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TECHNIQUES FOR IMPROVING LANDMINE 

DETECTION USING GROUND PENETRATING RADAR 

UDAYNAG PISIPATI 
 

Dr. Dominic K. C. HO, Thesis Supervisor 
 
 

ABSTRACT 
 
 
Improving the probability of detection of landmines is a challenging task for many 

scientists all around the world. The goal of this research is to be a part of this challenging 

work to investigate techniques for landmine detection. Two techniques for detecting the 

landmines, one in depth domain and the other in frequency domain, have been studied 

and a few modifications are suggested, along with the results. The data collected from 

Ground Penetrating Radar (GPR) from various test sites is used to evaluate the 

performance of these detection techniques. The first technique is proposed for use with 

Handheld GPR systems, while the second technique is proposed for use with Vehicle 

mounted GPR systems. The techniques proved to be useful in improving the detection of 

low metal or plastic mines. 
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Chapter 1 

INTRODUCTION 

 

1.1 Foreword 

 
According to an estimate from the International Red Cross, around 10 billion mines lie 

buried in eighty countries, claiming 10,000 deaths annually and at least twice as many 

seriously injured. Many victims are small children and elderly villagers in poor nations. 

Land mines can be buried in all types of terrain and environmental conditions. Locating a 

buried landmine is an important and challenging problem. Mines are very inexpensive to 

produce at $3 a piece, which makes employing landmines an easy task [1]. However, the 

difficulty in removing landmines poses a great challenge to researchers around various 

parts of the world. Signal Processing techniques are currently being developed in both 

academic and industrial fields and undergo transfer in some form to private companies 

involved in sensor development. As an effective tool for plastic land mine detection, 

Ground-penetrating radar has attracted the attention of many researchers and scientists all 

around the world. This research investigates the methods of improving detection of 

landmines using signal-processing techniques for Ground penetrating Radar.  
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1.2 Problems and Techniques for Land mine Detection 

 
Land mines are generally embedded in a field cluttered with various materials or encased 

in metal, plastic, or wood. They come in all shapes and sizes scattered on the surface of 

earth or buried underground at varying depths, typically at 1 to 6 inches. Simple pressure 

triggers, trip wires, tilt rods, acoustic and seismic fuses, and magnetic influence fuses are 

the various fusing mechanisms used. Unpredictable climatic conditions and geographic 

limitations pose a serious challenge in identification of the mine fields.  An efficient land 

mine detection system should be able to detect various types of explosives like Anti-

Tank(AT) land mines, Anti-Personnel(AP) landmines, UXO, TND, RDX, etc., by 

distinguishing them from background clutter, regardless of size, shape, depth of burial, 

type of casing, chemical signature of the explosives used or the thermal radiation from 

these subsurface buried objects. The detection system used should provide a highly 

precise, cost effective detection with good standoff distance, very low false alarm rate, 

acceptable operational speed, and imaging capability. The mine detection problem is 

even more difficult when the target is nonmetallic. It is a highly challenging task to meet 

such demanding requirements with current detection technology.  

 
Although there are many technologically advanced means of detecting mines in the field, 

the problem is far from being solved. Generally, man-made objects exhibit the property 

of being symmetric across a plane. This symmetric nature is absent in clutter objects from 

nature like rocks, bullet casings etc. Therefore, symmetry in landmines can be used to 

distinguish them from clutter objects buried beneath the ground.  
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Infrared Imaging (IR), Electromagnetic Induction (EMI) Array, Ground Penetrating 

Radar, Thermal Neutron Activation (TNA), Thermography, Photo-Optics, Eddy current 

and Microwaves, and Sensor fusion are some of the Mine detection technologies used in 

various applications. Traditional sensors for UXO detection are capable of attaining high 

detection rates, but pose a risk of increasing the system costs due to high false alarm 

rates.  

 
The principle of Infrared thermography is based on the principle of difference in the 

thermal capacitance between soil and mine, which in turn produces difference in their 

heating and cooling rates and also the infrared emissions of these materials. This 

technology allows detection of landmines from a remote area by aerial search which is a 

passive method covering a large area in a short time. This method best suits identification 

of minefields, rather than the search of individual mines. However, this procedure cannot 

be applied for detection when the soil and mine are in thermal equilibrium. 

 
Laser detection of land mines can be done by using photo optics. The principle behind 

this mechanism utilizes the difference in the reflectance and polarization of soil produced 

when disturbed by laser energy. This system is however difficult to implement because of 

the large laser power required for this process and complex data interpretation involved 

in this process. 

 
Generally, Eddy-current can be generated in metals causing complete reflection of 

microwaves off their surfaces. This principle when applied to metal encased land mines 

can be used for their detection. The detection process can be done by pulse-induction 

metallic detectors and microwaves. Microwaves are also scattered by nonmetallic objects, 
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but to a lesser extent. These reflection signatures are characteristic to material type, and 

hence can be used to identify explosives. Propagation losses in the soil, low contrast 

between target and soil, and echoes produced from the rough surface and other shallow 

contrasts such as rocks, tree roots pose set backs to implement this method for land mine 

detection. Discrimination of mine from clutter under the wide variety of surface and soil 

conditions always remains a very difficult issue to solve. Penetrating radiation from 

neutrons and photons also offers another option for land mine detectors. The technique 

works on radiation scattering or activation by production of secondary particles unlike the 

conventional radiographic or tomographic methods. Explosives are usually characterized 

by high nitrogen content, neutron activation of nitrogen, and the subsequent emission of 

characteristic gamma rays, can be used for mine detection.                        

All the techniques discussed above use a signature "finger-print" signal characteristic of 

mine. Given the wide variety of mine material, casing and shape, as well as the various 

type of soil and the non-uniformity of clutter, such a characteristic signature varies 

widely depending on the circumstances; making it difficult to apply any one technique 

unless the nature of the mine, soil and background clutter is well known. What is needed, 

therefore, is a technique that is more specific in its identification of the hazardous 

material in a land mine, i.e. the explosive material itself.                                           

 
Ground-penetrating radar has attracted the attention of many researchers and institutes all 

around the world. As an effective tool for plastic land mine detection, Ground Penetrating 

Radar (GPR) can detect the presence of subsurface targets by distinguishing them as 

landmines and clutter objects based on the level of symmetry exhibited by the targets. For 

electromagnetic induction based sensors, detection occurs with respect to their sensitivity 
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to metals, caused either by targets or clutter. To reduce the false alarm rates, ground 

penetrating radar (GPR) has been proposed as an efficient detection method for 

landmines. GPR sensors aim for the detection of dielectric discontinuities below the 

surface, instead of detecting metallic content of an object. This allows for the detection of 

low-metal content targets consisting of wood, plastic, or other non-metallic materials. 

GPR sensor�s ability to detect non-metallic materials can be offset by the false alarms 

generated by any material from tree roots to rocks. However the use of signal detection 

theory based on symmetry study can help reduce false alarm rates for GPR.  

 
There are certain challenges pertaining to this GPR based land mine detection systems, 

the major challenge being the visualization of the data. Also, the data collected by the 

radar has to be presented in a comprehensible format in order to attain a comprehensive 

conclusion. This data may be a color-mapped image of the energy of a block of data, or a 

time domain representation of the measured signal. Image processing sometimes 

becomes equally important to the signal detection. Next, pre-processing the data is also 

an important factor in order to achieve better detection of the landmines. This can be 

done in both the time and frequency domains. 
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1.3 Previous work on Landmine Detection  

 
The detection of land mines has been a popular research area over the past few years. 

Land mines can be categorized into two types. Anti-tank (AT) mines and Anti-Personnel 

(AP) mines [1]. AT mines are larger, generally 20-30 cm in diameter, whereas AP mines 

range from approximately 5-15 cm in diameter. In addition, landmines can be categorized 

as plastic-cased or metal-cased. Plastic cased mines or simply plastic mines have much 

less metal content than metal cased or metal mines and are very difficult to detect.  

Because land mines are buried deep under the ground, land mine detection relies mostly 

on sensors to capture the signal responses from land mines. The standard mine detector 

has been a metal detector (MD), also known as Electro Magnetic Induction (EMI) 

sensors. EMI sensors can easily detect metal mines. Unfortunately, most land mines 

nowadays are either made of plastic or have very low metal content. As a result, metal 

detectors have problems detecting mines made of plastic or having low metal content. 

Ground penetrating radar (GPR) is the emerging technique used in mine detection that 

can detect plastic or low metal content mines [2]. GPR sensors can operate in both the 

time domain and the frequency domain.  They use relatively low frequencies to penetrate 

deep into the ground. GPR systems are usually of two types: vehicle mounted or 

handheld. Extensive research has been done which uses handheld GPR system for land 

mine detection. 

 
Wide varieties of signal processing techniques have been used in the past to process GPR 

signals. Gader et al. [3]-[4] has suggested a gradient-based method for landmine 

detection. This method efficiently used the Fuzzy clustering technique by generating 



 

 7

multiple prototypes of training data from a fuzzy clustering of gradient features. In [5]-

[8], Hidden Markov Models (HMM) have been used to process GPR signals with some 

success. Though the technique is still under investigation, it has been proved that HMM 

can be used to efficiently detect the presence and location of landmines. In [9]-[10], a 

least squares method has been proposed to remove the ground bounce obtained on a 

rough surface. However, its performance depends heavily on the reference ground 

bounce and no method has been given in [9]-[10]. A system identification based clutter 

removal algorithm is given in [11]-[12], which uses ARMA model to describe clutter and 

abrupt change detection technique to classify clutter and target signal. The technique 

focuses on pre-processing the GPR data to reduce the influence of near-surface clutter. 

Once the clutter is satisfactorily known, this technique easily identifies the target as a 

small anomaly within the known clutter background. However, the dependency on the 

reference clutter data is a major drawback of this technique.  A linear prediction approach 

for the detection of land mines has been proposed by Dr. Ho, which uses the prediction 

model to generate a mine detection alarm if the current and past few signal samples do 

not fit the linear prediction model. Apart from the above methods, wavelet analysis, 

principal Component analysis (PCA), Independent component analysis (ICA) has been 

proposed for clutter suppression in [13]-[14].  Wavelet decomposition and reconstruction 

will lose some useful target signal component because the ground bounce is usually very 

strong and would overlap the target signal in the time-frequency plane. Deming [15] 

proposed Maximum Likelihood Adaptive Neural System (MLANS) for landmine 

detection, which is a model based neural network, which combines the adaptability of a 

neural network with the priori knowledge of signal models. The MLANS technique is 
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designed to adapt to unknown and changing soil conditions, while incorporating signal 

models based on the physics of electromagnetic scattering for a specific object or clutter 

type. However, for accurate feature extraction, the technique requires well defined clutter 

and mine signature models. The Hand-held GPR system has time varying clutter and does 

not provide clear signature models. Hence, MLANS technique would be more 

appropriate for vehicle-based systems 

 
1.4 Thesis Contribution 

 
In our research, we use two techniques to improve the detection accuracy of land mine. 

The first technique is the use of Dynamic Template Matching algorithm with the land 

mine templates in the GPR data, to improve the detection accuracy for a hand-held mine 

detection unit. The proposed algorithm extracts the mine templates from the data 

acquired during the first few sweeps, and correlates the templates from the data at 

subsequent sweeps to enhance the detection of land mines. Thus, the algorithm uses the 

forward and backward sweeps separately to extract the template and matches them with 

the subsequent data to find the confidence value. The algorithm is found to be effective to 

enhance the detection of weak mines, especially the low-metal anti-personnel mines. This 

research further investigates the use of forward and backward templates together to match 

with the subsequent data. In this technique, the template from the backward direction 

(right to left) is flipped and combined with the template in the forward direction (Left to 

right) to match with the subsequent data. Though this technique does not show apparent 

improvement over the original template pair approach, it provides some insight into the 

original algorithm. Further, the original algorithm has been modified to batch processing 
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where the final mean template from all the sweeps is used to match with the subsequent 

data. This batch processing technique is found to improve the probability of detection of 

land mine with less false alarm rate compared to the original algorithm. The effect of 

scaling on the front and back antenna is verified using the original algorithm and the 

batch-processing algorithm. 

 
The second technique investigated in the research is to improve the land mine detection 

using frequency domain features from Ground penetrating radar.  For certain specific 

mine types, the GPR signal return is very weak which presents difficulty in their 

detection. For these kinds of mines, the GPR signal spectrum sometimes reveals 

important features, although time domain signature could be weak. This technique is 

applied to the vehicle mounted GPR system. The GPR return is converted into frequency 

domain and the normalized frequency domain data is used to generate the spectrum by 

averaging over a square window. To make use of the energy density spectrum to improve 

mine detection, the spectral feature vector is generated with spectral energy at different 

frequency bands. Since the total bandwidth of the radar being studied is 6 G Hz, with the 

size of each frequency band equal to 600 MHz, there will be 10 frequency bands. The 

spectral features are generated using windowing in each frequency band. This research 

investigates the advantage of increasing the number of sub bands to 20, using cosine 

square window with 50% overlap between two adjacent bands. Further, the effect of 

using depth estimation routine before converting the data to frequency domain has been 

studied. This showed some improvement in the probability of detection of weak mines. 
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1.5 Thesis Organization 

 
This thesis is composed of six chapters. The next chapter reviews the existing techniques 

for land mine detection using GPR. The chapter gives an introduction to the two types of 

landmine detection systems used and also introduces a few techniques investigated by 

researchers around the world. Chapter 3 discusses the template matching techniques and 

evaluates the performance of template matching technique using two different datasets. 

Chapter 4 discusses the Frequency domain technique of processing GPR signal return and 

evaluates the effect of varying sub bands on the improvement of mine detection. Chapter 

5 includes the investigation of depth estimation routine in the improvement of Probability 

of detection. Chapters 4 and 5 also include the evaluation of frequency domain technique 

with data collected from various lanes. Finally, conclusions and possible future works are 

discussed in Chapter 6. 
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Chapter 2 

TECHNIQUES FOR LANDMINE DETECTION 

 

2.1    Sensors Used in Landmine Detection 

 
A variety of sensors have been proposed for landmine detection during the past several 

years. The most widely used sensor for land mine detection is a Metal Detector or 

Electromagnetic Induction (EMI) sensor. EMI sensors can easily detect landmines. EMI 

sensors usually contain a pair of coils, one of which is used to transmit either a broadband 

pulse or a continuous wideband electromagnetic waveform. The other coil is used to 

receive the decaying secondary field that has been induced in the earth and subsurface 

objects due to the primary coil. EMI sensors can be of two types, Time domain or 

Frequency domain. Numerical methods of frequency domain sensors have been 

developed. The response from a time domain sensor can be modeled mathematically as a 

sum of decaying exponentials. However, the main disadvantage with the EMI sensors is 

that they cannot detect plastic or low metal content mines.  

 
GPR sensor, also used for landmine detection, operates by transmitting pulses of ultra 

high frequency radio waves down into the ground through a transducer or antenna. These 

GPR sensors [16-18] have the advantage of having the capability to detect plastic cased 

mines. The transmitted energy is reflected from various buried objects or distinct contacts 

between different earth materials. The antenna then receives the reflected waves and 

stores them in the digital control unit. The ground penetrating radar antenna (transducer)  



 

 12

is pulled along the ground by hand or behind a vehicle. When the transmitted signal 

enters the ground, it contacts objects or subsurface with different electrical conductivities 

and dielectric constants. Part of the ground penetrating radar waves reflect off of the 

object or interface; while the rest of waves pass through to the next interface. The control 

unit present in the antenna system registers the reflections against the ground surface and 

then amplifies these signals.  Recently, considerable efforts have been put into the 

development of GPR systems for the detection of shallow buried land mines. GPR waves 

can reach depths up to 100 feet (30 meters) in low conductivity materials. High 

conductive materials may attenuate or absorb the GPR signals, greatly decreasing the 

depth of penetration to 30 feet (1 meter) or less.  The depth of penetration is also 

determined by the radar antenna used. Antennas with low frequencies of 25 to 200MHz 

obtain penetrations of 30-100 feet or more, whereas antennas with high frequencies from 

300-1000 MHz obtain reflections from shallow depths and have high resolution. 

However, the presence of clutter in the mine data hinders the detection accuracy of 

landmines. The clutter varies with soil and environmental conditions and leads to false 

alarms in mine detection. Therefore it becomes necessary to overcome the clutter effects 

when processing the GPR data for detecting small, shallow objects.  

 
Other radar approaches include generating continuous frequencies in a narrow band or 

bands, either by discrete steps, continuous sweeping or chirping (a short burst of sweep 

frequencies). Synthetic aperture radar (SAR) utilizes multiple antenna locations to 

improve resolution of the resulting image, essentially creating a larger antenna from 

multiple smaller antennas [19]. Bistatic impulse radar emits a short burst of energy which 

incorporates a broad range of frequencies on a single transmit antenna.  
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Recently, Energy Focusing Ground Penetrating Radar (EFGPR) has been proposed which 

incorporates both bistatic impulse radar and synthetic aperture (SAR) principles. EFGPR 

is designed specifically for the detection of landmines. The system is unique in its ability 

to focus in hardware and designed by taking a wide variety of environments into 

consideration.   

 
Though several advances are made in the Sensor industry, Ultra wideband GPR sensors 

have been accepted as popular radar for the detection of landmines. GPR systems are 

usually of two types: Vehicle-mounted and Hand-held GPR systems.  The vehicle- 

mounted GPR systems attaches the GPR and EMI sensors in the front of a vehicle and 

collects the data as the vehicle moves. The vehicle has a constant moving speed and 

relatively stable sensor to ground distance so that the mine signature is consistent. Hand- 

held systems have GPR sensors located at the tip of a hand-held unit. The background 

characteristics in the hand-held GPR sensors are nonstationary and vary with soil 

conditions and soil types. In addition, sweeping speed and ground to radar distance are 

not constant due to human factor. The data processing models in hand-held GPR system 

and vehicle-mounted GPR systems are discussed further in the coming chapters. More 

about hand-held and vehicle-mounted GPR systems is discussed in Section 2.3 and 2.4 
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2.2 GPR Data Format:  

 
The GPR data is classified as A, B, and C- scans according to the dimension. Each scan 

can be represented using a set of mathematical equations. Figure 1[20] shows the A, B 

and C scans obtained from a GPR. 

               
                    Figure 1(a)                                    Figure 1(b)                                             Figure 1(c) 

Figure 1: A, B, C scans obtained from a GPR 
 

An A-scan is obtained by a stationary measurement of a signal after placing the antenna 

above the position of interest. The collected signal is presented as signal strength versus 

time delay. The positions of the peaks in A-scan correspond to the distance between the 

antenna and the reflecting surface. The first peak is the air-ground reflection and the 

second is the mine target. Figure 1(b) is the B-scan of the same object shown in Figure  

1(a). The B-scan is a two-dimensional image. Each B-scan has of a number of A-scans. 

The vertical axis corresponds to the horizontal axis of Figure 1(a) and the horizontal axis 

represents the scanned width, which is the number of A-scans. The intensity or color of 

each pixel indicates signal strength, corresponding to the vertical axis of Figure 1(a). The 

A-scan could detect only the presence of two objects in Figure 1(a) whereas a B-scan can 

distinguish a mine-like target from the air ground surface and also can give information 

about the position of object. A C- scan in figure 1(c) is represented as a horizontal slice 
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for a specific data point, which indicates the depth level. Both horizontal and vertical 

axes correspond to the horizontal axes of a B-scan, and the depth level corresponds to the 

vertical axis of B- scan.  

 
2.3 Techniques for Hand-held GPR system  

 
The detection accuracy of the GPR system usually depends on the removal of surface 

clutter present around the landmines.  Therefore, the primary goal of any detection 

system is to reduce the interference from the clutter and to enhance the object reflection. 

Various techniques have been suggested for the removal of the clutter or ground bounce 

present near the surface. For shallowly buried plastic landmines, the ground bounce is 

usually much stronger than the low strength signal returned from landmines, and makes it 

very difficult to distinguish landmine from the ground bounce. Fuzzy logic method has 

been proposed by Gader [3], to recognize the hyperbola-like curves in a GPR image from 

a landmine. Various other methods have been suggested for the background removal 

from the GPR image. Xu, proposed a background removal technique by subtracting the 

column-wise average to remove specular reflection [21]. Dr. Ho has suggested a 

background removal by time gating algorithm in order to reduce specular reflection, 

which arrives earlier than the landmine reflected signals. These background removal 

techniques require prior information about the depth of the buried landmines to perform 

effectively.  

 
Kempen and Sahli together proposed an ARMA model [11] for clutter estimation. The 

technique models the GPR signal return as given in the equation below  

  n(k))(k)(*(k)(k) ++= tcraddrec' hhEE )1.3.2(
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This represents the relationship between the radiated electric field and the received one, 

where hc (k) and ht (k) are the impulse response of the clutter and target, respectively and 

n represents the measurement noise. The removal of Erad (k) the emitted signal, by 

deconvolution is the first step in the algorithms. This deconvolution can be performed 

after the clutter reduction. The technique then estimates a small amount of known clutter 

samples with the ARMA model. Kalman filtering can also be used to estimate the 

parameters of the clutter, where the parameters are considered as being constant with 

some fluctuations. The Kalman filtering method was found to give better results, 

reducing most of the clutter to zero, while preserving the shape of the original signal.  

 
A few other techniques were proposed which take into account the time varying nature of 

the background clutter. These techniques are used in the search mode of the handheld 

detection unit, where the operator sweeps the GPR unit back and forth to detect the 

presence of a mine. In this approach, as the signal return from the GPR Radar is 

processed, any difference of observed data from the background is considered to be the 

presence of mine. Many such anomaly detection techniques are proposed for Handheld 

GPR sensors, the most popular approaches being Principal Component Analysis (PCA) 

algorithm proposed by Yu and Mehra [22], and the CorrDet algorithm proposed by Ho 

[23]. The PCA algorithm [22] generates the principal components from the 

autocorrelation of background clutter samples collected during the training phase. A GPR 

signal is then projected onto these principal components. The Corrdet algorithm [23] on 

the other hand uses a linear prediction model of the background clutter to generate a mine 

detection algorithm if the linear prediction error is greater than a particular threshold.  

Section 2.5 explains the linear prediction approach used in the CorrDet algorithm.  
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2.4 Techniques for Vehicle-Mounted GPR systems 

 
The handheld mine detection system is slow, man power intensive and stressful to the 

operator, who on the other hand can perform the operation only for a short period of time. 

To increase the sweeping speed and to remove the human factor in mine detection system 

to reduce the timing errors, vehicle mounted systems are used now a days.  Vehicle- 

mounted GPR is a rapid, continuous data collection system that contains highly accurate 

and repeatable data as it is moved over a pre-defined path. There are several constraints 

that need to be taken care before designing any vehicle-mounted system which makes the 

system expensive. The system has the radar antenna mounted on a vehicle which is 

remotely controlled from an armour-protected vehicle. The radar vehicle�s ground 

pressure should make it possible to drive over mines without detonating them. The 

antenna has to be very stable with respect to speed, vibration and other movements. This 

has a very strong influence in the design of the vehicle.  

 
Various techniques have been developed for vehicle mounted GPR systems recently. 

Unlike hand held mine detection system, the vehicle-mounted system has a constant 

moving speed and relatively stable sensor to ground distance. The performance criteria  

for vehicular based systems is high probability of detection with less probability of false 

alarm. Hence, feature based techniques are useful in vehicle-mounted GPR systems. 

 Hidden Markov models have been used in processing data from vehicle-mounted GPR 

systems [5]-[6]. Another technique for vehicle mounted GPR system is proposed in [24], 

where signal processing techniques are developed, that automatically extract features 

from two dimensional as well as three dimensional data, and then utilize these features to 
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differentiate between a landmine and a clutter. [24] used polynomial fitting techniques to 

detect the hyperbolic shapes present within a landmine. Another novel technique has 

been investigated in this research, which uses the frequency domain features from the 

ground penetrating radar to determine the energy density spectrum present in the mine. 

This technique is explained in detail in chapters 4 and 5. 

 
2.5 Linear Prediction 

 
To start with the linear prediction model, Figures 2(a) and 2(b) [2] show the magnitude 

plot of the GPR return in various frequencies at a particular position. The nonstationary 

nature of the background clutter indicates that the removal of background clutter from the 

landmine signature is a challenging task. Figure 2(a) shows the magnitude plot of GPR 

data collected over a landmine and Figure 2(b) shows the magnitude plot of GPR data 

collected over a clutter. The plots show the magnitude plot as the sample number 

increases. The upper window indicates the position where the mine signatures appear.  
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Figure 2(a) Magnitude plot of GPR data collected over a landmine [2] 

 
Figure 2(b) Magnitude plot of GPR data from the clutter [2] 

 
Figure 2: Magnitude Plots of GPR data. 
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Linear Prediction technique has been proposed by Ho to model the GPR data in the 

frequency domain. The linear prediction model is given by the following equations: 

                                                                                                                                                                   

Where x (n) is a vector sample of the GPR data at location n and P is the prediction order,  

X (n-1) = [x (n-1), x (n-2)� x (n-P)] is a collection of P past input vector samples and  

a(n) = [a1 (n), a2 (n)�aP (n)] T is a vector of the linear prediction coefficients at location n. 

The linear prediction coefficients are obtained by minimizing є H є, giving  

                                                                                                                                    

Where the superscript H represents the complex conjugate transpose operation. The 

resulting error is given by  

                                                                                                                                                          

Weighting matrix can be used to find the LP coefficients to improve performance [22].  

 
The advantage of using frequency domain techniques is that sub banding can be used to 

improve the detection accuracy of the system. Sub banding decomposes each frequency 

domain vector sample x (n) into M frequency bands that produce test statistic ξi�(n) for 

each sub band. The resulting test statistic is obtained by taking the geometric mean of M 

test statistics as given by   

 
                                                                              

Where ξi�(n) represents the test statistic for each subband index i and ξ(n) represents the 

resultant test statistic 

Figure 3 shows the steps involved in landmine detection process. The GPR data collected 

from a hand-held detection unit has two modes of operation. One is the search mode and 
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the other, locate mode. These modes are discussed in detail in Chapter 3. The operator 

sweeps the unit back and forth in the search mode and reaches the locate mode when a 

specific mine location is found. Different algorithms are proposed for the two modes. The 

search mode algorithm used in this research is CorrDet algorithm proposed by Dr. Ho. 

This algorithm involves three steps. (a) Weighting matrix is used to improve the 

performance. Weighting matrix is given by the inverse of the covariance matrix of ξ(n) in 

clutter. (b) Subbanding is applied in frequency domain to improve performance. (c) After 

subbanding, linear prediction is applied on each sub band separately. The Error vector 

from the linear prediction is used in the locate mode to perform template matching based 

processing. Dynamic template matching along with various modifications to improve 

detection is explained in the following chapters. Finally, since the prediction error energy 

is time varying in nature, adaptive threshold is used to decide if the suspected location 

has a landmine or a clutter. Using a fixed threshold increases the false alarm ratio and 

hence adaptive threshold is used to take into account the time varying nature of the 

clutter.  
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Flow Chart  

 
Figure 3: Flow Chart  
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Chapter 3  

DYNAMIC TEMPLATE MATCHING TECHNIQUE 

 

3.1 Introduction to Hand-held GPR system 

 
Detecting minimum metal antipersonnel mines and distinguishing them from the metallic 

debris of a minefield is difficult with the currently available metal detectors. Previous 

efforts have attempted to address the requirement for a single system capable of detecting 

all landmine types and sizes, buried and surface laid, which could be used for all types of 

terrain. Several promising new technologies are in development to increase the detection 

rate and to automate these tasks whenever possible to preserve the life of the mine 

clearing personnel.  

 
The GPR technology is one such widely used system for the detection of buried objects 

and soil study. Hand-held mine detectors are particularly useful, as they can be employed 

in areas where access is difficult, and can detect small anti-personnel mines as well as 

larger anti-vehicle mines. Hand-held system combines metal detection and ground 

penetrating radar technologies into a single low cost hand-held detector, providing a 

powerful tool for speeding up mine clearance operations. 

 
The hand-held mine detection system consists of the GPR unit, which the Human 

operator sweeps across the ground. GPR mine signatures obtained using the hand-held 

systems may be inconsistent due inconsistency in sweeping speed and variation in sensor 

to ground distance caused by the human operation factor. 
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A high detection probability (Pd) is required to avoid casualties and injuries during 

landmine detection. However, high Pd is often obtained at the price of extremely high 

false alarm rates. The key challenge lies in the ability to achieve high detection rates 

along with acceptably low false alarm rates for all types of mines, soil conditions, and 

false targets. 

 
The hand-held mine detection is generally designed to have two modes of operation: The 

search mode and the locate mode. Search mode or discrimination mode, generates an 

initial causal detection on the suspected location and locate mode confirms the existence 

of a mine. During the search mode, the operator sweeps the detector unit back and forth 

over the suspected location by walking forward. When an initial detection occurs, the 

operator works in the locate mode where in the operator stands still near the suspected 

mine location and interrogates the location using the detector to confirm the landmine 

location. 

 
The search mode needs to be causal as the position information of the suspected mine 

location is crucial. Any delay in generating a detection alarm corresponding to the current 

sample generates a false alarm. This requirement restricts the classes of algorithms used 

in search mode. However, during the locate mode processing, the causality restriction can 

be relaxed as the location information is available from search mode and the purpose for 

locate mode processing is to verify the existence of a buried land mine in the suspected 

location. This relaxation provides an additional degree-of-freedom to improve the 

detection performance.  Figure 4 illustrates these two modes of operation for the hand-

held mine detection unit. 
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Figure 4: Comparison of Search Mode and Locate mode Algorithms [25] 

 
 
3.2 Previous work on Locate Mode Processing 

 
A locate mode processing algorithm has been proposed by Ho and Gader [26] which uses 

the consistency of detection pattern in several sweeps to improve performance. This 

algorithm assumes that the Search mode algorithm used is the CorrDet algorithm [23], 

[27]. The proposed algorithm models the detection pattern mathematically and derives 

the corresponding Fourier transforms. This Fourier transform is used to find the power 

spectrum by taking the magnitude square of the FFT. Now, the frequency bin where the 

first harmonic peak in the spectrum occurs is derived using the following equation  

                                                                                                                                         

where C is the sweeping speed in m/sec, D is the sweeping distance between two 

successive crosses on the suspected location in meters, and the total time in collecting the 

four sweeps is L sec. T is the time duration in which the peak in the detection pattern 

occurs. The detection confidence is then formed using the peaks in the index range from 

I-δ to I + δ where δ is the margin for the variation of the peak location. 

Search Mode  Region Mode 

Algorithm Characteristics 
- Causal Processing 
- Real-time detection 
- Training from bootstrap 

background data 
- 100% Pd, moderate FAR

Algorithm Characteristics 
- Collect data in entire 

region before processing 
- Less operator dependent 
- Maintain high Pd, low 

FAR
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The locate mode processing algorithm generates a detection value only at the end of the 

final sweep. Therefore, the operator has to wait until the final sweep to decide the 

presence of a landmine in that location. A new dynamic template matching based 

processing [28] is proposed by Ho, which provides a detection confidence value at each 

sample location, allowing the operator to asses the possibility of mines during the 

discrimination mode rather than waiting until the final sweep to decide. This technique is 

further investigated in this research to improve the probability of landmine detection. The 

algorithm investigated in this research is found to be useful in the detection of weak 

mines. 

 
3.3  Dynamic Template Matching Technique 

 
3.3.1 Pre-Processing of GPR data  

 
The GPR data from a hand-held mine detector is dominated by the background and the 

mine signature is not apparent. Therefore, the GPR data is pre-processed to remove the 

background. The data for the current research is obtained by pre-processing the GPR data 

using the Linear Prediction model of the CorrDet Algorithm Proposed by Ho and Gader. 

The linear prediction algorithm is explained in Chapter 2.4. Therefore the pre-processed 

data is then equal to the resulting LP error given by 

                                                                    

Where x (n) are the input samples, a0 (n) are the linear prediction coefficients obtained by 

minimizing the mean square error and X (n-1) = [x (n-1), x (n-2)�x (n-P)] is a collection 

of P past input samples. The steps involved in the template-matching algorithm are 

explained sequentially in sections 3.3.2 through 3.3.3. 

(n)1)(n(n)(n) 0aXxZ −−= (3.3.1.1)
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3.3.2. Data size Reduction  

 
The data samples from the linear prediction step contain 64 data points in frequency 

domain. The inverse fast flourier transform is applied to convert the pre-processed data to 

the depth domain. Only the real part of the inverse FFT is used initially in further 

processing, though the results are also verified using the complex part at later stages in 

this thesis. Using only the real part reduces the data size and saves the computation 

required, sometimes at the expense of a little probability of detection.  

 
Considering the fact that the mine signatures appear only the ground level region, the 

ground level is estimated using the clutter data and only that portion around the ground 

level is used for further processing. The ground level is estimated taking the depth bin 

where the maximum of average of GPR data in the depth domain occurs. Figure 5(a) 

gives the example of depth domain data after data reduction. Only 19 depth data points 

around the ground level were kept in each sample. Experiments on varying the number of 

depth bins to be taken proved that using 19 depth bins decreases the probability of false 

alarms at a given probability of detection.  
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3.3.3 Extraction of template pair 

 
The CorrDet output is then used to identify the template location. Figure 5(b) shows the 

Linear Prediction Error from the CorrDet algorithm, which is used to identify the 

template location. In particular, the Corrdet output is threshold by an adaptive threshold 

value and low pass filtered for smoothing. The smoothed CorrDet output is then scanned 

starting from the beginning until the final maximum occurs. The location of maximum 

gives the center of the first possible template. In order to take the dimension of the 

template into account, the smoothed CorrDet output whose values are bigger than, say 

30% is defined to be the start of the template. This 30% or 0.3 is defined as the peak 

width fraction. This criteria provides a larger template for a larger mine. It is verified that 

the peak width fraction of 0.3 gives less false alarm at higher probabilities, compared to 

using a value less than or greater than 0.3.  

 
3.3.4 Identification of template pair 

 
Since the GPR data is collected by sweeping the unit back and forth, consecutive sweeps 

are in the opposite direction. Therefore, the second template should match with the first 

template flipped in left to right direction. Figure 6 shows the two templates in different 

sweeping directions. The two templates appear as mirror images to each other. The 

Template extraction described above is continued further to extract another possible 

template. After matching the first two templates, if the matching score is high, then the 

two templates represent a pair that is high likely to represent a signature from a mine 

target. If the matching score is low, the search for the template continues, which is then 
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matched with flipped version of the first, and second templates separately. This process 

continues until a pair is found or the maximum number of samples is reached.  

 
Figure 5(a): 19 Depth bins used in Template Matching, after removing Ground level 

Figure 5(b): LP Error from CorrDet Algorithm used to identify the template location 

 



 

 30

 
 

 
Figure 6(a) Template from Left to Right Sweep 

 
Figure 6(b): Template from Right to Left sweep 

 
Figure 6: Templates in different sweeping directions. 
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3.3.5 Template Reduction 

 
In order to reduce the delay for the detector to go past the mine and collect the entire 

mine segment for matching; only the first half of two templates is kept. The resulting two 

templates tp1 and tp2 are normalized to have unit energy. When applying template 

matching, the largest score will occur at the center of the mine. This is the major 

advantage of Template Matching technique compared to other algorithms. The template 

matching provides a peak detection confidence at the center of the template, clearly 

distinguishing the strong peak. 

 
3.3.6 Template Alignment and Mean Template  

 
After finding the template boundaries, the current template from the forward or reverse 

sweep is aligned with the previous template in the corresponding direction in order to 

avoid any relative shift with respect to each other.   This step avoids any misalignment in 

the templates when taking the average of the templates. The mean templates are then 

obtained in the forward and reverse direction, which are used to find a matching score 

with the subsequent data. 

 
3.3.7 Template Matching 

 
The two templates tp1 and tp2 are used to perform template matching of a segment of 

preprocessed data in sequential manner. Let y (i, j) be the pre processed data in depth 

domain; the matching score between the data segment at instant n and tp1 is given by  
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and that with tp2 is given by  

                                                                                                                                  

Where the size of two templates is given by M depth bins times N samples 

The detection confidence at location n is taken to be the maximum of c1 (n) and c2 (n) as 

given by the equation below: 

                                                                                                                                   

The CorrDet algorithm processed data in two sub bands and produces the LP Error in two 

sub bands, the upper and the lower band. A confidence value from the template matching 

is obtained from the lower and upper band separately and the geometric mean is used to 

combine the confidence values from the two bands. Figure 7 shows the Confidence 

values for a plastic anti-tank mine in standing mode, before and after applying the 

template matching technique. It is clearly evident from the figure that the template 

matching technique generates peak detection value at the centre of the mine.  
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Figure 7(a): Detection values from Original CorrDet Algorithm 

 

 
Figure 7(b): Detection values from Template Matching Technique 

 
 

Figure 7: Confidence values of mine in standing mode. 
 



 

 34

3.3.8 Receiver Operating Characteristics (ROC) Curve 

 
To evaluate the performance of the algorithm, a ROC curve is generated for 461 mine 

targets collected at a test site. The data set contains anti-tank metal, anti-tank low-metal 

and anti-personnel low-metal mines. The data set has walking and standing mode data, 

where standing mode data is used to apply template matching. To evaluate the 

performance of Template Matching technique on all the targets in the dataset, the 

confidence values obtained from different files are scored together. The ROC curves are 

used to plot the probability of detection of a mine with the probability of false alarm. The 

Probability of detection (Pd) is calculated as the total number of detected land mines to 

the total number of mines. The false alarms are computed using the clutter files only. The 

Probability of false alarm (Pfa) is the number of false alarms divided by the time in 

collecting data. The number of false alarms is equal to the ratio of the ceiling of the 

number of clutter samples above the threshold to the alarm size, taken as five here.  Each 

point on the ROC curve corresponds to a particular threshold, and represents a mine 

region that is above the threshold. Before using the scoring algorithm for the ROC curve, 

the dynamic range of the confidence values was reduced using natural logarithm. Figure 

8 shows the ROC curve generated for the CorrDet algorithm with and without the 

template matching technique. The solid curve corresponds to the ROC obtained from the 

CorrDet algorithm and the dashed curve represents ROC obtained after applying the 

template matching technique. To interpret the ROC curve, consider a point on figure 8 at 

which the probability of detection (Pd) is 0.9. Before template matching is applied, the Pd 

reaches 0.9 at a false alarm probability (Pfa) of 0.019. After template matching is applied 

the Pd is 0.9 at a Pfa of 0.01. Therefore, at 90% probability, the Pfa decreased by 9%. 



 

 35

Similarly, at a Pfa of 0.01, the Pd is only 0.7 without template matching, whereas the Pd 

increased to 0.9 at a Pfa of 0.01 with Template matching, thereby increasing the Pd by 

20%. Hence, it can be concluded that the template matching technique is useful to reduce 

the probability of false alarms.  

 
Figure 8: ROC curve before and after Template Matching, on a dataset with 461 Mine targets 

 
 
3.4 Modified Template Matching Techniques  

 
3.4.1 Flip and Combine approach  

 
The original template matching technique uses the feature templates from the left to right 

sweeps separately to match with the subsequent data in left to right direction and 

generates a confidence value at each sample location. Similarly, the templates from the 

right to left sweep are used to match with the subsequent data in the right to left direction. 
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The modified technique proposed in this research investigates the use of the templates 

obtained by combining the left to right sweep with the templates from the right to left 

sweep to obtain a confidence value at each sample location. Since, the two templates are 

mirror images of each other, the templates obtained from right to left direction are flipped 

and combined with the templates obtained from left to right direction to obtain a 

matching score. The templates from the forward and backward sweeps have to be 

aligned, so that there is no relative shift with respect to each other.   

 
Results from Flip and Combine approach 

 
 Figure 9(a) and 9(b) show the detection values obtained from a plastic anti-tank mine, by 

using the original Template matching technique and the modified template matching 

technique using the flip and combine approach.  

 
The odd peaks in the figure 9(a) correspond to the detection peaks from the mean of 

forward templates and the even peaks correspond to the mean of backward templates. In 

figure 9(b), the peaks represent the maximum confidence value obtained by combining 

the flipped templates in backward direction with templates in forward direction. Figure 

10 is the ROC curve obtained for the modified technique compared with the ROC from 

Original technique 
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Figure 9(a): Confidence values for a plastic anti-tank after fusion of results from Lower and Upper 

bands of front antenna, with Original Template Matching Technique 
 

 
Figure 9(b): Confidence values for a plastic anti-tank mine after fusion of results from Lower and 

Upper bands of front antenna, with Modified Template Matching Technique 
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Figure 10: ROC comparison of Original Template Matching with Modified Template Matching 

 

At a probability of 0.9 for detection, the false alarm associated for the original technique 

is 0.01, whereas that associated with modified technique is 0.18, which is a degradation 

of 8%. Similarly, as we compare the probability of detection at a fixed false alarm, at a 

Pfa of 0.02, the Pd with the original technique is 0.99 , whereas with the modified 

technique the Pd is only 0.92, which means that the original technique gave higher Pd 

compared to the modified technique.  Thus, from the figures, it can be seen that 

combining the templates in opposite directions reduced the peak confidence value, which 

further reduce the probability of detection (Pd) wit a fixed Probability of False Alarm 

(Pfa) as observed from the ROC in Figure 10. 
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3.4.2 Batch Processing Approach 

  
The original Template Matching technique correlates the mean template obtained from 

each sweep with the subsequent data to find the final confidence value. The batch 

processing, on the other hand, uses the final mean template obtained from all the sweeps 

together, to perform correlation with the subsequent data. This technique uses the fact 

that the mean template obtained at the end of all sweeps has strong detection peaks 

compared to the detection peaks obtained with individual sweeps.  

 
Results with Batch Processing 

 
Figures 11(a) and 11(b) show the confidence values obtained for a mine file buried at a 

depth of 1inch under the ground. The correlation values correspond to the front antenna 

with and without batch processing. There is an improvement in the detection confidence 

when batch processing is used. This is because we use the mean template obtained at the 

end of all sweeps, which is better than the individual template. Figure 12 shows the ROC 

comparison for Original Template Matching technique with and without Batch 

processing. Probability of detection increased with the batch processing along the lower 

part of the curve. The ROC showed improvement before reaching 95% probability of 

detection, after which the curve is same for both the techniques. 
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Figure 11(a): Detection values for a plastic anti-tank mine, 1 inch deep, with the front antenna using 
the Original Template Matching Technique 

 
Figure 11(b): Detection values for a plastic anti-tank mine, 1 inch deep, with the front antenna using 

the Batch Processing 
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Figure 12: ROC Comparison for Original Template Matching vs. Batch Processing 

 

It is evident from the figure 12 above that the batch processing technique has reduced the 

probability of false alarm at a given detection probability.   

 
3.4.3 Effect of Scaling on Front and Back antennas 

 

In the original template matching technique, the dynamic range of the detection values is 

adjusted to be in the range 0 to 1.5 before scoring. Originally, the forward and backward 

antennas are set to be in the dynamic range of 0 to 1.5. Figure 13 (a) and 13(b) show the 

confidence values obtained by using the original template matching technique on the 

front and back antenna. The maximum of the detection value for the two antennas differs 

by a large value, which forced this research to investigate the effect of scaling on the two 

antennas.   
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Figure 13(a): Lower Band Correlation values for the front antenna for a mine file 

 

 
Figure 13(b): Lower Band Correlation values for the back antenna for a mine file 
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The Scaling factor for one of the antennas is obtained by taking the average of the ratio of 

maximum peak values obtained for the two antennas, keeping the scaling factor for the 

other antenna as reference. The scaling factor for the back antenna is kept as 1.5 and the 

scaling factor for front antenna is found to be 0.9. These Scales are also used with the 

batch processing technique to interpret the effect of scaling on the two antennas. Figure 

14 shows the ROC comparison for the Original Template Matching technique with 

scaling factor of 1.5 on both antennas, scaling factor of 0.9 for front antenna and 1.5 for 

back antenna using Original Template matching and Batch processing. The ROC 

improved when different scales are used for the front and back antennas. At a Pd of 90%, 

the false alarm reduced by 10% with different scales for the two antennas. 

 

Figure 14: ROC for Original Technique vs. Batch Processing with different scales 
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3.4.4 Effect of Using Complex data with different scales for front and back 
antenna  

 

The depth domain data used in the Template matching technique is originally complex 

data, of which only the real part was used for Template matching. In this section, the 

ROC analysis is performed using Complex data to verify for better results. Figure 15 

shows the ROC curve generated using the complex data with and without batch 

processing. Scaling factors of 1.1 and 1.41 are used with the complex data for the front 

and back antennas respectively. The curve also compares the ROC from the original 

algorithm with the ROC from real data and complex data. For a given probability of 

detection, the false alarm is reduced using the complex data compared to the real data. 

Further, as expected, the Batch processing performed better than the original template 

matching technique using the real data and the complex data. At a Pd of 90%, the original 

algorithm with scale 1.5 on both antennas has a false alarm of 0.01, whereas with the 

batch processing on real data has a false alarm of 0.009, which is a 1% reduction. With 

batch processing on complex data with scales 1.1 and 1.41, the false alarm further 

reduced to 0.007, which is a reduction of 3% compared to the original algorithm with real 

data. Above the Pd of 97%, all the techniques showed the same performance. Below the 

Pd of 97%, the batch processing with the complex data and different scaling factors for 

both antennas, performed better than any other technique. Therefore, using complex data 

resulted in better performance of the ROC curve.  
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Figure 15: ROC Using Complex data with different scales for front and back antennas 

 
3.4.5 Results from Template Matching Using a different Dataset 

 
The above techniques are also applied on a different data set from a different test site. 

The data set consisted of 225 target locations at various depths. For comparison, the 

Confidence values obtained from a different technique provided with the dataset are used. 

The dataset has 8 sweeps of data collected for the front and the back antenna, of which 

the first 6 sweeps contain data collected by sweeping the GPR unit from left to right and 

right to left. The remaining 2 sweeps are collected by sweeping the GPR unit in the 

horizontal direction. The above techniques are applied to the data set using 6 sweeps as 

well as all the 8 sweeps.  
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Figure 16: ROC comparison with Confidence values from the data set vs. Template Matching 

 
 

 
Figure 17: ROC comparison of Original structure with Template Matching using Complex data with 

and without batch processing 
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Figure 16 shows the ROC curve generated using the confidence values from the data set 

and also using the template matching technique with and without batch processing for 

real data. Unfortunately, the technique did not generate better results than the original 

ROC. Using Batch processing could not even improve the performance of the ROC 

curve. 

 
Figure 17 shows the ROC for the Template Matching technique using the real and 

complex data. The figure also compares the performance of batch processing with this 

data set. The ROC using real data is better than the ROC using complex data, though the 

ROC performance did not improve compared to the original ROC obtained from 

confidence values within the structure. Figure 18 shows the ROC curve using the first 6 

sweeps and also using all the 8 sweeps. The ROC still did not show any improvement in 

its performance. 

 
Figure 18: ROC comparison using first 6 sweeps and all the 8 sweeps 
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3.5 Conclusions 

 
 The template matching technique and some of its modifications developed in this 

research improved the probability of detection of landmines, reducing the probability of 

false alarms. Though a few of the modifications failed to improve the probability of 

detection, they certainly proved that further research using data collected from various 

other test sites is necessary before discussing any disadvantages of these modified 

template matching techniques. Further, this research does not use the depth information 

present in the data to investigate its effect on Template Matching. Therefore, Future work 

on template matching should also concentrate on considering the depth of the landmine 

into account. More research also needs to be done on the batch processing, in order to 

evaluate its performance on various datasets collected from different soil conditions.  
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Chapter 4 

LANDMINE DETECTION USING FREQUENCY DOMAIN 
FEATURES FROM GROUND PENETRATING RADAR 
 

 

4.1 Introduction 

 
Handheld mine detection systems have the capability of detecting small low-metal 

antipersonnel mines. The GPR signatures from Hand held GPR radar are very unstable 

and require a feedback to be provided to the operator as soon as a part of mine has been 

detected. Hence, anomaly detection algorithms are used in this case. In the case of 

vehicle mounted GPR systems, the signal returns are usually corrupted by background 

noise and clutter and the pattern of signal return from a mine could be distinctive, even if 

the energy of the signal return from a mine was relatively low. Hence, feature based 

processing techniques are usually employed in this case.  

 
4.2 Vehicle Mounted GPR Systems  

 
The Landmine detection equipment should be able to sweep large surfaces such as roads 

at a reasonable speed with a reduced hazard level. Variety of Vehicle mounted GPR 

systems have been developed so far with this strategy in mind to improve the probability 

of detection of landmines made of plastic or low metal content. Conventional vehicle 

mounted mine detector systems employ an array of sensor elements, sometimes more 

than one sensor technology. For example, Improved Landmine Detection System (ILDS) 

[23] is a multisensor, teleported system which uses 24 metal detector coils to cover a 3 m 
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swath. It also uses 3 GPR modules, each consisting of a number of transmit/receive 

antenna pairs, to achieve the required coverage. The other end of the system has an 

operator with hand-held metal detector. The output of these detectors would then be 

combined using data fusion to reduce individual detector false alarm rates.  Another such 

vehicle mounted system is the articulated robotic sensor system [30] which uses a generic 

robotic device which moves a mine detection sensor over rough surfaces, similar to 

human operator. This device is operated remotely to increase the safety of the personnel 

performing mine detection. The system replaces an array of sensors with a single sensor, 

but provides similar coverage. Thus, the system reduces the cost, size and overall 

complexity, with minor increase in mechanical complexity. Another system which is 

being used recently to collect data in the field in the government test lanes against 

antitank landmines is the Wichmann/NIITEK system. In this system, the 

Wichmann/NIITEK radar mounted on a vehicle with anti-tank mine overpass abilities. 

The system is also equipped with global positioning system (GPS) sensors to track the 

system�s location. At the rear of the vehicular system will be a marking system to mark 

the locations at which the targets are determined. The Wichmann/NIITEK radar is very 

wideband (200 MHz � 7 GHz) radar with extremely low radar cross section. Due to the 

high bandwidth, even the inner structure of the buried object could also be easily 

determined. Thus, subsurface target identification and discrimination is possible using the 

signals measured with this system. The application of feature based detection technique 

[31] to data collected from NIITEK radar is the topic covered in this chapter. 
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4.3 Wichmann/NIITEK GPR Data  

 
The NIITEK data is collected using 1.2 m wide array with 24 antennas, or channels, 

spread approximately 5 cm apart on a vehicular system. Therefore, the data consists of 24 

cross-track channels for each scan. The data in the 24 channels is sampled every 5cm 

down-track as the vehicle moves in down track direction. Because of the antenna�s 

hardware and sampling aperture, each channel records 415 point vector of time samples 

and hence gives 24, 415 point time-domain vectors for every 5 cm down track.  To avoid 

computational complexity in locating the position of interest, pre processing is required 

on the collected data. The data after Preprocessing is as shown in figure 19 below. 

 

Figure 19: Three-dimensional Wichmann/NIITEK GPR data after pre-processing [29] 
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4.4 Introduction to Frequency Domain Feature Extraction Techniques 

 
The GPR data from the radar contains undesired signal generated due to high dielectric 

discontinuity present between the soil and air, known as ground bounce. Hence signal 

processing is necessary to improve the detection of landmines and reduce false alarms. 

The signal processing algorithms presented earlier were performed in depth domain [32-

35]. In cases where the GPR signal return is very weak, the GPR signal spectrum may 

contain important features for detection. The remaining part of this chapter investigates 

such a novel frequency domain technique to improve the detection of low metal or plastic 

mines.  The next section summarizes the procedure to generate the energy density 

spectrum of a suspected mine location. The energy density spectrum is then used to 

extract the feature vectors and generate confidence values to detect the presence of mine, 

as explained in the subsequent chapters. 

 
4.5 Energy Density Spectrum Generation 

 
Dr. Ho and Dr. Gader proposed a frequency domain technique [31] that explores the 

spectral characteristics of landmines in order to improve their probability of detection. 

The technique uses the energy density spectrum obtained from the mine targets to 

improve the detection.  The initial algorithm proposed by Dr. Ho is used as a reference to 

improve the probability of detection in this chapter. 

 
The Bandwidth of the radar used in this study is upto 6 GHz and the sampling rate is 62 

GHz. Hence, due to the large bandwidth, this radar provides very high resolution in 
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depth, and due to high sampling frequency, the frequency resolution is low and has a 

value of  

                                                                                                                                     
                                                   

Where, each scan has 415 data points in it.  

If the GPR data at cross track x and the down track y, is denoted as g(x, y, z) where z is 

the depth, the data measurement is modeled as 

                                                                                                                                  

where v(x, y, z) denotes the clutter response and w(x, y, z) represents the noise. The steps 

in the generation of energy density spectrum are discussed in the following subsections. 

 
4.5.1 Pre-processing  

 
This step removes the data above and below the ground level. The ground level is 

estimated to be the mean of the position where the maximum and minimum value occur 

in each vector sample, and averaging across down track and cross track. The data above 

the ground level is only used for further processing. From the resultant data, the first 25 

depth bins are also removed and only the data above the first 25 depth bins are used in the 

subsequent steps. 

 
4.5.2 Non-linear Smoothing and Whitening 

 
To remove the noise present in the depth domain data, median filtering is applied on each 

depth bin separately. The length of the median filter taken is 5. After median filtering, 

each vector sample is zero padded to make the length to 512, which is the FFT size used 

to convert the depth domain data to frequency domain. The FFT data before and after the 

415
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current location of interest, are used to compute the mean and standard deviation of the 

background for normalization.  

 
Let (x0,y0) be the current location of interest, and D(x,y,kz) represent the FFT data along 

depth( z dimension) at position (x,y) and kz is the frequency domain index for depth 

dimension, the mean (m) and standard deviation (σ2) of the background for normalization 

is calculated using the following equations 4.3 and 4.4  

 

                                                                                                                              
 
 
G is the number of guard samples that is set to 6 and L is the number of scans before or 

after the current location to perform averaging, which is also set to 6. 

                                                                                                                          
                                             

 

The normalization is then applied to the scans from y0-G to y0+G at each frequency bin 

index kz, given by equation 

                 
                                                                                                                                      

The resulting normalized data is then subtracted out the mean and clipped at root mean 

square value, computed at each frequency bin over y0-G: y0+G. The data is finally 

magnitude squared, and denoted by U(x0, y, kz). 
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4.5.3 Spectrum Generation 

 
The spectrum is generated by averaging U(x0, y, kz) over a square window of N samples 

cross track times N samples down-track. N is set to 5 for this study 

 

                                                                                                                                   
 
Figure 20 shows the energy density spectra of plastic anti-tank mines. From the figure, it 

can be seen that the spectra has strong spectral peaks. Similarly Figure 21 shows the 

spectral peaks for clutter file. Both of them have high GPR signal return. But, the spectra 

do not seem to show any strong harmonic peaks.  

   
Figure 20(a)                                                         Figure 20(b) 

Figure 20:  Energy Spectral Density for Mine Files  
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          Figure 21(a)                                                             Figure 21(b) 

 
Figure 21: Energy Spectral Density for Clutter Files 

4.5.4 Spectral Feature Generation 

 
Now that we have the energy density spectrum, there should be some measure to detect 

the confidence value. Since, the GPR radar is wideband, sub-banding is used in frequency 

domain to reduce computational complexity. A cosine window is used in separating 

frequency band energies. 50% overlap is used in windowing each frequency band. The 

spectral energy in each frequency band is used a feature vector in this study. Therefore, a 

spectral feature vector is generated with the spectral energy in it. The size of each 

frequency band is 600 MHz. Hence over the total bandwidth of 6 GHz, there will be 10 

spectral features. Initially, 600 MHz is used as the frequency band size for the study. 

After examining the probability of detection using 600 MHz as the band size, the band 

size is reduced to see if there is any further improvement in the estimation. With 600 

MHz as the band size, FFT size as 512 and sampling frequency 62 GHz , the frequency 
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bin size is found to be 62/512 = 120 MHz. Therefore, each frequency band covers 

600/120 which is equal to 5 samples. The frequency bands are decomposed using a 

cosine square window, using the equation below 

 

 
Where B is the frequency band size equal to 5.  M = 2B-1 is the window size. J takes 

values from 1 to 10 for 10 subbands and there is 50% overlap between two adjacent 

bands. To investigate the effectiveness of the spectral features, a confidence value is 

generated based on the spectral feature vector, given by 

 

Q is the feature vector, W is the weight vector which indicates the strength of the mine. 

The weight vector taken for this study is  

  

Figure 22 shows the feature vectors obtained for 10 subbands. It can be seen from the 

figure, that the maximum occurs at 1.5 GHz and has non-zero values upto 3 GHz 

 

Figure 22: Spectral Features for 10 Subbands for Plastic Anti Tank 
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In order to take the spectral sharpness into account, another factor Idtrc is introduced into 

the confidence value. Idtrc is obtained by correlating the feature vectors obtained. 

Finally, the spectral confidence value is fused with the Idtrc coefficient. In the later 

sections of the chapter, ROC characteristics are verified for Idtrc = 0 and Idtrc obtained 

from correlation.  

 
4.6 Effect of Varying Subbands   

 
The effect of increasing the number of subbands from 10 to 20 has been studied in this 

research. Since the frequency of the radar is 6 GHz, for 20 subbands, the size of each 

frequency band is going to 6 GHz / 20 = 300 MHz. With the frequency bin size equal to 

120 MHz, there will be 300 / 120 = 2.5 (~ 3) samples in each frequency band. With 50 % 

overlap present between 2 subbands, the size of the cosine window is going to be 5 

samples. In the initial case of 10 Subbands, 50% overlap between two adjacent subbands 

corresponds to 2 sample overlap, since there are 5 samples in each frequency band. But, 

in the case of 20 Subbands, 50% overlap corresponds to 1 sample overlap, which means a 

narrow spectrum, than in the case of 10 subbands. Therefore, the overlap samples are 

increased from 1 sample to 2 samples to check if it gives any better results.   Using the 

cosine window, the spectral features are generated for each frequency band. To detect the 

confidence value as a weighed sum of the 20 spectral features, a weighting matrix is 

computed as explained in next section. 
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4.7 Design of Weighting Mask 

 
For the case of 10 subbands, the weighting mask is found by experimentation to be  

[0.2, 0.4, 1, 0.4, 0.2, 0, 0, 0, 0, 0]. For the case of 20 subbands, to take the strength of the 

mines into account, the feature vectors obtained from various datasets are used to perform 

averaging and the resultant matrix is used as the mask. Since different datasets have 

different pattern of spectral features, three masks are obtained for frequently occurring 

patterns. Using the datasets we have, feature vectors were generated with the proposed 

algorithm using 20 subbands. Averaging is performed on these feature vectors to consider 

all the vectors that were close to each other and follow a similar pattern. With the four 

datasets we had initially, three different masks were generated with three different 

patterns, and the maximum confidence value obtained from the three masks is used as the 

final confidence value, given below 

w1= [0.02 0.1 0.177 0.558 1 0.243 0.03 0.01 0.002 0 0 0 0 0 0 0 0 0 0 0] 

w2= [0.014 0.155 0.638 1 0.042 0.13 0.539 0.25118 0.0137 0 0 0 0 0 0 0 0 0 0 0] 

w3= [0.03 0.1 0.25 0.57 0.83 1 0.83 0.57 0.25 0 0 0 0 0 0 0 0 0 0 0] 

To test if the feature vectors really had effect on the datasets, another 4 datasets were 

taken and confidence values are obtained using these three weighting masks. The ROC 

characteristics obtained from these datasets showed some improvement in the probability 

of detection. 
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4.8 ROC Characteristics  

 
The above algorithm is implemented on the data collected from various test sites and the 

spectral confidence values obtained are used to estimate the probability of detection of a 

mine. Special software developed by NIITEK, namely Counter Mine Test Measurement 

system (CMTS) is used to score the confidence values and plot the ROC characteristics. 

The ROC obtained from the feature based detection technique is compared with the 

FROSAW algorithm [35] where, feature vectors are generated using feature based rules, 

Order statistics and Adaptive Weightening. It can be seen from Figure 23 that, the 

spectral features method improved the probability of detection of weak mines while 

reducing the false alarms 

 

Figure 23: Comparison of Spectral Features Method with FROSAW algorithm [35] 
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4.9  Effect of Increasing Number of Subbands 

 
The effect of increasing the number of subbands from 10 to 20 is studied for 8 datasets 

collected from different test sites. Counter Mine Test Management Systems (CTMS) is 

used to score the data and obtain the ROC curves. CTMS is software used to streamline 

countermine test systems. It can be used to collect, mark and analyze the collected test 

data. It also generates reports and statistics which can be saved in various formats. Our 

present study used the software to score the test data and obtain ROC characteristics. 

Figures 6-13 show the ROC curves generated for the 8 datasets. For datasets 1 and 2 the 

probability of detection decreased with 20 subbands when compared to 10 subbands. For 

datasets 3 to 6, 20 subbands seem to improve the probability of detection, while reducing 

the false alarm. For datasets 7 and 8, though the ROC does not seem to improve, it did 

not even get worse. Similarly, if we compare the ROC curves obtained with 1 sample and 

2 sample overlap in 20 subbands case, the results seem to be a litter better with 2 sample 

overlap between adjacent subbands almost for all the subsets. Hence, 2 sample overlap is 

used in further study in this research. 
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Figure 24: ROC for Dataset 1 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
 
 

 
Figure 25: ROC for Dataset 2 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 



 

 63

 
Figure 26: ROC for Dataset 3 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
 
 

 
Figure 27: ROC for Dataset 4 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
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Figure 28: ROC for Dataset 5 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
 
 

 
Figure 29: ROC for Dataset 6 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
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Figure 30: ROC for Dataset 7 with Idtrc obtained from correlation for 1 Sample and 2 Sample 

overlap 
 
 

 

Figure 31: ROC for Dataset 8 with Idtrc obtained from correlation for 1 Sample and 2 Sample 
overlap 
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Table 1(a) and 1(b) show the False Alarm Rate (FAR) at Probability of detection of 90% 

and 95% respectively. NA represents that 90% probability of detection is not achieved 

with the datasets 5 and 8. From the values of FAR, it can be seen that for datasets 3, 6 

and 7, increasing number of subbands to 20 has reduced the FAR. Dataset 2 showed 

partial improvement with reduction in FAR at 95% Pd, but for 90% Pd the FAR has 

increased a little. Dataset 4 has shown a little worse performance with 20 subbands. The 

remaining datasets 1, 5 and 8 showed no improvement for 20 subbands.  

 
Dataset 1 Dataset 2 Dataset 3 Dataset 4  

10 
Subbands 

20 
subbands 

10 
subbands 

20 
subbands 

10 
subbands 

20 
subbands 

10 
subbands 

20 
subbands 

FAR at 
90% Pd 0.001336 0.001336 0.008017 0.009353 0.005292 0.003453 0.003453 0.004604 

FAR at 
95% Pd 0.004008 0.006681 0.028058 0.013361 0.005292 0.003453 0.010359 0.011510 

Table 1(a): FAR at 90% and 95% Pd for 10 vs. 20 Subbands with datasets 1 to 4 
 

 

 
Dataset 5 Dataset 6 Dataset 7 Dataset 8  

10 
Subbands 

20 
subbands 

10 
subbands

20 
subbands

10 
subbands 

20 
subbands 

10 
subbands 

20 
subbands 

FAR at 
90% Pd NA NA 0.006616 0.006616 0.013736 0.006868 NA NA 

FAR at 
95% Pd NA NA 0.010585 0.007939 0.013736 0.013736 NA NA 

Table 1(b): FAR at 90% and 95% Pd for 10 vs. 20 Subbands with datasets 5 to 8 



 

 67

4.10 Effect of Idtrc 

 
Idtrc is a measure of sharpness of the spectrum. If the value of Idtrc is close to zero, the 

spectrum has sharp peaks, and generates a good confidence value. Higher Idtrc factor 

corresponds to less sharp spectrum. Idtrc is obtained by cross correlating the time shifted 

versions of the feature vectors from all the subbands. The results obtained above are 

further compared by changing the Idtrc value obtained from correlation to zero. Figures 

32 to 39 show the ROC characteristics with Idtrc from correlation and Idtrc equal to zero. 

With Idtrc equal to zero, the probability of detection is improved for all the datasets, with 

reduction in false alarms. For each figure, Part (a) shows the ROC characteristics 

obtained using 10 frequency bands with Idtrc from Correlation and Idtrc equal to zero. 

Part (b) shows the ROC characteristics obtained using 20 frequency bands with Idtrc 

from Correlation and Idtrc equal to zero, for 2 sample overlap between adjacent 

frequency bands.  

 
Tables 2(a) and 2(b) show the effect of Idtrc on the Probability of detection and False 

Alarm Rate. A small value of Idtrc indicates a sharp spectrum and hence good ROC 

characteristics. From the Values of FAR at 90% Pd, for datasets 2,3,6 and 7, the FAR at 

90% Pd decreased with Idtrc equal to zero , when compared to FAR at 90% Pd for Idtrc 

obtained from correlation. For datasets 1 and 4, the FAR increased with Idtrc set to zero. 

For datasets 5 and 8, though a Pd of 90% is not reached, the ROC characteristics still 

remain the same with Idtrc from Correlation and Idtrc equal to zero. 
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Dataset 1 Dataset 2 Dataset 3 Dataset 4  

Idtrc 
Correlation 

Idtrc 
Zero 

Idtrc 
Correlation

Idtrc 
Zero 

Idtrc 
Correlation 

Idtrc 
Zero 

Idtrc 
Correlation

Idtrc 
Zero 

FAR at 
90% Pd 0.001336 0.001634 0.008017 0.004902 0.005292 0.003453 0.003453 0.004604

FAR at 
95% Pd 0.004008 0.006537 0.028058 0.013073 0.005292 0.003453 0.010359 0.011510

Table 2(a): FAR at 90% and 95% Pd for 10 Subbands with Idtrc from Correlation and Idtrc = 0 for 
datasets 1 to 4 

 

 

 
Dataset 5 Dataset 6 Dataset 7 Dataset 8  

Idtrc 
Correlation 

Idtrc 
Zero 

Idtrc 
Correlation

Idtrc 
 Zero 

Idtrc 
Correlation Idtrc Zero Idtrc 

Correlation 
Idtrc 
Zero 

FAR at 
90% Pd NA NA 0.006616 0.00396 0.013736 0.006868 NA NA 

FAR at 
95% Pd NA NA 0.010585 0.006616 0.013736 0.013736 NA NA 

Table 2(b): FAR at 90% and 95% Pd for 10 Subbands with Idtrc from Correlation and Idtrc = 0 for 
datasets 5 to 8 
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Figure 32(a): Dataset 1 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 
 

 
Figure 32(b): Dataset 1 ROC for 20 Subbands with Idtrc from Correlation Vs Idtrc= 0 for 2 sample 

overlap in subbands 
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Figure 33(a): Dataset 2 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

 
Figure 33(b): Dataset 2 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 

overlap in subbands 
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Figure 34(a): Dataset 3 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

 
Figure 34(b): Dataset 3 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 

overlap in subbands 
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Figure 35(a): Dataset 4 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 
 

 

Figure 35(b): Dataset 4 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 
overlap in subbands 
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Figure 36(a): Dataset 5 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

 
Figure 36(b): Dataset 5 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 

overlap in subbands 
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Figure 37(a): Dataset 6 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

 
Figure 37(b): Dataset 6 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 

overlap in subbands 
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Figure 38(a): Dataset 7 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

 
Figure 38(b): Dataset 7 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 

overlap in subbands 
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Figure 39(a): Dataset 8 ROC for 10 Subbands with Idtrc from Correlation and Idtrc = 0 

 

Figure 39(b): Dataset 8 ROC for 20 Subbands with Idtrc from Correlation and Idtrc = 0 for 2 sample 
overlap in subbands 
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4.11  ROC Characteristics with Clutter Dataset 

 
To further evaluate the effectiveness of the technique, another dataset which is collected 

from a clutter site, is used along with the mine data. Using CTMS software, ROC 

characteristics are obtained for various test lanes and the data from the clutter lane is 

merged with them to obtain the ROC. Figures 40 to 43 show the ROC characteristics for 

4 datasets 5 to 8. 

 
It can be seen from the figures , that the 20 Subbands cases is still better than the 10 

subbands, even when clutter data is included to obtain ROC characteristics. It can also be 

seen that with the inclusion of clutter data, the Probability of Detection decreased, from 

what we have without the clutter dataset, for a given probability of false alarm. For the 

case, without clutter data, for 10 subbands case, the Pd reached its maximum at a Pfa of 

0.05, where as for the case with clutter dataset, the Pd reaches its maximum at a Pfa of 

0.06. ROC characteristics for other datasets are shown in the following figures. 

 
Similarly, ROC curves are generated with all the datasets together including clutter 

dataset. The ROC obtained is compared with the ROC obtained from all lanes together, 

without including clutter lane. It can be seen from the figures 44-45, that including the 

clutter data, has reduced the probability of detection for a given false alarm, as required. 

Figure 44 shows the ROC characteristics for 10 subbands with all datasets together, with 

and without including clutter Dataset and Figure 45 shows the ROC characteristics for 20 

subbands.   
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Figure 40: ROC Characteristic for Dataset 5 with Clutter Dataset 

 
Figure 41: ROC Characteristic for Dataset 6 with Clutter Dataset 
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Figure 42: ROC Characteristic for Dataset 7 with Clutter Dataset 

 
Figure 43: ROC Characteristic for Dataset 8 with Clutter Dataset 
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Figure 44: ROC Characteristics for 10 Subbands with all Datasets together, with and without clutter 
Lane 

 

 

Figure 45: ROC Characteristics for 20 Subbands, 2 Sample Overlap with all Datasets together, with 
and without clutter Lane 
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4.12 Conclusions 

 
 The frequency domain features from ground penetrating radar showed some 

improvement in the probability of detection of weak mines and decreased the false alarm, 

when the number of subbands is increased to 20. The ROC curves generated using 8 

different datasets collected from 8 different test sites, showed that increase in the number 

of subbands improved the performance of the original algorithm for more than half of the 

datasets.  
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Chapter 5 

SIGNAL PROCESSING TECHNIQUE FOR DEPTH 
ESTIMATION  
 

 

5.1 Introduction 

 
The fact that the probability of detection of a landmine showed some improvement using 

feature based techniques motivated our research to further investigate the dependency of 

the detection technique on the depth of the mine. Different landmines are buried at 

different depths under the ground. The estimation of the depth of a landmine before 

further processing in the frequency domain could effect the performance of the frequency 

domain technique used later. For landmines with low metal content, it becomes hard to 

estimate the depth with the influence of clutter present around the mine. As the impulse 

GPR signals propagate through the soil, they will be significantly attenuated. Thus 

responses from deeply buried large anomalies will have less energy compared to very 

small, but shallow mines. This discrepancy will result in high false alarms when deeply 

buried targets need to be detected. The presence of a clutter and potential targets would 

also hinder the performance of depth processing techniques. Hence, estimating the depth 

of a landmine is one of the factors that could influence the probability of detection of a 

landmine with decrease in false alarm rate. After the estimation of the depth, only a few 

depth bins around the mine signature could be used further, which would also decrease 
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the complexity of the algorithm. This is the fact that motivated this research to investigate 

the signal processing technique for depth estimation. 

 
5.2 Depth Estimation Routine 

 
The depth estimation technique investigated in this research uses the depth domain data 

to estimate the depth before converting the data into the frequency domain for subband 

processing as discussed in Chapter 4. The following are the steps involved in the depth 

estimation routine. 

 
5.2.1 Pre-Processing 

 
The data in depth domain is pre-processed to remove ground level before applying depth 

estimation routine. The ground level is estimated to be around 100 depth bins in this case. 

Therefore, depth bins above 125 bins are taken out in this case.  After pre processing, the 

data in the first 25 depth bins is made zero, assuming there are nonzero values only below 

the next 25 depth bins. 

 
5.2.2 Windowing and Normalization 

 
The depth domain data below the first 125 bins is passed through a tukey window to 

smooth the data. The NIITEK GPR data is collected using 24 antennas and therefore for 

each channel the background mean is removed and the resultant data is normalized for 

further processing.  
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5.2.3 Depth Estimation 

 
For the channel with Constant False Alarm Rate (CFAR), the center 3 scans are used to 

estimate the depth of the mine. The sum of the center 3 scans is computed and the 

location of maximum and minimum values along depth is used to estimate the depth of 

the mine using correlation. Figure 46 shows the depth domain data for Maximum CFAR 

channel in the first subplot and the sum of center 3 scans in the second subplot. 

 
 

Figure 46: Depth Domain Data for a plastic, anti-tank mine, Maximum CFAR channel 6 depth  
2 mine 

 

To perform correlation, the 40 depth bins below and above the maximum location of the 

averaged scans are used and the other bins are not used. A matching score is obtained by 

cross correlating the 2 dimensional images obtained from data in the cross-track and 

    Scan   Index 

 
Depth 
Index 

Depth Index 
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down-track along all the depth bins. Similarly a matching score is obtained with the 

minimum of the sum of center 3 scans. If the matching score obtained by taking the 

maximum index is 90% of the score obtained by taking the minimum, then the minimum 

index is estimated to be the depth of the mine. Otherwise, Maximum index is decided as 

the depth, and the score corresponding to this depth is taken as the confidence value. 

 
The depth estimate obtained from the estimation routine is then used to decide the 

number of depth bins to be used to convert to frequency domain for subband processing. 

If the depth estimate value obtained is less (which corresponds to a mine near the 

surface), the depth domain data starting from below the ground level is used and 64 depth 

bins at the end are removed. If the depth estimate is high enough, a few depth bins below 

the ground level are removed, and the depth bins starting from a few bins below the 

ground level are used for further processing. Thus depth estimation routine before 

frequency subband processing, reduces the number of depth bins as well as removes the 

data which does not contain any information in it. 

 
5.3 ROC Characteristics with Depth Estimation Routine 

 
The ROC curves generated without using the depth estimation routine in chapter 4 are 

compared with the ROC curves using the depth estimation routine, to investigate the 

performance improvement with depth processing. Figures 47-54 show the ROC 

characteristics with and without depth estimation routine using 10 subbands. The 

parameter Idtrc stands for a spectral sharpness measure, as explained in Chapter 4 and 

FTV stands for feature vectors obtained for each subband. The Idtrc obtained from 

correlation is used for the study in this chapter. It can be seen from the figures that the 
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depth estimation routine improved the performance of original frequency domain 

technique with increase in the Probability of detection, except for data sets 4 and 6. For 

datasets 3 and 7, the technique showed an improvement of 15% in the probability of 

detection for a fixed False Alarm Rate. For Datasets 1, 2 and 5, the ROC showed a little 

improvement from the ROC characteristics with the original algorithm. For dataset 8, the 

probability of detection remained the same. From these conclusions, it can be said that 

the depth estimation routine is worth further investigation. 

 
Tables 3(a) and 3(b) show the False Alarm Rates at probability of detection of 80%, 90% 

and 95% respectively, with depth estimation and without depth estimation. From the 

tables, it can be seen that at 95% probability of detection, the false alarm rate is reduced 

for all datasets except for dataset 6. But, at 90% probability of detection, the false alarm 

rate is increased for all datasets, and this resulted in worse ROC characteristics with 

depth estimation routine for the datasets at 90% probability of detection.  But, the False 

alarm rates at 80% probability of detection show some improvement with depth 

estimation routine compared to the false alarm rate without depth estimation routine. 

Therefore, for datasets 3 and 6, which showed some degradation in performance with 

depth estimation routine at 90% probability of detection, are still better at 80% 

probability of detection.  
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Dataset 1 Dataset 2 Dataset 3 Dataset 4  
(i) (ii) (i) (ii) (i) (ii) (i) (ii) 

FAR at 80%Pd 0.001336 0.0013360.0013360.002672 0.001323 0.003969 0.002157 0.000000

FAR at 90%Pd 0.001336 0.0013360.0080170.008017 0.007939 0.005292 0.007551 0.003453

FAR at 95%Pd 0.002672 0.0040080.0200420.028058 0.007939 0.005292 0.008630 0.010359

Table 3(a): 10 subbands with and without depth estimation routine for Datasets 1 to 4 
i. 10 Subbands with Depth Estimation routine 

ii. 10 Subbands without Depth Estimation routine 
 
 

Dataset 5 Dataset 6 Dataset 7 Dataset 8  
(i) (ii) (i) (ii) (i) (ii) (i) (ii) 

FAR at 80% Pd 0.00793 0.0145 0.0039690.003969 0.0000 0.006868 0.00000 0.0070 

FAR at 90% Pd NA NA 0.0119080.006616 0.006868 0.013736 NA NA 

FAR at 95% Pd NA NA 0.0277860.010585 0.013736 0.013736 NA NA 

Table 3(b): 10 subbands with and without depth estimation routine for Datasets 5 to 8 
i. 10 Subbands with Depth Estimation routine 

ii. 10 Subbands without Depth Estimation routine 
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Figure 47: ROC Characteristics for Dataset 1 with and without Depth Estimation 

 
 

 
Figure 48: ROC Characteristics for Dataset 2 with and without Depth Estimation 



 

 89

 
Figure 49: ROC Characteristics for Dataset 3 with and without Depth Estimation 

 
 

 
Figure 50: ROC Characteristics for Dataset 4 with and without Depth Estimation 
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Figure 51: ROC Characteristics for Dataset 5 with and without Depth Estimation 

 
 
 

 
Figure 52: ROC Characteristics for Dataset 6 with and without Depth Estimation 
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Figure 53: ROC Characteristics for Dataset 7 with and without Depth Estimation 

 
 

 
Figure 54: ROC Characteristics for Dataset 8 with and without Depth Estimation 
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5.4 ROC Characteristics with Depth Estimation Routine for 20 
Subbands 

 
 
Figures 55-62 show the ROC characteristics with depth estimation for the case of 20 

subbands. The figures compare the ROC characteristics obtained by using 20 subbands 

with 1 sample overlap and 2 sample overlap, with the ROC obtained from 10 subbands. 

Except for datasets 4 and 7 (Figure 58 and Figure 61), 20 subbands with 2 sample overlap 

shows better improvement in ROC over the case with 20 subbands with 1 sample overlap 

between the bands. Therefore, 2 sample overlap is only investigated in further analysis in 

this chapter. From the figures below, it is evident that using 20 subbands in frequency 

domain processing, once again proved to be useful in improving the probability of 

detection of landmines 

 
Figure 55: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 1 
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Figure 56: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 2 

 
 

 
Figure 57: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 3 
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Figure 58: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 4 

 
 

 
Figure 59: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 5 
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Figure 60: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 6 

 
 

 Figure 61: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 7 
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Figure 62: ROC Characteristics 10 Vs 20 Subbands with Depth Estimation for Dataset 8 

 
 
Tables 4(a) and 4(b) give the false alarm rate at 90% probability of detection and 95% 

probability of detection respectively. The letters NA represents that the probability of 

detection does not reach 90% and 95% for those datasets. At 90% probability of 

detection, for dataset 2, it can be seen that the false alarm rate reduced from 0.008 to 

0.006. Similarly for all the other datasets, the false alarm rate reduced by 25%. But, at a 

probability of detection of 95%, for datasets 1 and 6, the false alarm rate is increased by 

10 %, which shows some degradation in performance at higher probabilities. 
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Dataset 1 Dataset 2 Dataset 3 Dataset 4  
10 
Subbands 

20 
subbands 

10 
subbands

20 
subbands

10 
subbands

20 
subbands 

10 
subbands

20 
subbands

FAR 
at 
90% 
Pd 

0.001336 0.001336 0.008017 0.006681 0.007939 0.006616 0.007551 0.006472

FAR 
at 
95% 
Pd 

0.002672 0.005344 0.020042 0.016033 0.007939 0.006616 0.008630 0.008630

Table 4(a): False Alarm Rate at 90 % and 95 % probability of detection for 10 vs. 20 Subbands with 
depth Estimation for datasets 1 to 4 

 
 
 
 

Dataset 5 Dataset 6 Dataset 7 Dataset 8  
10 
Subbands 

20 
subbands 

10 
subbands

20 
subbands

10 
subbands

20 
subbands 

10 
subbands

20 
subbands

FAR 
at 
90% 
Pd 

NA NA 0.011908 0.010585 0.006868 0.006868 NA NA 

FAR 
at 
95% 
Pd 

NA NA 0.027786 0.029109 0.013736 0.013736 NA NA 

Table 4(b): False Alarm Rate at 90 % and 95 % probability of detection for 10 vs. 20 Subbands with 
depth Estimation for datasets 5 to 8 
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5.5 Modified Algorithm for Depth Estimation 

 
In the original depth Estimation routine, the sum of center 3 scans is used to obtain the 

location of maxima and minima. In some cases where the three scans are not aligned with 

respect to each other, there might be a shift in the depth bins which results in estimating 

wrong depths of the mines. To overcome this difficulty, the data in the scans adjacent to 

the centre scan, are aligned with respect to the center scan, along the depth. This 

algorithm is implemented on the data before normalization. To find the shift along the 

depth, the scans adjacent to the center scans are cross correlated with the center scan and 

the lag where the cross correlation value is maximum is taken as the shift along the depth. 

Since the shift can be less than one depth bin sample, the up sampled data is used to find 

the shift and then, the data is down sampled after shifting with the corresponding lag 

value. The steps in the algorithm are as follows 

1) Upsample the 3 scans on either sides of the center scan  

2) Find the shift in the scans adjacent to center scan on either sides, and shift by 

corresponding value. 

3) Perform steps 1 and 2 for  Center -3 to Center +3 Scans 

4) Average the aligned data  

5) Downsample the data back to the original size 

6) Sum all the 7 Scans and find the maximum and minimum of the sum 

7) Decide between the maximum and minimum using steps involved in the original 

algorithm 

To further increase the performance of the algorithm, and to avoid any discrepancy in 

deciding between the maxima and minima, four cases described below were considered  
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Case 1: All the depth bins below the ground were taken  

Case 2: Data from 30 depth bins below the ground were taken 

Case 3: Data from 40 depth bins below the ground were taken 

Case 4: Data from 50 depth bins below the ground were taken 

The depth corresponding to the maximum of the correlation values obtained from the 

four cases above is taken as the estimated depth. 

5.6 Comparison of Depth Estimates Using Original and Modified 
Algorithm with Depth from the structure 

 
  
Figures 63-70 show the depth estimates obtained with the original algorithm and the 

modified algorithm for 8 different datasets. They also show the depth from the original 

data for comparison. The upper sub plot in each figure shows the depth from the structure 

and the lower subplot compares the depth obtained from the original and modified 

algorithm. It can be seen from the figures that depth obtained from the algorithms show a 

similar pattern as the depths from the original structure. But with the depth Estimation 

routine, in some cases the mines that are far below the surface (depth 6) are under 

estimated and the mines that are just below the surface (depth 1 or 2) are overestimated. 

The modified algorithm works well in estimating the depth in the order of the original 

depth from the structure. But there are still some cases where the depth Estimation 

routine fails. Looking at the overall performance, it is evident that the modified depth 

Estimation algorithm improved the estimates compared to the original algorithm for 

nearly 6 out of 8 data sets.  
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Figure 63: Depth Estimates from Original Vs Modified algorithm and original structure for  

Dataset 1 
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Figure 64: Depth Estimates from Original Vs Modified algorithm with original structure for 

 Dataset 2 
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Figure 65: Depth Estimates from Original Vs Modified algorithm with original structure for  

Dataset 3 



 

 103

 

 

 
Figure 66: Depth Estimates from Original Vs Modified algorithm with original structure for 

 Dataset 4 
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Figure 67: Depth Estimates from Original Vs Modified algorithm with original structure for 
 Dataset 5 
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Figure 68: Depth Estimates from Original Vs Modified algorithm with original structure for  
Dataset 6 
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Figure 69: Depth Estimates from Original Vs Modified algorithm with original structure for 

 Dataset 7 
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Figure 70: Depth Estimates from Original Vs Modified algorithm with original structure for  

Dataset 8 
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5.7 ROC Comparison Using Depth Estimation with Original and 
Modified algorithm 

 
 
The ROC characteristics were studied using the original and modified algorithm to 

evaluate the performance of the modified depth Estimation routine. Part (a) of each figure 

from figure 71-78 , shows the ROC characteristics obtained by using the frequency 

domain technique explained in chapter 4 with Original and modified Algorithm for depth 

Estimation. Part (b) shows the ROC characteristics for 20 subbands, using original and 

modified algorithm for depth Estimation. Datasets 2, 3, 4 and 6 showed some 

improvement with the modified technique. The probability of detection increased by 15% 

for these datasets. For datasets 1 and 5, the original technique seemed to be a little better 

and for datasets 7 and 8, both the techniques give the same ROC characteristics. 

 
Tables 5(a) and 5(b) show the False Alarm Rates at probability of detection of 90% and 

95% respectively, with the Original depth Estimation routine and modified routine for all 

the 8 datasets. From the tables, it is evident that except for dataset 1, the false alarm rates 

at Pd of 90% and 95% are reduced for all datasets with the use of modified Depth 

Estimation routine. Thus, the modified routine improved the ROC characteristics as well.  
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Dataset 1 Dataset 2 Dataset 3 Dataset 4  
(i) (ii) (i) (ii) (i) (ii) (i) (ii) 

FAR at 90% Pd 0.0013360.0016340.0080170.0032680.007939 0.006616 0.007551 0.005393 

FAR at 95% Pd 0.0026720.0032680.0200420.0098050.007939 0.006616 0.008630 0.007551 

Table 5(a): False Alarm Rate at 90% and 95% Probability of detection for 10 subbands with 
Original and Modified depth Estimation for Datasets 1 to 4 

i. Original Depth Estimation 
ii. Modified Depth Estimation 

 
 
 

Dataset 5 Dataset 6 Dataset 7 Dataset 8  
(i) (ii) (i) (ii) (i) (ii) (i) (ii) 

FAR at 90% Pd NA NA 0.0119080.0052920.006868 0.006868 NA NA 

FAR at 95% Pd NA NA 0.0277860.0092620.013736 0.013736 NA NA 

Table 5(b): False Alarm Rate at 90% and 95% Probability of detection for 10 subbands with 
Original and Modified depth Estimation for Datasets 5 to 8 

i. Original Depth Estimation 
ii. Modified Depth Estimation 
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Figure 71(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 1 

 
Figure 71(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 1 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 72(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 2 

 
Figure 72(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 2 

 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm



 

 112

 
Figure 73(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 3 

 
Figure 73(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 3 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 74(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 4 

 
Figure 74(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 4 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 75(a): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 5 

 
Figure 75(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 5 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 76(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 6 

 
Figure 76(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 6 

 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 77(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 7 

 
Figure 77(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 7 

 

10 Subbands with modified algorithm 

10 Subbands with original algorithm 

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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Figure 78(a): ROC for 10 Subbands with Modified Vs Original Algorithm for Dataset 8 

 
Figure 78(b): ROC for 20 Subbands with Modified Vs Original Algorithm for Dataset 8 

10 Subbands with modified algorithm 

10 Subbands with original algorithm

20 Subbands with modified algorithm 

20 Subbands with original algorithm
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5.8 ROC Characteristics for 10 Vs 20 Subbands with Modified Depth 
Estimation 

 
 
The ROC characteristics obtained by using the Modified depth Estimation routine are 

verified for improvement in the 20 subbands case compared to 10 subbands, and as 

expected, it is found that the algorithm improved the probability of detection in 20 

subbands case, compared to 10 subbands. It can be seem from the figures 79-86 that 20 

subbands improved the ROC for all datasets except datasets 4 and 7. In fact, the 

improvement is more with the modified algorithm compared to the original algorithm.  

  

 
 

Figure 79: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 1 
 

10 Subbands with modified algorithm 

20 Subbands with modified algorithm
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Figure 80: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 2 

 
Figure 81: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 3 

10 Subbands with modified algorithm 

20 Subbands with modified algorithm

10 Subbands with modified algorithm 

20 Subbands with modified algorithm
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Figure 82: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 4 

 
Figure 83: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 5 

10 Subbands with modified algorithm 

20 Subbands with modified algorithm

10 Subbands with modified algorithm 

20 Subbands with modified algorithm
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Figure 84: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 6 

 
Figure 85: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 7 

  

10 Subbands with modified algorithm 

20 Subbands with modified algorithm 

10 Subbands with modified algorithm 

20 Subbands with modified algorithm
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Figure 86: ROC 10 Vs 20 Subbands with Modified Depth Estimation for Dataset 8 

 
 
 
5.9 Conclusions 

  
Depth Estimation before frequency domain processing proved to be an important factor 

in improving the probability of detection of the landmines. The techniques proposed in 

this chapter improved the probability of detection of landmines for most of the datasets 

that were tested. Thus, further research on depth Estimation routine should be done to 

increase the probability of detection.  

 

 

 

 

10 Subbands with modified algorithm 

20 Subbands with modified algorithm
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 
6.1 Conclusions 

 
We presented two techniques for improving the probability of detection of landmines and 

decreasing the false alarm rate. The first technique, Dynamic Template Matching 

technique, proposed by Dr. Ho, extracts the templates from the first few sweeps in the 

GPR data, and uses these templates to find the confidence value using correlation. The 

technique and its modifications studied in this research showed some improvement in the 

probability of detection of mines, while reducing the probability of false alarms. The 

algorithm is found to be effective to extract low metal content mines, especially anti-tank 

mines. Also, the effect of using real and complex data is studied.  

 
The second technique developed, operates in the frequency domain, where the data in the 

depth domain is converted to the frequency domain to study the spectral features and 

their effect on the detection of landmines. The original algorithm proposed by Dr. Ho is 

further investigated by increasing the number of sub bands from 10 to 20. This increase 

in the number of sub bands showed 10% increase in the probability of detection of 

landmines. Eight different datasets collected from various test sites are used to evaluate 

the performance of the frequency domain technique, and the results were improved in 

more than half of the datasets, which is a good margin to decide the effectiveness of 

frequency domain technique. Thus, the frequency domain technique proved to be useful 

in the detection of plastic mines.  
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To further improve the probability of detection, the effect of estimating the depth of the 

mine before converting to frequency domain, is also investigated as a final part of this 

research. With the inclusion of depth estimation routine, the results improved by 15% for 

some of the datasets. Thus, the technique proved to be useful in improving the probability 

of detection of landmines.  

 
6.2 Future Work 

 
Future work should focus on improving the frequency domain technique to further 

improve the detection of plastic landmines. Though the spectral features were studied in 

this research, the effect of the size and shape of the mine on the spectral peaks still needs 

to be investigated. Also, though this research gave some good results using the depth 

estimation routine, the algorithm still fails in some cases to determine the depth of objects 

buried under the ground. Thus, the depth processing routine needs further investigation, 

to determine the depth of the objects buried far below the ground.  
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