybrid approach called “mini-threading” [Simons et al., 1997; Bystroff and Baker, 

1999; Inbar et al., 2003; Chikenji et al., 2003; Lee et al., 2004] has demonstrated great 

potential. Mini-threading obtains matches between a query sequence and short structure 

fragments in PDB for building local structures. Once local structures are more or less 

defined, assembling them results in a significantly smaller computational search space 

and a better chance to achieve high prediction accuracy. Some success of mini-threading 

has been demonstrated in the Critical Assessment of Techniques for Protein Structure 

Prediction (CASP) [Venclovas et al., 2001; Venclovas et al., 2003] and various examples 

[Li et al., 2004; Bradley et al., 2005]. 

 

 

 



 

 

Figure 5.1: Illustration of mini-threading approach. Left: Φ and Ψ angles of protein backbone; middle: structure 

distribution based on the Φ/Ψangle distributions; right: final prediction of the structural model. 

 

Figure 5.1 illustrates the basic process of existing mini-threading methods [Simons et al., 

1997] following these four steps: 

 

1. Search for compatible fragments of short sequences in a query protein against PDB. 

Typically, the query sequence is divided into 9 consecutive amino acids, or query 9-

mers, for this purpose. The search criterion is based on sequence identity of gapless 

alignment between the query 9-mer and a 9-mer sequence of a known protein 

structure. The search generally yields a number of significant hits for each query 9-

mer.  

2. Build Phi-Psi angle distributions. The conformation of the protein backbone is 

defined by Phi-Psi angle on the protein backbone (see Figure 5.1(left)). Among the 

structural fragment hits for each query 9-mer, the Phi-Psi angle distributions may be 

so narrow in some cases that the structures of these hits are similar (see Figure 
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5.1(middle)). In other cases, the Phi-Psi angle distributions may be so wide that the 

structures of the hits are diverse, but still contain certain structural information.  

3. Assemble the 9-mer fragments into a unified global structural model. Such an 

assembly can be done using genetic algorithms [Bystroff and Baker, 1999] or Monte 

Carlo simulations [Skolnick and Kolinski, 1991]. The distributions of the Phi-Psi 

angles are used as soft constraints (which will be referred to as restraints in this 

proposal), together with other energy functions such as a pairwise energy function 

between amino acids, for assembling the structure. 

4. Group the generated structures into clusters. Clusters are ranked by their average 

energy functions or number of generated structures in the cluster. Typically, the best 

structure clusters is chosen as the final prediction (see Figure 5.1(right)). 

 

Although highly promising, the mini-threading approach is still in its infancy. The 

existing mini-threading methods not only require long computing time but also fail to 

yield good results consistently. In addition, the prediction qualities of the exiting methods 

are user-specific, i.e., good performance is often coupled with extensive human 

intervention by experienced researchers. Few users other than the tool developers have 

successfully applied the mini-threading approach to their research. We think that the 

following limitations are the major barriers to achieve consistent performance in 

prediction accuracy and speed: 
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1. The selection of 9-mer fragments as mini-template is somewhat arbitrary. Although 

some tests have shown that 9-mer is better than other fixed length fragments, suitable 

division lengths vary among different proteins as well as different regions of an 

individual protein. Hence, fixed 9-mer fragments under-utilize the structural 

information in the database when longer fragments are available. In fact, it has been 

found that for a 15-residue query sequence fragment  (15-mer) there is a 91% 

probability to find a matching fragment in PDB within 2 Å root mean square 

deviation (RMSD) [Du et al., 2003], and some even longer fragments can also be 

used for assembly [Jones and McGuffin, 2003]. Although a systematic method in 

identifying these fragments is still lacking, in principle longer fragments can be used 

for mini-threading. In addition, the chance to find longer structural fragment is 

increasing, as more and more protein structures are being solved. 

2. The information used from mini-template is limited to independent angular restraints 

based on the Φ and Ψ angle distributions at the individual amino acid level. In many 

cases, when a small variation is introduced in the conformation of a fragment (such as 

the structural variation between the fragments of similar sequences in PDB), the 

restraints are created not only at the Φ and Ψ angles of each amino acid, but also at 

the correlations between angles of different amino acids. Such correlations on the 

restraints have not been used in mini-threading. 

3. The heuristic optimization methods such as genetic algorithms and Monte Carlo 

simulations often generate protein structures that are far from the global optimal 

solution of an energy function. Typically, many runs with different initial conditions 
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have to be performed hoping to capture structural conformations that are close 

enough to the true structure. Therefore, the computation is very time consuming and 

it often requires supercomputers or computer clusters to achieve results in hours or 

days. 

We propose a novel method based on the idea of mini-threading that overcomes 

the disadvantages discussed above. The following are the differences between our 

method and the mini-threading method and each of these differences overcomes one 

disadvantage discussed above. First, we use the fragments generated by our framework. 

This procedure is fast and results in similar fragments of various lengths to the query 

protein, based on the local sequence alignments. Second, we use the Cartesian 

coordinates of the amino acids of the similar fragments, instead of dihedral angles. Since 

we use the predicted secondary structure as guidance we already incorporate the dihedral 

angle information. By using Cartesian coordinates together with distance constraints 

between amino acids, our method can utilize the correlational information among 

dihedral angles more effectively than other mini-threading methods. Third, we use the 

multidimensional scaling (MDS) [Borg and Groenen, 1997] method to deduce the 

structure from the compatible fragments. MDS method is extremely fast and 

computationally efficient, when compared to other traditional methods.   



 

Figure 5.2: The block diagram of our method for tertiary structure prediction. First, the PSSM of the query protein is 

generated using the PSI-BLAST program. The PSSM is used to perform profile-sequence alignments with the proteins 

in the representative protein set. The compatible fragments are used to predict the secondary structure of the query 

protein using MUPRED program. The secondary structure of the query protein, along with the compatible fragments is 

used to build a pair-wise distance matrix. The unfilled elements in the partially filled distance matrix are extrapolated 

using the Floyd’s shortest-path algorithm [Floyd, 1962]. The full distance matrix is passed through the multi-

dimensional scaling algorithm to convert the distances in to Cartesian coordinates of the C-alpha atoms of the predicted 

structure. The components above the dotted line are provided by the common framework, while the components below 

are specific to the protein tertiary structure prediction.  

5.2.2 Databases 

Our framework uses the RPS described in Chapter 2, for searching the compatible 

fragments. In order to test our method, we created a test protein database (TDB) from the 

AstralSCOP database. The 25% identity filtered Astral SCOP version 1.69 database 

consists of 5457 protein domains. To prevent predicting the structures of proteins that are 

similar to the proteins in our RPS (trivial cases), we used the following procedure to add 

the proteins to TDB: each sequence in the Astral SCOP database was queried against 

RPS using the BLAST program. If no hit with an e-value less than 0.01 was found, the 
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sequence was added to the TDB. This process resulted in a TDB of 1304 protein domain 

sequences. Out of these 1304, we randomly selected 200 proteins to test our method. 

 

5.2.4 Scoring Function 

The compatible fragments produced by our framework are scored with the following 

scheme: 

     ( )EvalueS 10log5−=         (5.1) 

The score ‘S’ is a ‘similarity’ measure that is meant to differentiate between the hits of 

different statistical significance.  It is designed such that the hit with least statistical 

significance (E-value = 11,000) should also receive a positive score. Other alternative 

similarity measure that yields a higher score for statistically significant hits, lower score 

for statistically insignificant hits and positive scores for all possible hits may be used in 

place of Equation (5.1). Note that only the relative scores, not their absolute values are 

important.  

 

5.3 Problem Formulation 

In this work, we formulate the problem of protein tertiary structure prediction as a graph 

realization problem. Assume that there are n points  in a 3D space, each 

point representing the C-alpha coordinates of a protein with n amino acids. Let D=(d

,,...,1,3 niRxi =∈

ij) 

represent a distance restraint matrix such that the element dij represents the Euclidean 

distance between amino acid i and j. Suppose, we know the values of some edges from 
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the fragments that are aligned with the query protein, then the graph realization problem 

is to determine the coordinates of the points from the partial distance restraint matrices 

such that the Euclidean distance between each pair of points match the given distance 

restraints, ijji dXX =− for all available dij. Using the fragments obtained under our 

framework, some pairs are over-restrained (multiple hits that have a residues aligned at 

positions i and j) and some pairs are under-restrained (no hits have residues aligned at 

positions i and j).  Also, when the distance restraints are inaccurate estimations, usually 

there is no exact or unique solution to the over-determined system of equations. Instead, 

the problem is formulated as an optimization problem that minimizes the sum of squared 

errors. The basic realization problem can be formulated as the squared error function: 

∑
=∈

⎟
⎠
⎞⎜

⎝
⎛ −−

nji
ijji

RXX
dXX

n ,...,1,

2

... 3
1

min ,        (5.2)  

Since the fragments returned by our framework have associated E-value, the score S can 

be used as the relative importance of various hits. The revised objective function that uses 

the score is presented in Equation (5.3): 

( )∑
=∈

−−
nji

ijji
RXX

dXXS
n ,...,1,

2

... 3
1

min ,       (5.3) 

The above formulation allows us to use the compatible fragments any size, as opposed to 

fixed size fragments such as 9-mers used by other mini-threading methods. The 

formulation also facilitates the optimization on Cartesian coordinates instead of dihedral 

angles, using the information in PDB more efficiently. The efficiency comes from the 

fact that Cartesian coordinates capture the restraints between the amino acids.  
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5.3.1 Multi-dimensional Scaling (MDS) 

The error surfaces of the objective functions in Equations (5.2-5.3) are generally non-

convex with many local minima. Local and global optimizations using traditional 

techniques have many disadvantages. For example, the success of local optimization 

techniques like Levenberg-Marquardt [Levenberg, 1944; Marquardt, 1963] depend on 

good initial points while, the global optimization techniques like simulated annealing or 

genetic algorithms are very slow in large continuous search spaces and demand huge 

computational resources.  

We found that MDS, related to principal component analysis, factor analysis, and 

cluster analysis, is suitable for our optimization problem. The MDS method is an efficient 

method for solving the graph realization problem. MDS is a set of data analysis 

techniques that display the structure of distance-like data as a geometrical picture. MDS 

starts with one or more distance matrices (or dissimilarity matrices) that are presumed to 

have been derived from points in a multidimensional space, and it finds a placement of 

the points in a low-dimensional space, where the distances between points resemble the 

original dissimilarities. In our optimization problem, the restraints between the residues 

form the dissimilarity matrix. We started with the classical metric MDS, the simplest and 

most efficient MDS algorithm. In classical metric MDS, the data is quantitative and the 

proximities of objects are treated as distances in the Euclidean space. The goal of metric 

MDS is to find a configuration of points in a multidimensional space such that the inter-

point distances are related to the provided proximities by some transformation (e.g., a 

linear transformation). If the proximity data were measured without error in the 



Euclidean space, then classical metric MDS would exactly recreate the configuration of 

points. In practice, the technique tolerates error gracefully, due to the over-determined 

nature of the solution. This will be very helpful when we apply it to our new protein 

structure prediction problem formulation, as our dissimilarity data can be very inaccurate 

and inconsistent (over-restrained). Classical metric MDS (CMDS) is suitable for high-

dimensional problems, since its main operation is singular value decomposition on a 

matrix with the same size of the dissimilarity matrix, where efficient algorithms exist. 

This means that the CMDS can work well for our protein structure prediction problem 

with a large number of residues.  

In CMDS, first a double centered matrix B is calculated from D using the 

following equation: 

njiforXXd
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,     (5.4) 

The matrix B is decomposed into 'UVUB =  using singular value decomposition or Eigen 

decomposition, leading to coordinate solution . In our case, the distance 

restraints are approximate and inaccurate, there by the B matrix can be indefinite with 

negative as well as zero or positive roots. In such cases, V is a high-dimensional matrix. 

We choose the three Eigen vectors U

2/1UVX =

3 that correspond to the three largest Eigen values of 

V, represented as V3.  If Y=U3V3
1/2, then YYC '=  is a least squares approximation to B. 

While the objective function in Equation (5.2) is easy to handle in CMDS, the 

weighted objective function in Equation (5.3) is difficult to handle in CMDS, but is 
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straightforward using weighted MDS (WMDS), the drawback is that it is computationally 

much more expensive than the CMDS. 

5.3.2 Structure Prediction Algorithm 

We use the following algorithm to predict the three-dimensional structure of the query 

protein.  

Begin 

1. Read the compatible fragment information, secondary structure information 

and Cartesian coordinate information generated by our framework. 

2. Using the information in step 1, predict the secondary structure of the query 

protein using MUPRED or any other SSP algorithm. 

3. Initialize the distance matrix to 0 for the elements on the diagonal and to high 

values elsewhere. 

4. Repeat until the number of unmarked segments is 0 

a. Randomly select a secondary structure segment and mark the segment 

as processed 

b. Find all the hit fragments that have a similar secondary structure 

segment (defined by the SOV [Zemla et al., 1999] cutoff) aligned with 

current segment.   

c. Select one of the segments with probability linearly proportional to its 

score S. 
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d. Scan the hit on either side to see if the hit also has a match for other 

secondary structure segments. If there is match, mark the segment and 

extend the boundary of the selected hit 

e. Copy the pair-wise distances to the Dij distance matrix 

      End Repeat 

5. Extrapolate the remaining elements in the distance matrix using Floyd’s 

shortest path algorithm. 

6. Transform the distance information into configuration of points using multi-

dimensional scaling algorithm. The coordinates of three dimensions with 

highest Eigen values are the predicted C-alpha coordinates of the query 

protein. 

End 

At first, it might seem that the prediction accuracy of our method is highly 

dependent on SSP accuracy. In fact, this is not the case. When we select the possible hit 

fragments, we use the SOV cutoff of 50. That is, if at least half of the secondary segment 

is correctly predicted by the SSP algorithm, there is possibility that it will be used by the 

algorithm for the template information. In our implementation, the structure information 

can be used even if a secondary structure segment is totally missed by the SSP algorithm.  

This is especially true if the two end secondary structure segments are predicted with at 

least 50% accuracy, suppose if one of them is currently selected, all the remaining 

segments are checked if they can contribute to the prediction. If the first and the last 

segments match, the entire hit is used even if the segment in the middle was missed by 



the SSP algorithm. The only factor that influences the accuracy of our algorithm is the 

ability of the SSP algorithm to correctly identify as many secondary structure segments 

as possible, even if they are predicted with incorrect boundaries. The selection of hit 

fragments to get the template information is illustrated in Figure 5.3. 

 

 

Figure 5.3: The selection process illustrated. Top- query protein. Middle- predicted secondary structure. Bottom- the 

secondary structures of the database hits. For each predicted secondary structure segments (shaded), one of the database 

fragments is chosen based on its score.  

 

During the processing of building the D matrix, some pairs of residues are not 

filled. There are two possible reasons for the unfilled elements. First, for a residue pair 

(i,j), there may not be a hit that has residue aligned at both positions i and j. Second, even 

if there was a hit that has residues aligned at both position i and j, it may not be selected 

due to randomness involved in the selection of hits for the distance information.  If the 
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position (i,j) is not filled, we extrapolate the distance using the efficient all-pairs shortest-

path algorithms, such as Floyd's shortest path algorithms. 

 

In our earlier work [Bondugula et al., 2006], we used the same problem formulation and 

the CMDS algorithm. This version of tertiary structure prediction algorithm is more 

basic, i.e., it neither uses the predicted secondary structures, nor the scores during MDS 

algorithm. Here, for every possible pair of residues (i,j, i≠j), we search for hits that have 

residues aligned with current residues i and j. We choose one of the hit fragments to fill 

dij with a probability that is proportional to the value of the score S associated with each 

hit. Similar to our more advanced version described above, the unfilled positions are 

extrapolated using Floyd’s shortest path algorithm. 

5.3 Results 
For each protein in the TDB, we used our algorithm to generate several thousand 

structures using both CMDS and WMDS. Currently, we are still developing methods to 

automatically select the best structure yet. In this work, we use the native structure as a 

guide to pick the best predicted structure. Using native structure to select the best of the 

generated structures will help us estimate the upper bound of our algorithm. We compare 

each of generated structure with the native structure and retain the one with the lowest 

RMSD as the best predicted structure. We first generated 2,000 structures per protein 

using CMDS algorithm. Next, we repeated the experiment by changing the reconstruction 

procedure from CMDS to WMDS.  We then increased the number of structures to 10,000 
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per protein. We compare the results of the above three variants in this work with the 

performance of our earlier approach without the secondary structure information. 

 

In Figure 5.4, we present the results of variants of our approach on the 200 test 

protein sequences in the TDB. The histogram of the results of the current approach using 

CMDS and the best of 2000 structures are presented in Figure 5.4 (a).  In Figure 5.4 (b), 

we changed CMDS to WMDS and noticed that in 68% of the proteins the RMSD was 

reduced, in the remaining 32%, the RMSD was slightly increased. The RMSD 

distribution is presented in Figure 3 (b). We then proceeded to increase the number of 

structures generated from 2,000 to 10,000, still using the WMDS method. We noticed 

that the RMSD drops in 88% of the proteins when compared to the previous variation.  

The distribution of RMSD for this variant is presented in Figure 5.4 (c). In Figure 5.4 (d), 

we present the histogram of RMSD distribution using our previous approach that does 

not use secondary structure, uses CMDS and selects the best of 2000 structures. Overlap 

of the RMSD distributions is illustrated in Figure 5.5. It can be noticed that the variation 

that uses WMDS and 10,000 structures has more structures in the lower RMSD (left) 

region.  

 

The contribution of the predicted secondary structure input into the tertiary 

structure prediction method can be estimated by comparing the results of our previous 

approach with the first variant in the current work. They both use CMDS method and 

select the best structure among the 2000 predicted structures/protein. When we compared 



their results, we found that inclusion of the predicted structure help reduction of RMSD 

in 84% of the proteins. When compared our previous version’s performance with our 

third variation (WMDS and 10,000 structures), we noticed that the RMSD drops in 92% 

of the proteins. The drop in RMSD is illustrated in Figure 5.6. The x-coordinate is the 

RMSD using the previous method (no secondary structure, CMDS and 2,000 structures) 

and the y-coordinate is the RMSD using the work presented in our third variation 

(WMDS with the best of 10,000 structures). Some statistics on the results are presented in 

Table 5.1. Three predictions that are in our top ten predictions are illustrated in Figure 

5.7. 

 

(a) 

 

(b) 
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(c) 

  

(d) 

 

Figure 5.4: The histograms showing the distribution of RMSDs of the 200 proteins using various methods. (a) 

Secondary structure information and classical multi-dimensional scaling with selection of best of 2000 structures (b) 

Secondary structure information and weighted multi-dimensional scaling with selection of best of 2000 structures (c) 

Secondary structure information and weighted multi-dimensional scaling with selection of best of 10,000 structures (d) 

no secondary structure information and classical multi-dimensional scaling with selection of best of 2000 structures. 

 

 

Figure 5.5: The histogram comparison of the four variants of the tertiary structure prediction program 
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Figure 5.6: Performance comparison of our current method with our previous method on the 200 proteins in the test 

database. Each point represents a protein. The horizontal coordinate is  the RMSD using the previous method (no 

secondary structure, classical multi-dimensional scaling and 2000 structures) and the vertical coordinate is the RMSD 

using the work presented in the current work (secondary structure + weighted multi-dimensional scaling with the best 

of 10000 structures). Reduction in the RMSD was noticed in 92% of the proteins using the current method.   

 

Table 5.1: Statistics on performance of different variations 

Description A B C D 

Lowest RMSD 2.44 1.88 4.12 1.85 

Cases in which RMSD < 4 4.5% 7.5% 0% 9% 

Cases in which RMSD < 6 15% 17.5% 5% 20% 

A- Classical Multidimensional scaling (with secondary structure), 2,000 structures 

B- Weighted Multidimensional scaling (with secondary structure), 2,000 structures 

C- Classical Multidimensional scaling (no secondary structure), 2,000 structures 

D- Weighted Multidimensional scaling (with secondary structure), 10,000 structures 
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Figure 5.7: Some of our best prediction results. Red- native C-alpha trace derived from the crystal structure. Blue- 

predicted C-alpha trace using our method. (a) Human T-cell transcription factor NFAT1 (PDB code 1p7h) (b) E-Coli 

Ribosomal protein L25 (PDB code 1dfu) (c) Arthrobacter globiformis N, N-dimethylglycine oxidase, C-terminal 

domain (PDB code 1pj5) 

 

Our framework and MUPRED SSP algorithm have linear time complexity. The 

process for building D also has a linear time complexity. The shortest-path algorithms 

have a complexity of O(n3), where n is the number of residues. The core of classical 

MDS is SVD, which has complexity O(n3). Therefore, our approach has a time 

complexity of O(n3).  As a example, a query protein of length 96 residues, it took an 

average of 1.65 second to generate one structure using the CMDS and 5.13 second to 

generate one structure using WMDS on a Intel Xeon, 3.0 GHz processor. The memory 

requirement for the entire program is less than 50 megabytes of RAM. The times and 

memory requirements include the SSP of the query protein.  Since we use the native 

structure of the protein to guide our selection process, it is not fair to compare our results 

with other methods.  
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5.4 Summary 
 

We introduce a novel method for protein tertiary structure prediction that is formulated as 

a graph realization problem. Our framework and our problem formulation along with our 

objective function allow us to use the information in the PDB more efficiently than 

existing methods. Our method also uses computationally efficient MDS algorithms to 

transform the distance information into Cartesian coordinates. We show that 

incorporating the predicted secondary structure information into the tertiary structure 

prediction will boost the accuracy considerably. The accuracy of the secondary structure 

prediction has very little influence on the tertiary structure prediction accuracy. The 

structure of each protein can be predicted in few hours on a personal desktop computer 

that has a single processor. With very little effort, our program can modified to run on 

multiple processors to further reduce the computation time.  
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6. Conclusions and Future Work 

6.1 Conclusions 

This dissertation work was an attempt to push the state-of-the-art a little further for the 

problem of protein tertiary structure prediction.  To address this problem we developed a 

novel framework. The framework facilitates new algorithms that bridge the gap between 

the methods that rely on only one type of information. In the context of secondary 

structure prediction, the framework helped in bridging the gap between template-based 

methods and the profile-based methods. In the context of the solvent accessibility, the 

framework opened a new avenue by facilitating the development of a new method that 

uses structural information directly. Both of these applications that were developed on 

top the framework have achieved the state-of-the-art in their respective areas.  In the 

realm of tertiary structure prediction, the method developed based on this framework 

helped to bridge the gap between ab initio protein structure prediction and the homology 

modeling. Our formulation of the tertiary structure problem as a graph realization 

problem, our choice of objective function and the method to solve the optimization have 

resulted in a potentially very accurate method.  

The notable feature of our framework and all the applications that are built on top 

of it is that, the software does not require re-training or re-tuning as the new 

representative protein structures are solved. Whenever new sequences are available, the 

relevant information needs to be appended to our database. The framework and 
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consequently all its applications immediately start using the newly added sequences. The 

complete potential of the framework can be realized when we can make sure that there is 

representative sequence for each class of protein, a representative structure for each 

possible fold and a representative solvent accessibility profile for each possible family of 

proteins. This condition ensures that the framework will provide all the information 

possible to applications that predict various structural aspects of proteins. Under these 

circumstances, the performance of the applications is only dependent on the algorithm 

used and not the available information.   

6.2 Limitations  

6.2.1 NMR structures are not used (redundant structures not used…) 

We currently use only sequences whose structures were determined experimentally by X-

Ray crystallography method in our RPS. If the sequences of the proteins whose structures 

were solved using NMR methods can be used, the size of the RPS would have been one 

and half times the current size of database, making a better use of the available structural 

information. 

6.2.2 Tertiary structure prediction method cannot automatically select 

the best prediction 

We cannot yet make a fair comparison of our tertiary structure prediction method’s 

performance with other methods as we do not yet have a method to automatically select 

the best predicted structure. This limitation is also shared by many other tertiary structure 

prediction methods. We can only deduce the upper bound of the tertiary structure 
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prediction ability with our current method. Our collaborators on this project, Dr. Yi 

Shang’s laboratory and Dr. Kosztin’s laboratory are currently working on various 

methods to automatically select top structures and to enhance the predicted structures. Dr 

Shang’s group is trying to use decision-tree analysis, packing functions and empirical 

energy functions for the selection process.  Dr. Kosztin’s group is mainly focusing on 

enhancing the predicted structure using optimization techniques.  

6.3 Ideas for future work 

6.3.1 Framework for Contact Map Prediction 

Two residues are said to be in contact if they are separated by a distance less than a 

predefined threshold. A matrix that records these contacts for all possible pairs of 

residues in a given protein sequence is called a contact map. A contact map provides 

useful information about non-local contacts that help proteins form and maintain stable 

structures.  While a contact map does not contain all information about the protein, it can 

be viewed as good two-dimensional representations of protein three-dimensional 

structure. A contact map for a protein of length l is a binary matrix of dimension lxl such 

that each element (i,j) is equal to 1 if the Euclidean distance between residues is less than 

a pre-defined threshold T, or equal to 0, otherwise. Contact maps are useful in protein 

three-dimensional prediction and for protein structure comparison [Carr et al., 2002; 

Caprara et al., 2004].  

SSP methods mainly classify the residues into various classes based on the 

patterns in a small neighborhood (not totally true in case of β-strands). So is the case with 
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SA. On the other extreme, TSP methods, like ours, perform exceptionally well if long 

homologs can be identified (either using sequence homology, structure homology, SA 

profile similarity or their combination). Contact map methods can perform relatively 

better if homologous fragments of intermediate lengths can be identified. We 

demonstrated in Chapter 2 that our framework identifies fragments over a wide range of 

lengths. In fact, this was proved in MUPRED SSP application. Our results indicate the 

MUPRED gains significant overall accuracy by predicting β-strands (that form non-local 

contacts) better than the competing methods. We think the ability of our framework to 

identify fragments of intermediate and long homologs is the main reason. The same 

advantage may be used by the contact map predictions based on our framework.  

6.3.2 Stand alone packages for our framework, MUPRED SSP and 

MUPRED SA 

Making stand alone package of our framework may prompt other researchers to develop 

novel applications or use it for a purpose which we never anticipated. Stand-alone 

packages, both command line interface and the graphical user interface could be 

developed and distributed over the internet. Most of the popular methods for SSP and SA 

prediction have unfriendly command line interface, especially to biologists, for whom 

most of these tools are developed. So, a single GUI (graphical user interface) that 

includes our framework, MUPRED SSP and MUPRED SA prediction could be 

developed. These tools can be made available for download through the MUPRED 

website.  
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6.3.4 Ideas for improvement of our Tertiary Structure Prediction 

Two of our applications, MUPRED SSP and MUPRED SAP currently represent the 

state-of-the-art in these areas. Both of their prediction accuracies stand at little more than 

80%. The predicted secondary structure can be used as a query to identify structural 

homologs and the predicted solvent accessibilities could be used to identify proteins in 

the RPS that have similar environment. Using these features will enable applications to 

use homologs that cannot be readily identified by using query amino acid sequence alone 

and could improve the performance greatly.  

 

Our framework is very efficient. As discussed before, more then 95% of time required by 

our framework is utilized by the PSI-BLAST program and processing the PSI-BLAST 

output and parsing DSSP files for structural information takes at most three seconds.  

Similarly, our SSP and SAP methods require a small fraction of a second in addition to 

time required for our frame work. However, the same cannot be said about our TSP 

program. The reason is that, the structures in the ensemble are generated in serial fashion. 

With little effort and expertise in parallel programming, the software can be parallelized, 

there by making efficient use of, now prevalent, multi-core/hyper-threaded/multi-

processor/cluster systems.  
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