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CHARACTERIZATION AND FUNCTIONAL ANALYSIS OF THE P2Y2R GENE 

PROMOTER 

 

Nishant Jain 

Thesis Advisors: Dr. Cheikh Seye and Dr. Gary A. Weisman 

ABSTRACT 

 

Extracellular nucleotides can bind to the P2Y2R and modulate proliferation and migration 

of smooth muscle cells, which is known to be involved in intimal hyperplasia that 

accompanies atherosclerosis and post-angioplasty restenosis. Moreover, the P2Y2R is up-

regulated in vascular smooth muscle cells and endothelial cells in response to tissue 

injury. These findings suggest that the P2Y2R is a potential target for the pharmacological 

control of progression of atherosclerosis and post-angioplasty restenosis. However, the 

mechanisms governing P2Y2R up-regulation remain unknown.  

In this study, we have cloned a 2071 bp 5’-flanking region of the P2Y2R gene in a 

reporter vector and carried out a serial deletion analysis. The deletion of a 175 bp region 

completely abolished promoter function and results further indicate that the P2Y2R gene 

promoter uses an array of positive and negative response elements in the regulation of 

gene expression. Furthermore, other results show that the cytokine IL-1β may be 

involved in down-regulation of P2Y2R activity in human coronary artery endothelial 

cells.  Further studies will potentially lead to the identification of novel pathways 

involved in the regulation of P2Y2R gene expression, information that might be useful to 

suppress neointimal hyperplasia in atherosclerosis and the restenosis of angioplasty.  
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CHAPTER 1: INTRODUCTION 
 
 
 
I. Historical Perspective  

The seminal work of Drury and Szent-Gyorgi in 1929 described the involvement 

of extracellular nucleotides and nucleosides in potent biological actions in mammalian 

heart and blood vessels; they showed that intravenous injection of purines into whole 

animals induced a decrease in heart rate and arterial blood pressure, dilation of coronary 

blood vessels and inhibition of intestinal movements. Furthermore, Holton suggested a 

role for adenosine 5’-triphosphate (ATP) as a transmitter in the nervous system by using 

the firefly luciferase assay to show that ATP is released during antidromic stimulation of 

sensory nerves in sufficient quantities to produce vasodilatation of rabbit ear arteries 1,2. 

Eleven years later, the neurotransmitter-like activity of ATP was demonstrated in non-

adrenergic, non-cholinergic nerves supplying the gut 3. This led to the controversial 

proposal of the “purinergic-neurotransmission” hypothesis which stated that the 

intracellular metabolite ATP or a related nucleotide can act as a neurotransmitter when 

released from nerves in the gut and bladder 4. Although the concept of extracellular 

nucleotides as signaling molecules met with resistance initially, it has now been firmly 

established that ATP acts as a co-transmitter along with classical neurotransmitters (e.g., 

acetylcholine) in both the peripheral and the central nervous systems, and that purine 

nucleotides are powerful extracellular messengers in non-neuronal cells, including 

exocrine, endocrine, secretory, endothelial, bone, immune and inflammatory cells 5.  

Early investigations into the effects of adenosine were particularly made on heart and 
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vasculature 2,6.  Initial studies on the effects of extracellular UTP also focused on its 

cardiovascular effects 2.  

II. Extracellular Release of Nucleotides 

Earlier, little was known about the sources and release of nucleotides in 

mammalian cells 7. The development of sensitive assays that utilized a cell-surface 

targeted luciferase as an ATP sensor enabled the more accurate measurement of the 

concentrations of extracellular nucleotides in the pericellular environment of cells 8. 

These methods have shown that extracellular nucleotides are released constitutively by 

many cell types under unstimulated conditions. Stimuli such as stress or mechanical 

stimulus can lead to increased levels of extracellular nucleotides. It has been postulated 

that cells maintain a steady-state equilibrium between release and ecto-metabolism of 

extracellular nucleotides 9. 

ATP and adenosine 5’-diphosphate (ADP) are released from sympathetic nerves, 

activated platelets, erythrocytes, cardiac tissue, mast cells, endothelial cells, and smooth 

muscle cells 10-12. The main source of intraluminal ATP is likely to be endothelial cells, 

and its release can be measured during conditions such as changes in the rate of blood 

flow and hypoxia in amounts sufficient to activate endothelial cell G protein-coupled P2Y 

purinoceptors 13.  It also has been shown that ATP is released from vesicles in urothelial 

and endothelial cells in the ureter leading to acute inflammation 14. The effects of ATP 

are often counteracted by its degradation product adenosine. Levels of the pyrimidine 

nucleotide uridine 5’-triphosphate (UTP) increase in human plasma in response to 

alterations in blood flow 15,16 and animal studies have shown that UTP release occurs in 

heart during cardiac ischemia, most likely from cardiomyocytes and to a lesser extent 
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from red blood cells and endothelial cells 17. Several lytic and non-lytic mechanisms for 

the release of UTP and ATP have been proposed. Tissue damage and cell lysis can cause 

an increase in extracellular nucleotide levels.  Nucleotide release mechanisms associated 

with excitable and secretory tissues include vesicular exocytosis in ureter epithelium 18 

and exocytotic granule release 19. Other mechanisms include transport by ATP-binding 

cassette (ABC) proteins, stretch-activated channels and voltage-activated channels 

(which are still controversial)  14,20. Apart from these mechanisms, additional ATP 

transporters have been hypothesized to exist in murine cells 21. 

The levels of extracellular nucleotides depend both on release mechanisms and 

the activities of cell-surface enzymes that metabolize nucleotides, such as soluble and 

membrane-bound ecto-nucleotidases that are expressed in most cell types 22. A variety of 

different ecto-enzymes can participate in degradation and interconversion of extracellular 

nucleotides. These include the E-NTPDase (ecto-nucleoside 5´-triphosphate 

diphosphohydrolase; previously known as ecto-apyrase, NTPase or E-ATPase) family 

that hydrolyzes nucleoside 5´-triphosphates to diphosphates and then to monophosphates, 

the E-NPP (ecto-nucleotide pyrophosphatase/phosphodiesterase) family that hydrolyzes 

phosphodiester bonds, the ecto-5´-nucleotidase and alkaline phosphatase families that 

hydrolyze terminal phosphates of nucleoside 5´-monophosphates to yield the 

corresponding nucleoside, and the nucleotide converting enzyme ecto-NDPK (ecto-

nucleoside diphosphokinase) and adenylate kinase that phosphorylate adenosine 5´-

monophosphate 22.  E-NPP isoenzymes can hydrolyze either purine or pyrimidine 

nucleotides, as well as dinucleotides and uridine 5’-diphosphate-conjugated sugars (UDP-

sugars). E-NPP can hydrolyze ATP into AMP and pyrophosphate (PPi); 3’, 5’-cyclic 
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AMP (cAMP) into AMP; ADP into AMP and inorganic phosphate (Pi); and NAD+ 

(nicotinamide dinucleotide) into AMP and nicotinamide mononucleotide.  Ecto 5’-

nucleotidase is the major enzyme involved in the formation of adenosine in the 

extracellular space.  Ecto-NDPK catalyzes the reversible transphosphorylation of 

nucleoside 5’-diphosphates into nucleoside 5’-triphosphates such as ATP + UDP to ADP 

+ UTP 23-28. Alkaline phosphatase activity alone can catalyze the complete sequential 

hydrolysis of a nucleoside 5’-triphosphate to the corresponding nucleoside 22. Alkaline 

phosphatase also can hydrolyze PPi 29,30.   

III. Classification of P2 Receptors 

Extracellular nucleotides and their metabolites act through two classes of 

receptors termed P1 receptors, whose ligand is adenosine, and P2 receptors, whose 

ligands include ATP, ADP, UTP, UDP and UDP-glucose. There are two different 

categories of P2 receptors: G protein-coupled P2Y receptors, and P2X ligand-gated ion 

channels (Table I). Eight P2Y receptor subtypes and seven P2X receptor subtypes have 

been cloned. The 8 human P2Y receptors can be grouped into two structurally distinct 

subfamiles: P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11 in one group that couples to 

phospholipase C, whereas P2Y12, P2Y13 and P2Y14 belong to a group that couples to 

adenylate cyclase.  In the case of P2Y11, two signaling pathways can be activated, 

adenylyl cyclase as well as phospholipase C  
31.  Seven P2X receptor subunits (P2X1-7) 

have been identified, and these subunits can form a variety of homo- and heterotrimeric 

channels. All of these P2 receptors have been characterized pharmacologically and 

accepted as valid members of the P2 receptor family 32,33 .  
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Table 1: P2 Receptors: Agonist Potency and Signal Transduction Mechanisms.  

 

Receptor Subtype  Rank Order of Agonist Potency Signal Transduction
    P2Y1 2-MeSADP > ADP > 2-MeSATP > ATP PLC /IP3/Ca2+ 
    P2Y2 UTP = ATP > Ap4A > ATPγS PLC /IP3/Ca2+ 
    P2Y4 UTP > UTPγS >> ATP, UDP PLC /IP3/Ca2+ 
    P2Y6 UDP = 5-Br-UDP >> UTP > 2-MeSADP PLC /IP3/Ca2+ 
    P2Y11 ATPγS = BzATP > ATP > 2-MeSATP PLC /IP3/Ca2+ 
    P2Y12 2MeSATP = 2MeSADP > ADP Adenylate Cyclase 
    P2Y13 2MeSATP = 2MeSADP > ADP > ATP Adenylate Cyclase 
    P2Y14 UDP-glucose > UDP-galactose  Adenylate Cyclase 
 
Receptor Subtype  Rank Order of Agonist Potency Signal Transduction 
   P2X1 2-MeSATP > ATP > , -meATP INa

+
/K

+
/Ca

2+ 
   P2X2 2-MeSATP > ATP, , -meATP inactive INa

+
/K

+ 
   P2X3 2-MeSATP > ATP > , -meATP INa

+
/K

+
/Ca

2+ 
   P2X4 ATP > 2-MeSATP >> , -meATP INa

+
/K

+ 
   P2X5 ATP > 2-MeSATP > ADP INa

+
/K

+
/Ca

2+ 
   P2X6 ATP > 2-MeSATP > ADP INa

+
/K

+
/Ca

2+ 
   P2X7 BzATP > ATP > 2-MeSATP > ADP INa

+
/K

+, pore formation
 
Abbreviations: 2MeSADP , 2-methylthio-ADP; 2MeSATP, 2-methylthio-ATP; ADP, adenosine 5'-

diphosphate; ATP , adenosine 5' - triphosphate; ATPγS, adenosine 5'- triphosphate gamma thiol; BzATP, 2' 

and 3'-O-(4-benzoylbenzoyl)-ATP; , -meATP, , -methylene adenosine 5'- triphosphate; UDP, uridine 

5'-diphosphate; UTP , uridine  5'- triphosphate; PLC,  Phospholipase C; IP3, inositol triphosphate; I , ion 

channel current 
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IV. P2 Receptors in Vascular Cells 

          The normal arterial wall consists of three layers: the intima, media and adventitia. The 

single layer of endothelial cells facing the vascular lumen is a very important component of 

the blood vessel wall in terms of releasing both vasodilators such as nitric oxide (NO) and 

prostacyclin (PGI2), and vasoconstrictors like thromboxane A2 and endothelin. ATP and 

ADP are components of blood-borne elements, such as platelets and erythrocytes, and can 

also be released from endothelial cells and smooth muscle cells  10. The vascular response 

elicited by these purine nucleotides depends on several factors including the nature of the P2 

receptor subtype involved and its location in relation to structural components in the vascular 

wall 34. Endothelium-dependent vasorelaxation is due to the release of prostacyclin and NO 

by the nucleotide-induced activation of P2Y2 as well as P2Y1 receptors 34. The principal P2Y 

receptor subtypes that have been functionally characterized in endothelial cells are P2Y1 and 

P2Y2, but mRNAs for P2Y4 and P2Y6 receptors have also been detected 35. In smooth muscle 

cells, however, activation of the P2Y2R plays a role in vasoconstriction 36,37. P2 receptor 

subtypes in different cell types that make up a blood vessel wall can have opposing effects, 

such as endothelial-mediated vasodilatation or smooth muscle-mediated vasoconstriction 34. 

             Activation of P2Y2 receptors also causes proliferation and migration of vascular 

smooth muscle cells 38-40. P2Y1 receptors are expressed in smooth muscle cells (SMCs) of a 

number of blood vessel types, and like their endothelial cell (EC) counterparts, mediate 

vasodilatation 2. P2Y2 receptors in SMCs mediate the induction of immediate-early and 

delayed-early cell cycle-dependent genes, consistent with a role for these receptors in 

vascular proliferation of SMCs 41,42 . A recent study in rat aortic SMCs demonstrated that the 

P2Y2R is the predominant functional receptor that responds to ATP and UTP 43. The P2Y6 
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receptor is expressed in human cerebral arteries, and mediates vasoconstriction when 

activated by UDP/UTP 44 similar to results with rat pulmonary and mesenteric arteries 45,46. 

Moreover, P2X1 receptor knock-out mice were used to demonstrate that the P2Y6 receptor is 

the prominent P2 receptor that promotes a contractile response in mesenteric arterial trees 47. 

The presence of P2Y4 and P2Y6 receptors has been reported in rat aortic SMCs 41. Major 

blood vessels consist of connective tissue and fibroblasts in the outermost layer. A recent 

study showed that fibroblasts can migrate into the neointima (i.e., the proliferating smooth 

muscle layer of the subendothelial region of blood vessels), suggesting their possible 

involvement in the development of vascular diseases such as atherosclerosis and restenosis 

after angioplasty 48. Human and rat fibroblasts are known to express P2Y1, P2Y2 and P2Y4 

receptors 32, suggesting a role for these receptors in fibroblast activation.  

           P2X receptor subtypes also have been reported in human saphenous vein SMCs, 

including P2X1, P2X2, P2X4 and P2X7 receptors 49. Human  and rat fibroblasts are known to 

express P2X3, P2X4, and P2X7 receptors 32. 

V. Pharmacology and Signal Transduction of P2Y Receptors  

P2Y receptors are found in a wide range of tissue types (Table 2). P2Y receptors 

serve multiple functions in their host cells, working through two major pathways: 1) 

activation of intracellular signaling cascades, via the catalytic G protein α subunit; and 2) 

modulation of membrane ion channel activities, via regulatory G protein βγ subunits 

ralevic 2. Also, a third less well understood pathway may involve the physical interaction 

of P2Y receptors with membrane proteins in their close proximity.  

 P2Y2 receptors have been reported to couple to G proteins including pertussis 

toxin-sensitive Go, pertussis toxin-insensitive Gq/11, and Gi protein 50-53. Activated P2Y2 
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receptors interact with heterotrimeric G proteins and cause GTP/GDP exchange in Gα 

subunits and dissociation of GTP-Gα from Gβγ subunits. Dissociated GTP-Gα subunits 

activate phospholipase C (PLC), which hydrolyzes phosphatidylinositol-4,5-bisphosphate 

(PIP2) into the second messengers inositol-1,4,5-trisphosphate (IP3) and diacylglycerol 

(DAG). IP3 causes Ca2+ release from endoplasmic reticulum into the cytoplasm. Ca2+ and 

DAG activate a variety of downstream pathways including protein kinase C (PKC) and 

mitogen-activated protein (MAP) kinases 54 ,55-57. 

The specific downstream signal transduction pathway involved in P2Y receptor 

activation depends not only on the P2Y receptor subtype but also on the cell type 

expressing the receptor 2. In endothelial cells, P2Y2 receptor-mediated calcium 

mobilization causes phospholipase A2 (PLA2) activation, which leads to the release of 

prostacyclin, and the activation of nitric oxide synthase that leads to the release of NO 

53,58. As with P2Y1 receptors, protein tyrosine phosphorylation and MAP kinase activation 

seem to be a consequence of P2Y2R activation in endothelial cells 59,60. This occurs 

subsequent to activation of PKC and does not involve IP3 or elevation of cytosolic Ca2+ 

levels 60. Stimulation of the P2Y2R in endothelial cells is known to activate a variety of 

signaling molecules including the mitogen- and stress-activated protein kinases ERK1/2 

(extracellular-signal regulated kinases 1/2), p38, and c-Jun NH2-terminal kinase, and the 

small GTPase RhoA 61,62.  More than one subtype of P2Y receptor can regulate responses 

in endothelial cells, and endothelial cells derived from different vascular beds may 

express different combinations of receptors 63. In vascular smooth muscle cells, activation 

of P2Y2 receptors causes phosphatidylinositol 3-kinase (PI3K)-independent activation of 

ERK1/2 and proliferation of smooth muscle cells 39. 
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Src homology domain 3 (SH3) binding sites in the P2Y2 nucleotide receptor 

(P2Y2R) interact with Src or PI3K and regulate the activities of Src, Pyk2, and growth 

factor receptors 62. The integrin binding sequence arginine-glycine-aspartic acid (RGD) 

in the P2Y2R interacts with αvβ3 integrins and is required for activation of focal adhesion 

kinase (FAK) and ERK1/2 52.  The RGD domain in P2Y2R is required for nucleotide-

induced activation of Go- but not Gq-mediated intracellular calcium mobilization 52. More 

recently, Liao Zhongji (unpublished data) has shown that P2Y2R interaction with αv 

integrins is required for it to access and activate G12.  
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Table 2 : Tissue Distribution of P2Y Receptors  
(modified from von Kügelgen et al., 2000 and Burnstock and Knight , 2004) 

 

 
Subtypes expressed in human 
tissues 

Tissue distribution 

  P2Y1 Platelets, heart, skeletal muscle, neuronal tissue, 
digestive tract 

  P2Y2 Lung, heart, skeletal muscle, spleen, kidney, aorta 
  P2Y4 Placenta, lung, vascular smooth muscle 
  P2Y6 Lung, heart, aorta, spleen, placenta, thymus, intestine, 

brain 
  P2Y11 Spleen, intestine, immunocytes 
  P2Y12 Platelets, glial cells 
  P2Y13 Spleen, brain, lymph nodes, bone marrow 
  P2Y14 Placenta, adipose tissue, stomach, intestine, discrete 

brain regions 
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VI. Role of  P2 Receptors in the Vasculature 

 Along with mitogenic effects, nucleotides can be involved in vascular inflammation 

in the following ways: 

1) by increasing expression of adhesion and chemoattractant molecules thus facilitating 

adherence of monocytes to vascular cells 64; 

2) by mediating the secretion of pro-inflammatory cytokines 35 by monocytes or 

macrophages via activation of  P2X7  receptors 
65 ; and  

3) by initiating smooth muscle cell migration 61. 

             Involvement of nucleotides in the above processes has been demonstrated by in 

vitro and in vivo studies in endothelial and smooth muscle cells 61,66.  Nucleotides cause 

smooth muscle cell migration via an increase in the expression of osteopontin 61. 

Nucleotides also increase expression of Monocyte Chemoattractant Protein-1 (MCP-1) in  

arterial SMCs 41. Another significant finding is the demonstration that stimulation of P2 

receptors can increase release of the cytokines IL-1β, IL-1α, IL-8 and TNF-α 65. UTP and 

ATP also can increase expression of the monocyte adherence protein, vascular cell 

adhesion molecule-1 (VCAM-1) via activation of P2Y2 receptors 64. Furthermore, ATP 

and UTP have been shown to induce cell-cell adhesion in a human monocyte/macrophage 

lineage and neutrophil adherence to human endothelial cell monolayers 66,67. In vivo 

studies by Seye and colleagues have shown that local UTP delivery to collared rabbit 

carotid arteries can induce accumulation of macrophages in the intima 68. Thus, 

involvement of P2Y2 receptors in leukocyte infiltration and migration suggests that this 

receptor can be targeted in therapies directed at reducing vascular inflammation and 

atherosclerotic lesion development 69. 
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Smooth Muscle Cell Proliferation 

P2 receptors are involved in nucleotide-induced vascular smooth muscle cell 

proliferation, which is a hallmark of vascular diseases such as atherosclerosis and 

restenosis following angioplasty 42,69. Acute responses to nucleotides are mediated by 

both P2X and P2Y receptors, whereas chronic responses are mostly mediated by P2Y 

receptors 69. Various cell culture studies have shown that increases in DNA synthesis and 

the expression of protein markers of cell proliferation occur in vascular smooth muscle 

cells under the influence of nucleotides 70,71. Both P2Y2 and P2Y4 receptors have been 

associated with proliferative responses in vascular smooth muscle cells 72,73. P2Y6 

receptors have also been associated with SMC proliferation in rat aorta 74. 

Smooth Muscle Cell Migration 

Extracellular nucleotides serve as directional cues for rat aortic SMC migration 61. 

Several P2Y receptor subtypes could be involved in nucleotide-mediated SMC 

migration, although in rat aortic SMCs the effect is thought to be predominantly via the 

P2Y2R 37. Migration in response to UTP involves both P2Y2 and P2Y4 receptors 40.  The 

migratory capacity of extracellular nucleotides could be mediated by inducing the 

expression of extracellular matrix (ECM) proteins such as osteopontin, an RGD 

containing ECM protein 61,68. UTP-induced osteopontin expression involves the 

transcription factors NFκB and USF-1/USF2 75. The role of nucleotides as a 

chemoattractant is consistent with the concentration range found in pathological vessels 

76. Moreover, findings from previous studies demonstrating the mitogenic activity of 

extracellular nucleotides for SMCs suggest that nucleotides released from mechanically-
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stimulated or damaged cells during the angioplasty process may participate in arterial 

wall remodeling 69.  

Phenotypic Modulation of P2Y2R  

Experimental arterial intimal hyperplasia can be evoked by balloon angioplasty, 

or by the perivascular placement of a silicone collar around an artery 69. An influx of 

leukocytes precedes the migration and proliferation of vascular SMCs into the intima in 

both of these models 77. P2Y2R mRNA is expressed at low levels in endothelial cells and 

a few medial smooth muscle cells under normal conditions. In arteries, P2Y2R expression 

was increased by balloon angioplasty or collar placement 42,68. This increase in P2Y2R 

expression is also correlated with three phases of neointimal hyperplasia in the collar 

model 78. The first phase characterized by vascular infiltration of leukocytes begins 2 h 

after the collar is placed around a rabbit carotid artery 78. The second phase characterized 

by medial replication of SMCs begins within 12 h after collar placement  78. The third 

phase is characterized by the appearance of sub-endothelial SMCs which begins at day 3 

after collar placement 78. The appearance of P2Y2R mRNA was detected within 3 days of 

collar placement in SMCs and by day 14 was detected in all intimal and medial smooth 

muscle cells 68. In the same experiments, levels of P2Y4 receptor mRNA did not change 

and P2Y6 receptor mRNA was not detected. Similar observations of P2Y2R upregulation 

have been made in the porcine coronary artery stent model 73. A role for P2Y2Rs in 

atherosclerosis is further suggested by the demonstration of P2Y2Rs in the basilar artery 

of a rat double-hemorrhage model 79, in coronary arteries of a diabetic dyslipidemic pig 

model 80 and in human atherosclerotic lesions (Seye and Desgranges, unpublished data).  
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Pathophysiological Significance of Phenotypic Modulation of P2 Receptors in 

Smooth Muscle Cells  

The shift in the phenotypic status of SMCs from a differentiated contractile 

phenotype to a synthetic phenotype has been suggested to be related to an increase in the 

level of P2 receptor expression 37. In the synthetic phenotype, the mitogenic P2Y1 and 

P2Y2 receptor transcripts were upregulated, while the contractile P2X1 receptor was 

completely downregulated and P2Y4 and P2Y6 receptor levels were unchanged 81. Data 

indicate that the P2Y2R is expressed at a high level in medial SMCs of injured rat aorta 

42, thus linking it to the poorly differentiated phenotype, a condition  similar to that in the 

post-natal phase of development, where SMCs are confined to the medial layer and are in 

the immature state 82. The increased P2Y2R levels may be required for the modulation of 

proliferation or vasoreactivity of SMCs by nucleotides 69. Since both neointimal 

hyperplasia and vasoconstrictive remodeling are involved in postangioplastic restenosis, 

these findings suggest that extracellular nucleotides might play a significant role in this 

process, at least as long as functional endothelial cells, which control intimal thickening 

and nucleotide-induced vasorelaxation, are not regenerated 69. SMC P2Y2 receptors are 

involved in nucleotide-induced constriction of normal arteries 83,84. Long-lasting 

alterations in vasomotricity after endothelial denudation results in increased sensitivity to 

vasoconstrictive substances 85,86. It appears that similar to other receptors of 

vasoconstrictive factors such as angiotensin II, endothelin, and platelet-derived growth 

factor (PDGF) that are overexpressed in neointima, nucleotides acting through P2Y2 

receptors may play an important role in controlling the vasoactive properties of arteries 
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under pathophysiological conditions, particularly with chronic constriction at the lesion 

site that may lead to postangioplastic restenosis 69. 

VII. Potential Factors Involved in P2Y2 Receptor Upregulation. 

            Several factors have been shown to regulate P2Y2R upregulation. Shear stress 

induces upregulation of P2Y2Rs in human blood vessels with intact endothelium 87. In rat 

smooth muscle cells, fetal calf serum and growth factors upregulate P2Y2R mRNA 

expression by a MAP kinase kinase-dependent pathway 88. Using quantitative reverse 

transcription-polymerase chain reaction (RT-PCR), it was shown that phenotypic changes 

in vascular smooth muscle cells regulate P2 receptor expression 37. In rat salivary gland 

cells during short-term culture, a time-dependent increase in P2Y2R activity occurs that is 

associated with an increase in the steady-state level of P2Y2R mRNA, as assessed by RT-

PCR 89. P2Y2R mRNA upregulation also occurs as an immediate early gene response in 

T cell differentiation 90, in collared rabbit carotid arteries 68, in response to  stab wound 

injury in astrocytes 91, and in submandibular gland (SMG) cells from the NOD.B10 

mouse model of Sjögren’s syndrome as compared to wild type mouse SMG cells  92. 

            Among the prime candidates for factors that can cause upregulation of human 

P2Y2R expression are cytokines, growth factors and shear stress. Positioning a silicone 

collar around the carotid artery of rabbits induces vascular injury possibly due to 

hindrance of transmural blood flow, leading to retention of cytokines/growth factors 

within the segment enclosed by the collar 77.  
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Cytokines and Growth Factors 

           Previous studies have reported that cytokines such as tumor necrosis factor-α 

(TNF-α) in combination with interleukin 1-β (IL-1β), and IL-1β in combination with 

interferon-γ, induce P2Y2R upregulation in rat SMCs and increase mitogenic responses to 

nucleotides 81. In SMCs and other cell types, upregulation of P2Y2Rs has been associated 

with stimulation of PKC, cyclooxygenase, and MAP kinases 88,93.  

TNF-α released from macrophages and T-lymphocytes, injured human coronary 

artery endothelial cells and activated SMCs is one of the most important promoters of 

inflammation 94.  TNF-α induces activation of major signaling pathways involved in the 

activation of endothelial cells (i.e., the IκB kinase/nuclear factor κB [IKK/NF-κB] 

pathway) 94. It is possible that NF-κB elements in the P2Y2R 5’-flanking region may be 

involved in the transcriptional regulation of P2Y2R expression.  

Laminar and Shear Stress 

Certain flow-sensitive proteins are regulated by the transcription factor Sp1. For 

example, Sp1 is involved in regulatory mechanisms of flow-sensitive proteins, such as 

endothelial Toll-like receptor 2 in human coronary artery endothelial cells 95 . It has also 

been shown that fluid shear stress-induced transcriptional activation of the VEGF 

receptor-2 gene and Flk-1/KDR (fetal liver kinase-1) requires Sp1-dependent DNA 

binding  96,97. The presence of Sp1 and EGR1 (early growth response-1) binding sites 

immediately upstream and close to the putative transcription start sites of the P2Y2R gene 

indicates that these sites could potentially be involved in the regulation of P2Y2R 

transcription (Figure 2). 
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           Vascular stress conditions including ischemia/oxidative stress, vascular flow, and 

mechanical stretch are known to cause increased release of nucleotides 98,99. Shear stress 

affects endothelial structure and function, both in vivo and in vitro, and is implicated as a 

contributing factor in the development of cardiovascular diseases 100,101. Endothelial cells, 

because of their unique localization at the blood/blood vessel wall interface, are 

constantly exposed to fluid mechanical forces, such as shear stress derived from flowing 

blood. A shear stress response element in the PDGF A-chain promoter was described that 

contains a binding site for the transcription factors EGR1/Sp1 102.  

Other Inflammatory Mediators 

Lipopolysaccharide (LPS) has been shown to cause vascular endothelial growth 

factor (VEGF) upregulation via activation of Sp-1 103. LPS has been shown to be 

involved in the upregulation of P2Y2Rs in rat SMCs 104.  

Phenotypic Changes  

In the synthetic phenotype of SMCs, mitogenic P2Y1 and P2Y2 transcripts were 

upregulated by 342- and 8-fold, respectively, while the contractile P2X1 receptor was 

completely downregulated and expression levels of P2Y4 and P2Y6 receptors were 

unchanged 37. This plasticity of P2 receptor expression may be important in the transition 

from the contractile to the synthetic SMC phenotype. 

Thus, many factors at the site of injury could cause upregulation of P2Y2Rs. By 

studying the P2Y2R promoter, we aim to find the cis and trans acting factors involved in 

P2Y2R expression. Furthermore, we hope to delineate the signaling pathway involved in 

P2Y2R upregulation.  
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VIII. Eukaryotic Promoters And Prediction of Regulatory Elements 

Eukaryotic promoters are DNA sequences that regulate gene expression at the 

level of transcription. These promoters have a complex block-modular structure and 

contain numerous short functional elements, i.e., transcription factor binding sites 105. The 

distal elements have no uniform location, are dispersed in the 5’-flanking region up to ~ 1 

kb upstream of the transcription start site (TSS), and are involved in specific 

transcriptional regulation of gene expression (e.g., tissue- and cell-specific regulation, 

etc.) 106. The proximal elements, which encompass the TSS, are called core promoters 

and are involved in formation of the basal transcription complex  106. 

Core Promoters 

The narrow region around the TSS has been considered to be important for 

understanding promoter functionality 107 and this region is termed the “core promoter”. 

Core promoters are also considered to control basal transcription 105. The core promoter 

region 105,107-109 can be defined as the minimal continuous segment of DNA sufficient for 

accurate initiation and directionality of transcription. However, the definition is 

ambiguous regarding the length of the region covered by the core promoter. In most 

cases, promoter elements considered important for the functionality of the core promoter 

region can be spread over the segment -60 to +50 bp relative to the TSS 110,  and thus it 

makes sense to consider this segment as representing the core promoter.  An often 

overlooked component of the core promoter is its active participation in the regulation of 

eukaryotic gene expression.  The core promoter is actually the ultimate target of all 

transcription factors and co-regulators that control the transcriptional activity of every 

gene  109. 
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The common elements belonging to the basal transcription complex are: 

1) A TATA box with consensus sequence TATA(A/T)A(A/T), the first eukaryotic 

core promoter motif to be identified  111,112.  

2) Inr with the consensus sequence of YYA+1N(T/A)YY 113,114 or 

TCA+1(G/T)T(C/T) in Drosophila 115-117. 

3) A subset of TATA boxes possesses an upstream sequence termed the BRE, which 

is a recognition site for the binding of TFIIB 118. The consensus sequence for the 

BRE is (G/C)(G/C)(G/A)CGCC, where the 3’-C of the BRE is immediately 

followed by the 5’-T of the TATA box. 

4) DPE or downstream promoter element is a recognition site for TFIID and is    

conserved from Drosophila to humans 109. 

   Most promoters contain a combination of one or two of these basic core 

promoter elements and all of these elements are known to interact with each other.   

Transcription initiation begins with the formation of a basal transcription complex in 

the promoter region several dozen bp long located around the TSS 105. In turn, 

assembly of the basal transcription complex at TATA-containing promoters starts 

with the recognition of TATA boxes by the TATA-binding protein (TBP) 105. On 

average, the sequence -300 to -50 bp of the TSS positively contributes to core 

promoter activity 105. Interestingly, a large comprehensive study of promoter function 

showed the presence of putative negative elements around -1000 to -500 bp upstream 

of the TSS for 55% of genes tested 119. 
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IX. Cloning of the P2Y2 Receptor and Mapping of the Gene 

  P2Y2 receptors (P2Y2Rs) were previously known as P2U receptors, 73,120-122. The 

human P2Y2R gene has been mapped to 11q13.5-14.1 on chromosome 11 123. G protein-

coupled receptor genes for the β-adrenergic receptor, angiotensin receptor-like-1 and 

muscarinic cholinergic receptor-1 have also been localized to chromosome 11 124. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 



 21

 
CHAPTER 2 : CHARACTERIZATION AND FUNCTIONAL ANALYSIS OF THE 
P2Y2 RECEPTOR GENE PROMOTER 
 
 
 
I. Introduction 

Atherosclerosis is a multi-factorial disease involving endothelial dysfunction and 

is thought to be initiated by vascular injury. Extracellular nucleotides that are released 

from a variety of arterial and blood cells can bind to the P2Y2 receptor (P2Y2R) and 

modulate proliferation and migration of smooth muscle cells, which is known to be 

involved in intimal hyperplasia that accompanies atherosclerosis and post-angioplasty 

restenosis. A direct pathological role is reinforced by recent evidence showing that 

activation of the P2Y2R mediates intimal hyperplasia 68. Moreover, the P2Y2R is 

upregulated in vascular smooth muscle cells and endothelial cells in response to tissue 

injury 42. These findings also suggest that the P2Y2R is a potential target for the 

pharmacological control of the progression of atherosclerosis and post-angioplasty 

restenosis. However, despite the potential role of the P2Y2R in the atherogenic process, 

the mechanisms governing P2Y2R upregulation remain unknown.  

In this study, we have initiated attempts to investigate the human P2Y2R gene 

promoter by cloning its 5’-flanking region into pGL3, a luciferase reporter vector, 

followed by transfection in human coronary artery endothelial cells and SH-SY5Y 

neuroblastoma cells. A serial deletion analysis of a 2071 bp 5’-flanking region in SH-

SY5Y neuroblastoma cells showed that interspersed positive and negative response 

elements might be involved in the regulation of the P2Y2R gene. Moreover, the deletion 

of a 175 bp region including exon1 and a 41 bp immediate upstream region completely 
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abolished promoter function showing that the core promoter is located in this region. 

These results indicate that the P2Y2R gene promoter is a GC rich promoter with multiple 

transcription start sites and uses an array of positive and negative response elements in 

the regulation of gene expression. Furthermore, other experiments indicate that the 

cytokine IL-1β may be involved in downregulation of P2Y2R expression in human 

coronary artery endothelial cells. Further studies are needed to identify specific cis and 

trans acting factors involved in the regulation of P2Y2R gene expression. This study will 

potentially lead to the identification of novel pathways involved in the regulation of 

P2Y2R gene expression, information that might be useful to suppress neointimal 

hyperplasia in atherosclerosis and restenosis after angioplasty.  
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II. Materials and Methods: 

Vectors  

 pGL3-basic vector and SV40 promoter pGL3 vector were obtained from 

Promega  (Madison, WI, USA). CMV-pGL3, which has the CMV promoter cloned in the 

basic pGL3 vector, was a gift from David Pintel (Department of Microbiology and 

Molecular Immunology, University of Missouri-Columbia, USA). 

RNA Isolation 

              PolyA+ RNA was isolated from total RNA of human coronary artery endothelial 

cells (HCAECs). The Oligotex kit from Qiagen (Valencia, CA, USA) was used for 

PolyA+ mRNA isolation and total RNA was isolated using the RNeasy Midi kit from 

Qiagen, according to the manufacturer’s instructions. Total RNA obtained from 1 

confluent T-75 flask of HCAECs was around 7-15 µg.  The concentration and purity was 

determined by measuring absorption at 260 nm and 280 nm. A 260/280 ratio of 1.8 – 2.0 

was considered to indicate relatively pure RNA. Five µg of total RNA or 0.1 µg of 

PolyA+ RNA was used for the primer extension reaction.  

Primer Extension Reaction 

             Single-stranded 43-mer anti-sense oligonucleotide (10 pmol) (5’-

CTCTCGCCACTGCGCTGCGCTTCTCCTCTCAGGGTGCCGTCGC-3’), 

(Tm=75.3ºC) corresponding to exon1 in the P2Y2R gene sequence was designed and 

chemically synthesized, end-labeled using polynucleotide kinase from Promega 

(Madison, WI, USA) and  [γ-32P]-adenosine 5`-triphosphate from Perkin Elmer (Boston, 

MA, USA); EasyTides® adenosine 5`-triphosphate, 250 µCi (9.25 MBq), specific 

activity: 3000 Ci (111 TBq)/mMole). Labeled primers (1 pmol) were used for 
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hybridization with 5 µg of polyA+ RNA. The primer was annealed with the mRNA at 5 

ºC below it’s melting temperature (Tm) for 20 min. After annealing, the reaction was 

maintained at room temperature for 10 min. AMV reverse transcriptase was added for 30 

min at 41 ºC to yield the corresponding cDNA. Sample Buffer from the Promega kit was 

added and AMV reverse transcriptase was inactivated by incubating all samples at 90 ºC 

for 10 min. The products were then analyzed on a 8% (w/v) polyacrylamide denaturing  

gel. Then, 1.2 kb kanamycin-positive mRNA from the Promega kit was used with a 

control primer as a positive control. The negative control included diethylpyrocarbonate- 

(DEPC-) treated water instead of mRNA in the reaction.    

PCR Amplification of the Putative P2Y2R Gene Promoter Region from Genomic 

DNA 

           Using genomic DNA obtained from Promega as template, the 5’-flanking region 

of the P2Y2R gene was amplified. The primers designed  were Mlu-2071 (5-

CGGACGCGTGGCAGGAGGACTGCTTGGACTCAGC-3’) and Xho-134 (5’-

CCGCTCGAGCTCTCGCCACTGCGCTGCGC-3’) and were PAGE purified by IDT 

(Coralville, IA, USA), which amplified a 2071 bp 5’-flanking region including the region 

encoding the first exon of P2Y2R as reported for the mRNA variants 1 and 2 with 

accession IDs of NM_176072 and NM_002564, respectively (NCBI). Primers Mlu-4620 

and Xho-134 were used to amplify a 5380 bp fragment, the longest variant with respect to 

the 5’-end. The primers selected were between 24-30 nucleotides long with an annealing 

temperature of 68-72 oC. The following PCR parameters were used in preliminary studies 

to yield a product on a 0.8% (w/v) agarose gel stained with ethidium bromide: pre-



 25

amplification denaturation at 94 oC for 1 min, followed by 35-40 cycles of denaturation at 

94  oC for 1 min, annealing at 66 oC for 1 min and elongation at 68 oC for 6 min.   

Construction of the Initial Promoter Reporter Construct 

The above generated fragments were digested using MluI and XhoI and ligated to the 

pGL3 vector digested with the same enzymes. The construct obtained was labeled as 

pNJ2071, transformed into JM109 competent cells and positive clones were identified by 

restriction enzyme digestion and confirmed by sequencing using RVprimer3 (5´-

CTAGCAAAATAGGCTGTCCC-3´) and GLprimer2 (5´- 

CTTTATGTTTTTGGCGTCTTCCA-3´) (Promega, Madison, WI). The pGL3 vector has 

multiple cloning sites just upstream and downstream of the inserted promoter in the 

following order: KpnI, SacI, MluI, NheI, SmaI, XhoI, Bgl II, and Hind III.  

Serial Deletion of the Promoter from the 5’ End 

To delineate the boundaries of the minimal functional promoter and regulatory 

elements within the 5’-flanking region of the P2Y2R gene, a series of 5’ serial deletions 

of the initial promoter-reporter (luciferase) construct were made using the Erase-a-base 

system from Promega (Madison, WI, USA) based on the method of Henikoff 125 and 

were transiently expressed in HCAECs and the luciferase activities of the reporter 

construct were measured. The pNJ2071 construct contains a 2071 bp upstream region 

cloned at the MluI and XhoI sites. This construct was first digested using Mlu I and Kpn 

I. This digestion provided a linear construct of approximately 6960 bp that has a 5’-

overhang at the Mlu I end of the construct and has a 3’-overhang at the Kpn I end. 

Exonuclease III was used to digest the 5’-overhang using the Erase-a-base kit from 
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Promega. A time-dependent reaction at 37 oC was used to obtain a linear construct that 

had deletions of various sizes as shown in Figure 4.  

Transient Transfections 

SH-SY5Y neuroblastoma cells were obtained from ATCC, and cultured using 

Dulbecco’s Modified Eagles’s Medium (DMEM)  supplemented with 10% FBS , L-

glutamate and non-essential amino-acids. SH-SY5Y neuroblastoma cells were plated in 

24 well plates for 24 h in antibiotic-free medium. SH-SY5Y cells were seeded in 24 well 

plates and transfected at 70-80% confluence. Transient transfections were performed 

using Lipofectamine 2000 with 1.92 pmoles of each of the 6 serially deleted constructs 

(Table 3) and pNJ-1937/-41. To compensate for the different amounts of DNA arising 

due to size differences of the various deletion constructs, equal concentrations of the 

plasmid DNA were used by adding non-interfering DNA (pBLUESCRIPT SK-) with 

each of the serial deletions. Renilla luciferase driven by thymidine kinase (pHRLTK) 

from Promega (Madison, WI, USA) was used as an internal control and co-transfected 

with each of the deletion constructs.  

Human coronary artery endothelial cells were obtained from Cambrex and were 

maintained in EGM-2 medium. Transfection was done by electroporation using 

Nucleofector Reagent from Amaxa Biosystem (Gaithersburg, MD, USA).  The cells were 

first dispersed by trypsinization, as described in the manual for HCAEC Nucleofector 

Reagent (VPB-1001) then collected and resuspended in Nucleofector Reagent. At least 5 

µg of DNA were used for transfection of 5 X 105 cells.  

Plasmids for transfection  were prepared and purified using a Maxiprep kit 

purchased from Macherey-Nagel (Easton, PA, USA).  
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Table 3 : Concentrations of plasmid DNA used in transfection of SHSY-5Y 

neuroblastoma cells 

Promoter 
Construct 

Plasmid Size    
(bp) pmol 

Amount. of 
DNA (µg) 

Filler 
(µg) 

pHRGTK (µg) 
(0.192 pmol) 

pNJ-1937/+134 6889 0.384 1.72 0 0.12 
pNJ-1678/+134 6630 0.384 1.66 0.06 0.12 
pNJ-1320/+134 6272 0.384 1.564 0.156 0.12 
pNJ-1086/+134 6038 0.384 1.504 0.216 0.12 
pNJ-692/+134 5644 0.384 1.406 0.314 0.12 
pNJ-266/+134 5218 0.384 1.3  0.42 0.12 
pNJ-235/+134 5187 0.384 1.292 0.428 0.12 
pNJ-1937/-41 6714 0.384 1.67  0.05 0.12 
pGL3basic 4818 0.384 1.2  0.52 0.12 
SV40pGL3 5010 0.384 1.248 0.472 0.12 
CMVpGL3 5611 0.384 1.397 0.329 0.12 
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Dual Luciferase Reporter Assay System 

          The various promoter reporter constructs obtained from deletions and mutations as 

described above were transfected into human SH-SY5Y neuroblastoma cells using 

Lipofectamine 2000. The concentrations of each maxiprep DNA (Nucleobond Plasmid 

Maxi Kit-Macherey Nagel) (Easton, PA, USA) were estimated using 1:10 dilution and 

calculated using the Nanodrop method (NanoDrop® ND-1000 Spectrophotometer) 

(Wilmington, DE, USA). After 24 h, cells were washed with phosphate buffered saline 

and lysed with passive lysis buffer  as described in  the dual luciferase reporter system 

manual (E1910) from Promega (Madison, WI, USA).  Ten µl of the lysate supernatant 

were analysed for luciferase (LUC) reporter activity on a single tube luminometer  

(Turner Biosystems, Sunnyvale, CA, USA) using the dual luciferase reporter system. The 

transfection efficacy was normalized by a luciferase internal control vector pHRL-TK 

from Promega (Madison, WI, USA).  A minimum of triplicate experiments were carried 

out.  A ratio of 2:1 of experimental vector:internal control vector was used for each of 

these experiments. For the cytokine stimulation experiments, after 16-24 h, cells were 

treated with cytokines for another 24 h, washed with phosphate buffered saline and lysed 

with passive lysis buffer.  The luciferase activity for each sample was calculated as a ratio 

of experimental divided by the renilla luciferase activity. These values were then used to 

calculated the Percentage relative response ratio (RRR) as follows. The positive control 

used was SV40-pGL3 and negative control used was basic-pGL3. 

 

Percentage RRR =  (experimental sample ratio) – (negative control ratio)     X  100 
(positive control ratio) – (negative control ratio) 
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III. Results and Discussion: 

1) Genomic Organization of the P2Y2R Gene 

              The three reference sequences (Refseqs) for P2Y2R mRNA that are shown below 

were obtained from cDNA libraries from human renal cell carcinoma, airway epithelium 

and adult blood leukocytes as indicated in Figure 1. The diagrammatic representation below 

shows the exon-intron structure of P2Y2R as derived by schematic computational analysis 

126. The similarity in the color indicates the similarity in the sequence between the three 

mRNA transcripts. The P2Y2R is proposed to encode at least three mRNA variants each of 

which have three exonic and two intronic regions. The coding sequence is intronless and the 

three variants differ in the 5’-untranslated region (UTR).  
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Figure 1: P2Y2R gene organization  
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Figure 1: P2Y2R gene structure and organization 

P2Y2R transcripts from the NCBI (National Center for Biotechnology Information) 

Database – Refseqs. Color scheme is modified such that the regions with similar sequences 

have the same color.  
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2a) Cloning of the P2Y2R Gene 5’-upstream Sequence 

The 2.071 kb upstream of the ATG start codon was cloned into the pGL3 Basic 

luciferase reporter plasmid to generate the plasmid pNJ-2071/+134 and the sequence was 

analyzed by the Proscan computer program 127. A consensus TATA box was not found in 

the 2.071 kb region analyzed. Furthermore, in the same sequence, a CpG island was 

predicted when CpG island-finding software (CpG Finder, Softberry) (Softberry Inc., 

Mount Kisco, NY, USA) was used. The CpG island was 274 bp long in a region spanning 

exon 1 of these transcripts with a P(CpG)/exp score of 0.895 (threshold is 0.6). This score 

represents the Min gc_ratio = P(CpG)/(expected)P(CpG) and is defined as the minimal 

ratio of the observed to expected frequency of CpG dinucleotide in the island The 

percentage of CG content was found to be 75.9%. This information is consistent with 

vertebrate genomes that contain CpG islands in regions about 1-2 kilobases in length 

where the dinucleotide CpG is present at the expected frequency and in an unmethylated 

form 128. The location of these CpG islands is almost always coincident with the 5’-end of 

genes, often overlapping the first exon. 129 . It is estimated that 56% of all human genes 

are associated with CpG islands 128. The unmethylated status in some cases is dependent 

on binding of the transcription factor Sp1 130. We also found putative binding sites for 

Sp1 within the same region (Figure 2). The region being analyzed is thus a likely 

candidate for analysis of the P2Y2R gene promoter.  

Reference website for the software used:  

http://softberry.com/berry.phtml?topic=cpgfinder&group=programs&subgroup=promoter 

Results presented as raw output below: 
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Search parameters:  

Length of the CpG island: >= 100    

% GC: 50.0    

P(CpG)/exp: 0.600    

Output is as follows:  

Found: 1 CpG Island 

Start:   1     

end:    32    

chain: +   

CpG:   13  

% CG:  75.0       

CG/GC: 0.812        

P(CpG)/exp:     0.973(0.98)                      

P(CpG):  0.131       

Length of the CpG island :     274  

2b) Promoters Predicted by the Promoter Predicting Programs (PPPs) Identified 

the Region for Experimental Verification 

Promoter Predicting Programs (PPPs) are important in silico tools for guiding 

experimental biologists. Once the approximate putative regions for promoters have been 

detected using PPPs, reporter gene assays based on a series of deletion mutants can be 

used to further narrow down the DNA regions that play the most important role in the 

promoter activities 131. The information on transcription factor binding sites predicted by 

the commonly available and non-commercial softwares (TESS, University of 
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Pennsylvania; Matinspector 2.0, Genomatix Software GmbH, Germany) was assimilated 

and the most relevant sites are presented in Figure 2.  
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Figure 2: Putative binding sites in the immediate 5’-flanking region of the P2Y2R 

gene 
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Figure 2: Putative binding sites in the immediate 5’-flanking region of the P2Y2R 

gene: Putative Transcription factor binding sites are indicated by underlined sequences. 

The green region represents 134 bp of exon 1 and the region in yellow represents a 31 bp 

sequence deleted in pNJ-235/+134. 
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3) Determination of Transcription Start Site(s) by Primer Extension Analysis 

We used primer extension analysis to identify the probable transcription initiation 

site(s) in the P2Y2R gene with mRNA extracted from HCAECs. The single-stranded 43-

mer oligonucleotide used was highly specific for P2Y2R mRNA exon 1. The expected 

cDNA product size was 134 bp if the transcription start site for P2Y2R mRNA conformed 

to mRNA transcripts arrived at for P2Y2R mRNA by in silico analysis 126, as shown in 

Figure 1. The positive control was a 1.2 kb kanamycin-positive in vitro product that was 

expected to give a product size of 84 bp. The chief cDNA products obtained by primer 

extension were smaller (57 bp and 84 bp) and larger (200 bp) than predicted (Figure 3). 

More than one transcription start site has been known to be associated with TATAless 

promoters 132. However, formation of products due to secondary structures in mRNA in 

the primer extension reaction cannot be ruled out. Further experiments such as 5’-RACE 

(Rapid Amplification of cDNA ends) analysis and RNAse protection assays need to be 

done to confirm the transcription start sites.  
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Figure 3: Determination of transcription start site(s) by primer extension analysis. 
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Figure 3. Determination of transcription start site(s) by primer extension analysis. 

Primer extension analysis revealed one major transcription start site in extracts of mRNA 

from human coronary artery endothelial cells (H) and some weak intensity products of 

sizes from 100-230 bp. A positive control (C) from the Promega kit was included that 

produced a band at 84 bp. Hinf I digested markers (M) were used as standards to compare 

the sizes of the products.  
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4) Deletion Analysis of the Promoter from the 5’-end  

In initial studies, we tested the pNJ-1937/+134 construct for promoter activity in 

cell lines previously reported to show endogenous P2Y2R expression, such as HCAECs 

and human salivary gland (HSG) cells. To define the mechanisms controlling 

transcriptional regulation of P2Y2R in HCAECs, a series of deletion constructs (Figure 4) 

were generated and transiently transfected in SH-SY5Y neuroblastoma cells.  

Deletion mutant pNJ-1678/+134 exhibited a drastic decrease in reporter activity 

as shown by a decrease in percentage of relative response ratio (RRR) (percentage of 

RRR is calculated as relative increases for pGL3 expressed as a percentage of SV40 

promoter-driven luciferase activity as described in ‘methods’ section) by 119% (Figure 

4). Deletion mutant pNJ-1320/+134 exhibited slightly greater reporter activity (Figure 4). 

Deletion mutant pNJ-1086/+134 showed luciferase activity similar to the pNJ-1678/+134 

mutant (Figure 4).  The pNJ-692/+134 mutant exhibited some reporter activity, similar to 

the pNJ-1320/+134 mutant (Figure 5). Thus, the 5’-flanking region showed interspersed 

positive and negative regulatory elements. Furthermore, the pNJ-266/+134 mutant 

showed similar reporter activity to pNJ-1937/+134, which was further dramatically 

increased for deletion mutant pNJ-235/+134 (Figure 4). Analysis of this 31 bp sequence 

showed putative binding sites for C/EBPβ (CCAAT enhancer binding protein), WHN 

(winged helix nude), E2F, and MyT1 (myelin transcription factor 1) zinc finger 

transcription factors known to act as repressors of transcription activity of other genes 133-

135.  Moreover, the analysis of luciferase reporter activity for the deletion mutant pNJ-

1937/-41 revealed a complete loss of activity, especially when compared to the full-
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length construct pNJ-1937/+134 and pNJ-235/+134 (Figure 4). Analysis of this region 

revealed multiple putative sites for Sp1 and a putative site for EGR1.  

We analyzed the similarity of the putative C/EBPβ binding sequence to the 

consensus binding sequence of C/EBP 136, and according to TESS this sequence was 

graded as a good match.  C/EBPβ belongs to a family of transcription factors composed 

of at least five distinct members known to be associated with the regulation of cell 

growth and differentiation 136. It is thought that C/EBPβ has a possible role in the brain, 

since it is known that C/EBPβ mRNA is widely expressed in adult mouse brain 136. 

Constitutive expression of C/EBPβ is particularly high in liver, intestine, lung, adipose 

tissue, spleen, kidney and myelomonocytic cells 136. C/EBPβ protein is widely distributed 

in the brain of post-natal rats when the dendritic arbor of neurons develops  137. C/EBPβ 

overexpression significantly increases programmed cell death, probably through a 

mechanism involving the cell cycle-dependent proteins p53 and p21 136. C/EBPβ might 

play an important role in the regulation of neuronal differentiation and cell death 138. We 

postulate that C/EBPβ is one of the factors involved in the repression of P2Y2R gene 

expression, as shown by the increase in luciferase activity with deletion mutant pNJ-

235/+134 (Figure 4). The role of the P2Y2R in the nervous system is less well 

understood, but it has been shown that P2Y2Rs can couple to neuronal ion channels 139, 

can activate nerve growth factor/TrkA signaling 140,  and can modulate pain responses  

141.  It has been suggested that P2Y2Rs and their associated signaling pathways may be 

important factors regulating astrogliosis in brain disorders 142. 

Combining the data from the primer extension analysis and the deletion analysis, 

it can be concluded that the region between -41 to +134 plays an important role in the 
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initiation of P2Y2R transcription. This region might represent the core promoter of the 

P2Y2R gene and may be responsible for conferring basal transcriptional activity.  This 

can be concluded because pNJ-1937/-41 has all the regulatory elements that are present 

in other constructs except the region that has been deleted from -41 to +134. Furthermore, 

the P2Y2R flanking region shows interesting putative cis-regulatory elements that should 

be mutated further to determine their involvement in the transcriptional regulation of 

P2Y2R expression.  More conclusive information on transcription factors involved in 

P2Y2R gene expression can be obtained by site-directed mutagenesis of specific 

transcription factor binding sites, as shown in Table 4. Furthermore, gel mobility shift 

assays and chromatin immunoprecipitation assays can be carried out with wild type and 

mutated constructs to confirm the involvement of these putative transcription factor 

binding sites.  
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Figure 4: Luciferase activity of the promoter deletion constructs 
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Figure 4.  Luciferase activity of the promoter deletion constructs: A- Serial deletions 

of the pNJ2071 (pNJ-1937/+134) construct. B- Luciferase activities of the deletion 

plasmids transfected into SH-SY5Y cells. Values corrected to the promoterless plasmid 

reporter activity are expressed as a percentage of control SV40 promoter-driven reporter 

activity and represent the mean ±S.E. of results from at least three experiments.  
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5) Effect of IL-1β on the Luciferase Reporter Activity Driven by the 2071 Bp 5’-

flanking Region  

In rat smooth muscle cells, it is known that interleukin (IL)-1ß induces a time- and 

dose-dependent upregulation of P2Y2 receptor mRNA, which was dramatically enhanced 

when combined with interferon-γ or tumor necrosis factor-α 104. We wanted to see if IL-

1-1β can induce upregulation of the promoter driven reporter activity in human coronary 

artery endothelial cells. To analyze this effect, human coronary artery endothelial cells 

were transfected with the full-length construct pNJ2071 followed by stimulation with IL-

1β at 50 ng/ml for 24 h, and luciferase activities were determined as shown in Figure 5. 

This indicates that at this particular IL-1β concentration and at this particular time 

interval, IL-1β decreased promoter activity by 20%. It is possible that certain repressors 

in the 5’-flanking region of P2Y2R could be involved in the IL-1β-induced decrease in 

promoter activity. Similar experiments in SH-SY5Y cells also indicated either no 

response or a slight decrease in luciferase activity induced by IL-1β. Future experiments 

should include transfection of human coronary artery endothelial cells by several serial 

deletion mutants to test the effects of IL-1β and the effect of a concentration dose 

response of IL-1β. These experiments may indicate the elements involved in IL-1β 

induced downregulation of P2Y2R promoter activity. It is possible that in human 

coronary artery endothelial cells IL-1β has an opposite effect, but this needs to be further 

confirmed using other quantitative approaches at the endogenous mRNA level. IL-1β is 

known to be involved in the repression of  the transcription of cartilage-derived retinoic 

acid-sensitive protein (CD-RAP) via C/EBPβ 133 in rat chondrocytes. Interestingly, the 
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deletion analysis has indicated that there might be a functional C/EBPβ binding element 
in the P2Y2R putative promoter region (Figures 2 and 4). 
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Figure 5: Effect of IL-1β on luciferase reporter activity for the 2071 bp 5'-flanking 

region of P2Y2R expressed in human coronary artery endothelial cells. 
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Figure 5. Effect of IL-1β on luciferase reporter activity for the 2071 bp 5'-flanking 

region of P2Y2R expressed in human coronary artery endothelial cells. Stimulation 

of HCAEC transfectants with 50 ng/ml IL-1β for 24 h showed that the 5’-flanking region 

of P2Y2R (prom) exhibits a slight negative regulation in response to IL-1β.  
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IV. Summary 

Several cis-regulatory elements are present in the 5’-flanking region of P2Y2R 

that was analyzed. Deletion analysis indicates that certain elements and/or interaction 

between elements present between 235 bp upstream and 2071 bp upstream of the putative 

transcription initiation site might be important for repression of P2Y2R gene expression 

in SH-SY5Y cells.  In particular, the sequence between deletion 5 and deletion 6 (pNJ-

235/+134) showed the presence of putative binding sites for C/EBP and WHN, which 

have been shown to be involved in repression of other genes  133,143. The data from the 

primer extension analysis indicates the presence of multiple transcription initiation sites 

in the immediate (within approximately 60 - 70 bp) P2Y2R 5’-flanking region as well as 

some strong initiation sites within exon1. Moreover, we found that the ability of this 

putative promoter region to drive luciferase reporter gene expression was completely lost 

when the region between -46 and +134 bp was deleted. These results indicate the 

presence of transcription initiation sites in the region between -46 to +134 bp. 

Furthermore, stimulation experiments indicated that IL-1β might be involved in 

downregulation of  P2Y2R activity in human coronary artery endothelial cells.  Taken 

together, these findings suggest the presence of a GC rich promoter for P2Y2R that 

utilizes an array of interspersed positive and negative regulatory elements that might be 

involved in sequence-specific and signal-specific stimulation of P2Y2R gene expression. 
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Table 4 : Putative transcription factor binding sites in the 5’-flanking region of 
P2Y2R gene 
(as present in the respective construct) 144,145  
 
pNJ -235/+134 

 
Family/matrix Further 

Information 
Opt. Position Str. Core 

sim. 
Matrix 

sim. 
Sequence 
(red: ci-value > 60 
capitals: core 
sequence) 

V$MAZF/MAZR.01 MYC-
associated 
zinc finger 
protein 
related 
transcription 
factor 

0.88 -26/-38 (-) 1.000 0.916 gggggcGGGGcgg 

V$RARF/RAR.02 Retinoic acid 
receptor, 
member of 
nuclear 
receptors, 
DR5 site 

0.70 -28/-56 (+) 0.960 0.702 ccagGGTCagtcaaaagtccgcccc
gccc 

V$SP1F/SP1.01 Stimulating 
protein 1, 
ubiquitous 
zinc finger 
transcription 
factor 

0.88 -29/-43 (-) 1.000 0.913 ggcgGGGCggacttt 

V$WHZF/WHN.01 Winged helix 
protein, 
involved in 
hair 
keratinization 
and thymus 
epithelium 
differentiation 

0.95 -101/-
111 

(-) 1.000 0.950 gggACGCcgcc 

V$SP1F/SP1.02 Stimulating 
protein 1, 
ubiquitous 
zinc finger 
transcription 
factor 

0.85 -102/-
116 

(+) 1.000 0.914 cgctGGGCggcgtcc 

V$MYBL/VMYB.02 v-Myb 0.90 -152/-
164 

(-) 1.000 0.958 tgcAACGggaggg 

V$SP1F/SP1.02 Stimulating 
protein 1, 
ubiquitous 
zinc finger 
transcription 
factor 

0.85 -163/-
177 

(-) 1.000 0.863 ggtcGGGCggcgacg 

V$WHZF/WHN.01 Winged helix 
protein, 
involved in 
hair 

0.95 -172/-
182 

(-) 1.000 0.985 gcgACGCtctc 
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keratinization 
and thymus 
epithelium 
differentiation 

 
         
 
           pNJ -235/+134  to pNJ-266/+134 

 
V$E2FF/E2F.02 E2F, involved in cell cycle 

regulation, interacts with Rb 
p107 protein 

0.84 -
251/-
261 

(-
) 

1.000 0.886 agagacgcCAAAgtttt 

V$WHZF/WHN.01 Winged helix protein, 
involved in hair 
keratinization and thymus 
epithelium differentiation 

0.95 -
252/-
262 

(-
) 

1.000 0.953 gagACGCcaaa 

V$MYT1/MYT1.02 MyT1 zinc finger 
transcription factor involved 
in primary neurogenesis 

0.88 -
258/-
270 

(-
) 

1.000 0.993 ccaAAGTtttgcc 
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APPENDIX 

Future Work and Directions 

Preliminary deletion analysis studies with HCAEC transfectants indicated very 

different results than obtained with SH-SY5Y cell transfectants. These results need to be 

confirmed by repeated analysis. These results suggest that negative regulation is the 

hallmark for P2Y2R expression using transient transfection approaches. This is consistent 

with Dr. Seye’s earlier work showing that the P2Y2R is normally expressed at low levels 

in rabbit carotid arteries 68. 

Futhermore, to precisely define the regions of the promoter necessary for P2Y2R 

basal expression in HCAECs, serial site-directed mutagenesis of the core promoter 

should be performed. Mutant promoter constructs can be created in pGL3 basic vector, 

each containing 10 consecutive mutated bases, and expressed in HCAECs and other cell 

types for assay of luciferase activity.   

The results obtained by the luciferase assays for the deletion constructs 

transfected in SH-SY5Y cells should be confirmed using real time PCR or competitive 

RT-PCR assays.  

We have already generated some constructs to begin ribonuclease protection 

assays for the confirmation of the transcription start site(s) of P2Y2R that were indicated 

by the primer extension analysis.  
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