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CHANNEL MODELING, ESTIMATION AND EQUALIZATION

IN WIRELESS COMMUNICATION

Sang-Yick Leong

Dr. Chengshan Xiao, Dissertation Supervisor

ABSTRACT

Channel modeling, estimation and equalization are discussed throughout this dis-

sertation. Relevant research topics are first studied at the beginning of each chapter

and the new methods are proposed to improve the system performance. MLSE is an

optimum equalizer for all the case. However, due to its computational complexity, it is

impractical for today technologies in third generation wireless communication. Thus, a

suboptimum equalizer so-called perturbation equalizer is proposed, which outperforms

the RSSE equalizer in the sense of bit error rate or computational complexity. In order

to improve the system performance dramatically, the iterative equalization algorithm

is implemented. It has been shown that the turbo equalization using the trellis based

Maximum A Posteriori equalizer is a powerful receiver that yielding the optimum sys-

tem performance. Unfortunately, due to its exhausted computational complexity, a

suboptimal equalizer is required. An improved DFE algorithm, which only requires low

computational complexity, is proposed for turbo equalization. The promising simulation

results indicate that the proposed equalizer provides significant improvement in bit error

rate while compared to the conventional DFE algorithm. Prior to channel equalization,

channel estimation enable us to extract the necessary channel information from the pi-

lot symbols for equalizers. Least-squares algorithm is a promising estimation algorithm

providing the channel is time-invariant in a given period. Based on the derivations, we

show that the channel is no longer constant and a new least-squares based algorithm

is proposed to estimate the channel accurately. Simulation results convince us that the
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new algorithm provides the equalizer more reliable information. Besides, antenna di-

versity is another promising technique implemented practically to improve the system

performance provided that the channels of antennas are not correlated. A new three

dimensional multiple-input multiple-output abstract model is proposed for the investi-

gation and understanding of the correlation of fading channel. The new model allows

us to consider the channel correlation of which the mobile stations receive the incoming

waves from any directions and angle spreads. Based on this abstract model, the closed

form and mathematical tractable formula is derived for space-time correlation function.

The new function can be further simplified other known special cases.
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Chapter 1

Introduction

In early 1980s, the first generation cellular and cordless phone systems were introduced

where analog FM technology is implemented to carry voice services only. Then, the sec-

ond generation digital cellular radio networks were introduced to improve the spectral

efficiency and voice quality in early 1990s. Basically, the cellular networks on air can

be divided into two major categories given as Time Division Multiple Access (TDMA)

and Code Division Multiple Access (CDMA). The European standard Global System for

Mobile Communication (GSM), which is the world leader of second generation commu-

nication systems, is designed based on TDMA concept operating at 900 MHz, 1800 MHz

and 1900 MHz. In addition, the digital PCS IS-136 which is the extension of IS-54 in

United States, and Personal Digital Cellular (PDC) in Japan are also based on TDMA

[3]. Since the introduction of digital cellular radios networks, the service providers were

facing the exponential growth of subscriber numbers in wireless communication systems.

Predicted from the trend of growth, the evolution of second-generation cellular systems

is necessary. Based on the 2-G background, the third generation wireless systems were

introduced that allowing the mobile users to have larger bandwidth for new features such

as web browsing, video, image and other multimedia services. Intend to provide qual-

ity of service in all types of requirements for future wireless communications, extensive

researches are in progress for fourth and later generation of communication systems.

The wireless communication channels consist of various types of impairments such
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as delay spread, fading and Doppler spread etc. Because of the multipath propagation

in the channel, it introduces the delay spread that causing interference between the ad-

jacent symbols known as intersymbol interference (ISI). Thus, an equalizer is employed

at the receiver to mitigate the combined effect of ISI and noise. According to the lit-

eratures in the past, there are two broad categories of equalizers; symbol-by-symbol

equalizers and sequence estimators. The symbol-by-symbol equalizers make the decision

on the received sequence symbol-by-symbol, while the sequence estimators make deci-

sions on the sequences after a period of observation on the received sequence. In general,

the sequence estimators has higher computational complexity than symbol-by-symbol

equalizer but offer better performance. The chapter starts by a brief introduction on

maximum likelihood sequence estimation (MLSE), delayed decision feedback sequence

estimation (DDFSE) and reduced-state sequence estimation (RSSE). The MLSE pro-

posed by Forney is recognized as the optimum equalizer for the detection of digital sig-

nals corrupted by ISI and additive white Gaussian noise. However, its complexity grows

exponentially with the size of signal constellation and the length of channel impulse

response. Thereby, research of reduce complexity sequence estimators are undertaken to

retain most of the MLSE performance. Duel-Hallen [8] and Eyuboglu [6], respectively

proposed the DDFSE and reduced state sequence estimation (RSSE). The reduced-state

equalizers truncate the channel impulse response into a manageable length for Viterbi

algorithm to search the branch metrics throughout the sequence. Next, we introduce

the structure of third generation EDGE cellular system where 8-PSK modulation is em-

ployed, and conclude that the MLSE is prohibited due to its computational complexity.

An alternative method is proposed to reduce complexity through iteratively minimizing

the Euclidean distance between the detected signal sequence and the received signal

sequence with neighbor symbol perturbation. Then, the simulation results comparing

our method with RSSE method are presented.
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In 1993, the concept of turbo coding was proposed by Berrou,Glavieux and Thiti-

majashima, who reported that the coding gain approaches to Shannon limit prediction.

Due to this reason, the research of “Turbo Principle” was carried out in the area of

channel equalization in order to improve the system performance. In chapter 3, the so-

called “Turbo Equalization” concept is introduced. At the beginning of the chapter, the

definition of the system model and the principle of turbo equalization are given. Using

a trellis-based channel equalizer and channel decoder, turbo equalization improves the

bit error rate (BER) performance tremendously. However, given that large alphabet

modulation is employed in the system with multipath channels causing significant inter-

symbol interference, the optimal maximum a posteriori probability (MAP) equalizer is

prohibitively complex, and thus the sub-optimum equalizers such as decision feedback

equalizer (DFE) have to be considered. We firstly show that the gain in BER offered

by the iterative receiver when using a conventional DFE is however limited by the error

propagation. To minimize the error propagation and increase the reliability of the ex-

trinsic information, an improved decision feedback equalizer algorithm is introduced for

turbo equalization. The novel low complexity DFE algorithm detects the symbols using

the extra metric and the feedback symbol from previous iteration. This simple method is

accomplished by extracting and delivering more reliable extrinsic information as a priori

information for the detection and decoding steps. Both the analytical and simulation

results indicate that the improved DFE algorithm has better BER performance (about

1dB improvement) over the conventional DFE in turbo equalization.

As described above, ISI caused by multipath propagation can be mitigated by the

channel equalizer providing the receiver has the knowledge of the channel. Therefore,

the system performance is also mainly determined by the accuracy of the channel esti-

mation. In a conventional GSM receiver, the known training sequence is inserted in the

middle of each slot are used to extract the channel impulse response with the received se-

quence. Chapter 4, the derivation of least-squares estimation is provided at the beginning
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to show that when large number of information are provided, least-squares estimation

approaches the optimum Wiener solution [24]. Furthermore, a recursive least-squares

estimation algorithm is introduced to update the estimated channel parameters while

new information is available. Next, we presents the channel estimation in 8-PSK with

time-varying and frequency-selective fading channels. It is shown that the fast fading

channel during a selected slot in the EDGE system can be modeled as a linear function

of time, and a least-squares based algorithm is proposed and combined with a modified

slot structure to estimate the fading channel. For typical channel profiles of the EDGE

system, the channel impulse response is not in its minimum phase form, thus cannot be

directly used in computationally efficient equalizers, such as delayed decision feedback

sequence estimation or reduced state sequence estimation. To overcome this problem, a

Cholesky decomposition based method is introduced to transform the estimated channel

impulse response energy to the first few taps.

In previous chapters, the system performance is improved by channel estimation and

equalization in single base station and single mobile station antennas system. Unlike

equalization and estimation, diversity is a low cost powerful receiver technique that

improves the link significantly. For instance, there are two antennas separated by a

distance at the base station. While the transmitted signal is distorted by the multi-

path Rayleigh fading channels, one radio path might undergo a deep fade and another

independent path might have a strong signal. Thus, the average signal to noise ratio

(SNR) at the receiver are improved. It is important to note that, the diversity technique

assumes that the transmitted signals undergo independent radio paths to two separated

antennas. However, in practice, the optimum relative antenna separation and placement

may not feasible due to space limitations and other practical constraints. Consequently,

the channels of the antennas are correlated and the improvement of the performance

degrades. In Chapter 5, we investigate the correlation of channels in multiple trans-

mit and receive antennas in details. An overview of various Rayleigh fading channel
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model is given at the beginning of the chapter. Clarke’s model is a commonly used two

dimensional isotropic scattering that the mobile station antenna receives the arriving

plane wave from all directions with equal probability. Base on the one-ring scatter-

ing, Shiu proposed a two dimensional multiple-input multiple output (MIMO) model

and derived a new correlation functions for the subchannels based on this model. In

paper [63], the authors argued that the waves are not necessarily transmitted on two-

dimensional. Thereby, a 3-D cylinder model was proposed to describe the scattering

environment that encloses the mobile station. Based on this background, a space-time

correlation functions between the links of MIMO Rayleigh fading channels are derived

using a new three-dimensional (3-D) cylinder scattering model. Closed form, mathemat-

ically tractable formulas are obtained for the space-time correlation functions for general

MIMO systems where the base station and mobile station antennas may be arranged in

3-D space. In the discussion of special cases such as 2-D Clarke’s model, single input

multiple output (SIMO) and multiple-input single-output (MISO) in two dimensional

and three dimensional, the new correlated function is simplified to others known formu-

las from the literatures. Moreover, it is shown that the correlation functions computed

by the 3-D cylinder model are of significant difference than those of the conventional 2-D

Clarke’s isotropic scattering model for vertically placed antennas. Finally, the summary

of the research and future works are provided in Chapter 6.

5



Chapter 2

Perturbation Equalization for

8-PSK EDGE Cellular System

2.1 Introduction

Recently, there are two major approaches to third-generation (3G) mobile communi-

cation systems. The first one is universal mobile telecommunications service (UMTS),

which is based on wideband code division multiple access (WCDMA), while the other

one is Enhanced Data rates for GSM Evolution, which is an evolution of the existing

time-division multiple access (TDMA) standards GSM and Industry Standard 136 (IS-

136) [2]. In order to keep backward compatibility with the worldwide successful second

generation GSM and IS-136 mobile systems, EDGE has an almost identical time frame

and slot structure as GSM, but it can achieve significantly higher data rates and spec-

tral efficiency compared to existing data services in GSM and TDMA IS-136, because

it improves the spectral efficiency by employing the 8-PSK modulation. A simplified

baseband system block diagram of EDGE with 8-PSK modulation is given in Fig. 2.1.

As depicted in Fig. 2.1, when the modulated data and training symbols are transmit-

ted to the receiver, the transmitted signals will be distorted by multipath multiplicative

fading and additive noise in the mobile radio channel. To take a close look at the mobile

channel, the typical EDGE channel propagation models for Typical Urban (TU) and
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Figure 2.1: Baseband system block diagram

Hilly Terrain (HT) environments are depicted in Fig. 2.2 and 2.3, respectively, which

shows individual path delay and its average power. Assume that there is no line-of-sight

(LOS) case, each path represents an independent Rayleigh fading. Given that the EDGE

symbol interval to be 3.69µs, we can conclude that the transmitted signals undergo se-

vere intersymbol interference (ISI) in the HT and LU environments. As a consequence,

a reliable and effective channel estimation and channel equalizer must be reside in both

base stations and mobile handsets for successful detection of the information data.

2.2 Channel Equalizer

The channel equalizer is designed to jointly eliminate the ISI and estimate the transmit-

ted symbol sequence at the receiver. Optimum equalization, i.e., maximum-likelihood

sequence estimation (MLSE) [5] based on Viterbi algorithm (VA) is a promising tech-

nique used in GSM with binary Gaussian minimum-shift keying (GMSK) modulation

scheme. Nevertheless, the optimum algorithm, which minimizing the probability of
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Figure 2.2: Typical Urban propagation model

sequence error provided the channel impulse response is estimated accurately, would re-

quire an excessive computational complexity and is prohibited with currently available

digital signal processors (DSPs). According to the typical channel profiles of GSM, the

HT channel model requires the channel impulse response (CIR) length of 7. Therefore,

the computational complexity of the equalization in 8-PSK EDGE system is given by

86 per received data system.

To limit the computational complexity and eliminate the ISI in the received sam-

ples, some alternatively methods were proposed in the literature. An example is Decision

Feedback Equalizer (DFE) and Linear Equalizer (LE) [73] which employ various adaptive

algorithms to find the optimum equalizer weights. However, the DFE tends to perform

poorly for 8-PSK since the signal constellation is fairly dense causing the algorithm to

become overly sensitive to noise. Due-Hallen introduced a delayed decision feedback
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Figure 2.3: Hilly Terrain propagation model

sequence estimation [8] which truncate the channel impulse response to a manageable

length for MLSE. This algorithm belonging to the class of suboptimum equalizer. In

general, the suboptimum DDFSE has advantageous tradeoff between performance and

computational complexity providing the channel impulse response that has to be equal-

ized has a minimum-phase characteristic. Eyuboglu proposed a reduced-stated sequence

estimation which can further simplify DDFSE to less computational complexity. In the

following subsections, we introduce the commonly used equalizers MLSE, DDFSE and

RSSE in brief details. In proceed, we propose a new efficient equalization method, which

is shown to be a suboptimum equalizer and provides a good performance in the sense of

bit error rate.
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2.2.1 Maximum-Likelihood Sequence Estimation (MLSE)

When the transmitted signal has memory, i.e, the received signals are distorted by the ISI

channel, MLSE is an optimum equalizer that make the decision on the symbol based on

observation of a sequence of received signals over successive signal intervals. It searches

the minimum Euclidean distance path through the trellis that characterizes the memory

in transmitted signal.

To illustrate the maximum-likelihood sequence detection algorithm clear to the reader,

we consider the system as follow. Denote a transmitted sequence d = [d0d1 · · · dK−1],

where K is total number of signals transmitted. If we assume that the channel has L−1

memory, the received sequence at the receiver is given by

yk =
L−1∑

l=0

dk−lh(l) + nk (2.1)

where yk is the received signal at kth signal interval, h(l) for l = 0, 1, · · · , L − 1 is

the channel impulse response and nk ∼ N(0, σ2) is a zero-mean Gaussian random vari-

able. Given that we know the channel information {g(l)}L−1
l=0 perfectly, the conditional

probability density function (pdf) for the transmitted signal is

P (yk|dk, dk−1, · · · , dk−L+1) =
1√

2πσ2
exp



− 1

2σ2

∣
∣
∣
∣
∣
yk −

L−1∑

l=0

h(l)dk−l

∣
∣
∣
∣
∣

2


 (2.2)

After receiving the sequence {yk}K−1
k=0 , the equalizer decides in favor of the sequence

{dk}K−1
k=0 that maximizes the likelihood function

P (yK−1, yK−2, · · · , y0|dK−1, dK−2, · · · , d0). (2.3)

Denote the branch metric

ε̃k = −
∣
∣
∣
∣
∣
yk −

L−1∑

l=0

h(l)dk−l

∣
∣
∣
∣
∣

2

. (2.4)

Based on the recursion in (2.2) and the branch metric (2.4), we can implement the well-

known Viterbi algorithm searching through the Ns = 2nL states, where 2n is the size of

10



signal constellation, for the most likely transmitted sequence d. This searching process

is known as maximum likelihood sequence estimation. In follow, we give a very brief

outline of the Viterbi algorithm. Denote the state at node k as

%k = (dk−1, dk−2, · · · , dk−L+1), (2.5)

we have Ns surviving sequences ď(%
(i)
k ) along with their associated path metrics Γ(%

(i)
k )

that terminate at that %
(i)
k , where i = 0, 1, · · · , Ns − 1. The path metric is defined as

total of the branch metric ε̃k along the surviving path is given by

Γ(%
(i)
k ) =

∑

{k}

ε̃k. (2.6)

While the received signal arrives at the receiver, the MLSE start the search process as

following steps,

1. Compute the path metrics Γ(%
(i)
k → %

(j)
k+1) from state i to state j for all possible

paths through the trellis that terminate in state %
(j)
k+1, j = 0, 1, · · · , Ns − 1.

2. At each state j, find the maximum Γ(%
(i)
k → %

(j)
k+1) among all possible paths that

terminate in state %
(j)
k+1.

3. Store the maximum Γ(%
(i)
k → %

(j)
k+1) and its associated surviving sequence ď(%

(j)
k+1)

and discard other paths.

After all the states have been processed, the time index k is incremented by one

and the entire process is repeated again. The recursive algorithm is terminated until

the entire sequence {yk}K−1
k=0 has been processed. The maximum path metric Γ(%

(i)
K−1) is

found among all possible Ns states and its associated surviving sequence ď(%
(i)
K−1) is the

estimated received sequence output by the equalizer.

2.2.2 Delayed Decision-Feedback Sequence Estimation (DDFSE)

As we mention before, the computational complexity of the MLSE grows exponentially

with the channel memory length and signal constellation size. For instance, with 8-PSK

11



constellation in EDGE system, the channel memory length is 6 and the total number of

states computed in the trellis is 86 = 262144 states. Therefore the MLSE becomes im-

practical. In order to limit the computational complexity, Due-Hallen truncated channel

memory to µ terms, where µ is an integer that can be varied from 0 to L − 1. Thus,

the computational complexity of the suboptimum equalizer controlled by th parameter

µ and this suboptimum equalizer is so-called the delayed decision feedback sequence

estimation.

Since the DDFSE equalizer is based on the parameter µ and µ falls into the range of 0

to L−1. Thus, the DDFSE itself can be viewed as the combination of Viterbi algorithm

and decision feedback equalizer. When µ = 0, the DDFSE equalizer is equivalent to the

DFE receiver, which using a single unreliable decision for feedback. When µ = L − 1,

the DDFSE equalizer is equivalent to MLSE.

Assume that µ is chosen as the truncation length of DDFSE equalizer, the received

sample at time index k is given by

yk =

µ
∑

l=0

h(l)dk−l +
L−1∑

l=µ+1

g(l)dk−l. (2.7)

Thereby, the state at node k can be decomposed into the following two states, one is

given by

%µk = (dk−1, dk−2, · · · , dk−µ), (2.8)

and the partial state is

%̃k = (dk−µ−1, dk−µ−2, · · · , dL−1). (2.9)

Based on (2.8), the Viterbi algorithm searching through the Nµ = 2nµ states for the

most likely transmitted sequence d. The DDFSE equalizer implement the same recursive

algorithm of MLSE given in Section 2.2.1, except it computes the branch metric for each

12



state transition %
µ(i)
k → %

µ(j)
k+1 as follows,

ε̃k(%
µ(i)
k → %

µ(j)
k+1) = −

∣
∣
∣yk − h(0)dk(%

µ(i)
k → %

µ(j)
k+1)

−
µ
∑

l=0

h(l)dk−l(%
µ(i)
k ) −

L−1∑

l=µ+1

h(l)ď(%
µ(i)
k )

∣
∣
∣
∣
∣

2

(2.10)

where ď(%
µ(i)
k ) is the lth component of the surviving sequence ď(%

µ(i)
k ).

Apparently, the DDFSE equalizer estimates the sequence based on the µ most recent

symbols. Hence, it is important that the signal energy is contained in these µ signals. So

a noise whitening filter is carefully selected to produce the overall channel in minimum

phase form.

2.2.3 Reduced-State Sequence Estimation (RSSE)

When large signal constellation is employed, the number of states associated with

DDFSE is still substantial even for small µ. For instance, 16-QAM consists of 24 symbols

and µ = 4 is given, the number of states searched by the VA in DDFSE is 216. Thus,

we can use one possible remedy is so-called Ungerboeck-like set partitioning principles

to further simplify the computational complexity.

Define a set partitioning Ω(i), where 1 ≤ i ≤ µ ≤ L − 1 where the signal set

is partitioned into Ji subsets in a way of increasing intrasubset minimum Euclidean

distance [6]. Denote the subset in the partitioning Ω(i) as ci(xk−i) that consists of

elements xk−i. The subset partitioning is also defined in a way such that Ω(i) is a finer

partitioned of Ω(i+1) and J1 ≥ J2 ≥ · · · ≥ Jµ. Consequently, the RSSE does not specify

the µ most recent symbols {xk−i}µi=1 but only specify the subsets to which these symbols

belong. Note that when J1 = J2 = · · · = Jµ, RSSE becomes DDFSE. In Fig. 2.4 and

2.5, we depict the set partitioning for 16-QAM and 8-PSK, respectively.

The Viterbi algorithm in MLSE is used to search the subset trellis for different branch

metrics associated with the subset-transitions. Note that the branch metric of RSSE

is not uniquely determined by the associated pair subset-states. A decision feedback

13
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Figure 2.4: Ungerboeck partition tree for the rectangular 16-QAM signal set

mechanism in DDFSE is also implemented for branch metric calculation. Define the

subset state as follows

%µk = [c1(xk−1, c2(xk−2), · · · , cµ(xk−µ)]. (2.11)

The RSSE branch metric for a particular parallel transition associated with the subset

transition (%
µ(i)
k → %

µ(j)
k+1) is written as

ε̃k(%
µ(i)
k → %

µ(j)
k+1) = −

∣
∣
∣
∣
∣
yk − h(0)xk(%

µ(i)
k → %

µ(j)
k+1) −

L−1∑

l=µ+1

h(l)x̌k−l(%
µ(i)
k )

∣
∣
∣
∣
∣

2

(2.12)

where x̌k−l(%
µ(i)
k ) is the lth component of the surviving path x̌(%

µ(i)
k ) leading to the subset

%
µ(i)
k .

2.3 Minimum Phase Noise Whitening Filter

As mentioned before, the reduced-state equalizers truncate the channel impulse response

to a manageable length. Therefore, the sequence estimations are only concentrated on
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Figure 2.5: Ungerboeck partition tree for 8-PSK signal set

the first few taps. As a result, we need to carefully designed a noise whitening filter

so that the overall response will be in minimum phase. In Fig. 2.3, a system consists

of transmitting filter Ptr(t), ISI rayleigh fading channel g(t) and receiving filter Pr(t) is

depicted. The channel impulse response h is the convolution of Ptr(t), Pr(t) and g(t).

ISI ChannelTransmitting filter Receving filter

PSfrag replacements

x(t) y(t)
Ptr(t) Pr(t)g(t)

n(t)

Figure 2.6: ISI channel system

The z-transform of the vector h is given as

H(z) =
L∑

l=−L

h(l)z−n (2.13)

Given that the ISI coefficient h has the property of h(l) = hh(−l), where [·]h is the

complex conjugate operator. We can write

Hh(1/zh) = H(z). (2.14)
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Figure 2.7: Discrete-time model for ISI channel

Follows, H(z) can be factorized to

H(z) = G(z)Gh(1/zh) (2.15)

where G(z) and Gh(1/zh) are polynomials of degree L [73]. Based on the polynomials,

there are 2L possible choices for the roots of Gh(1/zh) for the noise whitening filter. To

produce a filter that the overall response G(z) has minimum-phase for reduced state

equalizers, we have to choose the unique G(z) has all its roots fall inside the unit circle

and noise whitening filter Gh(1/zh) is a stable but noncausal filter. Finally, the filter

output is

V (z) = (X(z)H(z) + ñ(z))
1

Gh(1/zh)
(2.16)

= X(z)G(z) + ñ(z)
1

Gh(1/zh)
(2.17)

and the whitening noise filter system is shown in Fig.

ISI ChannelTransmitting filter Receving filter Noise Whitening
Filter

PSfrag replacements

xk
yk

Ptr(l) Pr(l)g(l)

nk

1/Gh(1/zh)
vk

Figure 2.8: ISI channel system followed by a discrete-time noise whitening filter
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2.4 Perturbation Equalization and Symbol Detec-

tion

In this section, a new approach is presented for 8-PSK EDGE channel equalization. The

method is suboptimal but can achieve good bit error rate (BER) performance with low

computational complexity. The algorithm iteratively minimizes the Euclidean distance

between the detected signal sequence and the received signal sequence, with good initial

conditions provided. The detected hard symbols are then used to cancel ISI when

computing zero delay form of the symbol (bit) probabilities for soft decision decoding.

2.4.1 Baseband System Parameters

We assume that the system transmits the signal in burst mode. In Fig. 2.1, the trans-

mitted data bits are modulated to 8-PSK symbols ak ∈ {exp(j 2πi
8

); i = 0, 1, 2, · · · , 7},

where j =
√
−1 and placed in a short slot depicted in Fig. 2.9. Next, the 26 training

symbols are inserted in the middle of the slot as pilot symbols. Assume that there is

no timing error and frequency offset at the receiver, the baseband of the EDGE system

shown in Fig. 2.1 can be written as

yk =
L−1∑

l=0

h(l)dk−l + nk, (2.18)

where k = 0, 1, · · · , 147, dk is the transmitted 8-PSK symbol, yk is the symbol rate

sampled output of the receive filter, nk is the additive white Gaussian noise (AWGN),

and h(l), 0 ≤ l ≤ L − 1, is the time-invariant CIR of the fading channel. h(l) is

the symbol rate sampled version of the composite channel impulse response that is the

convolution of the transmit filter, the receive filter, and the physical channel impulse

response.

At the receiver depicted in bottom part of Fig. 2.1, the received signal is then sep-

arated into two streams: one stream is for data symbols, and the other stream is for
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Figure 2.9: Transmitted slot structure

the training symbols which channel fading information is extracted. Due to its short

duration of each time slot and low or moderate mobile speeds, it is reasonable to assume

that the CIR is time-invariant within a time slot. Hence, the preceding or the next

slot will have different CIR implying the equalization will be done slot by slot. Based

on least-squares (LS) algorithm, we are able to estimate the overall channel impulse

response vector h= [h(0), h(1), · · · , h(L− 1)].

As shown in Fig. 2.2 and 2.3, the power of the Rayleigh fading at the path delay

τ = 0 is small. As a result, the average power of the first CIR E[|h(0)|2] is significantly

small while we compare to the CIRs E[|h(1)|2] and E[|h(2)|2]. Therefore, the system

is not in minimum phase and it would lead to numerical instability if we estimate the

data symbols based on h. With reference to Fig. 2.1 we indicate the need for a prefilter

[13]. The prefilter transform the Rayleigh fading vector h to a minimum phase form

b where the leading taps are dominant. Denote the prefiltered received sequence by a

colum vector z ∈ C
1×148, we have the compact form received sequence as follows,

z = Bd + ñ (2.19)
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where column vectors d ∈ C
1×148 and ñ ∈ C

1×148 are the unknown transmitted burst

to be estimated and additive noise, respectively. The matrix B ∈ C
148×148 is a lower

triangular and banded, with rows containing the post prefilter impulse response (IR) as

B =


















b(0) 0 · · ·

b(1) b(0) 0 · · ·

b(2) b(1) b(0) 0 · · ·

b(L) · · · b(1) b(0) 0 · · ·

0 b(L) · · · b(1) b(0) 0 · · ·
...

...
...

...
...

...


















. (2.20)

Note that B is a diagonally dominant matrix and full rank. In proceed, a compu-

tationally algorithm can be developed to detect the transmitted symbol vector d by

minimizing ε2 = ‖z − Bd‖2 with respect to d. If we define v = z − Td, then ε2 =

‖v‖2 =
∑57

i=0 |v(i)|2. As shown in Fig. 2.9, the data symbol streams are located at two

separated blocks and each of them consists of 58 data symbols. We now propose a two

step optimization procedure to find the symbol vector d that will minimize the sequence

error ε2.

2.4.2 Equalization and Hard Symbol Detection Algorithm

Step 1: Let d = 0. Starting dn with n = 1 select the 8-PSK alphabet hard symbol dn

that yields the least value for ‖z(n) − b(0)dn −
∑L

i=1 b(i)d(n− i)‖2. Repeat the search

for the next symbol dn+1 using previously detected symbols dn, dn−1,··· and so on until

the end of the burst is reached. The result of this hard symbol search is denoted d∗.

Step 2:Using the obtained d∗ as an initial solution, starting from the end of the burst

test the 2 nearest neighbors of d∗n in the 8-PSK constellation for a possible reduction in

the sequence error ε2. If the sequence error ε2 is reduced (or reduced most) by one of

the two neighbors, then update d∗n with that neighbor. Repeat the procedure for the

next symbol d∗
n−1

and so on until n = 1 is reached. This is one iteration. Repeat the
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procedure above until the sequence error ε2 is no longer reduced by additional iterations

or until the iteration number reaches a pre-set value. Then this updated d∗ is the final

estimate of the transmitted hard symbol vector in the sequence sense denoted by dsq .

The idea of nearest neighbor perturbation is shown in Fig. 2.10.

111

011

010

PSfrag replacements

dn Perturbation for symbol dn

Figure 2.10: The idea of nearest neighbor perturbation.

2.4.3 Soft Bits Estimation

The algorithm given above provided a hard sequence dsq that minimized the sequence

error. From these hard symbols we may derive hard bits denoted by x̄ directly given

the symbol to bit map, shown in Fig. 2.11. However, for soft decision decoding, we need

soft bits, defined as

softi =

∣
∣
∣
∣

ln

(
Pi

1 − Pi

)∣
∣
∣
∣
x̄i (2.21)

where Pi denotes the probability that the i th bipolar bit is a logical 1. It is straightfor-

ward to find the zero delay form of these probabilities 1 as is done for the DFE method,

except that we substitute the hard sequence dsq when we perform the decision feedback

part, thus enhancing the quality of the bit probabilities significantly.

1Symbol probabilities are computed, then converted to bit probabilities using the symbol to bit map.
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Figure 2.11: The 8PSK symbol to bit mapping.

2.5 Simulation Results

In this section we show the results obtained with the equalization and soft bit estimation

presented in Section 2.4.3. Each ray in the dispersive channel is assumed to undergo

Rayleigh fading independently of other rays. The transmission filter is Gaussian as

defined in GSM and causes ISI of three symbols. Additive white Gaussian noise (AWGN)

is added to the received symbols. The amount of noise added is determined by the

desired Eb/No ratio. The CIR length is chosen as L = 7, and a SRC receiver filter with

normalized bandwidth of 1 and roll-off 0.5 is used.

In our simulations, it has been observed that the first two iterations provide signifi-

cant reduction for the bit error rate (BER), and there is little change to the estimated

symbol sequencedsq after 3 iterations. To gain the most benefit with paying the least

cost, we choose to fix Niteration = 2 in Step 2 of the equalizer in our simulation results
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presented in this section.

2.5.1 Typically Urban Channel

Our equalizer with Niteration = 2 is compared to RSSE with four way (2 state) set

partitioning (RSSE2) since the complexity of the two methods are the same, as well as

to RSSE8 where no set partitioning is used, and the complexity is four times as high

as our method. The four way set partitioning prevents the trellis from producing trellis

based soft bits as is possible in the 8 state RSSE and DDFSE equalizers. This causes

the decoded BER (from [12]) to be suboptimal in the RSSE2 method. For the RSSE8

method and the TU channel that is essentially a two tap channel after the prefilter, the

RSSE8 equalizer achieves a near optimal decoded BER that can be expected for the TU

channel as all soft bits are computed from the 8 state (two tap) trellis.

The bit error rate (BER) after channel decoding versus Eb/N0 for the TU3 profile

with mobile speed being 3 km/h is shown in Figure 2.12 for MCS-5 and MCS-7 coding

schemes as well as the uncoded scheme.

As can be seen, our equalizer has almost the same BER performance as the RSSE2

equalizer for uncoded scheme under TU3. However, our equalizer well outperforms

the RSSE2 equalizer for MCS-5 scheme where the soft bits are important. For the

computational complexity, the RSSE2 needs to calculate 16 metrics per symbol, and our

algorithm, for the choices made here in these simulations with Niteration = 2 we need

to calculate 18 metrics per symbol when producing soft bit information to aid the soft

decision decoder. The RSSE8 method shows gain over both our method and the RSSE2

method, but requires 64 metrics per detected symbol (3 bits).

2.5.2 Hilly Terrain Channel

As a second example, we select the Hilly Terrain (HT) channel model, at a mobile

velocity of 50 km/h, and we select to use the RSSE method without any set partitioning
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Figure 2.12: Comparison of BER vs Eb/No for our new algorithm with RSSE2 and
RSSE8 under Typical Urban Profile with mobile speed being 3 km/h.

with an 8 state trellis producing trellis based soft bits. We consider here only decoded

BER, as indicated in Figure 2.13. Even though the 8 state RSSE method requires 64

metrics to be computed per detected symbol, versus our equalizer requiring only 18

metrics, the gain over our method in decoded BER is small in MCS5, on the order of

0.5 dB. For MCS7 the 8 state RSSE method gains around 1 dB.

The fact that the RSSE8 method shows less gain over our method for the HT channel

is due to the fact that after the prefilter the HT channel still shows 5 significant taps

in the impulse response, and thus the 8 state trellis is not able to produce optimal soft

bits as was the case for the TU channel.
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under Hilly Terrain model with mobile speed being 50 km/h.

2.6 Conclusions

In this chapter, an iterative method is presented for 8-PSK EDGE equalization and

symbol detection. The proposed method is based on minimizing the Euclidean distance

between the detected signal sequence and the received signal sequence, with neighbor

symbol perturbation to reduce the computational complexity. Given the detected symbol

sequence, we may compute the zero delay bit probabilities by feeding back the detected

sequence to cancel ISI. These in turn are used to produce soft bits. Simulation results

were performed by comparing the performance of our equalizer versus the RSSE detector.

We presented both the cases where four way set partitioning is used (2 state RSSE) and

24



where no set partitioning is used (8 state RSSE). For 2 state RSSE the complexity is

similar to our method, but is was shown that our method is able to produce better

decoded BER when coding is strong. For 8 state RSSE, our equalizer performance

shows a small loss, but it requires only a quarter (approximately) of the computational

complexity. The proposed method can easily be extended to other high-level modulation

schemes as long as the effective channel impulse response can be estimated.
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Chapter 3

Improved Decision Feedback

Equalization Using A Priori

Information

3.1 Introduction

Turbo equalization is a powerful iterative receiver which employs trellis-based channel

equalization and decoding methods [28]. At the transmitter, the data is first protected

by an error correction code and then followed by an interleaver to mitigate bursty errors.

At the receiver, the encoder and the discrete-time equivalent channel is treated as the

serial concatenation of two codes. Hence, the so-called Turbo-principle [29] can easily

be applied. The performance of the system is improved in the fashion of exchanging the

extrinsic information iteratively among the soft-input/soft-output (SISO) equalizer and

SISO channel decoder until convergence is achieved. To achieve optimal equalization, we

may use a symbol by symbol MAP algorithm [30] or soft MLSE detector minimizing the

sequence error via maximum likelihood estimation [5, 41, 42]. In [28], the first proposed

turbo equalization implements the soft-output Viterbi algorithm (SOVA) exclusively for

both equalization and decoding, as in [40]. Unfortunately, these optimum algorithms

are not usually applicable to many practical communication systems in use today due
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to their high computational complexity. For large constellation size M modulation

used with long discrete-time equivalent channel length L results in high computational

complexity of O(ML) that is intractable for equalization. As a consequence, an efficient

reduced complexity SISO equalizer is required for sub-optimal turbo equalization, with

very little performance degradation.

Due to this reason, the low complexity SISO equalizers have been investigated by

many authors in the recent literature. In [31], Wang and Poor developed an iterative re-

ceiver structure for decoding multiuser information data in code division multiple access

(CDMA). The minimum mean square error (MMSE) linear equalizer (LE) implemented

in turbo equalization cancels the inter-symbol interference and multi-access interference

(MAI) successfully. Ariyavisitakul and Li [45] proposed a joint convolutional coding and

DFE in an iterative equalization scheme. The DFE uses a combination of soft decisions

and tentative decisions obtained from the Viterbi decoder to cancel ISI. Tuchler showed

that MMSE-based LE performs well compared with a MAP equalizer while only low

computational complexity is needed [33]. The equalization was extended to multilevel

modulation in [32].

In this chapter, we specifically focus on the DFE algorithm. We address the drawback

of the conventional DFE algorithm in turbo equalization, which has error propagation.

The effects of error propagation are observed clearly from the simulation results of

[32, 33], where the turbo equalizer does not produce significant improvement in multipath

channels throughout the iterations. Besides, the gain in BER offered by the conventional

DFE diminished dramatically after several iterations. Therefore, a new approach is

proposed to mitigate the error propagation in the DFE algorithm when used in turbo

equalization while retaining low computational complexity. It estimates the data using

the a priori information from the SISO channel decoder and also the a priori detected

data from previous iteration to minimize error propagation. From the simulation results,

we show that the bit error rate (BER) performance of the improved DFE algorithm
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provides significant improvement when compared with the conventional DFE algorithm.

3.2 System Model

We consider the system model shown in Fig. 3.1. All other approaches presented in

this chapter use the same structure except the type of equalizer. Prior to transmission,

a frame of binary data bi ∈ {0, 1} with length Kd is encoded through a convolutional

encoder with constraint length K and rate r. The output encoded bits ck ∈ {−1,+1},

where k = 1, 2, · · · , Kc, are interleaved into a block of different ordering data xk ∈

{−1,+1} using a random permutation function. The interleaver operation is denoted

as xn = Π(ck) and its reverse operator (de-interleaver) is denoted as Π−1(·). To simplify

the derivation of algorithms, the interleaved code bits xk are partitioned into M · Q

sequences given as x , [x0x1 · · ·xM−1], where M = Kc/Q and the subsequence xi ,

[xi,1 xi,2 · · · xi,Q]. Next, the transmitted symbol di is generated by mapping each

subsequence xi to a modulated signal si ∈ S = {s1, s2, · · · , s2Q} that corresponds to the

2Q-ary bit pattern zi , [zi,1 zi,2 · · · zi,Q]. The phase shift keying (PSK) constellation

shown in Fig. 3.2 is used throughout this chapter for simulation and analysis.

Assume that the data sequence d = [d0d1 · · · dM−1], di ∈ S, is transmitted in burst

mode to the receiver. The transmitted data is distorted by the ISI channel and additive

white Gaussian noise (AWGN). For the sake of simplicity, we assume that there is no

timing error and frequency offset at the coherent symbol-spaced receiver. The baseband

representation of the system at the receiver shown in Fig. 3.1 can be written as

yn =
L−1∑

l=0

hldn−l + wn, 0 ≤ n ≤M − 1 (3.1)

where yn is the symbol-rate received sample at the receiver, dn is the transmitted symbol

and wn ∼ N(0, σ2) is the additive white Gaussian noise. hl, 0 ≤ l ≤ L − 1, is a

discrete time composite (overall) channel impulse response (CIR) that is the cascade

of the transmit filter, the physical channel and the receive filter. The CIR is assumed
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time-invariant within a burst, but will vary from burst to burst, a situation commonly

assumed valid in burst mode communication systems.
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Figure 3.1: Turbo Equalization system model consists of SISO equalizer and channel
decoder
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Figure 3.2: 2Q-ary phase shift keying (PSK) symbols and bit patterns

Note that an anti-causal prefilter updated using the MMSE criterion [21] is added

before the equalizer in Fig. 3.1 to transform the estimated CIR into the minimum phase

form so that the leading taps will dominate the post prefilter CIR. In some channel

profiles, such as typical urban and hilly terrain of the GSM/EDGE system, the channel

impulse is not necessarily in the minimum phase form before the prefilter is applied.

This leads to numerical instability and degradation of BER performance in reduced state

equalization. Denote the output prefiltered received sequence as r = [r0r1 · · · rM−1], the
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input-output relationship of the received sample after the prefilter is given as follows

rn =
L−1∑

l=0

uldn−l + vn (3.2)

where ul, 0 ≤ l ≤ L − 1, is the minimum phase form feedback filter and vn is additive

white Gaussian noise. In the multipath channel where L ≥ 2, ISI channel itself can be

treated as a convolutional encoder with rate 1. Hence, the combination of ISI channel

and a convolution encoder at the transmitter forms a serial concatenated ‘coding’ scheme,

which can be iteratively decoded as shown in Fig. 3.1.

3.3 Principle of Turbo Equalization

The iterative receiver in the lower part of Fig. 3.1 is presented. For the sake of simplicity,

the system model implements BPSK modulation is discussed in this section whereas

higher modulation signals will be described in the section where the new equalizer is

presented. The system model consists of two stages, a SISO equalizer following by a

SISO channel decoder. They are separated by an interleaver Π(·) and a de-interleaver

Π−1(·) blocks. We consider only the BER-optimal MAP approach in decoding. For

turbo equalization, it has been shown that the MAP-based equalizer using the BCJR

algorithm (trellis-based detection) delivers the best result in simulations. It computes

the a posteriori probabilities P (xn = x|r), x ∈ {−1, 1}, or a posteriori Log Likelihood

Ratios (LLR) given by

Λ(xn|r) = ln
P (xn = +1|r)
P (xn = −1|r) . (3.3)

Using Bayes’ Rule, (3.3) can be expressed as

Λ(xn|r) = ln

∑

∀x:xn=+1 P (r|x)P (x)
∑

∀x:xn=−1 P (r|x)P (x)

= ln

∑

∀x:xn=+1 P (r|x)
∏

∀n′ except n′=n P (xn′)
∑

∀x:xn=−1 P (r|x)
∏

∀n′ except n′=n P (xn′)
︸ ︷︷ ︸

LE(xn)

+L(xn). (3.4)
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L(xn) is the a priori information on the occurrence probability of xn from the decoder

in last iteration. In the first iteration, there is no a priori information available and

we have L(xn) = 0,∀n. Starting from the second iteration, the existence of L(xn)

may improve the information of the data xn and further reduce the ISI. The extrinsic

LLR LE(xn) computed in the first term of (3.4) will be de-interleaved to L(cn) as the

a priori information of the decoder. Based on the L(cn) and the trellis structure of

the convolutional code, the MAP approach SISO channel decoder in the second stage

computes the extrinsic LLR LD(cn) of each code bit as follows

LD(cn) , ln
P (cn = +1|L(c1), · · · , L(cKc

))

P (cn = −1|L(c1), · · · , L(cKc
))

− ln
P (cn = +1)

P (cn = −1)
︸ ︷︷ ︸

L(cn)

(3.5)

where LD(cn) is interleaved to provide the correct ordering of LLR L(xn) and fed into

the equalizer as the a priori information in the next iteration. When arriving at the

final iteration, the SISO channel decoder estimates the binary data bits bi ∈ {0, 1} using

b̃i , argmax
b∈{0,1}

P (bi = b|L(c1), · · · , L(cKc
)). (3.6)

It is important to note that the statistically independent a priori LLRs LE(xn) and

LD(cn) are fed back to each other iteratively and lead to significant improvement in

BER performance. This essential feature achieves the turbo principle, which is known as

turbo equalization. However, after the first iteration, LE(xn) and LD(cn) become more

correlated throughout the iterations. As a consequence, the improvement will diminish

after a large number of iterations and therefore a termination criterion is required to

stop the iterative process.

3.4 The MAP algorithm

The process of turbo code decoding and turbo equalization involves with the formation

of a posteriori probability for each data bits, which is followed by choosing the data
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bits that corresponds to the maximum a posteriori probability for that data bits. This

implementation process some-what like a bi-directional Viterbi algorithm over a block of

code bits. Once the state and the branch metrics for the blocks are computed, the APPS

and the MAP can be obtained for each data bit represented within the block. In here, we

briefly describe the formation of the state and branch metrics for the MAP algorithm.

Let us denote the state of the trellis at time t as St and the code bits xt(St−1, St) is the

output given by the state transition from state St−1 to state St. Thereby, we can define

the forward and backward recursions as follows

F(St) =
∑

b

F(Sbt−1)P [xt(S
b
t−1, St)] (3.7)

B(St) =
∑

b

B(Sbt+1)P [xt(St, S
b
t+1)] (3.8)

where b is the input bits. For implementation simplicity, we assume that the forward

state and backward state start at the first state, which imply that F(S0 = 0) = B(S0 =

0) = 1 and F(S0 6= 0) = B(S0 6= 0) = 0. In equations (3.7) and (3.8), the summation

is the sum of overall possible states St−1 and St+1, respectively, where the transtition

(St−1, St) and (St, St+1) are possible.

3.4.1 State Metric Calculation

In Fig., the graphical representation for the calculation of forward state and backward

state metrics are depicted. Assume that there are two possible inputs b = {0, 1}. The

equations (3.7) and (3.8) can expanded as follows,

F(St) = F(S0
t−1)P [xt(S

0
t−1, St)] + F(S1

t−1)P [xt(S
1
t−1, St)] (3.9)

B(St) = B(S0
t+1)P [xt(St, S

0
t+1)] + B(S0

t+1)P [xt(St, S
0
t+1)] (3.10)

It is important to note that a direct implementation of the equations (3.9) and (3.10)

will cause the system numerically unstable, since both F(St) and B(St) drop toward zero
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exponentially. In order to avoid these defect and produce a numerically stable algorithm,

these quantities must be scale as the computation proceeds. Denote F̃(St) is the scaled

version of F(St). Thereby, for each t ≥ 2, we can write the following equations,

F(St) =
∑

b

F̃(Sbt−1)P [xt(S
b
t−1, St)] (3.11)

F̃(St) = et · F(St) (3.12)

et = 1

/
∑

St

F(St) (3.13)

Now, imply a simple induction, F̃(St) is given by

F̃(St−1) = (Πt−1
i=1ei)F(St−1)

= Et−1F(St−1) (3.14)

F̃(St) =

∑

bEt−1F(Sbt−1)P [xt(S
b
t−1, St)]

∑

St

∑

bEt−1F(Sbt−1)P [xt(Sbt−1, St)]

=
F(St)

∑

St
F(St)

(3.15)

According to (3.15), we can obtain the numerically stable F(St) by effectively scaled by

the sum over all states of F(St).

In proceed, let us denote B̃(St) as the scaled version of B(St). For each t < τ − 1,

we compute the following expressions,

B(St) =
∑

b

B̃(Sbt+1)P [xt(St, S
b
t+1)] (3.16)

B̃(St) = ft · B(St) (3.17)

ft = 1

/
∑

St

B(St) (3.18)

Same as above, by simple induction, we can derive the following expressions,

B̃(St+1) = (Πτ
i=t+1fi)B(St+1)

= Ft+1B(St+1) (3.19)

B̃(St) =

∑

b Ft+1B(Sbt+1)P [xt(St, S
b
t+1)]

∑

St

∑

b Ft+1B(Sbt+1)P [xt(St, Sbt+1)]

=
B(St)

∑

St
B(St)

(3.20)
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3.4.2 Branch Metric Calculation

We start with the equations

L(xt) = log
P (xt = +1)

P (xt = −1)
(3.21)

P (xt = +1) = 1 − P (xt = −1). (3.22)

Assume that x = {−1,+1}, after some mathematical manipulation, we obtain

P [xt = x] =
exp[xL(xt)]

1 + exp[xL(xt)]

=
2 exp[x

2
L(xt)]

exp[x
2
L(xt)]{exp[−x

2
L(xt)] + exp[x

2
L(xt)]}

=
1

2

cosh[1
2
L(xt)] + x sinh[1

2
L(xt)]

cosh[1
2
L(xt)]

=
1

2
[1 + x tanh(

1

2
L(xt))] (3.23)

where L(xt) is the a priori information for the channel decoder or channel equalizer.

3.5 Turbo Equalization using DFE

Clearly, the MAP equalizer computes the soft information based on the trellis struc-

ture is complicated. When the large constellation symbols are distorted by a length

L multipath channel, the receiver may require excessive computational power that is

impractical in today’s technology. In this section, we replace the MAP equalizer by an

inexpensive MMSE-DFE equalizer that computes the probability on a symbol by symbol

basis instead of the received sequence.

3.5.1 Conventional DFE Algorithm

After the MMSE prefilter, we will have the channel impulse response in minimum phase

form. According to input-output relationship (3.2), when BPSK modulated signals are
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transmitted (dn = xn), we can write the a posteriori probability (APP) of the BPSK

signal being +1 as follows,

P (xn = +1|rn) =
P
(

rn|X̃+1
n

)

P (xn = +1)

∑

x P
(

rn|X̃x
n

)

P (xn = x)
, x ∈ {−1,+1} (3.24)

where

X̃+1
n = [x̃0 x̃1 · · · x̃n−1 + 1], (3.25)

P
(

rn|X̃+1
n

)

=
1√

2πσ2
exp



− 1

2σ2

∣
∣
∣
∣
∣
rn − u0(+1) −

L−1∑

l=1

ulx̃n−l

∣
∣
∣
∣
∣

2


 . (3.26)

x̃i is the feedback hard decided symbol estimated by the DFE. Similarly, define P (xn =

−1|rn). Substitute (3.26) and (3.24) into (3.3) with some mathematical manipulations,

the a posteriori LLR of code bit is given by

Λ(xn) = ln

exp

[

− 1
2σ2

∣
∣
∣rn − u0(+1) −

∑L−1
l=1 ulx̃n−l

∣
∣
∣

2
]

exp

[

− 1
2σ2

∣
∣
∣rn − u0(−1) −

∑L−1
l=1 ulx̃n−l

∣
∣
∣

2
]

︸ ︷︷ ︸

LE(xn)

+ ln
P (xn = +1)

P (xn = −1)
︸ ︷︷ ︸

L(xn)

. (3.27)

A similar a posteriori LLR can be found in [36]. Based on (3.27), the hard decided code

bits can be estimated and feedback to the equalizer for the next symbol estimation.

Assuming that all the feedback symbols are estimated correctly, the cancellation of ISI

interference results in better BER performance. Meanwhile, the extrinsic LLR LE(xn),

the first term of (3.27), is interleaved and delivered to the channel decoder as the a priori

information. Unfortunately, the performance of the conventional MMSE-DFE is poor

in turbo equalization due to the residual interference in the presence of the severely

multipath channels and incorrect symbols are being feedback during equalization. In

[32, 33], the simulation results indicate that MMSE-DFE is not an effective equalizer

and it has only small improvement throughout the iterations when compared with a

MMSE linear equalizer.
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3.5.2 Improved DFE Algorithm

Here we proceed to a novel DFE algorithm for the iterative receiver to improve BER

performance over an ISI channel. The key idea is increasing the reliability of the extrinsic

LLR by computing an extra metric. Let us define x̃
(k)
n as the nth symbol estimated at kth

iteration from the equalizer. In the first iteration of turbo equalization, the a posteriori

LLR is calculated based on equation (3.27) and there is no a priori LLR available from

the channel decoder. Starting from the second iteration, we define a new a posteriori

probability of the code bit as follows,

P (x(k)
n = +1|rn, rn+1) ,

P
(

rn, rn+1|x̃(k−1)
n+1 , X̃+1

n

)

P (x
(k)
n = +1)

∑

x P
(

rn, rn+1|x̃(k−1)
n+1 , X̃x

n

)

P (x
(k)
n = x)

, x ∈ {−1,+1} (3.28)

where k = 2, 3, · · · ,∞ denotes the number of iteration and x
(k)
n is the code bit estimated

in kth iteration. Similarly define P (x
(k)
n = −1|rn, rn+1). Given that the received samples

are independent, the probability of received samples rn and rn+1 at kth iteration is

obtained using (3.26) and given as

P
(

rn, rn+1|x̃(k−1)
n+1 , X̃+1

n

)

= P
(

rn|X̃+1
n

)

P
(

rn+1|x̃(k−1)
n+1 , X̃+1

n

)

=
1√

2πσ2
exp

[

− 1

2σ2

{

g0(xn = +1) + g1(xn = +1)
}]

(3.29)

where

g0(xn = x) =

∣
∣
∣
∣
∣
rn − u0 · x−

L−1∑

l=1

ulx̃
(k)
n−l

∣
∣
∣
∣
∣

2

,

g1(xn = x) =

∣
∣
∣
∣
∣
rn+1 − u1 · x−

(

u0x̃
(k−1)
n+1 +

L−1∑

l=2

ulx̃
(k)
n−l+1

)∣
∣
∣
∣
∣

2

, x ∈ {−1,+1}.

Define a new a posteriori LLR Λ(x
(k)
n ) = lnP (x

(k)
n =+1|rn,rn+1)

P (x
(k)
n =−1|rn,rn+1)

, we substitute (3.29) into

(3.28) and after some mathematical manipulations, we obtain the new a posteriori LLR
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of code bit at kth iteration as follows

Λ(x(k)
n ) = ln

exp
[
− 1

2σ2

{
g0(xn = +1) + g1(xn = +1)

}]

exp
[
− 1

2σ2

{
g0(xn = −1) + g1(xn = −1)

}]

︸ ︷︷ ︸

LE(x
(k)
n )

+ ln
P (x

(k)
n = +1)

P (x
(k)
n = −1)

︸ ︷︷ ︸

L(x
(k)
n )

. (3.30)

Comparing the first term in equations (3.27) and (3.30), it is clear that the new algorithm

considers the extra metric rn+1 in the process of computing LE(x
(k)
n ). It is important

to note that in the first iteration, when the DFE computes LE(x
(1)
n ), neither L(x

(1)
n )

nor symbol x̃
(0)
n+1 information is available. Therefore, the computation of metric rn+1 is

discarded and the new algorithm (3.30) is simplified to the conventional DFE algorithm

given in (3.27) in the first iteration. The conventional DFE discards the estimated

symbol set x̃ at the end of process. On the other hand, the improved DFE algorithm

not only has the estimated set of symbols x̃(k) = [x̃
(k)
0 x̃

(k)
1 · · · x̃(k)

M−1], fed back to the

equalizer for ISI cancellation, it also keeps the data in memory for the estimation in the

next iteration (k + 1). Hence, the new algorithm treats the detected symbol x̃ from the

last iteration as another set of a priori information besides L(xn) that is delivered from

the channel decoder. In short, the metric of the received sample rn+1 is computed based

on the a priori data x̃
(k−1)
n+1 and the feedback data x̃

(k)
i from the DFE starting from the

second iteration onward.

Remark: The new a posteriori probability can be computed using L number of

received samples. For instance, P (x
(k)
n = +1|rn, rn+1, · · · , rn+j), where j = 0, 1, · · · , L−

1. Given that j equals to 0 and 1, it is simplified to (3.24) and (3.28), respectively.

According to the system model in Section II, prior to equalization, the CIR is first fed to

the anti-causal MMSE prefilter and hence the energy of prefiltered CIR is concentrated

at the first few taps. Consequently, while j ≥ 2, the gain of the BER is thus small. Due

to this reason and the tradeoff between the computational complexity and the system

performance, we compute the new a posteriori probability using j = 1 throughout this

chapter.
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3.5.3 Improved DFE in M-PSK modulation systems

When Q > 1, (such as QPSK and 8-PSK modulation), is employed in the system,

the extrinsic information cannot be computed directly using the equations (3.27) and

(3.30) while the estimation is based on the complex number symbols si ∈ S. Thus, a

slight modification is required to facilitate the LLR calculation of the code bits in higher

constellation modulation scheme. Denote

D̃si
n , [d̃0 · · · d̃n−1 si], (3.31)

S
+1
j , {si ∈ S : zi,j = +1}, j ∈ {1, 2, · · · , Q} (3.32)

where D̃si
n is the estimated feedback sequence that has si at the nth sample and S

+1
j

consists of a set of symbols si, whose jth bit zi,j = +1. Similarly, define S
−1
j . Proceeding,

we define a new a posteriori probability of the code bit in M-PSK modulation system

as follows,

P (x
(k)
n,j = 1|rn, rn+1) ,

∑

si∈S
+1
j
P
(

rn, rn+1|d̃(k−1)
n+1 , D̃si

n

)

P (x
(k)
n,j = +1)

∑

si
P
(

rn, rn+1|d̃(k−1)
n+1 , D̃si

n

)

P (x
(k)
n,j = x)

, x ∈ {−1,+1}. (3.33)

Applying the same derivation steps from previous subsection, we are able to obtain the

new a posteriori LLR of code bit at kth iteration in M-PSK modulation system as follows

Λ(x
(k)
n,j) = ln

∑

sp∈S
+1
j

exp
[
− 1

2σ2 {g0(dn = sp) + g1(dn = sp)}
]

∑

sq∈S
−1
j

exp
[
− 1

2σ2 {g0(dn = sq) + g1(dn = sq)}
]

︸ ︷︷ ︸

LE(x
(k)
n,j)

+ ln
P (x

(k)
n,j = 1)

P (x
(k)
n,j = −1)

︸ ︷︷ ︸

L(x
(k)
n,j)

. (3.34)

It is important to note that the new DFE computes the a posteriori LLR based on

the feedback estimated complex modulated signals. Thus, a posteriori LLR are hard

decided to x ∈ {−1,+1} and mapped to the modulated signal si ∈ S before feed back
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to the equalizer for next symbol estimation. Finally, we summarize the new complete

DFE algorithm processing a received sequence r and the computation of the a priori

information in Table 3.1. In the Section VI, the simulation results show that the new

algorithm provides more reliable information for symbol detection and improves the

BER performance significantly by computing the extra metric rn+1.

1. Filter yn =
∑L−1

l=0 hldn−l + wn and obtain

i. rn =
∑L−1

l=0 uldn−l + vn
2. First iteration: L(xn,j) = 0,∀n

i. Compute LE(x
(1)
n,j) based on the first term in (3.27).

ii. Make hard decision on code bits based on Λ(x
(1)
n,j).

iii. Map code bits [x
(1)
n,1x

(1)
n,2 · · · x

(1)
n,Q] to corresponding symbol.

iv. Feedback d̃
(1)
n for ISI cancellation.

v. Save d̃
(1)
n in memory.

vi. Deliver LE(x
(1)
n,j) to channel decoder for second stage process.

3. kth iteration, k ∈ {2, · · · ,∞}:
i. Compute LE(x

(k)
n,j) based on the first term in (3.30).

• Metric rn is calculated based on feedback symbols [d̃
(k)
n−1d̃

(k)
n−2 · · · d̃

(k)
n−L+1].

• Metric rn+1 is calculated based on previous iteration symbol d̃
(k−1)
n+1 and

feedback symbols [d̃
(k)
n−1 · · · d̃

(k)
n−L+2].

ii. Repeat (ii) through (vi) in step 2.

Table 3.1: Turbo equalization using new MMSE-DFE equalizer

3.6 Performance Analysis and Complexity

Assuming that we have perfect knowledge of the channel information, we may compute

the mean squared error (MSE) Jn and the time average MSE J̄ as follows

Jn , E
(
|yn − ỹn|2

)
, (3.35)

J̄ =
1

M

M−1∑

n=0

E
(
|yn − ỹn|2

)
(3.36)
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where ỹn is the nth estimated received sample formed by the hard decided symbols given

by

ỹn =
L−1∑

l=0

hld̃n−l. (3.37)

Denote J̄DFE and J̄NEW , respectively, are the time averaged MSE computed using the

conventional and improved DFE. If all the transmitted symbols are estimated correctly,

then the time-averaged MSE J̄ becomes

J̄min =
1

M

M−1∑

n=0

E
(
|(ỹn + wn) − ỹn)|2

)
(3.38)

= σ2. (3.39)

In Table 3.2, we compare the J̄DFE and J̄NEW at 4dB in different number of iterations.

Obviously, the new DFE algorithm always has the smallest MSE when compared to the

conventional DFE algorithm.

Another important aspect of these SISO equalizers is their computational complexity.

Table II shows the required number of real multiplications and additions per received

symbol rn in an iteration to compute the extrinsic LLR LE(xn). Given that 8-PSK

modulated signals are implemented in ISI channel with discrete time channel length

of L = 6. The conventional DFE requires 105 real multiplications and 102 real addi-

tions while the improved DFE requires 209 real multiplications and 206 real additions.

Though, the computational complexity of the new algorithm is about doubled that of

the conventional DFE, but it still has low computational complexity when compared to

the optimum equalizers (SOVA or MAP) and is easily implemented in today’s technol-

ogy. The simulation results in next section strongly show that the BER performance

are improved more than 1dB when using the improved DFE algorithm.
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J̄ at 4dB
Equalizer 2nd 5th 15th

Conventional DFE 0.8562 0.8196 0.8131
Improved DFE 0.8090 0.8007 0.7966

Complexity
real multiplications real additions metrics

Conventional DFE 2NL+N + 1 2NL+N − 2 N
Improved DFE 4NL+ 2N + 1 4NL+ 2N − 2 2N

Table 3.2: The time-averaged MSE J̄ at SNR= 4dB and Complexity. Data length
M=1024; L: Channel impulse response length; N:Alphabet size of the signal constellation

3.7 Simulation Results

In this section, we present several simulation results obtained with the SISO MMSE

DFE presented in Section IV. The entire scenario of turbo equalization is depicted in

Fig. 3.1. In the BPSK and 8-PSK system, the block size of the transmitted data M is

1024. The binary data is encoded through rate r = 1/2 and constraint length K = 5

convolutional encoder. The generator code in octal notation is G = [23, 35]. The code

bits are placed into a different order within a block of data by the interleaver to mitigate

bursty errors. Prior to transmission, the code bits are mapped to the M symbols based

on the 2Q-ary bit patterns shown in Fig. 2. Within a burst, we consider a static ISI

channel (slow fading) with L = 6 and the CIR given as

h(n) = (−0.0058 + 0.0007j)δ(n) + (−0.1577 + 0.5639j)δ(n− 1)

+(−0.2282 + 0.7624j)δ(n− 2) + (−0.1303 + 0.0769j)δ(n− 3)

+(−0.0286 + 0.0014j)δ(n− 4) + (−0.0004 + 0.0052j)δ(n− 5)

where j is
√
−1 and the complex path gains are normalized such that

∑L−1
l=0 |hl|2 = 1.

The additive white Gaussian noise added to the received symbols is determined by the

desired Eb/N0. In the lower part of Fig. 1, the received signal yn is first fed into the

prefilter, which has the length of the anti-causal feedforward and causal feedback filters

equal to 12 and 6, respectively.

According to the improved DFE algorithm derived in Section IV, it has the same
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performance as the conventional DFE algorithm if a priori data x̃
(k−1)
n+1 from previous

iteration and L(xn) do not exist. Obviously, the conventional DFE algorithm has only

a small improvement in BER after several iterations in all the figures. In the BPSK

system shown in Fig. 3, the conventional DFE has BER of 0.006 at 5 dB Eb/N0 after

5 iterations. It has only an 1dB gain compared to the BER after the first iteration.

However, using the improved DFE algorithm can achieve 2dB gain after 5 iterations. In

Fig. 4, the code bits are modulated into 8-PSK. After one iteration, the receiver achieves

a BER of 0.058 at 6dB Eb/N0. Clearly, the gain of the new method is thus 2.2dB while

the conventional DFE only produces the gain of 1.2dB after 5 iterations. The results

indicate that the improved DFE algorithm can achieve approximate 1dB gain extra by

computing the metric rn+1 compared to the conventional DFE algorithm. Besides, in

Fig. 3.4 and 3.5, the new DFE algorithm obviously requires only 3 iterations to achieve

better BER performance compared to the all BER performance (up to 15 iterations in

the simulations) computed by the conventional DFE algorithm.

Note that the BER performance given above is simulated with the data block size M .

A better BER can be achieved after several iterations by using a longer data block size.

For instance, in Fig. 3.6, the BER performance at 4dB Eb/N0 based on data lengths of

28, 29 and 211 are depicted. ‘DFE 28’ denotes the BER performance computed by the

conventional DFE using the data length 28. Similarly, define improved DFE. Apparently,

the improved DFE improves the BER dramatically while data length is increased. After

7 iterations, the conventional DFE using data length 29 achieves the BER at 0.0266

but the BER offered by the improved DFE can be as good as 0.0028. Moreover, the

improved DFE algorithm with data length 28 requires only 3 iterations to achieve better

BER performance than those of conventional DFE with different data length.
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3.8 Conclusion

In this chapter, the improved DFE algorithm is introduced and analyzed for turbo equal-

ization. We address the exhaustive computational complexity of the MAP equalizer and

the inefficiency of the conventional DFE algorithm in iterative equalization, especially

when the higher level modulation is used with severely distorted ISI channels. The new

method improves the BER performance by computing the extra metric rn+1 using the

feedback symbols from previous iteration and combining it with a priori information of

the symbols. After each iteration, the hard detected symbols are saved in the memory as

a priori data for next iteration. We verified the proposed algorithm for BPSK and 8PSK

modulation. The promising simulation results show that the BER performance given

by the proposed low complexity DFE algorithm improved dramatically throughout the

iterations when the conventional DFE has only insignificant improvement in the process

of iterative equalization.

43



PSfrag replacements
(a)

(b)

b = 0

b = 0

b = 1

b = 1

t

t

t − 1

t + 1

F(S0
t−1)

F(S1
t−1)

F(St)

B(S0
t+1)

B(S1
t+1)

B(St)

P [xt(S
0
t−1, St)]

P [xt(S
1
t−1, St)]

P [xt(St, S
0
t+1)]

P [xt(St, S
1
t+1)]
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Chapter 4

Fast Time-Varying Dispersive

Channel Estimation and

Equalization for 8-PSK Cellular

System

4.1 Introduction

As described in Chapter 2, the third generation cellular system Enhanced Data Rates

for GSM Evolution has similar slot structure and system parameters as GSM but has

higher data rates and spectral efficiency. Time-division multiple-access is used in EDGE

with the symbol period Ts = 3.69µs and a slot length of 576.92µs. Consequently, for

static or slow moving communication devices, it is reasonable to assume that the fading

channel is time-invariant during the period of one time slot. This assumption is adopted

by us in Chapter 2 and papers [12], [21], where various channel estimation and equaliza-

tion algorithms are developed or applied for EDGE system with slow fading channels.

The application of the delayed decision feedback sequence estimation and reduced state

sequence estimation equalizers are discussed in [12], where the time-invariant channel
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was estimated with least-squares method. In [21], a computationally efficient perturba-

tion equalizer with weighted LS channel estimation was proposed for the 8-PSK EDGE

system. The simulation results obtained in these references are in good agreement with

those obtained under ideal cases, i.e., perfect channel estimation with maximum like-

lihood sequence estimation (MLSE) equalizer. However, the algorithms developed for

slow fading channels cannot be directly applied to systems with high mobile speed sub-

scribers, where the time-invariant channel assumption cannot hold.

In this chapter, the channel estimation and equalization for 8-PSK system in the

typical channel profiles of EDGE system are discussed. We adopt the EDGE system

parameters such as data bandwidth, 8-PSK modulation, transmit and receive filters as

the simulation setup. In next, a LS based algorithm is proposed for the estimation

of the time-varying channel. We first analyze the characteristics of the time-varying

fading channel, and show that the time-varying property of fast fading channels of

EDGE system can be modeled as a linear function of the time in the range of Doppler

frequency up to 100Hz. Based on this property, we develop a novel LS based method

for EDGE system with fast fading dispersive channels.

The MLSE equalizer with Viterbi algorithm is currently used in GSM systems, where

binary Gaussian minimum-shift keying (GSMK) is used as the modulation scheme. In

order to improve the system throughput, 8-PSK modulation is employed in EDGE sys-

tem. The computational complexity of MLSE equalizer makes it prohibitive to be used

in EDGE system. It is shown in [12] that DDFSE and RSSE equalization techniques

provide good trade-offs between the system performance and computational complexity.

It is important to note that the performance of these equalizers will degrade dramatically

if the CIR is not in its minimum-phase form, as the leading taps of the CIR need to be

dominant. For time-invariant channels, prefilter can be used in the system to produce

a minimum-phase channel. However, the prefilter approach is not applicable to systems

with time-varying CIR without resorting to complex channel tracking. To overcome this
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problem, a Cholesky decomposition method is introduced in this chapter to convert the

estimated CIR energy to dominant in the first few taps in the presence of a time-varying

CIR.

4.2 Discrete-Time Linear Estimation

Given in Chapter 2, when channel equalization is performed to estimate the data se-

quence, the system is optimized if MLSE is implemented and provided that the receiver

has the perfect channel information. In many practical case of interest especially in

wireless communication, the channel is time-variant and unknown to the receiver. Thus,

the channel estimation is performed periodically to update the channel information. In

next, we introduce the estimation on the physical parameter of interest by using Wiener

theory.

4.2.1 Least-Squares Estimation

According to [24], Wiener theory optimize the estimation by minimizing the mean-square

value of the error signal. Consider the same system implemented in Chapter 2 where

the received signal at the receiver is given by yk =
∑L−1

l=0 dk−lh(l)+nk. The transmitted

signals are first distorted by difference time-delay channel impulse response and then

corrupted by the additive white Gaussian noise. Define an error signal or residual as

ek = nk = yk −
L−1∑

l=0

dk−lh(l), k = 0, 1, · · · , n. (4.1)

Given by Wiener theory, the estimation of the CIR h = [h0h1 · · ·hL−1] is performed in

such a way that it minimizes the residual sum of squares that given by

J(n) =
n∑

k=0

e2k (4.2)

=
n∑

k=0

y2
k − 2

L−1∑

l=0

h(l)
n∑

k=0

ykdk−l +
L−1∑

l=0

L−1∑

m=0

h(l)h(m)
n∑

k=0

dk−ldk−m (4.3)
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Differentiating equation (4.3) with respect to h(l), we have

∂J(K)

∂h(l)
= −2

K∑

k=0

ykdk−l + 2
L−1∑

m=0

h(m)
K∑

k=0

dk−ldk−m (4.4)

By letting ∂J(K)/∂h(l) = 0, we get a set of L simultaneous equations consists the

deterministic normal equations. As a result, the estimated CIR ĥ = [ĥ0ĥ1 · · · ĥL−1]
T ,

where [·]T is a transpose function operator, can be easily solved from (4.4) which is known

as least-squares estimation. We may rewrite the normal equations above in a compact

form by using the following definitions. Define a row vector dk = [dkdk+1 · · · dk+L−1];

the received sample at the receiver can be written as

yk = dk ∗ ĥ (4.5)

dTk yk = dTkdk ∗ ĥ (4.6)

where dTkdk ∈ C
L×L represents the correlation matrix of the transmitted signals and

dTk yk ∈ C
1×L represents the cross-correlation column vector of the transmitted signals

and the received sample. Assume that the dTkdk is non-singular, we solve ĥ as follows,

dTkdk ∗ ĥ = dTk yk (4.7)

ĥ = [dTkdk]
−1dTk yk. (4.8)

It is important to note that the least square estimate of the coefficient vector approaches

the optimum Wiener solution as the data length n approaches infinity. Moreover, the

least-squares estimator is an unbiased estimator [24].

4.2.2 Recursive Least-Squares Algorithm

In this section, our goal is demonstrating a recursive algorithm for computing the least-

squares estimate ĥ of the coefficient vector. The recursive least-squares (RLS) algorithm

is capable of adjusting the coefficients of the channel impulse response ĥ with the arrival

of each new sample. In each iteration, the RLS algorithm learns a little more about the
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statistics of the relevant signals, and an improvement to current set of h̃ is computed

using this new information. In the development of RLS algorithm, in part, relies on the

inverse operation of a matrix in linear algebra known as the matrix inversion lemma.

Thereby, we first introduce the concept of the matrix inversion lemma and next proceed

to the RLS algorithm.

A. The Matrix-Inversion Lemma

Let E and B ∈ C
L×L be two positive definite matrices related by

E = B−1 + CD−1CT (4.9)

where C ∈ C
L×M matrix and D ∈ C

M×M positive definite matrix. According to the

definition of matrix inversion lemma, the inverse of matrix A is given by

E−1 = B − BC[D + CTBC]−1CTB. (4.10)

B. RLS algorithm

Denote

U(n) = dTndn (4.11)

V(n) = dTnyn. (4.12)

The correlation matrix U(n) can be updated by recursive algorithm as follows,

U(n) = U(n− 1) + dTndn, (4.13)

V(n) = V(n− 1) + dTnyn. (4.14)

Compare (4.13) to (4.9) and (4.10), we can identify the following notations E, B, C and

D and express the inverse of the correlation matrix in the following recursive form,

E = U(n)

B−1 = U(n− 1)

C = dTn

D = 1

U−1(n) = U−1(n− 1) − U−1(n− 1)dTndnU
−1(n− 1)

1 + dnU−1(n− 1)dTn
(4.15)
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For convenience of purpose, we let k(n) as

k(n) =
U−1(n− 1)dTn

1 + dnU−1(n− 1)dTn
. (4.16)

Thus, (4.15) can be rewritten as

U−1(n) = U−1(n− 1) − k(n)dnU
−1(n− 1). (4.17)

Now, multiplying both sides of (4.17) by the transmitted data dTn , we have

U−1(n)dTn = U−1(n− 1)dTn − k(n)dnU
−1(n− 1)dTn (4.18)

Using (4.16) and (4.18), after some mathematical manipulation, we get the simple result

k(n) = U−1(n)dTn (4.19)

According to the least-squares algorithm in previous Section, we have

h̃(n) = U−1(n)V(n). (4.20)

Similarly define h̃(n− 1). Substituting (4.14) and (4.17) into (4.20) with some algebraic

manipulation, the recursive least squares algorithm is obtained by

h̃(n) = U−1(n)V(n− 1) + k(n)yn (4.21)

= h̃(n− 1) + k(n)[yn − dnh̃(n− 1)] (4.22)

We thus see that the RLS algorithm only consist of first-order matrix difference equations

and the inversion of matrix U(n) is replaced by the inversion of a scalar 1 +dnU
−1(n−

1)dTn .

4.3 Fast Fading Channel Estimation

4.3.1 EDGE Channel Characteristics

At the transmitter of the EDGE system, the modulated 8-PSK symbols ak ∈ {exp(j 2π
8
i); i =

0, 1, 2, · · · , 7} are placed in short slots, and a linearized Gaussian filter is used as the
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transmit filter. The original slot structure of EDGE has 26 pilot symbols in the middle

of each slot as shown in Fig. 4.1a. This slot structure is good enough to be used for

estimating time-invariant channel state information of the entire slot. However, when

the mobile subscriber is moving fast, the Doppler frequency is high, the fading within

one slot is no longer constant, then the original slot structure of EDGE system cannot

be used for estimating the time-varying channel fading with reasonable good accuracy.

Therefore, in this chapter, the slot structure is slightly modified to facilitate the esti-

mation of time-varying fading channels in 8-PSK system. We split the 26 pilot symbols

into two groups, we shift the first group of 13 pilot symbols to the front of the data

block and shift the second group of 13 symbols to the end of the data block, and keep

the total number of symbols (and data) the same as those of the original slot structure.

The modified slot structure is shown in Fig. 4.1b. The modified slot structure is used

throughout this chapter.

8.25

GuardTailTail
Sequence
Training Training

Sequence
Data Data

13583 13 58 3

8.25

GuardTailTail

3 358

Data

58

Training
Sequence

26

Data

(a)

(b)

Figure 4.1: (a)The original EDGE slot structure, (b)The slightly modified slot structure

Assume that there is no timing error and frequency offset at the receiver, the base-

band representation of the EDGE system shown in Fig. 2.1 can be written as

yk =
L−1∑

l=0

hk(l)dk−l + nk, (4.23)

where dk is the transmitted 8-PSK symbol, yk is the symbol rate sampled output of the

receive filter, nk is the additive white Gaussian noise (AWGN), and hk(l), 0 ≤ l ≤ L−1,

is the time-varying CIR of the fading channel. hk(l) is the symbol rate sampled version
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of the composite channel impulse response that is the convolution of the transmit filter

P
T
(t), the receive filter P

R
(t), and the physical channel impulse response g(t, τ), which

can be viewed as the response of the channel at time t to an impulse input at time t− τ .

The physical channel impulse response has the form

g(t, τ) =
∑

i

ϕi(t)δ(τ − τi), (4.24)

where ϕi(t) for a certain value of i can be viewed as a time-varying flat fading process

with average power E[|ϕi(t)|2] determined by the delay power profile of the channel.

Now, we can define the discrete-time channel response hk(l) as

hk(l) = h(kTs, lTs) (4.25)

h(t, τ) = Pt(τ) ⊗ g(t, τ) ⊗ Pr(τ)

=
∑

i=0

ϕi(t)RPtPr
(t− τi) (4.26)

where RPtPr
(t) is the correlation of the transmitting and receiving filters.

In the EDGE system, linearized Gaussian filter and root raised cosine (RRC) filter

are adopted as a transmit and receive filter, respectively. The linearized Gaussian filter

[19],[12] is defined as following

c0(t) =







Π3
i=0q(t+ iT ), 0 ≤ t ≤ 5T

0, else
(4.27)

q(t) =







sin
(

π
∫ t

0
m(τ)dτ

)

, 0 ≤ t < 4T

sin
(
π
2
− π

∫ (t−4T )

0
m(τ)dτ

)

, 4T ≤ t < 8T

0, else

(4.28)

where g(t) is the Gaussian shaped frequency impulse of duration 4T and T = 3.69µs is

the symbol duration of the EDGE system. The implementation of linearized Gaussian

filter will provide the approximately same transmit spectra between the EDGE and GSM

systems [20],[12].
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For the receiver input filter, we employ the RRC filter which belongs to the class of

suboptimum input filters [12],[13]. In paper [12], the numerical analysis for the influence

of the suboptimum filter RRC on the BER performance are provided. It has been

shown that the suboptimum filter RRC has only small differences on BER performance

at different profiles of the EDGE channel by comparing with the optimum filter whitened

matched filter, which is individually design for each random channel realizations. The

significant lower complexity and near-optimum performance offered by the RRC filter

leads to choice as the receiver filter in EDGE system.

When the Doppler frequency, fd, of the fading channel is in the range of [0, 20] Hz,

the multipath fading channels can be considered as time-invariant for one slot duration

[12]-[21], thus the time variable k can be omitted in the representation of the CIR.

Hence, the time-invariant CIR h(l), 0 ≤ l ≤ L − 1, can be reliably estimated with

the conventional LS based algorithms. For typical fast fading channels,the CIR can no

longer be treated as time-invariant. It will be shown next that the fading channel can

be approximated as a linear function of the time variable.

According to [73], the ith-path of the fading channel can be written as

ϕi(t) = Ei

N∑

n=1

Cni exp[j(ωdt cos βni + φni)], (4.29)

where Ei is a scaling constant, ωd = 2πfd, βni and φni are statistically independent

random variables and they are uniformly distributed on [−π, π). After some algebraic

manipulations, we can get

ϕi(t) = ϕci(t) + jϕsi(t) (4.30)

ϕci(t) = Ei

N∑

n=1

Cni {cos(ωdt cos βni) cosφni − sin(ωdt cos βni) sinφni} (4.31)

ϕsi(t) = Ei

N∑

n=1

Cni {sin(ωdt cos βni) cosφni + cos(ωdt cos βni) sinφni} . (4.32)

While fd ≤ 100Hz, we have |ωdt cos(βni)| ≤ 0.3625 radians for 0 ≤ t ≤ 576.92µ. As
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a result, we can make the following approximations

ϕ̃ci(t) = Ei

N∑

n=1

Cni{cosφni − tωd cos βni sinφni} (4.33)

ϕ̃si(t) = Ei

N∑

n=1

Cni{sinφni + tωd cos βni cosφni}. (4.34)

by implementation of the small angle rule, cosχ ≈ 1 and sinχ ≈ χ. It is apparent that

ϕi(t) can be approximated as a linear function of the time variable t, so as to hk(l),

which is a linear function of ϕi(t), while fd has Doppler frequecy up to 100Hz. Now,

we extend our discussion to the Doppler frequency with range up to 200Hz. It is clear

that the channel impulse response is not necessary in linear form or constant from above

derivations. According to [73], βni are assumed to be uniform distributed on [−π, π).

Therefore, there are some cases, the fading channel taps exhibit an parabolic/oscillatory

behavior with the present of minimum or maximum peak. As a consequence, the bit

error rate performance is degraded. In Section 4.5, we show that the new method combat

the Doppler frequency effectively up to 300Hz, whereas the parabolic behavior exists.

These analysis are supported by Fig. 4.2, which shows the real part and imaginary

part of one tap of a typical channel impulse response within one slot duration with

Doppler frequency fd = 100 Hz.

4.3.2 Channel Estimation

Having analyzed the characteristics of the Rayleigh fading channel, we can proceed to

the estimation of the time-varying frequency-selective channel impulse response hk(l).

Based on the analysis in Section 4.3.1, we approximate the CIR hk(l) as a linear

function of the time variable k,

hk(l) = u0(l) + ku1(l), (4.35)

where u0(l) and u1(l) are parameters to be estimated. For a time-varying frequency-

selective fading channel with channel length L, there are 2L parameters to be estimated
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Figure 4.2: Real and imaginary part of the Rayleigh fading in one slot interval at
fd=100Hz

for each slot, and the channel impulse response of one slot can be linearly approximated

by these parameters.

From (4.23) and (4.35), the kth received sample yk can be represented as

yk = dk(u0 + k · u1) + nk, (4.36)

where dk = [dk, dk−1, · · · , dk−L+1] ∈ C
1×L are the transmitted symbols, and ui = [ui(0),

ui(1), · · · , ui(L− 1)]T∈ C
L×1, for i = 0, 1, with (·)T representing the operation of trans-

pose. With the known training symbols transmitted in the beginning and end of each

slot, the received samples contributed exclusively by training symbols can be written
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into matrix format

y = Au0 + T · A · u1 + n, (4.37)

=
[

A T · A
]




u0

u1



+ n, (4.38)

where

y =
[

y
L−1

· · · y15 y
132+L−1

· · · y147

]T

∈ C
(34−2L)×1 (4.39)

n =
[

n
L−1

· · · n15 n
132+L−1

· · · n147

]T

∈ C
(34−2L)×1 (4.40)

A =


















d
L−1

d
L−2

· · · d1 d0

...
...

...

d15 d14 · · · d
15−L+2

d
15−L+1

d
132+L−1

d
132+L−2

· · · d133 d132

...
...

...

d147 d146

... d
147−L+2

d
147−L+1


















∈ C
(34−2L)×L (4.41)

and T is a diagonal matrix defined as

T = diag{L−1, · · · , 14, 15, 132+L−1, · · · , 146, 147}. (4.42)

With (4.38), the cost function for LS criterion can be defined as follows

J
LS

= (y − Φu)H(y − Φu), (4.43)

where Φ =
[

A T · A
]

, and u =
[

uT0 uT1

]T

. The û that minimizes J
LS

can be

obtained from the equation
∂J

LS

∂uH = 0, and the solution is

û =




AHA AHTA

AHTA AHT2A





−1 


AHy

AHTy



 . (4.44)

Next, we outline the recursive procedure for matrix Ψ, where Ψ = ΦhΦ, using the

same approach as the conventional recursive least square algorithm. From (4.36) and

(4.38), the received samples at time k is expressed by

yk = Φku + nk (4.45)
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where Φk ∈ C
1×L is the kth row of the matrix Φ. From (4.45), the estimated û at time

k, namely û(k) can be found by using the approach of minimizing the residual sum of

squares defined by, J(k) =
∑k

i=1[yi − Φiu]2. Thus the estimated û(k) is derived as

û(k) =

[
k∑

i=0

Ψ(i)

]−1 [ k∑

i=0

Φh
i yi

]

(4.46)

where Ψ(i) = Φh
i Φi ∈ C

L×L is the deterministic correlation matrix at time i. Define

Ψ(0) = cI, where is c is a small positive constant that added to the main diagonal

matrix and thereby force the matrix Ψ(k) be a positive definite matrix and I ∈ C
(L×L) is

the identity matrix [24]. Now, using the matrix inversion lemma, the inverse of matrix

Ψ(k) can be computed recursively by

Ψ(k) = Φh
kΦk + Ψ(k − 1) (4.47)

Ψ−1(k) = Ψ−1(k − 1) − Ψ−1(k − 1)Φh
k

1 + ΦkΨ−1(k − 1)Φh
k

ΦkΨ
−1(k − 1) (4.48)

= Ψ−1(k − 1) − κ(k)ΦkΨ
−1(k − 1) (4.49)

where κ(n) = Ψ−1(k−1)Φh(k)

1+ΦkΨ−1(k−1)Φh
k

is the gain vector. At last, substituting (4.49) into (4.46),

the estimated û at time k can be computed as follows,

û(k) = û(k − 1) + κ(k)[yk − Φkû(k − 1)] (4.50)

We thus see that the inversion of the correlation matrix Ψ−1 is now replaced by the

inversion of scalar {1 + Φ(k)Ψ−1(k − 1)Φh(k)} while estimating u.

With the estimation of the parameters u0 and u1, the CIR of the entire slot can

be easily obtained from (4.35). It is important to note that Ψ is deterministic and the

noise is zero-mean white Gaussian noise, LS based algorithm estimator (4.44) and (4.50)

is a linear unbiased estimator. The CIR information are then used in the equalizer to

recover the original transmitted data.
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4.4 Time-Varying Channel Equalization

For 8-PSK constellation in the frequency selective fading channel, where channel length

L > 4, it is improper to use MLSE with VA as the equalizer due to its prohibitively

computational complexity. It is shown in [12] that DDFSE and RSSE algorithms are

promising equalization techniques for EDGE system. However, these algorithms can only

be applied to systems with minimum phase CIR, otherwise, a dramatic performance

degradation will occur. For system with time-invariant CIR, prefilter can be used to

obtain an equivalent CIR with minimum phase [12],[22], but the prefilter approach is

not applicable to systems with time-varying CIR without resorting to complex channel

tracking. In this section, a Cholesky decomposition based method is introduced to obtain

the equivalent minimum phase CIR for time-varying fading channels. For the purpose

of simplicity, here we combine the first and second data block of one slot together, i.e,

ȳ = [y16 , y17 , · · · , y131]
T ∈ C

Nd×1, where Nd = 116 is the length of the entire data block.

Based on the estimated time-varying CIR ĥ
k
(l) and (4.23), the input output rela-

tionship of the data block can be written into matrix format as














y
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y
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..

.
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130
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













=















ĥ
16

(L− 1) · · · ĥ
16

(1) ĥ
16

(0) 0 · · · · · · 0

0 ĥ
17

(L− 1) · · · ĥ
17

(1) ĥ
17

(0) 0 · · · · · ·

..

. 0
. . .

. . .
. . .

. . . 0 · · ·

0 · · · 0 ĥ
130

(L− 1) · · · ĥ
130

(1) ĥ
130

(0) 0

0 · · · · · · 0 ĥ
131

(L− 1) · · · ĥ
131

(1) ĥ
131

(0)





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

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





×


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





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

d
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d
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.

d
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d
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




+


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




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

n
16

n
17

..

.

n
130

n
131






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




, (4.51)

or a compact form as

ȳ = H̄ · d̄ + n̄. (4.52)

For typical channel profiles, such as the Typical Urban (TU) profile and Hilly Terrain

(HT) profile [2], the impulse responses of the frequency-selective fading channels are

usually not in their minimum phase state, i.e., the power of hk(2) and hk(3) is larger
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than that of hk(0) and hk(1). Hence the CIR matrix H̄ ∈ C
Nd×(Nd+L) formed with this

CIR is not diagonally dominant, which may cause serious numerical instability problems

when the DDFSE or RSSE equalizers are used.

Our objective is to find an equivalent system with minimum phase CIR, whose input-

output relationship of the equivalent system can be represented as

Wȳ = Bd̄ + ē, (4.53)

where W ∈ C
(Nd+L)×Nd , B ∈ C

(Nd+L)×(Nd+L) and ē ∈ C
(Nd+L)×1 are the feedforward

matrix, CIR feedbackward matrix and the noise vector of the equivalent system, re-

spectively [23],[26]. In order to effectively equalize the time-varying frequency-selective

fading channel using reduced state equalizers, the CIR matrix B should satisfy the fol-

lowing two conditions: (a) B should minimize the variance of the noise component of the

system; (b) B should be an upper triangular matrix with most of the time-varying CIR

energy concentrated in the first few taps. The first condition will improve the perfor-

mance of the equalizer, and the second condition can guarantee a system with minimum

phase CIR. Therefore, we implement the same approach as MMSE-DFE algorithm in-

troduced by Al-Dhahir [26] to achieve our goal.

The variance of the noise component of the equivalent system is

σ2
e =

1

Nd

trace{E[(Bd̄ − Wȳ)(Bd̄ − Wȳ)h]}, (4.54)

where trace(·) will return the sum of the diagonal elements of a matrix. According to

the orthogonality principle [13, pp.256-258], the matrix B minimizing σ2
e must satisfy

B · Rd̄ȳ = W · Rȳȳ, where Rd̄ȳ = E(d̄ · ȳh). Thereby, the minimum value of σ2
e can be

obtained as

min(σ2
e) =

1

Nd

trace
[
B(Rd̄d̄ − Rd̄ȳR

−1
ȳȳ Rȳd̄)B

h
]
, (4.55)

=
σ2
n

Nd

· trace
[

B(
1

SNR
INd+L + H̄hH̄)−1Bh

]

, (4.56)

=
σ2
n

Nd

· trace
[
BU−1(Uh)−1Bh

]
. (4.57)
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where U ∈ C
(Nd+L)×(Nd+L) is an upper triangular matrix from the Cholesky decompo-

sition. The expression (4.56) is based on the assumption that the input data symbols

dk are independent, i.e., Rd̄d̄ = EsINd+L with Es being the symbol energy, σ2
n is the

variance of the AWGN nk, and SNR = Es/σ
2
n.

Therefore, we find the equivalent CIR matrix B as

B = U, (4.58)

W = (Uh)−1H̄h. (4.59)

From above equations, the input-output relationship of the equivalent system can be

written as

(Uh)−1H̄hȳ = Ud̄ + ē, (4.60)

where the matrix U has the time-varying CIR energy concentrated in the first few taps.

The obtained equivalent CIR matrix can then be used in the DDFSE or RSSE equalizer

to recover the original transmitted symbols. Follows, we summarize the proposed channel

estimation and equalization algorithm in Table 1.

Table 4.1: Summary of proposed channel estimation and equalization algorithm

1. Perform channel estimation by recursive algorithm:
Define Ψ(0) = cI and û(0) = 0
Loop from i=0 to k

Compute gain vector κ(i)
Update û(k):

û(k) = û(k − 1) + κ(k)[yk − Φkû(k − 1)]
End of loop

2. Generate the approximate CIR hk(l) :
hk(l) = u0(l) + ku1(l)

3. Calculate upper triangular matrix U:
UhU = 1

SNRINd+L + H̄hH̄

4. Apply reduced state equalizers for channel equalization:
(Uh)−1H̄hȳ = Ud̄ + ē
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4.5 Simulation Results

In this section, simulations are carried out to evaluate the performance of the proposed

channel estimation and equalization algorithms for EDGE systems with time-varying

and frequency-selective fading channels, in terms of both estimation mean square error

(MSE) and raw bit error rate (BER), which means the uncoded data are transmitted

for BER calculation. The performance is evaluated under the Typical Urban and Hilly

Terrain channel profiles shown in Fig.2.2 and 2.3 [2], and the simulation system is over-

sampled 37 times to obtain a time resolution of Tsample = Tsym/37 ≈ 0.1µs, which is the

minimum differential delay of the multipath branches of the channel. The Rayleigh fad-

ing is generated according to the paper [25] and they are independent from slot to slot.

For the perfect channel estimation in Figure 4.4, the receiver has all the information

of the fading channels, which can be found by equation (4.26) and fed to the channel

equalizer for demodulation and decision making under the noisy channel.

The MSE of the channel estimation algorithms under different maximum Doppler

frequencies is shown in Fig. 4.3 for TU(L = 4) and HT (L = 7) profiles. It can be seen

from this figure that the Doppler frequency has very little influence on the MSE of the

proposed estimation algorithm, while the MSE of the LS algorithm [12], [21] degrades

dramatically with the increase of fd. From the figure, we can conclude that the proposed

algorithm can obtain a rather accurate estimation of the time-varying fading channel for

a wide range of Doppler frequencies.

In Fig. 4.4 and 4.5, the BER performances of various channel estimation algorithms at

different Doppler frequencies by employing MLSE and DDFSE equalizers are presented,

respectively. In TU channel profile, effective length of L = 4 is sufficient and accurate

to characterize the discrete-time CIR, which is suitable to be fed into MLSE equalizer

with 83 states. The performance obtained from perfect channel estimation is shown as

a lower bound reference. When the Doppler frequency is low, i.e. fd = 10Hz, the LS

and proposed algorithms have nearly the same BER performance which is 0.0038 at
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Figure 4.3: Mean-Square-Error at frequency range of 50-300Hz in TU and HT profiles

E
b
/N

o
= 20dB. With the increase of Doppler frequency to 100Hz, the BER performance

based on LS algorithm degrades to 0.0087 at the same E
b
/N

o
. However, the BER

performance for proposed algorithm still remains the same and thereby the proposed

estimation method has about 2.5dB gain compared to the LS algorithm. While fd =

200Hz, whereas the CIR exhibits the parabolic behavior, the BER performance of LS

algorithm degrades dramatically to 0.027 at E
b
/N

o
= 20dB. Nevertheless, there is only

a minor loss in the proposed estimation method. In Fig.4.5, in HT channel profile,

the discre-time CIR with channel length L = 7 are estimated and performed Cholesky

decomposition before fed into a DDFSE equalizer. For DDFSE equalizer, only the

first 2 taps of CIR are used for trellis diagram with 8 states, whereas the remaining

taps are implemented for metric calculations. It shows that the proposed method has

the similar BER at Doppler frequency of 100Hz and 200Hz, whereas the LS method
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has the BER of 0.022 at E
b
/N

o
= 20dB and fd = 100Hz, which is about 1.3dB loss

compared to the proposed method. From above BER performance, it has shown that

the proposed channel estimation method with Cholesky decomposition is a promising

method to transform the estimated discrete-time CIR into a causal system with the CIR

enery concentrated only on the first few taps, to combat the time-variant channels.
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Figure 4.4: BER of LS and proposed channel estimation employing MLSE equalizer at
fd=10, 100, 200 and 300Hz in TU profile

4.6 Conclusion

In this chapter, a least-squares based algorithm was presented to estimate time-varying

and frequency-selective fading channels of 8-PSK system. The proposed algorithm can

accurately estimate various fading channels which have wide range of Doppler frequency
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(up to 300 Hz). In terms of mean square error and bit error rate, it was shown via

simulations that the proposed algorithm has much better performance than the least-

squares algorithm, especially for Doppler frequency higher than 100 Hz. A reliable

equalizer which employs the estimated time-varying channel impulse response is also

discussed briefly.
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Chapter 5

3-D Antennna Arrangement in

MIMO Frequency Nonselective

Rayleigh Fading Channel

5.1 Introduction

The multiple-input multiple-output communication technique has recently emerged as a

new paradigm for high data rate wireless communications in rich multipath fading envi-

ronments. By effectively exploiting the multipath fading utilizing the diversity scheme

instead of mitigating them, the MIMO communication system shows greatly improved

channel capacity potential far beyond that of traditional methods. According to [46, 47],

the MIMO capacity scales linearly with the number of antennas assumed under the cases

that some spatially uncorrelated, time quasi-static, and frequency flat Rayleigh fading

channels. However, in practice, the optimum relative antenna separation and placement

may not be feasible due to space limitations and other practical constraints. Conse-

quently, subchannels of a MIMO system are usually correlated in both space and time.

The correlation between the MIMO subchannels can substantially affect the perfor-

mances of the MIMO systems and lead to decrement of system capacity [50, 51, 52].

Besides, the correlation functions are also served as a critical tool or guidelines for the
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diversity schemes design and performance analysis, such as the design of space-time

coding [53], the design of antenna arrays, and the analysis of optimum combining and

equalization, etc. Therefore, further researches in modeling the physicals MIMO chan-

nels and developing the new correlation function are essential on providing accurate and

in-depth understanding and estimation of the MIMO channels.

Recently, there have been many studies on the MIMO channel modeling, see [51]-[67]

and the references therein. The most commonly used model is the 2-D Clarke’s isotropic

scattering model. This model assumes that all random scatterers are uniformly reflected

via a ring surrounding the MS and no line-of-sight (LOS) component presents between

the MS and the BS. In the literatures, there are also existing a large number of simulation

models [56, 58, 59] based on this 2-D isotropic scattering. Later, Shiu proposed a 2-D

MIMO abstract model based on the Clarke’s ‘one-ring’ scattering model to study the

impact of correlation of multiple antennas system against the capacity. The abstract

model assumes that the multiple MS antennas are located in the same ring and receive

the signals from all directions with equal probability. Excluding the isotropic scattering,

Abdi argued that in many other circumstances, the MS receives the signals more likely

from particular directions and it is convinced by the empirical measurements conducted

in [48, 49]. Therefore, Abdi proposed the von Mises angular distribution to demonstrate

the nonisotropic scattering scenario and further showed that the nonuniform distribution

of the angle-of-arrival (AOA) at the MS can significantly affect the performance of the

MIMO systems. Basically, the abstract models proposed above enable us to study the

effect of fading correlation on the performance of the MIMO system whose received

signals are assumed to travel on the plane.

Despite its wide acceptance in the area of wireless communications, the 2-D isotropic

scattering model is argued by some three dimensional (3-D) models. A 3-D cylinder

model was first proposed by Aulin [63] based on the fact that, in highly urbanized areas,

the locations of the random scatterers may be better described by a cylinder rather than
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a ring. Later, the cylinder model has been improved and analyzed for single-input single-

output (SISO), single-input multiple-output (SIMO) and multiple-input single output

(MISO) channels in [64, 65]. The simulation results show that the fading correlation

estimated by the 3-D model are significantly difference well compared to the 2-D isotropic

model especially the antennas are not placed on the plane. For instance, the two MS

antennas are placed vertically (along the z-axis), there is always no diversity gain in

2-D model; 3-D model shows increment in diversity gain while the relative distance

of the antennas increased, assume other parameters remain the same. Experimental

measurements reported in the literatures have shown good agreement with the 3-D

cylinder model. The cylinder model includes the 2-D scattering model as a special case

by letting the maximum elevation angle (or the height) of the cylinder to zero.

In this chapter, to facilitate us in the derivation of new space-time correlation func-

tions and the analysis of the impact of antenna arrangements in various models, we

construct a new simple generic 3-D model for MIMO frequency nonselective Rayleigh

fading channels. Different from others derived in the references, by clarifying the widely

accepted limitation of correlation models, the proposed generic model consists of multi-

ple antennas in 3-D isotropic or nonisotropic scattering environments. We assume that

the BS antennas are located at the top of the building and receive the signals through the

small angle spread. The MS antennas are located in the 3-D scattering model and might

receive the signals from all directions with equal probability or mainly from particular

directions. The closed form, mathematically tractable space-time correlation functions

between the subchannels of the MIMO system where the BS and MS antennas may be

arranged in 3-D space are derived. The effect of the mobility (the Doppler) of the MS is

also considered in our derivation. The new fading correlation functions are very useful

especially in the 3-D antenna arrangement. For example, while no extra diversity gain

is obtained due to the relative distance on the plane is restricted, the vertically or diag-

onally antenna arrangements are the alternative methods to improve the diversity gain.
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The new 3-D MIMO abstract model can easily simplified to different kind of models such

as SIMO, MISO, SISO in isotropic or nonisotropic scattering for analysis purposes. Our

simulation results in later section further show that the nonisotropic scattering affect

the system performance dramatically in the 3-D case. In this paper, the key role is

to develop a generic space-time correlation function using simple 3-D MIMO abstract

model, which enable us to analyze the fading correlation of MIMO system in frequency

nonselective Rayleigh fading channel and the impact of multiple antennas arrangements

in in various 3-D scenarios.

5.2 Propagation Modeling

When a propagation path exists, it carries equal energy in both directions but the spatial

distribution of arriving plane waves may be significantly different in each direction. For

instance, the BSs in macrocells are relatively free from local scatterers and the plane

waves thus arrive from one direction with a fairly small angle of arrival spread. Typically,

the MSs located in macrocellular environment are usually surrounded by local scatterers

so that the plane waves arrive from all directions with equal probability and without

line-of-sight. For this type of scattering environment in the forward channel, the received

envelope is Rayleigh distributed and is said to exhibit Rayleigh fading [73].

5.2.1 Frequency Non-Selective (Flat) Fading

When we assume that the distance between BS and MS is sufficiently large, the prop-

agation model environment can be modeled as two-dimensional. In Fig. 5.1, the MS

is moving along the x-axis with velocity v and is encircled by scatterers. Denote θk is

the angle of incidence by the kth plane wave at the MS antenna. The movement of MS

introduces a Doppler shift into the incident plane wave. The Doppler shift is defined as

fD,k = fm cos θk Hz (5.1)
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where fm = v/λc and λc is the wavelength of the arriving plane. fm is maximum Doppler

frequency when θk = 0. In this case of 2-D plane, a simple model that commonly referred

as Clarke’s 2-D isotropic scattering model assumes that the plane waves arrive at the MS

from all directions is uniform distributed among 0 and 2π, i.e, p(θ) = 1/(2π), θ ∈ [−π, π).

Consider the transmission of the band-pass signal

s(t) = Re[s̃(t)ej2πfct] (5.2)

where s̃(t) is the complex envelope of the transmitted signal, fc is the carrier frequency

and Re[z] is the real part of z. Given that the channel is comprised of N propagation

paths, the received band-pass waveform is

r(t) = Re

[
N∑

k=1

Cke
j2π[(fc+fD,k)(t−τk)]s̃(t− τk)

]

(5.3)

where Ck and τk are, respectively, the amplitude and time delay associated with the

kth propagation path. Extracting from (5.3), the channel can be modeled by a linear

time-variant filter having the complex low-pass impulse response given by

h(t, τ) =
N∑

k=1

Cke
j2π[(fc+fD,k)τn−fD,kt]δ(t− τk) (5.4)

where δ(·) is the dirac delta function. If the differential path delays τi − τj are small

compared to sampling time period, then τk are all approximated to τ̂k for all the case. In

this situation, the received signal is said to exhibit flat fading. Moreover, the received

complex envelope g(t) = gI(t)+jgQ(t) can be treated as a wide-sense stationary complex

Gaussian Random process. Under the assumption of gI(t) and gQ(t) are independent

identically distributed zero-mean Gaussian random variable, the magnitude |g(t)| fo the

received complexed envelope has a Rayleigh distribution. Thus, this type of fading is

called Rayleigh fading.

5.2.2 2-D MIMO Propagation Model

The “one-ring” model was first employed by Jakes [56] to model the Rayleigh fading

channel for one MS antenna. It has been shown that if the fades connecting pairs of
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Figure 5.1: Doppler shift of MS antenna

transmit and receive antennas are independently, identically distributed, the MIMO

system offer a large increase in capacity well compared to single antenna systems. To

further investigate the effects of fading correlation in multiple antennas communication

systems, Shiu extended the “one-ring” model for MIMO system.

Fig. 5.2 depicts the simple 2× 2 abstract model, which the BS and MS antennas are

placed on the X-Y plane and the MS antennas are surrounded by the same isotropic

scattering environment. Based on far-field assumption and this abstract model, Shiu

derived an approximated cross-correlation for the subchannels hlp and hmq.
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Figure 5.2: 2-D isotropic scattering for 2×2 abstract model

5.2.3 3-D Propagation Model

In previous subsection 5.2.1, we introduced the 2-D Clarke’s isotropic scattering model

that the incoming waves are assumed to be independent and uniformly distributed in
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the interval (0, 2π). Later, Aulin proposed a generalisation of the Clarke’s model so that

the received signals are not necessarily travel horizontally. Thus, a three-dimensional

model is introduced. Based on this generic model, Parsons introduced a more realistic

expression for the pdf of elevation angle β based on data derived from experimental

observations. In Fig. 5.3(a), the 3-D scattering geometry for mobile reception is depicted.

It shows the MS is encircled by scatterers distributed on the cylinder model.

Furthermore, Turkmani and Parsons introduced a 3-D model to study the cross-

correlation between the signals received by two spatially separated antennas at BS. The

scattering geometry is depicted in Fig. 5.3(b). They derived the integral form of cross-

correlation function between the signals on two spatially separated antennas is given

with respect to the movement of MS and the distribution of the scatterers surround the

MS.
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Figure 5.3: (a) 3-D “cylinder” model on MS antenna. (b) 3-D arrangement of BS
antennas
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5.3 3-D MIMO Channel Model

5.3.1 The MIMO Frequency Nonselective Rayleigh Channel

We assume the MIMO system is time-invariant during the downlink transmission; thereby

the scatterers on the cylinder are fixed during a burst transmission. The complex en-

velope signal sp(t) transmitted by pth antenna, follows different paths and coincides at

lth antenna. At the mobile station, the received signal rl(t) comprises of different paths’

signal from the surrounding scatterers Sk and the corresponding complex lowpass equiv-

alent channel impulse response that connecting the antenna elements p and l is denoted

as hlp. In proceed, the baseband input-output relationship of the discrete-time MIMO

system can be written as following matrix notations:

r(t) = H(t)s(t) + u(t), (5.5)

where the input vector s(t) = [s1(t)s2(t) · · · snBS
(t)]T ∈ C

1×nBS , the output vector r(t) =

[r1(t)r2(t) · · · rnMS
(t)]T ∈ C

1×nMS , the additive white Gaussian noise (AWGN) u(t) =

[u1(t)u2(t) · · · unMS
(t)]T ∈ C

1×nMS , and [·]T denotes the transpose operator. Assume that

the MIMO channel is frequency nonselective, then the channel H(t) is an nMS × nBS

matrix whose (l, p)th element is the subchannel fading coefficient connecting the antenna

elements p and l, that is [H(t)]lp = hlp(t).

Suppose there are N effective scatterers, where all rays reach the lth antenna with

equal power; without line of sight component, the subchannel impulse response hlp(t)

can be expressed as

hlp(t) = lim
N→∞

1√
N

N∑

k=1

gk

· exp

{

−j 2π
λ

(Dp,Sk
+DSk,l) + j2πfdt cos(ξ − (θ + σ)) + jφk

}

(5.6)

where j is
√
−1, Dx,y is the distance of the two points x and y, gk and φk are, respectively,

the amplitude and random phase shift of the k scatterer, λ is the wavelength of the carrier
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frequency, fd = ν/λ is the maximum Doppler frequency given that ν is the motion speed

of users in direction ξ. When the gain hlp is normalized and N → ∞, the total power

of the scatterers is N−1
∑N

k=1E[g2
k] = 1, where E[·] is the expectation operator. Thus

the channel is assumed to be unit power transferred, i.e. E[|hlp(t)|2] ≤ 1. According

to central limit theorem, when N → ∞, the subchannel impulse response hlp(t) can be

modeled as a lowpass zero mean complex Gaussian process [73], which implies that its

envelop |hlp(t)| is Rayleigh distributed and its phase φk is independent and identically

distributed (iid) and uniform over [0, 2π).

5.3.2 Probability Density Function of AOA

From the aforementioned paragraphs, the MS antenna receives the signal from the sur-

rounding scatterers Sk. When Sk is assumed only distributed uniformly over [0, 2π)

(‘one-ring’ model) on the X-Y plane, its pdf is given as pθ(θ) = 1/2π. Nevertheless, this

ideal case is not always valid. In some scenarios, the signals only travel in certain range

of angles from particular direction; the nonuniform pdf of AOA at the MS is given in

different models such as quadratic pdf [75], Laplace pdf [77], cosine [76], von Mises pdf

[61] and other geometrically based pdfs. In order to clearly describe the nonisotropic

scattering environments with a clean and closed form mathematical correlation func-

tions, we adopt von Mises pdf for the azimuth angle θ in this paper. The von Mises

pdf plays a key role in statistical modeling and analysis of angular variables in a 2-D

nonisotropic scattering environment. The temporal correlation function applied with

this pdf for a single receive antenna is derived and shown that the predicted data is

successfully fitted to the measured data. Later, it is further extended to spatio-temporal

model in multielement system [61]. The von Mises pdf pθ(θ) is given as

pθ(θ) =
exp[κ cos(θ − θp)]

2πI0(κ)
, θ ∈ [−π, π) (5.7)

where I0(·) is the zero-th order modified Bessel function, θp ∈ [−π, π) and κ ≥ 0 are the

mean direction and the width of the AOA scatterer, respectively. According to equation
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(5.7), when κ = 0, we obtain pθ(θ) = 1/2π, which is an one-ring isotropic scattering. If

κ 6= 0, it forms a unidirectional shape and the width of of the AOA of the scatterer is

approximately equal to 2/
√
κ [61].

In many references, 2-D scattering models are assumed while the performance of

the multielement antenna systems are evaluated. Even though it is true that the 2-D

scattering model is well enough to demonstrate the channel model for the MIMO systems

in some scenarios, it might not accurate enough for all the cases. Later in the study

case of next section, we show that in several special cases, the 3-D scattering models are

required in order to demonstrate the scattering environments accurately. However, some

channel models can be simplified to a 2-D scattering model without any loss. In general,

the signals are not necessary traveling on the plane to the receiver. The simulation and

experimental results presented in [64, 65, 68] clearly show that the existing of vertical

angle could affect the correlation dramatically. Therefore, 2-D scattering model is only

the ideal and simplest case to estimate the correlation of the multielement antenna

system. In order to form a 3-D MIMO model, we adopt the distribution of the AOA β

in the vertical plane from papers [64]. Its pdf pβ(β) is given by

pβ(β) =
π

4|βm|
cos

(
π

2

β

βm

)

, |β| ≤ |βm| ≤
π

2
(5.8)

where pβ(β) is a flexible function of the degree of the urbanization, and its parameter

βm is in the range of 0◦ to 15◦, according to the experimental results reported in [68].

Various of scattering environments could be obtained with different combination of κ

and β. For instance, when κ and βm are zero, a general 2-D one ring scattering model is

obtained. If κ 6= 0 and βm = 0, it becomes a 2-D nonisotropic scattering model; on the

other hand, when κ = 0 and βm 6= 0, it forms an 3-D isotropic scattering in a cylinder

fashion.
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5.4 New 3-D Space-Time Correlation Functions

Consider a MIMO system where the BS and MS employ nBS transmit and nMS re-

ceive antennas, respectively. All antennas are assumed to be omnidirectional with-

out beamforming. Without loss of generality, the antenna elements are numbered as

1 ≤ p ≤ q ≤ nBS and 1 ≤ l ≤ m ≤ nMS. In Figure 5.4, a basic structure of MIMO

system is depicted, which consists of nBS = nMS = 2 uniform linear arrays. For the sake

of simplicity, we define a Cartesian coordinate system as follow: first define the X-Y

plane to contain the center of the linear arrays l and m, which denoted as O′. Next,

project the BS antennas p and q to the X-Y plane as p̃ and q̃, then choose the center

between p̃ and q̃ as the coordinate origin O. The line that connects the coordinate origin

O and the center of the MS arrays O′ is defined as Y-axis and the distance between them

is denoted as D. Let R as the radius of the cylinder, H = Dq,q̃ as the elevation of the

BS antenna q and V = Dp,p̃ − Dq,q̃ as the vertically displacement between the two BS

antennas. Obviously, in Figure 5.4, the orientation of the BS linear arrays p and q is

a function of variables Dp̃,q̃, H and V . Assume the MS antennas l and m enclosed by

the same cylinder and connected by the line Dl,m. While Dl,m decreases to zero, then

there is only one receive antenna located at the center O′ of the ring. Suppose there

are N effective scatterers impinging on the MS antennas from a random position Sk on

the cylinder. The elevation angle of Sk relative to the cylinder center O′ is β and the

azimuth angle is θ. The height of the cylinder is computed by the maximum elevation

angle βm given by 2R tan βm. The geometry of the MS antennas l and m is based on

the angle ρ, which is the elevation angle of MS antennas relative to the cylinder center

O′. Other parameters are better depicted in Figure 5.5 which is the projection on the

X-Y plane.
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Figure 5.4: The 3-D MIMO model.

5.4.1 New Space-Time Correlation Function

Based on 3-D model configuration given above, let us define the space-time cross-

correlation function between two arbitrary subchannels hlp(t) and hmq(t) as ζlp,mq(τ) =

E[hlp(t)h
∗
mq(t + τ)], where ∗ is the complex conjugate operator. According to (5.6), we

obtain

ζ
lp,mq

(τ) = lim
N→∞

1

N

N∑

k=1

E[g2
k]

exp

{

−2πj

λ
[Dp,Sk

−Dq,Sk
+Dl,Sk

−Dm,Sk
] − j2πfdτ cos(ξ − (θ + σ))

}

(5.9)

Assume that N is large and all rays have equal power, the infinitesimal power E[g2
k]/N

contributed by the kth scatterer equals to differential angles from dθ and dβ, respectively,

with probability p(θ) and p(β). Therefore, (5.9) can further be written into the integral
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form given by

ζ
lp,mq

(τ) =

∫ +βm

−βm

∫ 2π

0

p
θ
(θ)p

β
(β)

exp

{

−2πj

λ
[Dp,Sk

−Dq,Sk
+Dl,Sk

−Dm,Sk
] − j2πfdτ cos(ξ − (θ + σ))

}

dθdβ(5.10)

Generally, the BS antennas are usually place well above the city building and seldom

obstructed, while the MS antennas are alway encircled by the buildings and reflectors.

Thus BS receives the signal through a narrow angle spread ∆ = R/D, while MS receives

the signal from the surrounding scatterers. According to experimental conducted to the

channels at different locations [69, 71, 78], the angle spread ∆ is often less than 15◦

for macrocells in urban and suburban. Thereby, the far field propagation assumption is

held in practical case of wireless MIMO communication systems given that D � R �

max(Dp,q, Dl,m). We may approximate the relative distances in (5.10) as

Dp,Sk
−Dq,Sk

≈ Dp,q cos γ, (5.11)

Dl,Sk
−Dm,Sk

≈ Dl,m cosψ. (5.12)

where γ and ψ are the AOAs at BS and MS antennas in 3-D space, respectively. Appar-

ently, it is necessary to express cos γ and cosψ in terms of the random variable θ and

β and other measurable parameters. For a given scatterer Sk, we obtain the following
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useful relationships from the appropriate triangles by applying the law of cosine and

Pythagoras’ theorem.

D2
p,Sk

= D2
p,q +D2

q,Sk
− 2Dp,qDq,Sk

cos γ (5.13)

D2
p,Sk

= D2
p̃,S̃k

+ (H + V −R tan β)2 (5.14)

D2
q,Sk

= D2
q̃,S̃k

+ (H −R tan β)2 (5.15)

D2
p,q = V 2 +D2

p̃,q̃ (5.16)

D2
l,Sk

= D2
m,Sk

+D2
l,m − 2Dm,Sk

Dl,m cosψ (5.17)

D2
l,Sk

= (Dm,Sk
sin β −Dl,m sin ρ)2 +D2

l̃,S̃k
(5.18)

D2
p̃,S̃k

= D2
p̃,q̃ +D2

q̃,S̃k
− 2Dp̃,q̃Dq̃,S̃k

cos(α− Ω) (5.19)

D2
l̃,S̃k

= (Dm,Sk
cos β)2 + (Dl,m cos ρ)2 + 2Dm,Sk

Dl,m cos β cos ρ cos(θ + σ).(5.20)

Substitute (5.19) to (5.14) and (5.20) to (5.18) after some mathematical manipulation

using other expressions above, we obtain the following key relationship

D2
p,Sk

= D2
p,q +D2

q,Sk
− 2Dq,Sk




Dq̃,S̃k

Dp̃,q̃ cos(α− Ω) − (H −R tan β)V
√

D2
q̃,S̃k

+ (H −R tan β)2



 ,(5.21)

D2
l,Sk

= D2
m,Sk

+D2
l,m − 2Dm,Sk

Dl,m(sin β sin ρ− cos β cos ρ cos(θ + σ)) (5.22)

According to far field assumptions above, which are generally held for many practical

cases, imply thatDp̃,S̃k
≈ Dq̃,S̃k

≈ D. Furthermore, we use the approximate relationships
√

1 + χ2 ≈ χ and 1/χ2 ≈ 0, when χ is large; sinχ ≈ χ and cosχ ≈ 1, when χ is small.

We obtain sin Ω ≈ ∆ sin θ. Compare (5.13) to (5.21) and (5.17) to (5.22), the distances

(5.11) and (5.12) can be approximated as follows,

Dp,q cos γ ≈ Dp̃,q̃ cos(α− Ω) − V/Π (5.23)

≈ Dp̃,q̃(cosα + ∆ sinα sin θ) (5.24)

Dl,m cosψ ≈ Dl,m(sin β sin ρ− cos β cos ρ cos(θ + σ)) (5.25)

where Π = D/(H − R tan β). When D � V ×H is valid, for practical case of interest,

it is reasonable to assume the last term V/Π ≈ 0 and lead to (5.24). Substitute (5.24)
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and (5.25) into (5.10), the integral form of space-time cross-correlation MIMO system

in term of θ and β can be written as

ζlp,mq(τ) ≈ exp

(−j2πDp̃,q̃ cosα

λ

)∫ βm

−βm

∫ 2π

0

pθ(θ)pβ(β) · exp

{

−2πj

λ

·[Dp̃,q̃∆ sinα sin θ +Dl,m(sin β sin ρ− cos β cos ρ cos(θ + σ))]

−2πfDτ cos[ξ − (θ + σ)]
}

dθdβ. (5.26)

According to experimental data reported in [68], the maximum elevation angle βm is

usually small and falls in the range of 0◦ to 15◦. This empirical observation later simplifies

(5.26) into a useful approximation function in a tidy closed form solution. Given in [74],

the integral of exponential function is

∫ π

−π

exp(x sin z + y cos z)dz = 2πI0

(√

x2 + y2
)

, (5.27)

where I0(jx) = J0(x), and J0(·) is the zero-th order Bessel function of the first kind.

Consequently, (5.10) can be further simplified as follows

ζlp,mq(τ) ≈
cos(βmbMS sin ρ) exp(−jaBS cosα)

[
1 − ( bMS sin ρ

d
)2
]
I0(κ)

·I0
(

{κ2 − (aBS∆ sinα)2 − (bMS cos ρ)2 − c2

−2aBS∆ sinα[bMS cos ρ sinσ + cf sin(ξ − σ)] + 2bMScf cos ρ cos ξ

−j2κ[bMS cos ρ cos(θp + σ) + cf cos(θp − ξ + σ) + aBS∆ sin θp sinα]} 1
2

)

(5.28)

where the simplified notations are aBS = 2πDp̃,q̃/λ, bMS = 2πDl,m/λ, cf = 2πfdτ , and

d = π/(2βm). Note that the new approximated 3-D MIMO frequency nonselective fading

channel correlation function (5.28) valid under the assumption of ∆ and βm are small

for all the cases.

The correlation function derived above is based on the assumption D � H × V

for all the cases. Despite of this assumption, we investigate the case that the distance

V × H are not neglected (V/Π 6= 0). Substituting (5.23) into (5.26) and follows the

same derivation steps above, we have the correlation function between the subchannels
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hlp(t) and hmq(t) as

G(Λ,+e) =
d2

2(d2 − j(bMS + e)2)
exp

(
jeH

R

)[

sin(dΛ) exp{−j(bMS + e)Λ}

−j(bMS + e)

d
cos(dΛ) exp{−j(bMS + e)Λ}

]

(5.29)

ρlp,mq(τ) ≈ exp(−jaBS cosα)
[

G(Λ,+e)
∣
∣
∣
Λ=H/R
Λ=−βm

+G(Λ,−e)
∣
∣
∣
Λ=βm

Λ=H/R

]

×I0
(

{κ2 − (aBS∆ sinα)2 − (bMS cos ρ)2 − c2

−2aBS∆ sinα[bMS cos ρ sin σ + cf sin(ξ − σ)] + 2bMScf cos ρ cos ξ

−j2κ[bMS cos ρ cos(θp + σ) + cf cos(θp − ξ + σ) +aBS∆ sin θp sinα} 1
2

)

/I0(κ)(5.30)

where e = 2πV∆/λ and χ|χ=x
χ=y = x−y. (5.28) and (5.30) include all the relevant param-

eters of MIMO system, which facilitate us in mathematical analysis and computational

advantages over the simulation based correlation model. Moreover, the general formu-

las obtained above can be further simplified for the special cases of SIMO and MISO

channels. In the next subsection, the correlations functions in Case I to Case IV are

simplified from (5.28) and those of in Case V are simplified from (5.30).

5.4.2 Case Study

CASE I: In 2-D channel models, the simplest special case Clarke’s temporal correlation

model [73] consists of single BS antenna and single MS antenna in an isotropic scattering,

can be obtained by letting aBS = bMS = κ = βm = 0 in (5.28) and given as J0(2πfDτ).

If κ 6= 0 and ξ = 180◦ + σ, the temporal correlation model in a nonisotropic scattering

around MS is simplified from (5.28) as I0(
√

κ2 − c2f + 2jκcf cos θp)/I0(k). This closed-

form solution agrees with the results in [61].

CASE II: In MISO channels with two BS antennas and single MS antenna, if fD =

κ = 0, then the correlation function between the subchannels hlp(t) and hlq(t) is simpli-

fied as exp {−jaBS cosα} J0 (aBS∆ sinα) . Notice that the expression only consists of dis-

tance aBS on the X-Y plane and the angle α. The same closed-form equation can be found
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in [72]. While κ is no longer zero, the spatio correlation function of nonisotropic scatter-

ing is given as ζlp,lq(τ) ≈ exp(−jaBS cosα)
I0(κ)

I0

(√

κ2 − (aBS∆ sinα)2 − j2κaBS∆ sinα sin θp

)

.

The same equation can be derived by letting aBS = bMS = 0 in (12) of [52]. Obviously,

variable β does not exists in any case of MISO channel model. Thereby, a commonly

used 2-D channel correlation function proposed in many literatures are well enough to

describe the MISO channel model for the all the cases. The same assumption can be

found in many literatures [51, 52] and [73] etc.

CASE III: In SIMO channels, when the BS has one transmit and MS has two

receive antennas placed on the X-Y plane (ρ = 0◦), (5.28) can be derived to several

existing equations. Assume that a 2-D one-ring isotropic scattering is considered, where

βm = 0◦ and κ = fD = 0, (5.28) is simplified as J0

(√

b2MS + c2f − 2bMScf cos ξ
)

. The

same result can be found in Lee’s paper [70]. According to [64], when the two MS

antennas are placed on the X-Y plane (ρ = 0◦) and the scattering consists of βm that

forms a cylinder model, the correlation function is given by
∫ βm

−βm
pβ(β)J0(b cos β)dβ.

Nevertheless, the approximation derived from (5.28) using the small angle relationship,

where βm falls in the range of 0◦ to 15◦, is given as J0(2πDl,m/λ). The correlation values

computed by the new approximation has only slightly difference compare to the inte-

gration model, but improves the computational dramatically. Based on the derivation

above, a conclusion can be drawn to the two MS antennas, which are placed on the

X-Y plane (ρ = 0◦), that the influence of βm can be neglected and lead to 2-D scat-

tering model around the MS antennas. In addition, ρ = 0◦ and κ 6= 0 simplify (5.28)

to a 2-D nonisotropic scattering, whose approximated correlation function is given as

I0

(√

κ2 − b2MS − j2κbMS cos(θp + σ)
)

/I0(k) by letting aBS = cf = 0. The same ap-

proximation is originally given by simplifying (12) of [61] under the same condition

given as above.

CASE IV: In SIMO channel, with one BS antenna and two MS antenna antennas

not on the X-Y plane (ρ 6= 0◦). Consider the case where κ = fD = 0, the new correlation
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function between the subchannels hlp(t) and hmp(t) is simplified to

ζlp,mp(τ) =
cos(bMSβm sin ρ)J0(bMS cos ρ)

1 −
(
bMS sin ρ

d

)2 (5.31)

The equation (5.31) shows that βm and ρ have a big impact on the crosscorrelation

function. Apparently, when the angle of ρ is fixed to a certain value larger than zero,the

term cos(bMSβm sin ρ) in numerator of (5.31) is inversely proportional to the elevation

angle βm. Consequently, when βm increments, the subchannels have smaller correlation

values lead to better diversity gain. In a simple case ρ = 90◦, the two MS anten-

nas are placed vertically to each other. The equation (5.31) is further simplified to

cos(bMSβm)/[1 − (bMS/d)
2]. In next section, the simulation result shows that while βm

increase to 20◦, the correlation of the two vertically placed antenna decreases dramati-

cally. Follows, the next spatio model is the extension of (5.31), when the MS antennas

encounter the nonisotropic scattering, i.e, κ 6= 0. The new approximated correlation

function is given by

ζlp,mp(τ) =
cos(bMSβm sin ρ)

[

1 −
(
bMS sin ρ

d

)2
]

I0(κ)

×I0(
√

κ2 − (bMS cos ρ)2 − j2κbMS cos ρ cos(θp + σ)) (5.32)

It is important to note here while the two antennas are placed vertically (ρ = 90◦), the

I0(k) will cancel out each other from the numerator and denominator and simplified

the equation (5.32) to (5.31). We prove that the two vertically placed antennas are

not affected by the azimuth AOA. Besides, the expression (5.32) hasr larger correlation

when compared to (5.31). The outcome is truth because the signals only travel in a small

range of angle from particular direction while arriving to the MS antennas. Thereby,

the signals are more correlated.

CASE V: To study the key difference between the new correlation functions (5.28)

and (5.30), we setup the BS antennas in a “triangle” shape. Assume that in MISO

case, there are three multiple BS antennas and one MS antennas enclosed by a cylinder
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model, the pth and qth antennas are placed at the same height H and the rth antenna

has a distance V above the qth antenna. The distance Dp,q and Dq,r is perpendicular

to each other. Thus it forms a “right angle triangle” shape with the diagonal distance

Dp,r =
√
D2
p,q +D2

q,r. Consider a case where two vertically placed antennas are at the

BS, κ = aBS = bMS = cf = 0, simplifies (5.30) to a new stationary correlation function

given as

ζlq,lr(τ) ≈
d2

2(d2 − e2)
exp

(
jeH

R

)

×
[

sin(dΛ) exp{−jeΛ} − je

d
cos(dΛ) exp{−jeΛ}

] ∣
∣
∣
Λ=H/R
Λ=−βm

+
d2

2(d2 − je2)
exp

(

−jeH
R

)

×
[

sin(dΛ) exp{jeΛ} +
je

d
cos(dΛ) exp{jeΛ}

] ∣
∣
∣
Λ=βm

Λ=H/R (5.33)

The relationship above is in term of the distances H, V at BS, R and the AOA βm at

MS. Given that those parameters are fixed, the simplified correlation function ζlq,lr is

a constant. Thus, the AOA α of BS does not effect the correlation between the two

subchannels. Nevertheless, the correlation of the horizontally (refer to expression in

CASE II) and diagonally placed antennas vary significantly according to the AOA α

and will be depicted in the simulation result in next section. The correlation of the two

diagonally placed antennas p and r is the smallest for all the cases due to their largest

separation distance Dp,r.

5.5 Antennas arrangement and their impact

Extensive simulations have been carried out to the derived space-time correlation func-

tions of the 3-D models and following by the analysis of the correlations for various

antenna arrangements. Firstly, several examples are presented here to show the effect

of the new 3-D model and its difference from the conventional 2-D model. In what
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follows, the impacts of antenna spacing and arrangement of BS antennas and MS an-

tennas in isotropic/nonisotropic scattering are demonstrated. In all examples, except

they are stated separately, we define the following parameters: the distance between

the BS and MS antennas is D = 1200 meter, the radius of the cylinder is R = 100

meter, the placement of MS antennas is aligned on Y-axis (σ = 0◦). The angle spread

is ∆ = arcsin(R/D) ≈ 5◦ and the elevation of lower BS antennas is H = 30 meters.

In the first examples, the correlation of SIMO channel with one BS antenna and

two MS antennas in isotropic scattering is depicted in Figure 5.6. Noted in CASE IV,

we show that the correlation of two vertically placed antennas are not affected by the

azimuth AOA. Therefore, the nonisotropic models are neglected here. We analyze the

correlation of the special case which the two MS antennas are placed vertically and

enclosed by the cylinder model and βm varies from 0◦ (one-ring model) to 20◦. The

reader might have noted that ρ = 90◦, the elevation angle βm has a significant impact

on the correlation between the two MS antennas. It has been shown that the degradation

in capacity is small with fading correlation correlation coefficient as high as 0.5 while

maximal-ratio combining is employed [50, 51]. According to Figure 5.6, we can attain

0.5 at Dlm = 1.17λ when βm is given as 20◦. However, the same correlation value 0.5

can only be achieved at Dlm = 2.35λ for smaller βm = 10◦. If βm is zero, the vertically

placed antennas always have the correlation ζlp,mp = 1 that is completely correlated

and no diversity gain available. However, the new 3-D isotropic channel model shows

that vertically placed MS antennas can have small correlations and are able to provide

considerable diversity gain. This is in good agreement with field measurements. Figure

5.7 depicts the effect of the MS 3-D antenna placement in SIMO channel. The simulation

results are carried at the angles ρ = 0◦, 75◦ and 90◦ and κ = 0, 3. Providing that

βm ≤ 20◦, the correlation function of MS antennas on the X-Y plane is only a simple

2-D spatial correlation function given in Case III. Thereby, the 2-D Clark’s model is

sufficient and accurate enough to describe the SIMO channels with horizontally placed
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MS antennas. Figure 5.7 shows that the correlation of smaller ρ reduces much faster than

that of the larger ρ. For instances, when ρ = 0◦, the correlation ζlp,mp = 0.5 is achieved

at distance Dl,m = 0.24λ. But MS antennas placed at ρ = 75◦ and 90◦, respectively,

require farther distance Dl,m = 0.89λ and 2.35λ. Figure 5.7 also depicts the scenario

where the MS antennas are enclosed in a 3-D nonisotropic scattering model. It is obvious

that the correlations increase dramatically compare to that of isotropic models. Even

though the ρ = 0◦ antenna placement provides the smallest correlation well compared to

the others, the antenna placement might not be feasible all the time due to space limit.

Thus, the 3-D antenna placements may be the alternative methods to achieve better

diversity gain and the new correlation function is a good guidance for the analysis and

setup process.

Figure 5.8 shows the impact of κ and β over the correlation of SIMO channel in an

isotropic and nonisotropic scattering. Assume the MS antennas are placed at ρ = 75◦

in an isotropic scattering. It is apparent that the exist of βm = 20◦ provides the smaller

correlation well compared to βm = 0◦. The second lobe of κ = 0, βm = 20◦ has the

maximum value less than 0.05 but that of κ = 0, βm = 0◦ can be as high as 0.4.

When κ = 3, the correlations reduce much slower than that of κ = 0. Apparently, the

correlation increases dramatically when we consider 2-D nonisotropic scattering (κ =

3, βm = 0◦). However, the existence βm = 20◦ in the nonisotropic scattering decreases

the correlation at the same distance and lead to better diversity gain. For instance,

when Dlm = 2λ, the correlation given by βm = 0◦, κ = 3 and βm = 20◦,κ = 3 are 0.795

and 0.058, respectively. According to Figure 5.8, 3-D isotropic model is considered as

the best case while 2-D nonisotropic model is the worst case in sense of the correlation

values. In Figure 5.9, the isometric view of the effect of βm and κ on the correlations

of the SIMO channel at distance Dlm = 1λ and ρ = 75◦ is depicted. Obviously, while

βm = 0◦, the correlation value is increasing dramatically with κ. Given that κ ≥ 5,

the correlations close to 1 and there are no diversity gain. Fortunately, existence of βm

88



can decrease the correlation between the two subchannels. Given that we measure the

βm = 15◦ in the nonisotropic scattering, we can set up the two MS antennas at the

distance Dlm = 1λ and angle ρ = 75◦. As a consequence, the correlation falls into the

“valley” and the two subchannels are totally uncorrelated.

The next example is a MISO channel with three BS antennas and one MS antenna.

The BS antennas are arranged in the structure described in CASE V. The pth and

qth antennas are placed at the height H = 30 meters, and the rth antenna is V =

30 meters above the q antenna so that V/Π 6= 0. The MS antenna enclosed in the

isotropic scattering with R = 300 meters and the βm = 10◦. Apparently, the AOA α

affects the correlation value dramatically in some cases. As shown in Figure 5.10, the

correlation of two vertically placed antennas q and r is always constant regardless of α.

While considering the ‘inline’ case (α = 0◦), the horizontally placed antennas are totally

correlated but the correlation of the diagonally placed antennas is only 0.522. It is

important to note that the vertically placed antennas require larger distance V and R to

achieve low correlation. The diagonally placed antennas p and r has the largest distance

separation while compared to the previous two antenna arrangements. Therefore, it

always has the smallest correlation.

The example of a MIMO channel is presented at last. The Figure 5.11 depicts the

correlations of vertically placed MS antennas in 3-D isotropic model whose βm = 20◦.

It is clear that the correlations are significantly effected by the arrangement of the MS

antennas and apparently different from the 2-D models when other relevant channel

parameters remain the same. Low correlations can be achieved by carefully arranging

the MS and BS antennas such that their correlation falls in the “valleys” of the plots.

For instance, when DBS/λ = 4.5, the correlation of the MIMO system always falls in

the first “valley” for any spacing of the MS antennas.
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Figure 5.6: The correlation of a SIMO channel with one BS and two MS antennas,
placed with ρ = 0◦ and 90◦.

5.6 Conclusion

In this paper, we have derived the generic flexible and mathematically tractable space-

time crosscorrelation functions for 3-D MIMO frequency nonselective Rayleigh fading

channel. In our model, we employed the elevation angle βm to extend the 2-D one-ring

scattering model to 3-D cylinder model, and the von Mises distribution to characterize

the nonuniform distribution for the angle of arrival around the MS antennas. Other

relevant parameters of interest such as the height of BS antennas, the 3-D arrangement

of BS and MS antennas and the Doppler spread of MS antennas are taken in account.

We also analyze the correlation functions of the conventional 2-D and new 3-D model
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Figure 5.7: The correlation of a SIMO channel with one BS and two MS antennas with
3-D antenna arrangements in isotropic nonisotropic scattering models. The maximum
elevation angle of the fading cylinder is βm = 10◦.

in different antenna arrangements enclosed by isotropic/nonisotropic scattering. It is

shown that the proposed closed form function can easily reduced to different well-known

cases for SISO, SIMO and MISO fading channels. The simulation results have verified

our formulas and further shown that the correlation computed by the proposed function

are significantly different from the conventional 2-D one-ring scattering model.
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Chapter 6

Conclusion

As was highlighted, the research on the physical layer of wireless communication has been

done. Basically, the research areas can be divided into three main categories: channel

modeling, channel estimation and channel equalization An overview of each topic is

first introduced at the beginning of the chapters. Follows, the relevant informations

and necessarily mathematical derivations are illustrated. Finally, we propose the new

algorithms or model to improve the system performance of the communication system.

Basically, the chapters can be summarized in the following structure.

In Chapter 2, we introduce the 3G 8-PSK EDGE equalization and symbol detection.

First of all, the optimum equalizer MLSE based on Viterbi algorithm and near-optimum

equalizer DDFSE and RSSE are described in details. To reduce the computational com-

plexity of the equalizer in the system with large signal constellation size and long channel

impulse response, we proposed a new method based on minimizing the Euclidean dis-

tance between the detected and received signal sequence. Simulation were carried at

the EDGE typical channel profiles TU and HT to test the new equalizer. The simula-

tion results show that the new method contributes good performance well compared to

RSSE2 and RSSE8 equalizers. Apparently, the new method outperforms the RSSE2 in

decoded BER when strong coding is implemented. Although there is a small loss in BER

while comparing to RSSE8, we show that our new equalizer only requires approximately

quarter of computational complexity of RSSE8. Moreover, the proposed method can be

96



further implemented in higher constellation system.

In Chapter 3, a novel low complexity decision feedback equalizer is proposed for

turbo equalization. The chapter begins with the principle of turbo equalization using

trellis-based BER optimal channel equalizer and channel decoder. When the higher

modulation signals are used with severely distorted multipath channels, the computa-

tional complexity of the MAP equalizer grows exponentially. Moreover, the inefficiency

of the conventional low complexity DFE algorithm reduces the gain of BER performance

in iterative equalization. To increase the performance gain with low computational com-

plexity, our new method computes the extra metric rn+1 using the feedback symbols from

previous iteration and combining it with a priori information of the symbols. After each

iteration, the hard detected symbols are saved in the memory as a priori data for next

iteration. We verified the proposed algorithm for BPSK and 8PSK modulation. The

promising simulation results indicate that the proposed low complexity DFE algorithm

always has better BER performance when compared to conventional DFE throughout

the iterations in turbo equalization.

Chapter 4 discusses the channel estimation of EDGE system in fast fading channel.

According to other researches, the CIRs are always defined as time-invariant while the

mobile system travels in slow speed. However, in fast fading channel, the original pro-

posed least-squares algorithm does not provide good estimation in the sense of MSE

and BER. So, we proposed a new least-squares based channel estimation algorithm to

estimate the time-varying channel. As shown in simulation results, the new algorithm

can accurately estimate various of fading channel in wide range of Doppler frequency.

In terms of mean square error and bit error rate, the proposed channel estimation al-

gorithm has much better performance especially while Doppler frequency higher than

100Hz. Moreover, we introduce the Cholesky decomposition in brief details to transform

the CIR energy to the first few taps for reliable equalization.

We investigate the correlation of the subchannels of MIMO system in Chapter 5.
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Based on the researches of the abstract models in multiple antennas systems, we pro-

posed a new 3-D MIMO Rayleigh fading channel model. A closed-form cross-correlation

function of the subchannels in 3-D MIMO system is derived to analyze various of chan-

nel models such as SIMO, MISO and MIMO. In some special cases, our new correlation

function can easily be simplified to other existing equations that were first proposed by

other researchers. Simulation have been carried intensively to verify our formula.

6.1 Future Research

This dissertation has covered the basic issues of the physical layer in wireless com-

munication. In order to implement the algorithms successfully in the future wireless

communications, further researches into the development is required. The new equal-

izer proposed in Chapter 2 can be developed and implemented to the MIMO system or

turbo equalization system for further improvement in system performance. Also, the

iterative equalization introduced in Chapter 3 is a powerful receiver. The proposed low

computational complexity algorithm can be further improved and developed into the

multiuser detection such as WCDMA or UMTS systems. Although the 3-D Rayleigh

fading channel model proposed in Chapter 5 is well enough to describe the channel where

the scatterer forms a “cylinder” model or located in certain direction. Research on the

abstract model in the dispersive channel can be extended to investigate the correlation

of the subchannels where the mobile station antennas received the signals that interfered

by the multipath channels.
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