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Abstract 

 There has been a great deal of recent research interest in the development of 

electronic-type devices that exploit not only an electron’s charge, but also its spin.  Such 

“spintronic” devices hold the promise of higher stability data storage, increased 

processing speed, and decreased power consumption as compared with conventional 

electronics.  Many potential spintronic devices will require a “spin injector” capable of 

producing a current in which almost all the electrons have their spins aligned in the same 

direction.  In particular, it would be valuable to develop a ferromagnetic semiconductor 

spin injector that could spin-polarize electrons with its magnetic field, and is compatible 

with semiconductor materials common to existing electronic devices.  A promising 

candidate for such a spin-injector is Ga1-xMnxAs, due to its relatively high ferromagnetic 

transition temperature (TC as high as 150 K), and its crystallographic compatibility with 

standard GaAs.  However, in order to achieve maximum TC, Ga1-xMnxAs must be 

carefully annealed after growth.  While it has been known since 2001 that annealing can 

increase TC, it has not been understood until very recently exactly how annealing 

achieves this benefit. 

 With the aim of better understanding the mechanisms of this annealing process, 

this dissertation’s primary focus is polarized neutron reflectometry (PNR) experiments 

that examine how annealing changes the depth-dependent magnetic and chemical 

properties of Ga1-xMnxAs thin films.  In several cases, these measurements show 

 



    xii

annealing to increase the magnetization, make the depth dependence of the magnetization 

more uniform, and alter the chemical composition of the film’s free surface.  These 

results provide compelling evidence that annealing enhances Ga1-xMnxAs by ripping 

ferromagnetically disruptive Mn impurities from the crystal lattice, freeing them to 

migrate to the surface of the film - corroborating other recent work.   

 A Ga1-xMnxAs film capped with a layer of GaAs was also examined.  We find that 

annealing of the capped film does not enhance the ferromagnetic properties, suggesting 

that the cap prevents interstitial Mn impurities from reaching the surface.  Additionally, 

we find that the as-grown capped film features a significant magnetization gradient - a 

feature that remains the same after annealing.  This suggests that the GaAs capping layer 

ruins the annealing process not simply by serving as a barrier to interstitial Mn 

impurities, but that it does so by changing the environment of the entire Ga1-xMnxAs film.    

       

  

 

 

 

 

 

 

 



 

 

Chapter 1 

 

Introduction to Ga1-xMnxAs 

 

1.1 Introductory Remarks 

 The principal topic of this dissertation is a study of the magnetic and chemical 

depth profiles of Ga1-xMnxAs.  In addition, an attempt to establish the spin wave 

dispersion in Ga1-xMnxAs will also be discussed.  This initial chapter is devoted to 

introducing the scientific interest in this technologically important material, and to 

outlining some of the important issues concerning Ga1-xMnxAs that the remainder of the 

paper addresses. 

 

1.2 Spintronics 

 There is a great deal of current research interest in the development of 

“spintronics” technology.  This term refers to electronic devices that exploit the spin 

degree of freedom of charged particles.  Some possible benefits of spintronic devices 

could include data storage with reduced volatility, increased data processing speed, and 
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decreased electrical power consumption as compared with conventional semiconductor 

devices [1].    Ferromagnetic semiconductors could play an important role in the 

development of practical spintronic technology – particularly if such materials could be 

fabricated with high ferromagnetic transition temperatures (TC).  

 As an example of the device utility of such a material, consider the example of the 

spin field-effect transistor (spin FET) [2].  A standard FET is a common electronic device 

that consists of a source and a drain, connected by a semiconducting channel.  Charge 

carriers flowing from the source can be pushed out of the semiconducting channel with 

an applied electric field, allowing for control of the current flowing through the drain.  A 

spin FET would have the same basic elements as a conventional FET, but it would be 

different in that the source and drain would be ferromagnetic.  The ferromagnetic source 

would allow for polarized electrons (or holes) to be injected into the semiconducting 

channel.  If the ferromagnetic drain were to have its magnetization polarized parallel to 

the carriers, the polarized current would flow freely.  However, if carrier spins were 

rotated perpendicular to the drain via an applied voltage, the current would be impeded.  

In principle, this mechanism of rotating spins would require less energy, and could result 

in faster switching than in a conventional FET.  Figure 1.1 [3] illustrates a spin FET.   

 A major challenge in developing a practical spin FET (or many other spintronic 

devices) involves finding suitable materials for spin injection (for instance, the source in 

a spin FET).   One approach to this problem has been to use ferromagnetic metals to 

inject spin into semiconductors [4].  However, there are numerous troubles associated 

with spin injection across a metal-semiconductor interface, resulting in difficulties in 

achieving a useful degree of spin polarization.  Alternatively, it has been demonstrated  
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Figure 1.1:  Cartoon of a spin FET.  When no voltage is applied across the semiconducting 
channel (top), charge carriers spin polarized by the ferromagnetic source freely pass through 
the ferromagnetic drain.  However, when a voltage is applied (bottom), the spin polarized 
carriers precess throughout the channel.  This is done such that their spins are anti-parallel to 
the magnetization of the drain at the interface, inhibiting passage. 
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that ferromagnetic semiconductors can serve as effective spin injectors [5, 6].  This 

approach provides the advantage of spin injectors already compatible with semiconductor 

materials common in modern electronics, such as GaAs.  This pursuit of all 

semiconductor spintronic devices provides technological motivation for study of the 

magnetic properties of ferromagnetic semiconductors.   

 

1.3  Dilute Magnetic Semiconductors 

 Magnetic semiconductors have been studied since the 1960’s, with early studies 

focusing on natural ferromagnetic semiconductors such as europium chalcogenides [7], 

and semiconducting spinels [8].  However, these materials are not particularly useful for 

spintronic applications because they generally exhibit a low TC [1], and are 

crystallographically incompatible with standard semiconducting materials [9]. 

 In addition, artificial magnetic semiconductors can be fabricated by randomly 

doping common semiconductors with magnetic impurities.  This results in a class of 

materials known as dilute magnetic semiconductors (DMS).  Initially, study of DMS 

focused on materials where the valency of the magnetic impurities corresponded with that 

of the semiconducting host, such as alloys of Mn with type II-VI semiconductors [10].  

While this valency matching makes these II-VI DMS relatively easy to fabricate, the 

magnetic exchange in these materials is typically antiferromagnetic, often leading to spin-

frustrated, spin-glass behavior [9] because of the tetrahedral site symmetry of the 

magnetic ion.    

 A major revolution in DMS research has occurred in the last fifteen years, as 

advancements in crystal growth have given researchers the opportunity to dope Mn into 
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other types of semiconductor materials where the exchange can be ferromagnetic.  In 

particular, developments in non-equilibrium molecular-beam epitaxy (MBE) growth 

techniques have allowed crystal growers to “force” magnetic atoms into lattice sites of 

standard III-V semiconductors, while leaving the crystal structure largely intact.  The first 

example of a III-V DMS came in 1989, when In1-xMnxAs was developed [11], and was 

then later found to exhibit partial ferromagnetic order [12].  However, the III-V DMS that 

has received the most research attention is Ga1-xMnxAs.  First fabricated in 1996, Ga1-

xMnxAs has been shown to display true long-range ferromagnetic order [13], and has 

been widely used as a “prototypical” material for study of III-V DMS.             

 

1.4 The “Hole” Shooting Match 

 The primary reason that Ga1-xMnxAs has received such wide attention is its 

relatively high TC.  Since the initial report of TC ≈ 60 K given in reference 13, the 

maximum reported value of TC in Ga1-xMnxAs has progressively increased in recent 

years, exceeding 150 K [14, 15].  While this value has generated a great deal of interest 

and optimism, it is still well below room temperature.  The question that will determine 

the real technological usefulness of Ga1-xMnxAs is whether or not TC can continue to be 

pushed towards room temperature, or if there is a fundamental lower-temperature limit.  

In order to address this question, one must consider the charge doping of the system, as 

TC for Ga1-xMnxAs is strongly tied to carrier concentration.   

 The ferromagnetic behavior in Ga1-xMnxAs originates from coupling between spin 

5/2 Mn2+ ions that occupy Ga sites in the lattice (MnGa)  [16].  The coupling is thought to 

be similar to the RKKY interaction in metals [17] where the ferromagnetic exchange is 
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mediated by charge carriers.  For Ga1-xMnxAs it is widely accepted that MnGa are 

acceptors, and that they communicate their spin orientation among each other via self-

generated holes [18].  So, the hole concentration is “the hole shooting match”, so to 

speak, when it comes to understanding the ordering temperature of Ga1-xMnxAs.  

Specifically, Dietl et al have proposed that TC can be described by the Zener model of 

ferromagnetism [19, 20], which predicts that 

 

                                                    TC = C x p1/3                                                  (1) 

 

where C is a constant, x is the concentration of MnGa, and p is the hole concentration. 

 

1.5 Post-Growth Annealing 

 An important discovery was made in 2000, when it was found (by accident, the 

story goes) that post-growth annealing of Ga1-xMnxAs at temperatures near or below the 

growth temperature greatly enhances TC [21].  It was later shown that annealing could 

also increase the saturation magnetization [22].  Further work revealed that the TC 

enhancement effect is strongly dependent on the annealing temperature, and on the 

annealing time [22, 23].  Interestingly, it was found that the success of the annealing 

process is extremely sensitive to the annealing conditions.  The predominant technique 

(described in Ref. 22) involves annealing at or slightly above the growth temperature (~ 

250 – 280 °C) for short periods of time (~ 1-2 hours).  Alternatively, it has been shown 

[23] that annealing at much lower temperatures (~ 175 -200 °C) for much longer periods 

of time (~ 100 hours), can produce a similar increase in TC.  If samples are “over-

 



    7

annealed” (e.g. for too high a combination of temperature and time), annealing has a 

detrimental effect on the ferromagnetic properties of Ga1-xMnxAs. 

 

1.6 Limits on Useful Mn Concentration 

 In 2002, Potashnik et al. conducted a detailed study of the effects of annealing on 

Ga1-xMnxAs [24].  By using SQUID magnetometry and transport measurements to 

examine films of varying x, they showed that instead of continuously improving with 

increasing x, the ferromagnetic properties of Ga1-xMnxAs are enhanced only up to a point.  

For optimally annealed samples, it was found that below x ≈ 0.05, the conductivity (i.e. 

the hole concentration), TC, and the zero temperature magnetization increased with 

increasing x.  However, above x ≈ 0.05, it was observed that all of these properties 

leveled off.  Figure 1.2 shows the zero-temperature magnetization and the corresponding 

magnetic moment per MnGa as a function of x (from Ref. 24), which is particularly 

telling.  Divalent spin 5/2 Mn (expected for MnGa) should each contribute a magnetic 

moment of 4 - 5 µB.  However, Figure 1.2 shows that only at x ≈ 0.01 did the magnetic 

moment per MnGa approach that expected value.  As x increased above 1 %, the moment 

per MnGa progressively decreased.  This result implied that a progressively smaller 

fraction of the MnGa were actually participating in the ferromagnetic exchange.    
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Figure 1.2:  Optimally annealed Ga1-xMnxAs zero-temperature magnetization (a) 
and magnetic moment per MnGa ion (b) as a function of MnGa concentration.  
Figure taken from Ref. 24. 
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 The results described above begged some important questions: 

• Why does annealing increase TC and the magnetization? 

• Why does annealing only work well for a very specific time and temperature? 

• Why do TC, the hole concentration, and the magnetization not progressively increase as 

more Mn is added to the system? 

• Can TC continue to increase, or is there a fundamental limit? 

Some answers to these questions have started to come to light in the past two years.  The 

current conventional wisdom is that the key to understanding these phenomena lies in 

understanding an unwanted Mn impurity. 

 

1.7 The Villain:  Interstitial Mn 

 The crystal lattice of GaAs has the zinc-blende structure, in which there are two 

interstitial sites with tetrahedral coordination.  When Mn atoms occupy these interstitial 

sites, they act as double donors (all metal atom interstitials are donors).  Therefore, in 

Ga1-xMnxAs, Mn interstitials (MnI) add electrons to the system which neutralize holes 

that are needed to mediate the ferromagnetic exchange.  Figure 1.3 [25] shows the 

location of the different atoms in Ga1-xMnxAs.   
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Figure 1.2:  Crystal structure of Ga1-xMnxAs.  Figure taken from Ref. 25. 



    11

 

 In addition to eliminating holes, it is likely that MnI hinders the ferromagnetic 

exchange in a second way.  Calculations suggest that when in close proximity, MnI and 

MnGa exhibit an antiferromagnetic exchange interaction [25].  MnI is known to be a 

highly mobile defect, and as a positively charged double donor it has an electrostatic 

attraction to the negatively charged acceptor MnGa.  For these reasons, it is reasonable to 

think that a significant number of MnI and MnGa are in close proximity following growth 

of Ga1-xMnxAs.  So, it is likely that many MnI present in Ga1-xMnxAs are 

antiferromagnetically bonded with nearby MnGa, canceling their moments, and directly 

reducing the overall magnetization.     

 The role of these interstitials was investigated by Yu et al. in 2002 using 

Rutherford backscattering and particle-induced x-ray emission [26].  For their 

experiments, three pieces of a 110 nm Ga1-xMnxAs film were cut from a single wafer.  

One piece was left as-grown, a second piece was optimally annealed (1 hour at 282 °C), 

and a third piece was “over-annealed” (1 hour at 350 °C).  TC for the as-grown film was 

67 K.  For the optimally annealed film TC increased to 111 K, but for the over-annealed 

film TC dropped to 49K.  The channeling measurements showed that for the as-grown 

film, a significant amount of Mn occupied interstitial sites.  When the optimally annealed 

film was examined, it was found to have a reduced concentration of MnI, and a higher 

concentration of Mn at random locations as compared to the as-grown film.  Results for 

the over-annealed sample implied a very high concentration of Mn at random positions 

and a reduction in Mn at both interstitial and substitutional positions.  
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  These results were very important, as they suggested that the annealing process 

enhanced the ferromagnetic properties of Ga1-xMnxAs by liberating MnI and 

redistributing them to random sites, where the Mn would be electrically inactive, and 

unable to hinder the ferromagnetic exchange by either neutralizing holes or canceling 

MnGa moments.  Additionally, these results help explain the detrimental effects of over-

annealing, by corroborating the idea that MnGa are held more strongly to the lattice than 

are the very mobile MnI.  Comparison of the three samples suggests that when Ga1-

xMnxAs is annealed at the optimal temperature, MnI are redistributed to random sites, 

allowing a previously suppressed population of MnGa to participate in the ferromagnetic 

exchange.  Alternatively, when the annealing temperature is raised, there is enough 

energy to liberate the more tightly bound MnGa, reducing the number of Mn that 

participate in ferromagnetism.  So, with this work, a plausible explanation of the 

annealing process was produced – optimal annealing puts MnI in places where it can’t do 

any damage, without disturbing a significant amount of MnGa .  

 The authors of Ref. 26 also proposed a solution to the mystery of why the 

ferromagnetic properties of Ga1-xMnxAs do not continually improve with increasing x.  

Their argument revolves around the fact that the concentration of charged defects is 

largely determined by the Fermi energy [27].  In their picture, as Mn progressively enter 

Ga sites during the growth process, each new MnGa adds to the concentration of 

electrically active acceptors, while at the same time adds to the number of 

uncompensated spins.  That leads to an increasing downward shift of the Fermi energy, 

which progressively increases the formation energy for negatively charged defects such 

as MnGa.  As more and more Mn are added to the system, it becomes progressively more 
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difficult for a Mn atom to find its way to a Ga site. Therefore, a progressively larger 

fraction of Mn atoms end up in locations where they do not raise the hole concentration – 

such as interstitial sites.  This reasoning suggests that as x increases to a value where TC 

no longer increases, Mn are also entering interstitial sites in sufficient numbers as such to 

maintain a constant hole concentration.   

 Some credence to this idea was given by a study conducted by Lee et al. in 2003 

[28].  In this work, a pair of Ga1-xMnxAs films of differing x were doped with varying 

concentrations of Be (an acceptor), in an attempt increase the hole concentration (and 

thereby TC).  After examining the films using SQUID magnetometry and 

magnetotransport measurements, it was found that for x = 0.03, TC did progressively 

increase with increasing Be concentration.  This implies that for this value of x, Be 

doping was successfully increasing the hole concentration.  However, when the MnGa 

concentration was raised to x = 0.05, further increases in Be concentration systematically 

decreased TC.  This gives indirect evidence to suggest that above a maximum hole 

concentration, a progressively larger fraction of added Mn does go to interstitial sites.  If 

this is the case, a fundamental limit on the hole concentration could be a roadblock to 

significant further increases in TC.   

 Another impurity that is a source of trouble in Ga1-xMnxAs is As antisites, that is, 

As that ends up at Ga sites (AsGa) [29, 30].  Like MnI, AsGa is a double donor, and is 

therefore detrimental to the ferromagnetic exchange.  However, it is not likely that AsGa 

are major players in annealing dependent phenomena.  AsGa has been shown to be a 

stable defect at temperatures up to 450 °C [31], while optimal annealing of Ga1-xMnxAs 

takes place at temperatures below 300 °C.   
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1.8 What Becomes of The Villain? 

 If liberation of MnI is reason that annealing works, where does that liberated Mn 

end up?  This question has been addressed in a number of recent studies that focus on 

surface and interface effects in Ga1-xMnxAs (including the research results of this 

dissertation).  In 2003, Chiba et al. studied the effects of annealing Ga1-

xMnxAs/GaAs/Ga1-xMnxAs trilayer structures [32].  It was found that optimal annealing 

significantly improved TC for the Ga1-xMnxAs layer with a free surface, whereas it had no 

apparent effect on the Ga1-xMnxAs layer that was covered with GaAs.  This result implied 

that the presence of a free surface was critical to successful annealing of Ga1-xMnxAs. 

   Experiments along a similar vein were undertaken by Stone et al. in 2003 [33].  

This group examined the effects of annealing on a series of Ga1-xMnxAs films with 

varying thickness of GaAs capping layers.  It was found that as little as ten monolayers of 

GaAs (~ 3 nm) were sufficient to completely suppress any positive effects of annealing.  

Additionally, electron micro-probe analysis (EMPA) measurements indicated a rise in 

Mn concentration for uncapped annealed films, as compared to capped annealed films.  

EMPA measurements are most sensitive to surface effects, due to the short penetration 

depth of the probing electrons.  Therefore, these results suggested an increased Mn 

concentration at the surface of the film.  In particular, this suggested that MnI were 

diffusing to the film surface during annealing. 

 Auger measurements published by Edmonds et al. in 2004 confirmed the presence 

of increased Mn at the surface of optimally annealed Ga1-xMnxAs films [15].  Also, this 

group performed time-dependent resistivity measurements on Ga1-xMnxAs films during 
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annealing.  These measurements showed a systematic decrease of resistivity as a function 

of annealing time, implying a systematic increase in hole concentration. These annealing-

dependent resistivity measurements determined a 0.7 ± 0.1 eV energy barrier for 

diffusion of MnI to the surface.  This measured value compared favorably with ab initio 

calculations that considered the effect of MnGa – MnI complexes and electric fields 

produced by MnGa.  

 Our polarized neutron reflectometry measurements published in 2004 [34] 

provided additional evidence for surface diffusion of Mn in Ga1-xMnxAs during 

annealing.  This work will be described in great detail in later chapters.   

 

1.9  Brief Summary of What We Know 

 To summarize, the following picture is now widely accepted for Ga1-xMnxAs: 

• Mn that exist at Ga sites (MnGa) are the “good guys”.  MnGa participate in a 

ferromagnetic exchange mediated by holes they themselves create.  Mn at interstitial 

sites (MnI) are the “villains”.  MnI are double donors, and are thought to align 

antiferromagnetically with neighboring MnGa. 

• Optimal annealing increases TC and the saturation magnetization in Ga1-xMnxAs by 

overcoming the binding energy of MnI, allowing it to diffuse to the surface to the 

sample. 
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• If a Ga1-xMnxAs sample is over-annealed, enough energy is added to the system to 

release MnGa from its spot in the lattice. 

• There appears to be a maximum hole concentration at which Ga1-xMnxAs can be 

grown.  Above this hole concentration, further added Mn becomes progressively more 

likely to occupy interstitial sites.   

• It is not yet known whether advances in sample growth or annealing techniques can 

overcome this apparent hole concentration limit, and further increase TC by a 

significant amount 

 

1.10 Goals of This Study 

 This dissertation work is a neutron scattering study of dilute Ga1-xMnxAs thin 

films.  At the time that this study was initiated (May, 2002), Ga1-xMnxAs was already a 

hot research topic.  However, at that time no neutron scattering studies of dilute Ga1-

xMnxAs films had been published (and our work was the first).  In addition, the state of 

understanding concerning Ga1-xMnxAs has evolved considerably since the start of this 

project.   For instance, the ferromagnetically enhancing properties of annealing were 

already well established empirically.  However, the surface was only beginning to be 

scratched with regard to the mechanisms with which annealing was achieving those 

benefits.  Furthermore, questions surrounding the mysterious low magnetization per Mn 

atom were still at the forefront of discussion.   
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 Given this situation, we hoped to gain insight into the ferromagnetic exchange 

and annealing-dependent properties of Ga1-xMnxAs by using the unique microscopic 

probe provided by neutron scattering.  The samples for this study have been fabricated by 

Prof. Jacek Furdyna’s group at the University of Notre Dame.  Tomek Wojtowicz and 

Xinyu Liu led the growth effort, and were assisted by Weng-Lee Lim, ShaoPing Shen, 

and Zhiguo Ze.  Additionally, our Notre Dame collaborators have provided bulk 

characterization of their samples, using SQUID magnetometry, and magnetotransport 

measurements.   

 The majority of the neutron scattering measurements, which were initiated in 

May, 2002, were performed at the NIST Center for Neutron Research (NCNR) at the 

National Institute for Standards and Technology.  These experiments were performed in 

collaboration with NCNR researchers Julie Borchers, Kevin O'Donovan, and Sungil Park.   

Additional measurements were taken at the Intense Pulsed Neutron Source (IPNS), and 

the Materials Science Division (MSD) at Argonne National Laboratory in collaboration 

with MSD researchers Suzanne te Velthuis and Axel Hoffman. 

  

1.11 Polarized Neutron Reflectometry Measurements 

 From the beginning, the primary focus of this research effort was the use of 

polarized neutron reflectometry (PNR) to examine the ferromagnetic ground state of Ga1-

xMnxAs.  PNR is a powerful experimental technique that can provide information about 

the depth-dependent chemical profile and depth-dependent vector magnetization profile 
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in thin films.  The details of PNR will be presented in Chapter 2.  Some of the questions 

that we wished to answer with PNR measurements were the following: 

• Is there moment canting in Ga1-xMnxAs? 

 At the time this research effort was started, it was experimentally well established 

that not all the Mn atoms in Ga1-xMnxAs were participating in the ferromagnetic 

exchange.  We were intrigued by the possibility that this could be due to some sort of 

moment canting, or frustration effects that resulted in non-collinear alignment of the Mn 

magnetic moments, even at low temperature and under an applied magnetic field.  PNR 

was the perfect tool for investigating this possibility, as it has the ability to detect 

components of a film’s magnetization perpendicular to its net magnetization direction.  

After examining many Ga1-xMnxAs films of varying thickness, x, and annealing 

conditions, no conclusive evidence for coherent moment canting could be found.  

However, the measurements reported in this dissertation certainly do not exclude the 

possibility of non-collinear moments in our Ga1-xMnxAs films.  

• Are interfacial features important for Ga1-xMnxAs films? 

 PNR is particularly sensitive to chemical and magnetic changes at interfaces 

between layers.  That sensitivity, coupled with the possibility of some sort of surface 

diffusion during annealing provided a second motivation for using PNR to examine Ga1-

xMnxAs films.  This turned out to be a particularly interesting aspect of this study, as 

important annealing-dependent chemical and magnetic differences were found between 

as-grown and optimally annealed Ga1-xMnxAs films.   

 



    19

• Is there a uniform distribution of magnetic moment? 

 PNR is useful as a depth-dependent vector magnetometer.  So, although we could 

not definitively detect the presence of any magnetization perpendicular to the overall 

magnetization, we were able to successfully establish depth profiles of the magnetization 

component parallel to net magnetization for Ga1-xMnxAs films of varying thickness, x, 

and annealing conditions.  These profiles produced the unexpected result that the as-

grown films commonly feature a distinct gradient in the magnetization (increasing 

towards the free surface), a feature that is far less pronounced after annealing. 

 

1.12 Inelastic Neutron Scattering Measurements 

• Can we detect spin waves in Ga1-xMnxAs? 

 In addition to the PNR measurements, another important aspect of this work was 

an attempt to measure the spin wave dispersion in Ga1-xMnxAs using inelastic neutron 

scattering.  For these measurements, Furdyna’s group produced a series of Ga1-xMnxAs 

films ranging from ~ 6 – 9 µm thick.  To our knowledge, these ultra-thick samples are the 

thickest Ga1-xMnxAs samples ever fabricated.  However, despite this tour de force of 

sample growth, the very dilute nature of the magnetic moments made inelastic 

measurements exceedingly difficult.  While some evidence of spin waves was found, 

results were inconclusive and did not reproduce well. 
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Chapter 2 

 

Polarized Neutron Reflectometry 

 

2.1 Introduction 

 Polarized neutron reflectometry (PNR) is the experimental technique employed 

most extensively in this study.  With that in mind, this chapter will give a detailed 

overview of this technique.  This overview will focus on three areas:  elements of the 

theory underlying reflection of polarized neutrons, the instruments used for these 

experiments, and the data analysis techniques employed to interpret the data.  The 

following theoretical account closely follows portions of the much more detailed 

treatments given by Majkrzak, O’Donovan, and Berk [35], and by Fitzsimmons and 

Majkrzak.[36]  Another valuable reference is Felcher’s pioneering 1981 work [37].   
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2.2 Reflection of Neutrons 

 Neutron scattering relies upon the quantum mechanical phenomenon of wave-

particle duality.  Neutrons act as waves when they interact with a sample material, and in 

doing so, they encode information about the structure or dynamics of that sample.  But 

following those interactions, we are conveniently able to treat the scattered neutrons as 

particles, counting them individually as we extract their encoded information.  When 

focusing on the wavelike properties of the neutron as it interacts with a material, it is 

sufficient to represent it as a three-dimensional plane wave  

                                                  Ψ(k, r) = eik⋅r,                                               (2) 

where k is the neutron wavevector, and r is its position.  For simplicity’s sake, we will 

temporarily ignore the spin of the neutron.  For the case of neutron reflectometry, we are 

concerned only with elastic scattering, which allows for description of neutron 

interactions in terms of the time-independent Schrödinger equation 

                              [(-ħ2/2mn)∇2 + V(r)] Ψ(k, r) = E Ψ(k, r),                        (3) 

where ħ is Planck’s constant, mn is the neutron rest mass, V(r) is the scattering potential, 

and E is the total neutron energy.  Assuming neutrons incident from a vacuum, there is no 

potential outside the sample 

                                    V(r) = 0 ⇒ E0 = KE =  ħ2k2/2mn.                               (4) 

Inside the sample, we consider a continuum of scatterers of number density N, such that 
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                           V(r) = (2πħ2/mn) ∑ Nj bj = (2πħ2/mn)ρnuc,                           (5) 

where j sums over all the different elements in the sample, b is each element’s 

characteristic nuclear scattering length, and ρnuc is the nuclear (also called chemical [38]) 

scattering length density (SLD).  Since we’re only worried about elastic processes, 

                            E0 = E ⇒ [∇2 + k0
2 - 4πρnuc] Ψ(k, r) = 0.                         (6)                      

The neutron energy inside the medium is 

                                    E = (ħ2k2/2mn) + (2πħ2/mn) ρnuc,                                (7) 

and since the energy must be conserved from outside to inside, 

                                                k2 = k0
2 - 4πρnuc.                                            (8) 

This can be used to define the refractive index 

                                      n = k/k0 = [1 – (4πρnuc/k0
2)]1/2.                                 (9) 

Defining k via Eq. 9 allows the Schrödinger equation to be rewritten as 

                                            [∇2 + k2] Ψ(k, r) = 0.                                      (10) 

In a region of space with uniform but nonzero ρnuc, the solution to Eq. 10 takes the plane 

wave form described in Eq. 2.  Reinserting that plane wave solution into Eq. 10, and 

considering Eq. 8 yields the following valuable identity, 

                             kx
2 + ky

2 + kz
2 + 4πρnuc =  k0x

2 + k0y
2 + k0z

2.                      (11) 
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 Now consider the case of reflection from an infinitely broad, perfectly flat slab 

that extends in the z (the surface normal) direction with thickness δ.  The slab is bounded 

by an infinite vacuum on either side (ρ = 0), and the SLD within the slab has no lateral 

dependence (ρnuc = ρnuc (z)).  Since dρnuc dx = dρnuc /dy = 0, conservation of momentum 

dictates that 

                                kx = k0x, ky = k0y ⇒ kz
2 = k0z

2 - 4πρnuc.                          (12)               

Plugging those substitutions back into the Schrödinger equation shows that the wave 

equation reduces to one dimension 

                                  [(∂2/∂z2) + k0z
2 + 4πρnuc (z)]ψ(z) = 0.                         (13) 

This shows that if there are no in-plane variations in SLD, the specular reflectivity (angle 

of incidence = angle of reflection) is the only possibility for reflection.  This means that 

the incoming and outgoing wavevectors satisfy 

                                                      |ki| = |kf|.                                                                             (14) 

Additionally, the wavevector transfer is defined as 

                           Q = kf – ki, |Q| = Q = 2k0 sinθ = 4π sinθ / λ0,                   (15) 

where λ0 is the incoming neutron wavelength, and θ is the angle between ki and the x-

axis.  A diagram of the specular condition is shown in Figure 2.1.  In reality, a sample 

always contains some in-plane variations.  Generally, the result is that the specular 

reflectivity provides the depth-dependence of the SLD while integrating over all in-plane  
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Figure 2.1:  Diagram of the specular condition.  Neutrons are reflected at the 
same angle at which they are incident, producing a Q-vector perpendicular to 
both in-plane coordinate directions.  The specular reflectivity contains 
information about the depth-dependence of the sample’s scattering length 
density.  In-plane variations in scattering length density are integrated over. 
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inhomogeneities.  Conversely, a great deal of in-plane information can be obtained by 

examining the off-specular reflectivity, but that is beyond the scope of this discussion. 

 For now, let us consider the case of a constant ρnuc(z).  Then, solving Eq. 13 for 

zero potential outside the slab (denoted region I and region III), and a constant potential 

inside the slab (denoted region II), this standard quantum mechanics 

transmission/reflection problem results in 

               ,          (16) 
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where the z subscripts have been dropped from the k’s, and those k’s are determined from 

Eq. 9.  Additionally, t is the transmission amplitude, and r is the reflection amplitude.  

For the case of a sample with a varying z-dependent potential, this formalism must be 

extended to incorporate multiple layers.  This is done by dividing the slab into n number 

of bins j, each with a variable SLD.  The resulting matrix equation can be expressed as 
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and the total sample thickness is defined as the sum of the individual bin thicknesses 
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Eq. 17 allows for calculation of a composite reflectivity amplitude r, which can be 

compared to the measured reflectivity, R = |r|2.  This formalism is obviously useful for 

discrete layers with sharply contrasting SLD, but with enough adequately small bins it 

can also approximate continuous changes in SLD.  The bin size is a measure of the depth 

resolution of the SLD profile.  The experimentally achievable depth resolution is largely 

determined by the maximum Q value of the data, so a good rule of thumb is that the bin 

size should not be too much smaller than π/Qmax.  Eq. 18 is an exact calculation, and is 

referred to as “dynamical”, because it properly accounts for dynamical surface scattering 

of neutrons at very small angles (low-Q).  A much simpler, alternative approach to 

calculating the reflectivity is to assume that the sample never significantly distorts the 

neutron wavefunction from its free-space form.  This type of approximation is known as 

the Born approximation [39], and is considered “kinematic” instead of dynamic.  While 

the Born approximation can be useful for qualitative analysis (as we will see later), or for 

describing features at high-Q, it fails catastrophically at low-Q.      

 

2.3 Reflection of Polarized Neutrons 

 In the previous section, the magnetic moment of the neutron was ignored.  

However, the moment is of critical importance, as it allows neutron scattering to reveal 

magnetic properties of sample materials.  By considering the magnetic interaction, we 

can move into the realm of polarized neutron reflectometry (PNR).   In the presence of a 

magnetic field B, the scattering potential from Eq. 5 is modified in the following way 
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                               V = Vnuc + Vmag = (2πħ2/mn) ρnuc ± µ⋅B                         (20) 

where the magnetic moment vector is defined in terms of the neutron magnetic moment 

µn, the Pauli spin matrix σ, and the nuclear magneton µN = 3.152 x 10-8 eV/T, 

                                           µ = µn σ = -1.913 µN σ .                                    (21) 

In matrix notation, 

                   ( ) 







−+
−





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


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yxz
n

nuc
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n BBiB
BiBB

m
z µ

ρ
ρπ

m
h

0
02 2

V ,             (22) 

where “-“ corresponds to when the neutron spin is parallel to H, and “+” corresponds to 

when the neutron spin is antiparallel to H.  Maxwell’s equations dictate 

                                                  B = µ0 H + m,                                             (23) 

where µ0 = 4π x 10-7 T⋅m⋅A-1 is the permeability of free space, H is the laboratory 

magnetic field of reference, and m is the intensity of magnetization.  PNR is sensitive to 

contrast in m, so for fields applied in the y-direction (as in Fig. 2.1) we consider the 

potential difference across an interface 

               ( ) 
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where m = mx x+ my y+ mz z, is the sample magnetization. 

From Eq. 20, the magnetic SLD can be defined in terms of a magnetic scattering length p, 

                                  ρmag = ∑ Ni pi = C ∑ Ni µi = C’ M,                            (25) 

where M is the sample magnetization, C = 2.695 x 10-5 Å⋅µB
-1 and C’ = 2.9 x 10-9 emu-

1⋅cm3⋅Å-2.  In terms of SLD, the potential difference becomes 
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The elements of the matrix in Eq. 26 can be recast in terms of spin-flip (incoming and 

scattered neutrons with opposite spin, designated ++ and - -) and non spin-flip (incoming 

and scattered neutrons with the same spin, designated +- and -+) scattering events  

ρ++ = ρnuc + ρz
mag, ρ-- = ρnuc - ρz

mag, ρ+- = ρx
mag – i ρy

mag, ρ-+ = ρx
mag + i ρy

mag, 

                                         ( ) 

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
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ρρπ

nm
z

22 hδV⇒ .                                 (27) 

Solving the Schrödinger equation for the above potential results in 
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where 

                                  ψ+(z) = exp(ik+z), ψ-(z) = exp(ik-z),                          (29) 

and the refractive index is birefringent  

                                         2
00

)(4
1

kk
kn magnuc ρρπ ±

−== ±
± .                                  (30) 

 

Consider the generalized case of sample spins with in-plane components of M parallel 

and perpendicular to H applied in-plane (see Fig. 2.2).   
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Figure 2.2:  PNR is sensitive to components of the in-plane sample magnetization both 
parallel and perpendicular to the applied field.  Since PNR is also sensitive to the 
depth-dependence of the magnetization, this technique provides a method of depth-
dependent vector magnetometry.
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With spin-dependence accounted for, the “polarized” analogue of Eq. 18 is 
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where I+ (I-) is the incident fraction of neutrons parallel (antiparallel) to H, and the 

elements Aij are 

A11 = 2η[γ3 cosh(S+ δj) - γ1 cosh(S- δj)] = A33,                                             (32) 

A21 = 2η[γ1 γ3 cosh(S+ δj) - γ1 γ3 cosh(S- δj)] = A43 

A31 = 2η[S+ γ3 cosh(S+ δj) – S- γ1 cosh(S- δj)],  

A41 = 2η[S+ γ1 γ3 cosh(S+ δj) – S- γ1 γ3 cosh(S- δj)],  

A12 = 2η[- cosh(S+ δj) + cosh(S- δj)] = A34 

A22 = 2η[-γ1 cosh(S+ δj) + γ3 cosh(S- δj)] = A44 

A32 = 2η[-S+ sinh(S+ δj) + S- sinh(S- δj)], 

A42 = 2η[-S+ γ1 sinh(S+ δj) + S- γ3 sinh(S- δj)], 

A13 = 2η[(γ3 / S+) sinh(S+ δj) - (γ1/S-) sinh(S- δj)], 
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A23 = 2η[(γ1 γ3 / S+) sinh(S+ δj) - (γ1 γ3 / S-) sinh(S- δj)], 

A14 = 2η[(-1 / S+) sinh(S+ δj) + (1 / S-) sinh(S- δj)], 

A24 = 2η[(-γ1 / S+) sinh(S+ δj) + (γ3 / S-) sinh(S- δj)], 

where, 

S± = i n± k0,   

γ1 = (2|ρmag| + ρ-- - ρ++ + 2ρ-+) / (2|ρmag| - ρ-- + ρ++ + 2ρ+-), 

 γ3 = (2|ρmag| - ρ-- + ρ++ - 2ρ-+) / (2|ρmag| + ρ-- - ρ++ - 2ρ+-), 

Eq. 31 allows for calculation of four neutron spin reflectivities, two non spin-flip (NSF), 

and two spin-flip (SF):  R++ (NSF, neutron spin parallel to H), R-- (NSF, neutron spin 

antiparallel to H), R+- (SF, incoming spin parallel to H, scattered spin antiparallel), and R-

+ (SF, incoming spin antiparallel to H, scattered spin parallel).   

 A qualitative understanding of what information can be obtained from measuring 

these four reflectivities can be obtained by considering the Born approximation.  This 

gives 

                    (33) 
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where φ is the angle between H and M.  Eq. 33 provides the “take-home” messages:  

A) The depth-dependent, in-plane sample magnetization parallel to H, is given by the 

difference in the NSF reflectivities, spin up - spin down (R++ - R- -).  

B) The depth-dependent, in-plane sample magnetization perpendicular to H is given by 

either of the SF reflectivities (R+- or R-+).    

So, it can be seen that measurement of all four neutron reflectivities makes PNR a tool 

for measuring depth-dependent vector magnetization. 

 

2.4 PNR Measurements 

 While the reflection of polarized neutrons is certainly a quantum mechanical 

phenomenon, an actual PNR experiment can be understood fairly well in terms of a 

classical optical experiment (with the nontrivial exception of the magnetic polarization!).  

Neutrons of a particular “color” (wavelength) are magnetically polarized, and are 

specularly reflected from the sample as a function of scattering angle θ .  After reflection, 

the spin polarization is analyzed by keeping only neutrons corresponding to one 

particular spin state, and throwing the rest away.  The resulting neutron intensity is then 

measured with a detector.  Since θ corresponds to Q (Eq. 15), measuring the reflected 

intensity as a function of increasing θ provides SLD information corresponding to 

progressively smaller length scales.  Furthermore, by alternating the incoming and 
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analyzed neutron spin polarizations, we can specifically measure each of the SF and NSF 

reflectivities, which as discussed above, provide the depth-dependent vector 

magnetization. 

 

2.5. NG-1 Reflectometer 

 The vast majority of the PNR measurements described in this dissertation were 

performed on the NG-1 Reflectometer at the NIST Center for Neutron Research (NCNR).  

A schematic of the NG-1 Reflectometer is shown in Fig. 2.3.  Since the neutron source at 

the NCNR is a 20 MW reactor, a continuous stream of neutrons with a Maxwellian 

distribution of wavelengths is available to NCNR instruments.  The NG-1 beamline is on 

a neutron guide that is illuminated by a liquid hydrogen cold source that shifts the peak 

energy of the Maxwellian distribution to longer wavelengths (lower energy).  By utilizing 

longer wavelength neutrons, higher resolution in Q (wavevector transfer) is achievable.  

The cold neutrons in the guide intersect a vertically focusing pyrolytic graphite 

monochromator.  The monochromator selects out only neutrons of a particular 

wavelength (for the NG-1 Reflectometer, 4.75 Å), and redirects them towards the 

reflectometer apparatus.  The intensity of the monochromated beam is then recorded by a 

neutron monitor before passing through a pair of collimating slits.  Next, spin 

polarization of the beam is achieved via a Fe/Si supermirror, which (with over 90% 

efficiency) scatters out of the transmitted beam all neutrons with spin states other than 

spin down (with respect to the plane of the mirror).  Following the polarizing supermirror 

is a DC magnetic spin flipper, which (when activated) produces a magnetic field that  
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Figure 2.3:  Schematic of the NG-1 Reflectometer.  The numbers correspond to the control 
motors:  3 - scattering angle (θ), 4 - detector arm angle (2θ), 7 - sample translation, 8 - 
sample tilt angle, 1, 2, 5, 6 - slits.  Figure taken from Ref. 35. 
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causes the neutron spin to precess 180°.  Depending on whether it is on or off, the spin-

flipper produces a beam of either spin-up or spin-down neutrons.  Following another set 

of collimating slits, the neutron beam reflects from the sample (housed in an aluminum 

displex sample can).  Via the sample table, the sample can be rotated about θ , translated 

(approximately along the sample plane normal) and tilted about the sample’s in-plane 

horizontal axis.  The sample is surrounded by an electromagnet, which produces a 

vertical magnetic field H in the plane of the sample.  On either side of the sample is room 

for addition of small bar magnets, which are used to provide guide fields to maintain 

polarization of the beam.  The reflected beam from the sample is then passed through 

another spin-flipper/slits/polarizing mirror/slits assembly which allows for analysis of all 

four of the previously discussed spin-dependent reflectivities.  The analyzed beam is 

transmitted through a Be filter (to remove λ/n higher order wavelengths that may have 

passed through the monochromator) before being incident on a horizontally narrow 

“pencil” detector, which measures the reflected intensity.  A photograph of the upstream 

end of the reflectometer is shown in Fig. 2.4, and a close-up of the sample container and 

magnet housing is shown in Fig. 2.5.   

 Manipulation of the reflectometer slits, scattering angles, and sample translation is 

performed via eight motors (labeled on Fig. 2.3), which are computer controlled using 

Instrument Control Program (ICP) [40] software. 

 The NG-1 experiments we performed typically involved the following steps: 

1)  Slitscan:  Collimating slits, H, and temperature were all set to the values to be used in 

the experiment,and an appropriate “slitscan” was taken.  This involved rotating the  
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Figure 2.4:  Photograph of the upstream end of the NG-1 Reflectometer.  Some 
points of interest include:  a) the front polarizing supermirror, b) the front DC spin 
flipper, c) the sample table (motors 3, 7, and 8), d) gear controlling the detector arm 
(motor 4), e) the electromagnet (sample can is visible in the hole).  Picture courtesy 
J. S. Lee of the Korea Atomic Energy Research Institute. 
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Figure 2.5:  Close-up photograph of the electromagnet sample housing.  The cold 
finger containing the sample is shown between the two poles of the 
electromagnet.  A stack of guide field magnets is visible in the foreground.  
Courtesy J. S. Lee of the Korea Atomic Energy Research Institute.
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detector arm into the main beam, and translating the sample out of the beam, before 

measuring all four reflectivity cross sections.  The slitscan was used to establish the 

difference in polarization efficiency upstream and downstream of the sample (i.e. the 

front and back flipping ratios).   

2)  Alignment:  The detector arm was rotated into the main beam, and the high intensity 

position was found.  This angle was set to be 2θ = 0°, and defined the detector arm 

alignment.  The sample was then translated into the main beam, and the sample angle was 

rotated until a maximum was found.  This maximum crudely defined θ = 0.  For most 

materials, the critical θ (maximum angle of total external reflection) occurs near 0.25°.  

With this in mind, the detector arm was rotated to 2θ = 0.5°, and the sample angle was 

rotated to θ = 0.25°, a position known as the “specular ridge”.  While at the specular 

ridge, θ, the translation, and the tilt were all optimized.  The maximum intensity position 

was then redefined to be θ = 0.25°. 

3)  Specular Scans:  All four reflectivities were individually measured as a function of θ, 

while keeping the detector arm in a position equal to 2θ.  Since the reflected intensity 

commonly falls off approximately as Q4, counting times were increased with increasing 

θ, in order to provide comparable statistics. 

4) Background Scans:  Background scattering was measured by repeating the specular 

scans (generally with reduced point density) but with θ offset by 0.3°. 

  

2.6 POSY-I Reflectometer 

 In addition to the experiments on NG-1, a few measurements were conducted on 

the POSY-I polarized neutron reflectometer [41, 42] at Argonne National Laboratory’s 
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Intense Pulsed Neutron Source (IPNS).  The primary difference between measurements at 

IPNS as compared to the NCNR is that IPNS is a pulsed source, which produces 

monochromatic bursts of neutrons instead of a steady stream.  POSY-I exploits the pulse 

structure by fixing θ  while simultaneously measuring a spectrum of wavelengths λ.  By 

examining Eq. 15, one can see that varying λ with θ fixed serves to vary Q, just as 

varying θ with λ fixed varies Q in a continuous source experiment.  While there are some 

differences at a pulsed source (different methods for spin-flipping, for example), pulsed 

PNR experiments are fairly similar to those at a continuous source.  With that in mind, 

and since only a very few of the measurements in this dissertation were taken at IPNS, a 

more detailed description of POSY-I will not be outlined here.  References 36, 41, and 42 

are good resources for more details concerning PNR at pulsed sources. 

 

2.7 Data Corrections     

 The first step in processing the data is to understand the statistical uncertainty.  

The uncertainty associated with the reflectivity is 

                                                               ∆R = R1/2.                                                 (34) 

Before it can be properly analyzed, the raw data must go through a series of refinements.  

For the NG-1 measurements described in this dissertation, data refinement included the 

following steps (in which error propagation was accounted for): 

1) Background Subtraction.  The previously described background scans were 

subtracted from the specular scans.  The background for most of our measurements 

appeared to be largely instrumental noise, but also likely included some off-specular 

 



    40

scattering resulting from in-plane sample inhomogeneities.  The background we observed 

was generally not sample-dependent, as background scans taken with the same slit 

settings for different samples were commonly identical within statistics.  

2) Polarization Corrections.  In order to accurately gauge the intensities of the four 

spin-dependent reflectivities, the efficiencies of the polarizing supermirrors and spin 

flippers must be accounted for.  This efficiency information is provided by the slitscan, 

and from the two SF reflectivities. 

3) Footprint Correction.  The illumination of the sample changes as it is rotated, and 

that must be accounted for.  Since our measurements did not involve varying slits as a 

function of θ, and our samples were assumed to be fully engulfed in the beam for all θ, 

the footprint corrections were fairly straightforward.  The positively sloping region near 

the critical edge of an NSF reflectivity curve (Fig. 2.6) would be flat, if not for the change 

in sample illumination.  So, a line is fitted to this region, and is used to correct the data 

such that the formerly sloping region is flat.  This correction is then applied to the other 

reflectivities. 

 The corrections to most of the PNR data in this dissertation were applied using the 

Reflred [43] software package. 

 

2.8 Data Analysis 

 Once the data has been properly processed, some qualitative assessments of the 

corrected data can be made.  For example, consider the corrected set of NSF R++  and R--  
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critical edgecritical edge

Figure 2.6:  Log-scale plot of reflectivity as a function of Q (Å) illustrating the pre-
footprint correction critical edge region.  If not for Q-dependent sample illumination, 
the boxed region would be flat.    
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data (taken from a Ga1-xMnxAs film) shown in Fig. 2.7.  Some of the important features 

in this figure are: 

1) Critical Edge.  Position of this feature is determined by the summed SLD’s of the 

layers.  Typically, the critical edge is primarily determined by the SLD of the substrate, 

since it’s usually the thickest layer by orders of magnitude. 

2) Periodicity of Fringes.  Dependent on the thickness of contrasting layers. 

3) Amplitude of Fringes.  Determined by SLD contrast between layers. 

4) Spin-Up & Spin-Down Splitting.  Results from sample magnetization.  Magnitude of 

splitting as a function of Q is roughly related to the magnetization at different length 

scales. 

5) Fringe Attenuation.  Comes from roughness in SLD between contrasting layers.  

Sharply contrasting interfaces produce little attenuation, while “blurry” interfaces can 

greatly reduce the high Q intensity, and alter the fringe periodicity. 

 The spin-flip reflectivities are more difficult to understand in a qualitative, 

straightforward fashion.  For the purposes of this dissertation, it is enough to say that 

detection of large SF intensity (at or near the NSF intensity near the NSF critical edge) 

that remains above background levels for a reasonable region of Q (multiple SF fringes) 

would suggest significant magnetic moment canting.  As will be explained in the next 

chapter, we were unable to detect definitive, reproducible evidence of moment canting in 

any of our Ga1-xMnxAs samples (which is not to say we can rule out moment canting!).  

For this reason, SF analysis is not given as thorough a treatment as NSF analysis.  
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1. critical edge position

2. periodicity of fringes

3. amplitude of fringes
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1. critical edge position

2. periodicity of fringes

3. amplitude of fringes
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Figure 2.7:  Example of corrected NSF PNR data.  A great deal can be 
ascertained from qualitative assessment of features in the data. 



    44

 

   Quantitative information is typically obtained by employing a nonlinear least-

squares numerical analysis (corresponding to the theoretical formalism described above) 

to fit the PNR data.  Most of the PNR data described in this dissertation was fit using the 

Reflpol software package, [43] which is based on algorithms developed by Ankner in the 

1980’s [44].  Reflpol fits the PNR data using the following parameters for each layer of a 

SLD model: 

1) QC (Å-2).  The square of the critical edge position for the layer.  Solving Eq. 9 for Q 

(Q = 2k0) when k0 = 4πρnuc, defines the critical edge, and gives Q2
C = 16πρnuc.  This 

means that varying this parameter is the same as varying the nuclear SLD. 

2) D (Å).  Layer thickness corresponding to the nuclear SLD. 

3) R0 (Å).  Roughness in QC (nuclear SLD) between the layer and the layer above it.  

This value should not exceed the thickness of the layer, or the layer above it. 

4) MU (Å-1).  Layer absorption.  For the materials considered in this study, this was 

assumed to be a negligible variable, and was kept fixed. 

5) QM (Å-2).  Square of the magnetic critical edge position for the layer.  Since Q2
C = 

16πρmag = 16π C’M (by the same argument as for QC), varying this parameter is the same 

varying the layer magnetization. 

6) DM (Å).  Magnetic layer thickness.  For our purposes, this was always fixed to be the 

same as the nuclear layer thickness. 

7) RM (Å).  Roughness in QM (magnetization) between the layer and the layer above it.  

This value should not exceed the thickness of the layer, or the layer above it. 
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8) TH (deg).  Moment canting angle.  270° is taken to be parallel to the applied field H.  

Fitting this parameter requires fitting SF data.  Since the SF data is taken to be too small 

to accurately fit for the data in this study, TH is kept fixed at 270°. 

 Furthermore, Reflpol accounts for the following beam parameters that apply to all 

layers: 

9) Intensity.  Defines the normalization of the maximum beam intensity.  Taken to be 1 

for all the fits in this study. 

10) Background.  Adds a constant background to the data.  Not used in this study (value 

set to 1e-10), as the data are background subtracted. 

11) Wavelength (Å).  Wavelength of the incident beam.  λ = 4.75 Å for all data in this 

study. 

12) Wavelength Divergenge (Å).  Accounts for any Q-independent uncertainty.  We 

assume this to be fairly well defined, so this parameter was kept fixed at 0.021 for all data 

in this study. 

13) Angular Divergence (rad).  Accounts for any Q-dependent uncertainty.  This not 

only includes the uncertainty in Q, but also “blurring” resulting from warping of the 

sample.  This parameter was varied to correctly fit the “falloff” of the reflectivity 

immediately after the critical edge, and varied from 0.0005 to 0.0010 for the fits in this 

study.  

 The values of these parameters that fit the data define a SLD model representative 

of the sample.  However, it should be made abundantly clear that finding a particular 

model to fit the data, does not imply that is the only model that will fit the data.  In fact, 

uniqueness of a given solution is fundamentally hindered by the fact that reflectometry 
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measures the square of the reflected wavefuction, which means phase information is lost 

(there are schemes for getting around this in specific situations [45], but these methods 

are not applicable to our measurements).  In practice, the best that can typically be done 

is to find the best fit possible using a SLD model that is consistent with the measured 

data, and is physically reasonable.  When other physically reasonable models are found 

that fit the data equally or close to equally as well, it serves to establish uncertainty in the 

parameters that differ among the competing models. 
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Chapter 3 

 

Annealing-Dependence of the       

Ga1-xMnxAs Depth Profile 

 

3.1 Introduction 

 This chapter will discuss polarized neutron reflectometry (PNR) measurements of 

Ga1-xMnxAs films that show significant increases in Curie temperature and net 

magnetization after annealing.  The aim of these experiments was to search for depth-

dependent changes that occur during annealing, with the hope of better understanding the 

mechanisms that enhance the ferromagnetic exchange.  The focus will be on three 

separate sets of samples that were all grown together at nominally the same growth 

temperature, and were annealed under similar conditions.  Annealing was found to 

significantly alter the chemical and magnetic depth profiles of two of these sets, while it 

had little effect on the depth profiles of the other.  The Reflpol [Section 2.7] parameters 

defining each of the models shown in this chapter are summarized in Appendix A.    
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3.2 Sample Preparation 

 The samples for this study were provided by Professor Jacek Furdyna’s group at 

the University of Notre Dame.  Using molecular-beam epitaxy, they fabricated Ga1-

xMnxAs films via the following steps: 

1)  300 nm GaAs buffer layer was deposited on [001] GaAs substrate at ~ 580 °C. 

2)  The substrate was cooled to ~ 210 °C, and a 3 nm GaAs buffer layer was deposited. 

3)  While still at ~ 210 °C, a Ga1-xMnxAs layer was grown. 

4)  Following growth, the resulting film was cleaved into pieces - one piece for 

annealing, and one piece to be left as-grown. 

5)  Annealing took place at ~ 270 °C, for about 1 hour, in a N2 environment. 

6)  The films were further divided, providing specimens for characterization at Notre 

Dame, and pieces for PNR measurements. 

 The resulting samples were typically 2 cm x 2 cm in area.  The MnGa 

concentration x, in the Ga1-xMnxAs films was established by using x-ray diffraction 

(XRD) to measure the change in lattice parameter a, from that of regular GaAs [46].  This 

method is not universally robust [47], as variations in growth parameters among different 

growers can change the relationship between a and x.  However, if calibrated by another 

type of measurement (in our case particle induced x-ray emission), XRD can provide a 

reasonable relation between a and x.  For our samples, we used the relation, 

                                    a(x) = (5.65469  + 0.24661x) Å.                              (35) 

This uncertainty associated with determination of x in this way is ~ ± 0.01.  The bulk 

magnetic properties of the samples were also characterized at Notre Dame, using 

magnetotransport measurements and/or SQUID magnetometry.  Given extensive results 
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from other samples, the magnetic easy axis of these samples was assumed to lie along the 

[100] directions (any sample diagonal).  

 

3.3 Sample Weirdness 

 The Ga1-xMnxAs samples discussed in this dissertation displayed some strange 

features that should be noted.  During alignment of the angle of reflection θ in a PNR 

experiment (see Section 2.4), it is expected to be able optimize the instrument such that 

scanning θ  (a “rocking curve”) results in a narrow Gaussian distribution of intensity 

peaked about the critical angle of reflection.  However, we consistently observed 

significant “shoulders” in these peaks, even when the instrument alignment had been 

exhaustively optimized.  Figure 3.1 shows an example rocking curve illustrating this 

point.  The likely explanation for these shoulders is sample warping due to the way the 

sample was fastened.  The bottom of the sample was covered by an aluminum pad 

(transparent to neutrons), and was attached to the sample holder using a screw.  The 

broadness of the θ rocking curve tended to increase with increasing tightness of this 

screw, suggesting that the application of non-uniform pressure was bending the sample 

(GaAs is highly flexible).  As the sample cooled, the screw became tighter, warping it 

further, and making the shoulder more prominent.  So, the game was to attach the sample 

as loosely as possible, but to make sure that it was held tightly enough to prevent it from 

falling off!  Typically, the broadness of the θ rocking curve also corresponded to the 

value of the angular resolution parameter needed to accurately fit the data (see Section 

2.7).  
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Figure 3.1:  Example rocking curve illustrating the “shoulder” present in 
scans about the critical angle.  Shoulders such as this are likely due to 
warping of the samples. 
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 Translation alignment also proved tricky with these samples.  We found that 

seemingly insignificant changes in translation could cause very noticeable changes in the 

θ  position of the critical edge.  Since the critical θ provides the value of the substrate 

SLD (see Section 2.7), our solution was to try and “tune” the translation such that the 

critical edge corresponded to the expected value for our GaAs substrates.  This was 

mainly for arbitrary aesthetic purposes, as these errors did not significantly affect the 

points of interest, namely the chemical SLD [38] difference between the substrate and the 

rest of the film, and the magnetic SLD.  However, there are small differences in the 

values of the substrate SLD in the models to be presented, which should be ignored.  

These differences are due to variations in tuning the critical θ, and not due to real 

differences in SLD 

 Additionally, PNR measurements consistently found a small region just below the 

critical edge where the background scattering was larger than the specular reflectivity.  

Figure 3.2 illustrates an example of this.  This increased off-specular scattering could be 

related to the previously discussed sample warping, or could be indicative of some in-

plane inhomogeneity of these samples.  While this might be an interesting avenue to 

pursue elsewhere, it can be ignored for the purposes of discussing the specular 

reflectivity.  This bizarre region occurs at Q-values below what is considered during 

fitting, and is removed before analysis. 

 Another point to consider when discussing in-plane inhomogeneity, is that the 

films may not be grown perfectly flat in the first place.  Films grown by the Notre Dame 

group are known to have some unevenness in thickness from the center to the edges [48].   
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Figure 3.2:  Example of corrected data with a region of unusually large 
background scattering.  
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However, they have found that their in-sample thickness difference is 5% or less, and is 

typically more like 1 %.  So, in principle, this lack of flatness could account for a 

maximum of 5 nm of interfacial roughness in a 100 nm film, but it cannot explain 

differences observed between as-grown/annealed pairs.  Furthermore, warping induced 

roughness could produce differences for an as-grown/annealed pair for one set of scans  

 (from differences in screw tightness), but it is highly unlikely that it would do so in a 

reproducible fashion.  In the following discussions, the presence of large magnetic 

gradients will be an important topic.  We have discounted the idea that sample warping or 

uneven thickness could be significantly contributing to these magnetic gradients could be 

due solely to sample warping or uneven thickness because the data is incompatible with a 

comparable gradient in chemical composition. 

 

3.4 Measurement Difficulties 

 This study was intrinsically challenging due to the very dilute concentration of 

Mn in these films.  Because of this, the chemical (nuclear) SLD between Ga1-xMnxAs and 

GaAs is not very different (~ 4 % different or less).  This means that there was little 

chemical contrast between the film and the sample, damping the reflectivity oscillations.  

Fortunately, the magnetic nature of the films produced some additional contrast with the 

substrate, and introduced polarization-dependent differences in the reflectivity that 

provided additional information.  Unfortunately, these films weren’t very magnetic (M ≈ 

20-50 emu⋅cm-3), making the polarization-dependent differences somewhat small.   

 Essentially, looking for depth-dependent changes in these films was like looking 

for a polar bear in a snowstorm (albeit a magnetic polar bear).  Obtaining good data under 

 



    54

these circumstances required long counting times (sometimes up to a week for one 

sample under one set of conditions), and elimination of normally acceptable errors in 

instrument alignment.  These measurements were not “business as usual” on NG-1 at the 

NCNR - we were pushing the limits of the technique.  With each measurement, we 

became better at optimizing the experiments over the year and a half span of this project.  

However, the result is that not all of the data presented here is of equal quality.  Where 

pertinent, these differences in quality will be pointed out.   

 

3.5 Set A:  Annealing Dependence in a 50 nm Film 

 The first as-grown/annealed Ga1-xMnxAs pair we’ll consider provides the clearest 

evidence of an annealing-dependent depth profile, and will be denoted as “set A”.  Set A 

has approximately 50 nm film thickness, and the MnGa concentration was estimated to be 

x ≈ 0.092.  For the as-grown film, magnetotransport measurements revealed a maximum 

resistivity of ρmax ≈ 0.035 Ω⋅cm, at TC ≈ 55 K.  For the annealed film, ρmax ≈ 0.005 Ω⋅cm 

at TC ≈ 125 K.  The increased TC shows that annealing certainly improved the 

ferromagnetic exchange.  Additionally, the drop in resistivity is consistent with an 

increased carrier concentration [49]. From Chapter 1, remember that experiments have 

suggested that annealing improves the ferromagnetic properties of Ga1-xMnxAs by 

liberating interstitial Mn impurities (MnI).  Since MnI, is a donor, and the substitutional 

Mn (MnGa) are acceptors that mediate the ferromagnetic exchange via holes, an increased 

carrier concentration coupled with an increased TC is consistent with a reduction in MnI.  

 Using NG-1 at the NCNR, a set of PNR measurements was taken on each of the 

films after cooling them to low temperature (T = 16 K for the as-grown, T = 18 K for the 
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annealed) while in an in-plane field of H = 6.6 kOe.  The films were oriented with a [100] 

axis oriented nominally parallel to the applied field.  The background for these two 

samples matched each other within error, and also matched that taken for several other 

samples under similar conditions.  This justified adding these matching background scans 

together, in order to improve the overall uncertainty of the data.  Both non spin-flip 

(NSF) and spin-flip (SF) data were taken.  However, the SF data was found to be minimal 

(more on this later), and were not measured with the same statistics as the NSF.  While 

the SF data were used to make polarization corrections to the NSF data, the uncertainty 

added by “cheating” on the SF was extraordinarily small compared to the reduction in 

uncertainty produced by spending more time counting NSF data.  These scans were taken 

late in the study (when our methods were most optimized), and produced very high 

quality data.   

 Figure 3.3 compares the individual non spin-flip (NSF) reflectivities and fits 

corresponding to the as-grown (blue) and annealed (red) films.  The spin-down (R- -) 

reflectivities are shown at the top, and the spin-up (R+ +) are shown at the bottom.  The 

data and fits are multiplied by Q4, and are shown on a log scale (to better emphasize 

subtle features).  The fits shown are very good.  However, before considering the results 

from the fitting, it is valuable to make some qualitative assessments based on visual 

inspection of the data.  For both the spin-up and spin-down reflectivities, it can be seen 

that the low-Q intensity roughly matches for the two films, but at higher-Q the annealed 

film has greater intensity.  Since high-Q corresponds to small length scales, this 

difference suggests a spatially small region of differing SLD between the films.  The 

spin-down oscillations are pronounced for both the as-grown and annealed films, but the  
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Figure 3.3:  Comparison of the as-grown (blue) and annealed (red) set A 50 nm films 
for each of the NSF reflectivities and fits.   
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frequency of the oscillations is increased for the annealed film - implying that the 

measured thickness of the annealed film is slightly greater.  Furthermore, the difference 

in frequency between the two films increases with increasing Q - implying a region of 

differing interfacial roughness between the two films.  Examination of the spin-up 

reflectivities shows that the as-grown oscillations are far more pronounced than those of 

the annealed film.  This suggests that for spin-up neutrons, the SLD of the Ga1-xMnxAs 

region in the annealed film has barely any SLD contrast with its GaAs substrate, while 

there is significant contrast for the as-grown film.  For spin-down neutrons, both films 

show pronounced oscillations (implying strong contrast).  This spin-dependence in 

contrast immediately suggests magnetic differences between the two films.  

  More qualitative assessments can be made by plotting the as-grown and annealed 

NSF data separately, as shown in Figure 3.4.  Comparing the spin-up and spin-down data 

in this way can provide insight into magnetic properties.  While the data from the two 

films are similar, there are some important differences.  While somewhat difficult to see 

while plotted this way, the “splitting” between spin-up and spin-down (R+ + and R- -) is 

larger for the annealed film. Another difference in the spin-up/spin-down relationship is 

evident at low-Q.  For the as-grown film, the spin-up and spin-down reflectivities form a 

“ribbon” between regions of maximum splitting.  This feature is very different for the 

annealed film, for which the spin-up and spin-down reflectivities intersect between 

regions of maximum splitting.  Additionally, at higher-Q the annealed film’s spin-up and 

spin-down reflectivities prominently cross back and forth.  This differs from the as-grown 

film, for which the spin-up reflectivity is almost always greater than the spin-down. 
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Figure 3.4:  Comparison of the non spin-flip reflectivities and fits for the set A 50 
nm samples.  Note that for the as-grown film, the reflectivities form a “ribbon” at 
around 0.015 Å-1, while no such feature is evident for the annealed film.  
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 Since the splitting is small, the above listed magnetic features become more 

evident by recasting the NSF reflectivities and fits in terms of spin asymmetry (SA), 

                                         SA = (R++ - R--) / (R++ + R--).                              (36) 

Spin asymmetry [50] is a convenient quantity for gauging the film magnetization parallel 

to the applied field at different length scales.  Focusing on the small magnetic features in 

this way is also helpful for ascertaining subtle differences in the quality of the fits.  

Figure 3.5 shows the spin asymmetry and fits for both films.   

 The difference in spin-up and spin-down reflectivities manifests itself as the 

amplitude of the spin asymmetry.  These amplitudes are clearly larger for the annealed 

film.  Since the splitting of the spin-up and spin-down reflectivities is the result of film 

magnetization, the increased amplitude of the annealed film’s spin asymmetry implies an 

increased net magnetization. 

   The presence (or lack thereof) of a “ribbon” formed by the spin-up and spin-

down reflectivities manifests as the Q-definition of the spin asymmetry peaks.  Especially 

at low-Q, it can be seen that the as-grown film’s peaks are “smeared” together, while the 

annealed film’s peaks are much sharper.  Smearing of this sort can be a sign of magnetic 

roughness.  A “hand waving” explanation of why this is so can be arrived at by 

considering the inverse relationship between reciprocal space and real space.  The spin 

asymmetry can be thought of as the magnetic signal in reciprocal space.  A sharply 

oscillating magnetic signal in reciprocal space implies a continuous distribution of  
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Figure 3.5:  Fitted spin asymmetry for the set A as-grown and annealed 50 nm films.  
Annealing results in larger amplitude, less “smearing”, and more negativity at high-Q. 
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magnetization in real space.  Conversely, smeared oscillations of the magnetic signal in 

reciprocal space imply a varying distribution of magnetization in real space.   

 The alternating action of the spin-up and spin-down reflectivities at high-Q in the 

annealed film is manifested as a spin asymmetry that crosses zero.  While the spin 

asymmetry for the annealed film crosses zero early and often, that of the as-grown film 

only shows minimal signs of doing so at the highest Q.  This zero crossing is a very 

striking feature, as it shows that at higher-Q values, neutrons polarized antiparallel to the 

film magnetization are sometimes reflected with greater intensity than their spin-parallel 

counterparts!  This implies a length scale in the film at which there is a drastic change in 

the film magnetization.  It can also be seen for both films that the spin asymmetry 

amplitude decreases at high-Q.  This suggests that a small region of each film has a 

reduced magnetization.     

 To gain a more precise understanding of the differences in the films, we must 

consider the SLD models that produced the fits to the data, which are shown in Figure 

3.6.  The chemical SLD is shown as a dashed line at the top of each panel, while the 

magnetic SLD is the solid line at the bottom of each panel.  The film magnetization is 

directly proportional to the magnetic SLD, and is shown on a separate scale on the right.  

Note the breaks in the scales, and that the magnetic SLD’s correspond to different scales 

for the two films.  Since Mn is the only atom in this system with a negative nuclear 

scattering length, and is the only atom contributing a significant magnetic moment, the 

Ga1-xMnxAs film is clearly delineated from the GaAs substrate in each model, and 

corresponds to a region of decreased chemical SLD, and non-zero magnetic SLD.  

“Significant” is used in the preceding sentence because x-ray circular dichroism has  
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revealed the presence of induced magnetic moments on Ga and As atoms in Ga1-xMnxAs 

[51].  However, these induced moments are thought to be very small compared to the Mn 

moment [52, 53] and are unlikely to be responsible for the type of effects we describe 

here.  

 The model for the as-grown sample shows a substrate interface with very discrete 

transitions in chemical SLD and magnetization.  Throughout the bulk of the film, there is 

little change in the chemical SLD, while the magnetization features a pronounced spatial 

gradient in the magnetization.  Since the magnetization doubles from one side to the other 

while the chemical SLD does not show a comparable change, it implies that the 

magnetization gradient is not due to changes in total Mn concentration.  Instead, a more 

likely explanation is that it is the ratio of MnGa to MnI that is changing from substrate to 

surface, while the overall Mn concentration remains relatively constant.  After the 

magnetization peaks near the film surface, the model shows a reduction in magnetization 

but no significant change in the chemical SLD at the film surface.  Measurements of the 

net magnetization (as taken using SQUID magnetometry) can be compared to a SLD 

model by considering the model’s integrated magnetization.  This quantity is obtained by 

integrating over the magnetization of the entire film, and dividing by the film thickness.  

For the samples in this chapter, the entire film thickness (i.e. anything that’s not 

substrate) is used in the division.  The integrated magnetization for the model of the as-

grown sample in Fig. 3.6 is 22 emu⋅cm-3. 

 The model for the annealed film features some drastic differences.  First, it is 

evident that annealing produced a large increase in the magnetization, as the model’s 

integrated magnetization is 48 emu⋅cm-3.  At the substrate interface, we see that the 
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chemical roughness is significantly larger for the annealed film.  This suggests some 

“shuffling” of Mn atoms at this interface during the annealing process.  Then for the 

majority of the film, not only is the chemical SLD constant, but so is the magnetization.  

This suggests that for the annealed film, the overall Mn concentration is again constant, 

but that the ratio of MnGa to MnI is much more uniform than it is for the as-grown.  These 

annealing-dependent changes are highly consistent with the displacement of MnI.  

However, if this is the case, one might expect to observe a small increase in the chemical 

SLD of the annealed film near the substrate, corresponding to the fact that more MnI 

would have evacuated the region of depleted magnetization than any other.  The absence 

of this increase in chemical SLD can be explained, as MnI are thought to be only a small 

fraction of the total Mn [26].  Therefore, the resulting inhomogeneity in chemical SLD is 

probably be too small to be detected with PNR.       

 More evidence for redistribution of MnI during annealing can be found by 

considering the surface of the annealed film.  Here, the model shows a sharp increase in 

the chemical SLD, while the magnetization drastically drops to practically zero.  The 

result is that the surface layer looks very similar to the substrate.  So, the conclusion one 

might come to is that there is no Mn present at the surface - that it is simply GaAs.  

However, other experimental work has indicated that annealing enhances the 

ferromagnetic properties of Ga1-xMnxAs by sending MnI to the surface [15, 33], which 

would be in complete opposition to a depletion of Mn!  This requires consideration of a 

different interpretation.  Instead of GaAs, the surface layer could be some other 

compound that looks like GaAs.  As it turns out, θ - phase MnN could fit the bill [54], as 

it is antiferromagnetic, and (depending on the relative ratio of Mn to N) is likely to have a 

 



    65

chemical SLD very similar to that of GaAs.  During annealing in N2, it is conceivable that 

N oxidized MnI that was diffusing to the surface, forming a MnN surface layer.  

However, it would be somewhat surprising that the very strong N2 bond would be broken 

at our low annealing temperatures (although it might happen due to some sort of surface 

effect).  Oxygen would be a more plausible oxidizing agent for the MnI, but the measured 

chemical SLD is much higher than that expected for common Mn & O compounds.  This 

leaves MnN formation as the most likely explanation for the surface layer we observe, 

although this cannot be proven with PNR alone.  Additionally, the model shows that the 

surface layer is approximately 5 nm thick, which is approximately equal to the observed 

difference in overall film thickness between the as-grown and annealed models.  This 

further supports the idea of annealing producing a new surface layer [55].     

 

3.6 χ by Eye 

 The models for the as-grown and annealed films in Fig. 3.6 each use a different 

number of layers.  The as-grown film required five layers for a best fit (substrate and four 

Ga1-xMnxAs layers of changing magnetization), while the annealed required only 3 layers 

(substrate, Ga1-xMnxAs, and MnN).  The justification for incorporating additional layers 

in the model for the as-grown film is that the least-squares fit to the PNR data improves 

significantly when the parameters in the additional layers are allowed to vary.  Additional 

layers do not substantially improve the fit for the annealed film.   
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 While the change in χ2 (the measure of fit accuracy in a least-squares fit) is solid 

justification for adding layers to allow for a graded magnetization in the as-grown film, it 

is good practice to also use “χ by eye” - that is, visually inspect the quality of the fits 

[56].  Figure 3.7 compares a flat magnetization 3-layer model and corresponding fit 

(shown in light blue) to the graded magnetization 5-layer model and fit from Figure 3.5 

and Figure 3.6 (shown in dark blue).  The “flat” model (which does allow for reduced 

magnetization near the surface) fails miserably in describing the low-Q spin asymmetry.  

The flat model neither accounts for the broadness of the peaks, nor comes close to 

reproducing the smearing of the peaks.   

 The situation is very different for the annealed film.  Consider Figure 3.8, where 

the 3-layer model from Figure 3.6 and corresponding fit from Figure 3.5 (shown in red), 

is compared to a 5-layer model and its corresponding fit (shown in pink).  While a very 

small decrease in χ2 is obtained by allowing the additional layers parameters to vary, the 

fits produced from the two models is essentially the same!  Even though the extra layers 

are not otherwise useful, they do establish some uncertainty for the fit to the annealed 

film.  Small changes in the magnetization are not required to fit the data for the annealed 

film, but they cannot be ruled out, either!  However, these small changes are certainly not 

comparable to the large ones featured in the model for the as-grown film, in which the 

magnetization approximately doubles from one side to the other.   

 Uncertainty in the model for the as-grown film is a little tougher to establish.  

While the difference in fitting quality from the two models shown in Figure 3.7 is 

striking, the difference in fitting quality between competing models that both feature a  
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Figure 3.7:  Comparison of the 5-layer “gradient” model and fit for the as-grown 
film (from Fig. 3.5 and Fig. 3.6) to an alternate 3-layer “flat” model and fit.  The 
flat model is not adequate to describe the data. 
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Figure 3.8:  Comparison of the 3-layer model and fit for the annealed film (from Fig. 
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magnetization gradient is more subtle.  However, the model for the as-grown film in 

Figure 3.6 provides the best fit of any tried so far [57], and each of the main features in 

its magnetization profile (low magnetization at the substrate, gradient with an 

approximate factor of two increase, peak just below the surface, reduced magnetization at 

the surface) appear to be necessary to arrive at this best fit.   

 

3.7 Spin-Flip Data 

 As previously alluded to, the spin-flip (SF) scattering measured for all the 

samples in this study was too small to realistically fit.  However, some SF scattering was 

usually detected, which could indicate that there was some in-plane moment canting 

present in these films.  In order to give some idea of what cannot be ruled out from our 

measurements, we will consider the SF scattering from the above discussed scan of the 

set A annealed sample, which is typical of most of the samples.  Figure 3.9 shows the 

PNR data and fits for all four reflectivities.  SF data that was below background, or 

essentially indistinguishable from background has been removed.  Figure 3.9 shows just 

how weak the SF scattering is, as at best it is two orders of magnitude less than the NSF 

scattering, and extends only over a very limited region of Q.  However, this small 

scattering can be fit in a manner consistent with the NSF data, using the model shown in 

Figure 3.10.  This model is very similar to the one shown in Figure 3.6, except that the 

magnetic moments are canted away from the applied field by an average of 19° 

throughout the Ga1-xMnxAs film.   
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 While this model is discussed for the sake of completeness, moment canting of 

this magnitude seems highly unlikely in an applied field of 6.6 kOe.  Furthermore, the SF 

scattering is small enough to be near the uncertainty of our ability to do polarization 

corrections to the data.  So, while we can’t rule out some moment canting, we certainly 

can’t verify it.  At any rate, we see no consistent difference in SF scattering between as-

grown/annealed pairs, suggesting that moment canting is not a factor in annealing-

dependent differences. 

 

3.8 Lower-Field Scans of Set A 

 Besides the scans discussed above, there were an additional set of PNR scans 

taken on set A.  These scans were taken under different conditions, as the samples were 

examined with a [110] direction aligned nominally parallel to an applied field of 1 kOe, 

after being zero field cooled to T = 13 K.  These data were taken earlier in the study than 

the above described high-field data, and are of significantly lower quality.  The low-field 

scans were taken for lower counting times, and at lower point density, which creates 

additional ambiguity about smearing of the data (the key to detecting magnetization 

gradients).  The point density below the critical edge is particularly low, which causes 

added uncertainty in the footprint correction (see Section 2.6), and thereby added 

uncertainty in the high-Q intensity.  It is also possible that the samples were held looser 

than in the high-field scans, allowing for slight in-scan sample movement that could have 

led to irregular chemical SLD profiles. 
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 Figure 3.11 shows the individual low-field NSF reflectivities and fits plotted 

together for both as-grown and annealed films.  The annealed film’s reflectivities are 

more intense than the as-grown at high-Q, and the annealed film’s spin-up reflectivity 

shows little contrast, agreeing well with the high-field scans.  Those data and fits are 

recast as spin asymmetry in Figure 3.12.  The spin asymmetry for the as-grown film is 

qualitatively similar to its high-field counterpart.  However, there is a subtle difference 

between high and low-field for the annealed film, as the low-field spin asymmetry shows 

slightly more smearing at low-Q.   

 The SLD models used to fit the low-field data are shown in Figure 3.13.  Both 

models show reduced homogeneity of the chemical SLD.  Given the high-field results, 

these variations in chemical SLD likely result from the inferior quality of the data, and 

should not be considered as realistic.  The model for the as-grown film again features no 

major change in surface chemical SLD, and has a pronounced magnetization gradient.   

But, in this case, the best fit requires a more pronounced peak in magnetization near the 

film surface.  The model for the annealed film is again thicker and rougher at the 

substrate than the as-grown film, and features a sharp peak in chemical SLD 

corresponding with a drop in magnetization at the surface - reaffirming the presence of a 

chemically altered surface layer.  The annealed film’s magnetization is more uniform 

than the as-grown, but does show a region of reduced magnetization near the substrate - a 

feature corresponding to the increased smearing of the spin asymmetry.   

 It is conceivable that these differences from high to low field for both films could 

be real.  But, it seems somewhat unlikely that particular regions of the films are 

magnetically turning “on and off” by the change in field conditions.  It seems more likely  
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Figure 3.11:  Lower-field PNR data and fits for the 50 nm films.  The increased 
intensity for the annealed film at high-Q agrees well with the higher-field data. 
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that these differences result from the inferior quality of the data.  What is important is 

that these data do corroborate the most important features of the high-field models:  

magnetization gradient in the as-grown film, increased and more homogeneous 

magnetization for the annealed film, and evidence for a MnN layer at the surface of the 

annealed film.  

 

3.9 Set B:  Annealing Dependence in a 100 nm Film 

 The second set of samples we’ll consider is an as-grown/annealed pair of 

approximately 100 nm film thickness, denoted as “set B”.  The MnGa concentration was x 

≈ 0.076.  For the as-grown film, magnetotransport measurements revealed a maximum 

resistivity of ρmax ≈ 0.036 Ω⋅cm at TC ≈ 60 K.  For the annealed film, ρmax ≈  0.006 Ω⋅cm 

at TC ≈ 125 K.  These resistivities and TC’s are similar to those of the previously 

discussed 50 nm samples, and again suggest a decrease in MnI concentration with 

annealing.  The field and temperature dependent net magnetizations for these films were 

measured using SQUID magnetometry, and are shown in Figure 3.14.  Comparison of the 

as-grown and annealed field-dependent magnetizations at T = 13 K shows that annealing 

increased the high-field magnetization from 20 emu⋅cm-3 to 40 emu⋅cm-3, and decreased 

the coercive field.  The temperature-dependent magnetizations confirm that annealing 

increased TC and additionally show that annealing made the temperature distribution 

more “mean-field like”.   
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 PNR measurements were taken on NG-1 after zero-field cooling the samples to   

T = 13 K, and applying H = 1 kOe in-plane.  The samples were oriented with a [110] 

direction nominally parallel to H.  Extensive background scans were taken for each film, 

negating the need for addition of background from other scans.  SF data was taken with 

equal statistics to the NSF data, and was found to be minimal.  While these measurements 

were a “breakthrough” in terms of detecting small differences in these very dilute 

magnetic materials [34], they were taken relatively early in the study, and the resulting 

data quality (and corresponding uncertainty) pales in comparison to that of set A. 

 Figure 3.15 compares the individual NSF reflectivities for the as-grown and 

annealed films.  As was the case for set A, Figure 3.15 shows increased high-Q intensity 

for the annealed film - suggesting a differing surface layer.  Differences in oscillation 

frequency are more subtle than for set A, making differences in film thickness more 

ambiguous.  However, the spin-down oscillations for the annealed film do appear to 

undergo a greater change in frequency than do their as-grown counterparts - implying 

increased substrate roughness for the annealed film.  Figure 3.16 shows each film’s NSF 

reflectivities and fits plotted together.  Since the films are 100 nm instead of 50 nm, the 

oscillations are more tightly spaced than for set A, making subtle features more difficult 

to distinguish.  This difficulty is compounded for the annealed film, as the data was taken 

with lower point density.  Despite these difficulties, it can be seen that for these thicker 

samples, the as-grown film again has more of a “ribbon” quality to the low-Q data, and 

that again the spin-up and spin-down reflectivities cross more prominently for the 

annealed film.   
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Figure 3.15:  Comparison of the as-grown and annealed set B 100 nm films for 
each of the fitted NSF reflectivities.  The annealed film is more intense than the as-
grown at high-Q. 
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and annealed set B 100 nm films.   
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 These features are accentuated in the fitted spin asymmetries for the two films, 

which are shown in Figure 3.17.  It can be seen that annealing increases the peak 

amplitude, and decreases the smearing of the peaks somewhat (especially in proportion to 

the amplitude of the peaks) - suggesting an increased and more homogeneous 

magnetization upon annealing.  Both films show a decrease in peak amplitude at high-Q 

(suggesting reduced magnetization at the surface), but the annealed film spin-asymmetry 

prominently crosses zero (suggesting a more drastic drop in magnetization).    

 The best fits for this data were generated with the SLD models shown in Figure 

3.18.  These 6-layer models corroborate the SQUID measurements fairly well, as they 

show that annealing increases the integrated magnetization from 17 emu⋅cm-3 to 48 

emu⋅cm-3.  The models are qualitatively very similar to those for set A.  Again we see a 

pronounced magnetization gradient for the as-grown film, and very little change in the 

chemical SLD at the surface.  For the annealed film, the chemical roughness is increased, 

and the magnetization gradient is less extensive.  Additionally, the top 50 Å of the 

annealed film features a sharp increase in chemical SLD, and a sharp decrease in 

magnetization, likely corresponding to a MnN layer.  These models again are consistent 

with an increase in film thickness upon annealing.    

 However, there is more uncertainty in the models of set B as compared to those of 

set A, due to increased thickness and reduced data quality.  This uncertainty is especially 

prevalent for the as-grown film.  While the fitting is very sensitive to the presence of a 

magnetization gradient, it is not very sensitive to the spatial extent of the gradient.  To 

illustrate the approximate range of possible spatial extents, consider Figure 3.19, which  
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Figure 3.17:  Fitted spin asymmetries for the set B 100 nm films.  The 
annealed film features less low-Q smearing, and more high-Q negativity.  
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Figure 3.18:  Scattering length density models used to fit the set B PNR data.  
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Figure 3.19:  Comparison of the 6-layer  model and fit for the as-grown film (from 
Fig. 3.17 and Fig. 3.18) to an alternate 4-layer model and fit.  The 4-layer model is 
only slightly worse at fitting the data - suggesting it is also a reasonable model. 
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shows a χ-by-eye comparison of the “best-fit” 6-layer model from Figure 3.18 and a 

simpler “close to best-fit” 4-layer model.  The two models have significant differences, as 

the 4-layer model has a larger integrated magnetization (25 emu⋅cm-3), and a less 

extensive magnetization gradient.  The 4-layer model also expresses the uncertainty in 

the composition of the surface layer, as the high-Q data is not really sufficient to tell 

whether the surface is smooth, and has no change in chemical SLD, or if the surface is 

exceptionally rough and has an extremely small spike in the chemical SLD (essentially 

the same thing, from our point of view).   The spin asymmetry fits in Figure 3.19 show 

the small deficiencies of the 4-layer model, as it is slightly worse at reproducing the 

second peak of the spin-asymmetry.  However, this difference in the fits is very subtle, so 

the 4-layer fit cannot be realistically ruled out.  Further reducing the spatial extent of the 

magnetization gradient progressively worsens the quality of the fit.    

 A comparison of the 6-layer model for the annealed film, and a simpler 4-layer 

model is shown in Figure 3.20.  The only noticeable difference in the two models is that 

the 4-layer model is “flatter”, as it does not feature the magnetization “shelf” that is 

present at the center of the 6-layer model (at 46 emu⋅cm-3, the integrated magnetization 

for the 4-layer model is only slightly smaller that that of the 6-layer model).  The 

resulting difference in the fits largely amounts to the 4-layer model not accounting for the 

amplitude of the third spin asymmetry peak.  Since this difference essentially concerns 

one data point, the existence of the magnetization shelf does not stand on particularly 

solid ground.   
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Figure 3.20:  Comparison of the 6-layer  model and fit for the annealed film (from 
Fig. 3.17 and Fig. 3.18) to an alternate 3-layer model and fit.  The 3-layer model is 
only slightly worse at fitting the data - suggesting it is also a reasonable model. 
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 Due to the low point density, we have found that the data for the annealed sample 

are somewhat ambiguous, and can support alternate models in which there are more 

variations in the magnetization.  Although these alternate models can suitably fit the data, 

they do not improve the fit, and can generally be discounted as unphysical, for reasons 

such as integrated magnetizations that do not agree well with SQUID measurements, 

and/or large scale inhomogeneity in the chemical SLD.  While these alternate models 

cannot be completely ruled out, at the very least it can be said that the data for the as-

grown sample appear to require a significant magnetization gradient, while the data for 

the annealed sample certainly do not.  

 So, even though differences in the magnetization depth profile for set B are not 

quite as “concrete” as they are for set A, the best fits to the data (using 4 or 6 layer fits) 

certainly suggest that annealing affected the depth profile in qualitatively the same way 

as it did for set A.  The magnetization gradient is again more pronounced for the as-

grown film, and again we see very strong evidence that annealing changed the chemical 

makeup of the surface of the film, consistent with MnI diffusion.   

 

3.10 Set C:  Annealing Dependence, Minimally Changing Depth Profile 

 The third set of samples we’ll consider is another as-grown/annealed pair of 

approximately 50 nm film thickness, denoted as set “C”.  The MnGa concentration was x 

≈ 0.081.  Even though this sample was grown and annealed under nominally the same 

conditions as the previously discussed samples, magnetotransport measurements revealed 
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some surprising differences.  The as-grown sample showed a maximum resistivity of ρmax 

≈ 0.009 Ω⋅cm at TC ≈ 70 K.  This is a substantial increase in as-grown TC as compared to 

the other two as-grown samples discussed, suggesting an increase in hole concentration 

and a reduced MnI concentration.  The as-grown ρmax is noticeably lower for set C, as 

compared to the other two, also consistent with increased hole concentration [49].  For 

the annealed sample, ρmax ≈ 0.003 Ω⋅cm at TC ≈ 140 K.  This TC is higher and ρmax is 

lower than the other two annealed samples, again consistent with an increased hole 

concentration.  These results are consistent with room-temperature Hall effect 

measurements, which show the set C samples to have larger carrier concentrations, p than 

the other two sets.  Values of p, ρmax, and TC for all three sets of samples are summarized 

in Table 3.1.  What all of this suggests is that the as-grown sample of set C was somehow  

grown with a lower MnI concentration than those of sets A and B, despite all of them 

being grown together at the same time!   

 PNR measurements were taken on NG-1 after applying H = 6.6 kOe in-plane, and 

cooling the samples to low temperature (T = 20 for the as-grown, T =16 K for the 

annealed).  The samples were oriented with a [100] direction nominally parallel to H.  

The as-grown film was broken during instrument alignment, resulting in use of a 1.0 cm 

by 1.5 cm piece (instead of the typical 2 cm by 2 cm), which significantly reduced the 

available intensity.  In addition, the small sample size made instrumental alignment more 

difficult, causing the apparent critical θ to vary more than usual from that expected for 

GaAs (see section 3.3).  Another problem with the scan of the as-grown sample, was a 

problem with control of one of the reflectometer slits, resulting in exceptionally high  
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Set As-Grown   
p (290 K) 
(1019cm-3) 

Annealed    
p (290 K) 
(1019cm-3) 

∆p (290 K) 
(1019cm-3) 

As-Grown 
ρmax     

(Ω⋅cm) 

Annealed 
ρmax     

(Ω⋅cm) 

As-Grown 
TC (K) 

Annealed 
TC (K) 

A 5.97 12.1 6.13 0.035 0.005 60 125 

B 5.08 11.1 11.1 0.036 0.006 60 125 

C 9.78 21.2 11.4 0.009 0.003 70 140 

Table 3.1:  Summary of the hole concentrations, resisitivities and Curie 
temperatures of the three as-grown/annealed pairs discussed in this chapter.  Note 
that set C is significantly different from the other two sets. 
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background for a “mid-Q” region of the scan.   While we obtained good statistics at low-

Q, the above discussed problems resulted in lower quality data for the as-grown sample at 

high-Q.  The scan of the annealed sample was of very high quality.  Several background 

scans were added and used to correct the annealed sample’s data.  For both samples, SF 

data was taken with lower statistics than the NSF data, but was found to be minimal. 

 Figure 3.21 shows a comparison of the as-grown and annealed films for each of 

the fitted NSF reflectivities.  The aforementioned difficulties in alignment of the as-

grown sample cause a shift in Q that makes qualitative differences between the two films 

more difficult to see.  However, for the spin-down reflectivities, the high-Q intensity is 

fairly similar for the two films (although the peaks are Q-shifted).  For the spin-up 

reflectivities, the annealed film has higher intensity than the as-grown, but that is 

somewhat misleading, as alignment differences cause the annealed film’s intensity to be 

significantly higher at all Q - therefore there is no high-Q increase relative to low-Q.  So, 

we observe no strong qualitative evidence for an altered surface layer on the annealed 

film.  Differences in oscillation frequency between the two films are subtle, making 

qualitative assessment of film thickness difficult.  However the phase shift between the 

as-grown and annealed spin-down reflectivities increases noticeably with Q, suggesting a 

difference in interfacial roughness between the films.  Additionally, we observe damped 

oscillations for the annealed film’s spin-up reflectivity, implying differences in 

magnetization.   

 Figure 3.22 compares the fitted NSF reflectivities for the as-grown and annealed 

films.  While the as-grown sample’s data is of lower quality, close inspection of Figure  
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Figure 3.21:  Comparison of the as-grown and annealed set C 50 nm films for 
each of the fitted NSF reflectivities.  The high-Q intensities are fairly similar 
for both films.   
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Figure 3.22:  Comparison of the NSF reflectivities and fits for the as-grown and 
annealed set C 50 nm films.  There is no sign of ribbon formation for either film.   
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3.22 reveals that the as-grown and annealed reflectivities are very similar.  In particular, 

we see no evidence of a ribbon for either film.  The fitted spin asymmetries for the as-

grown and annealed films are shown in Figure 3.23.  This figure reiterates the similarities 

in the films, especially at very low-Q.  The amplitudes of the first peaks are very similar 

for both films, suggesting that the difference in magnetization upon annealing is not as 

large as for the other sets.  More importantly, there is no discernable difference in peak 

smearing between the films.  This suggests that neither film has a magnetization gradient.  

While the error bars for the as-grown film increase significantly after the first peak, it 

appears that the peak amplitude does become noticeable larger for the annealed film after 

that point, suggesting some increase in net magnetization.  Both films’ spin asymmetries 

cross zero in similar ways, suggesting similar dropoffs in magnetization at the surface.  

 The as-grown and annealed SLD models used to fit the PNR data are shown in 

Figure 3.24.  The reduced data quality for the as-grown film requires that we interpret the 

model very carefully.  The model consists of four layers, and shows a chemically and 

magnetically discrete substrate interface, followed by relatively constant chemical and 

magnetic SLD’s.   Notice the absence of a magnetization gradient.  There is great 

certainty in this feature of the model, as it results from the lack of smearing between the 

first two spin asymmetry peaks - something that occurs at Q-values where the statistics 

are still very good.  There is a small “hitch” in the chemical SLD near the substrate, but it 

is likely that feature is not “real”, and is instead due to the reduced quality of the data at 

high-Q.  At the surface of the as-grown film we see a drop in the magnetization, 

accompanied by a small drop in the chemical SLD.  The surface drop in magnetization is 

fairly reliable, as it originates from the spin-asymmetry crossing zero at high-Q - a very  
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Figure 3.23:  Fitted spin asymmetries for the set C 50 nm films.  Aside 
from peak amplitude, the two films are very similar.  
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Figure 3.24:  Scattering length density models used to fit the set C PNR data.  
Aside from an increase in integrated M, the two models are quite similar. 
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prominent feature of the data.  However, the surface drop in chemical SLD is far less 

reliable, as this feature could be the result of uncertainty in the footprint correction (see 

section 2.7) due to the reduced size of the broken sample.   The integrated magnetization 

for the model is 23 emu⋅cm-3.   

 The model for the annealed film consists of 3 layers.  Again we see an increase in 

the net magnetization (integrated magnetization is 37 emu⋅cm-3), although this increase is 

not as great as for the other sets.  Additionally, the annealed film again has a much 

chemically rougher substrate interface.  The magnetically active region of the annealed 

film appears to be thicker, but the thickness shown in the as-grown film model may not 

be reliable - again due to the reduced data quality at high-Q.  Other than these features, 

the model for the annealed film is very similar to that of the as-grown.  There is a region 

of decreased magnetization near the surface, but there is no spike in the chemical SLD, 

meaning there is no direct evidence for a MnN surface layer.  However, the increased TC 

and magnetization upon annealing strongly imply that some MnI must have diffused to 

the surface of the annealed film.  This can be explained, as the slightly increased film 

thickness of the annealed model is consistent with a thin Mn or MnN surface layer that is 

either too thin or too dilute to establish contrast with the Ga1-xMnxAs film.   

 The results for set C are most interesting, as we observe that a sample that appears 

to have an increased as-grown carrier concentration shows neither a magnetization 

gradient before annealing, nor large-scale changes in surface chemical composition after 

annealing.  Since MnI are donors that reduce the hole (carrier) concentration, this gives 

further evidence that magnetization gradients are due to an increased MnI/MnGa ratio over 
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a region near the substrate.  Additionally, reduced MnI concentration could explain why 

we observe less evidence of a chemically altered film surface after annealing.  If there are 

fewer impurities to begin with, there are fewer to send to the surface!  However, if indeed 

that is the case, there remains an unresolved problem.  If fewer MnI are being diffused to 

the surface of sample C during annealing, it is unclear why it would show increases in TC 

and hole concentration that are similar to those of the other two samples! With enough 

imagination, there are several ways in which this apparent paradox could conceivably be 

resolved (MnI moving to Ga sites during annealing, other mechanisms for improving TC 

during annealing, …etc.) , but at this point, such explanations are mere speculation.  

Despite this lingering puzzle, what is important and interesting is that we observe a 

distinct correlation among as-grown TC, magnetization gradient, and annealed surface 

properties.       

 A remaining question is why set C apparently has a lower as-grown MnI 

concentration than the other two sets, when all three were grown together under the same 

growth conditions!  The likely answer is that the growth conditions weren’t really 

identical.  During growth in the MBE chamber, each of the sample substrates was held in 

place with a Mo block.  While the region below the block was held at a constant growth 

temperature, each of the individual blocks probably has a slightly different heat 

conductivity.  So, it is possible that for some of the samples, the temperature was 

changing slightly during the growth.  Since the location of Mn in the lattice 

(substitutional or interstitial) is dependent upon the thermodynamics of the system (see 

section 1.7), this slightly changing temperature could produce variations in the MnI/MnGa 

ratio - resulting in lower overall carrier concentration, and a magnetization gradient!  If 
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this is the case, these results show just how extremely sensitive Ga1-xMnxAs growth is to 

the smallest changes in growth conditions. 

 

3.11 Early Work 

 The earliest PNR studies we performed were conducted on an as-grown, and 

annealed Ga1-xMnxAs samples each of approximately 100 nm film thickness, and MnGa 

concentration of x ≈ 0.07.  However, this was not an as-grown/annealed pair, as they 

were separately grown samples.   The data were of very low quality as compared to the 

later data, due to inexperience in measuring such dilute magnetic systems.  However, 

some of the measurements of the annealed film were of extreme importance, as 

experiments carried out in collaboration with Suzanne te Velthuis on POSY I at Argonne 

National Laboratory gave us our first PNR evidence of an altered surface layer in a 

successfully annealed Ga1-xMnxAs film.  Work on the as-grown sample using NG-1 was 

less successful, as PNR measurements were not completely reproducible.  However, 

these measurements did produce evidence that this as-grown sample is different than the 

others we have studied, as it appears to have a chemically altered surface layer similar to 

what we have commonly observed for annealed films.  Additionally, these measurements 

were unclear as to the presence of a magnetization gradient.  While re-examining this as-

grown sample using our improved techniques might be an interesting and valuable 

endeavor, it is one that we have not yet pursued, and remains an avenue for future study.          
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3.12 Conclusions 

 The results described in this chapter have verified several conclusions drawn from 

other workers’ experiments, and have produced new ones.  To summarize: 

• Optimal annealing of Ga1-xMnxAs can drastically change the chemical composition of 

the film surface - strongly suggesting that MnI impurities diffuse to the surface during 

annealing. 

• Optimal annealing can greatly increase the net magnetization of Ga1-xMnxAs films - 

implying that MnI reduce the magnetization as well as TC. 

• We observe magnetization gradients in some as-grown Ga1-xMnxAs films, and find that 

annealing “smoothes out” these gradients, without producing drastic changes to the 

chemical composition in that same region. 

• For our “best” Ga1-xMnxAs film (highest carrier concentration and TC), we observe no 

as-grown magnetization gradient or chemically altered surface layer upon annealing - 

suggesting that each of those features are indicative of regions with increased MnI 

concentration. 

• We commonly observe an increase in chemical roughness at the film/substrate 

interface with annealing. 

• We have shown that PNR, typically applied to the characterization of concentrated 

magnetic systems, can also provide detailed information about the spatial distribution 

of magnetic ions in very dilute feromangetics. 
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Chapter 4 

 

Effects of a Capping Layer on the  

Ga1-xMnxAs Depth Profile 

 

4.1 Introduction 

 In Chapter 3, evidence was presented to show that annealing produces its 

beneficial effects in Ga1-xMnxAs by shaking MnI from the lattice, allowing it to diffuse to 

the film surface.  We further explored MnI diffusion in this material by considering the 

effects that annealing has on a Ga1-xMnxAs film without a free surface.  This chapter 

describes polarized neutron reflectometry (PNR) experiments that examine Ga1-xMnxAs 

films capped with GaAs.  While we find that annealing of a capped sample has a small 

negative effect on its net magnetic properties, we observe no evidence that annealing 

produces large changes in the depth-dependencies of the sample’s magnetization or 

chemical composition.    This result suggests that the GaAs capping layer inhibits MnI 

diffusion not simply by providing a physical barrier that blocks the path of freed MnI, but 
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that it does so by somehow changing the environment of the entire film.  Reflpol 

parameters for each of the models shown in this chapter are summarized in Appendix A. 

 

4.2  Capping Recap 

 In Chapter 1, it was pointed out that Mn at interstitial sites (MnI) in Ga1-xMnxAs 

fight ferromagnetism by aligning antiferromagnetically with Mn at Ga sites (MnGa), and 

by annihilating valuable holes needed to mediate the ferromagnetic exchange among the 

MnGa.  Also in Chapter 1, experiments performed by Stone et al. were discussed, that 

showed that capping Ga1-xMnxAs films with as little as 10 monolayers of GaAs totally 

suppressed any increase of Curie temperature (TC) or net magnetization (M) associated 

with annealing [33]. Furthermore, they observed small decreases in TC and magnetization 

upon annealing when the GaAs cap exceeded 4 nm in thickness. These results, combined 

with those from surface studies [15], measurements of Ga1-xMnxAs/GaAs/Ga1-xMnxAs 

trilayer structures [32], and our own PNR measurements [34, Chapter 3] provided strong 

evidence that annealing enhances the ferromagnetic properties of Ga1-xMnxAs by ripping 

Mn from interstitial sites, allowing it to  diffuse to the surface,  thereby freeing additional 

MnGa to participate in the ferromagnetic exchange.   

 But, through what mechanism does a GaAs cap prevent this MnI diffusion?  Both 

Edmonds [15], and Stone [33] have speculated that this phenomenon is electrostatic in 

nature.  These authors propose that when positively charged MnI donor ions begin to 

diffuse into a GaAs layer, they cause the layer to become electron-doped.  Since the 

acceptor MnGa ions cause the Ga1-xMnxAs layer to be hole-doped, any small MnI 
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diffusion into the GaAs results in formation of a p-n junction at the Ga1-xMnxAs/GaAs 

interface - severely limiting MnI diffusion.  Under this scenario, if there is instead a free 

surface, MnI can travel there and be electrically pacified through oxidation (or nitridation 

-see Section 3.5), allowing for a large MnI buildup, and a corresponding enhancement of 

ferromagnetism in the Ga1-xMnxAs layer.  Evidence for the necessity of surface oxidation 

has been found by our collaborators at Notre Dame, as they have observed that annealing 

Ga1-xMnxAs in vacuum instead of N2 results in diminished enhancement of TC [58]. 

 The depth-sensitivity of PNR made it a natural choice to further explore the role 

played by a GaAs cap during annealing.  By looking for evidence of annealing-dependent 

changes in chemical composition and/or magnetization of a capped film, the validity of 

Edmonds’ and Stone’s argument could be examined.  

 

4.3 Sample Preparation and Net Characterization 

 The sample for this experiment was fabricated using molecular-beam epitaxy at 

Notre Dame.  A Ga1-xMnxAs film was prepared by first depositing a 160 nm GaAs buffer 

layer on a [001] GaAs substrate at a temperature of 580 °C, then cooling the substrate to 

230 °C and adding another 2.7 nm GaAs buffer layer, before depositing approximately 

100 nm of Ga1-xMnxAs, and then a 9 nm GaAs cap.  Using x-ray diffraction, the MnGa 

concentration of the film was established to be x ≈ 0.076 (see section 3.2).  This film was 

cleaved, and one piece was annealed in N2 for 1 hour at 270 °C (nominally the same 

conditions as the uncapped samples described in Chapter 3), while another piece was left 
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as-grown.  These pieces were further cleaved, providing separate specimens for PNR and 

SQUID magnetometry. 

 The net magnetizations of the as-grown and annealed films, obtained using the 

SQUID, are shown in Figure 4.1.  Fields were applied to the samples along a [110] 

direction.  These measurements show that, in sharp contrast with uncapped films, 

annealing does not improve the ferromagnetic properties of the film.  In fact, we observe 

that annealing is detrimental to the film’s ferromagnetic properties (in agreement with 

Ref. 33), as the low-field TC is reduced from 53 K to 40 K, and the high-field 

magnetization at T = 13 K drops from 23 emu⋅cm-3 to 17 emu⋅cm-3.  Hall effect 

measurements showed that the T = 290 K carrier concentration also dropped with 

annealing, from p = 3.27 x 1019 cm-3 to p = 2.14 x 1019 cm-3.  Magnetotransport 

measurements revealed that annealing of a similar uncapped Ga1-xMnxAs film in the same 

oven at the same time as the capped film resulted in a significant increase in TC (from 40 

K to 90 K) - providing further evidence that the GaAs cap is indeed responsible for 

ruining the beneficial effects of annealing.  

4.4 PNR Measurements  

 PNR measurements were conducted at the NIST Center for Neutron Research 

(NCNR) using the NG-1 Reflectometer.  A magnetic field of H ≈ 6.6 kOe was applied in 

the plane of the film along a [100] direction before cooling the sample to low 

temperature.  This procedure was performed for measurements at two different  
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Figure 4.1:  SQUID results showing the net magnetization of the as-grown and 
annealed films as functions of temperature (top), and applied magnetic field (bottom). 
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temperatures, 13 K, and 18 K.  Background scattering was largely instrumental, as 

background for both samples matched each other, and several other different 

measurements taken under similar conditions, justifying addition of several background 

scans to improve statistics.  Non spin-flip (NSF) and spin-flip (SF) reflectivities were 

measured, but the SF scattering was found to be minimal, and was used only to make 

polarization corrections to the data.  

 The data happened to be of slightly higher quality for the T = 18 K scans than for 

those at T = 13 K, so we will begin by considering the higher-T data.  Figure 4.2 

compares the as-grown and annealed films for each of the fitted NSF reflectivities, which 

can be qualitatively evaluated in a manner similar to that described in Chapter 3.  The 

reflectivities are very similar, as there are no large-scale differences in peak periodicity 

(which would suggest thickness differences), peak amplitude (which would suggest large 

differences in SLD), or slope of the high-Q intensity (which would suggest differing 

surface compositions).  The as-grown and annealed data are slightly shifted in relative 

intensity, which cause the as-grown data to appear more intense, but this is merely an 

effect of slight differences in instrumental alignment.  A more meaningful difference 

between the two films is that the high-Q oscillations of the annealed film are slightly 

more damped than their as-grown counterparts.  This feature suggests an increase in 

interfacial roughness upon annealing.     

 Figure 4.3 compares the fitted NSF reflectivities for the as-grown and annealed 

films.  Plotted in this way, the as-grown and annealed films again look strikingly similar.  

A benefit of a 9 nm GaAs capping layer is improved contrast with the Ga1-xMnxAs layer 

(as compared with air or a 5 nm MnN layer, as was the case with the Chapter 3 samples).   
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This results in “landmark” features in the data that help to reduce ambiguity of the fits.  

For example, the NSF reflectivities for both films form a ribbon at around Q = 0.017 Å-1 

(a feature that is shown in Chapter 3 to imply a magnetization gradient), and then 

undergo a “dead zone” where the spin-up/spin-down splitting begins to collapse at around 

Q = 0.020 Å-1, before the splitting begins to become very large at about Q = 0.027 Å-1. 

 The magnetic features of the PNR data are more apparent when recast as spin 

asymmetry (as defined in section 3.5), which is shown with fits in Figure 4.4.  These 

plots clearly show the similarities in the films even at this high level of detail, and also 

reveal the high quality of the fits.  Both films show low-Q smearing of the peaks (again - 

the telltale sign of a magnetization gradient), a crossing of zero at similar Q values, and 

large negative spin asymmetries at high-Q.  The level of detail provided through spin 

asymmetry also shows a subtle difference in the films, as the lowest-Q peak of the as-

grown film is slightly larger than its annealed counterpart.  Since the low-Q spin 

asymmetry corresponds to the magnetization at large length scales, this difference is 

consistent with a slightly greater net magnetization for the as-grown film.       

 The fits to the PNR data in Figures 4.2 - 4.4 were generated from the SLD models 

shown in Figure 4.5.  Bracketed by GaAs on either side, the Ga1-xMnxAs film shows up 

clearly in each model, denoted by a region of decreased chemical SLD, and non-zero 

magnetic SLD.  The models show the integrated magnetization for the as-grown film to 

be 26 emu⋅cm-3, and 20 emu⋅cm-3 for the annealed film.  Since the GaAs caps constituted 

known, well-defined non-magnetic surface layers for these samples, only the thickness of 

the Ga1-xMnxAs layer was used to calculate the integrated magnetizations.  Uncertainty in 

the models’ integrated  magnetizations (but not their depth-dependent magnetizations),  
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was reconciled by choosing models in which the integrated magnetization is consistent 

with that obtained from the SQUID measurements. 

 These results are corroborated by PNR measurements taken at T = 13 K, which 

agree well with the T = 18 K data.  The 13 K fitted reflectivities are shown in Figure 4.6, 

and are recast as fitted spin asymmetries in Figure 4.7.  The fits to the 13 K data were 

produced with the SLD models shown in Figure 4.8, which are very similar to the 18 K 

data.  The uncertainties associated with these models are also similar to those of the 18 K 

models.   

 

4.5 Interpretation of PNR Data 

 An interesting difference between the two films is a small increase in chemical 

roughness at the substrate/film interface for the annealed film - a phenomenon also 

observed in the uncapped films of Chapter 3.  Otherwise, we see that annealing changes 

the depth profiles very little.  Both films feature a pronounced gradient in M that extends 

over a thickness of approximately 500 Å ± 100 Å.  (Note that -- although the fit is not 

highly sensitive to the exact extent of this gradient -- the data unambiguously require that 

the models’ magnetizations near the substrate be greatly depleted.)  We therefore 

conclude that the reduction in net magnetization upon annealing occurs uniformly, and 

that annealing does not appreciably “smooth out” the magnetization as we commonly 

observe it to do for uncapped samples.     
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These two films are further examples of the presence of magnetization gradients in films 

with low TC and low net M.  This further suggests that these gradients are correlated with 

increased MnI concentration.  However, as was the case for uncapped films, the chemical 

SLD changes little over the region of graded magnetization - implying that the total Mn 

concentration is relatively constant.  This reinforces the idea that the magnetization 

gradients are indicative of a non-uniform, depth-dependent ratio of MnGa to MnI, due to 

small, depth-dependent differences in growth temperature.  If this is the case, a 

magnetization gradient is a unique “signature” of the MnGa/MnI ratio.  If the energy 

added to the capped system through annealing was appreciably redistributing MnI, and 

the GaAs cap was merely a barrier to the liberated MnI as they “bounced around” during 

annealing, one would expect a significant change in this signature.  That the signature 

instead remains virtually intact is significant, as it suggests that the GaAs cap somehow 

prevents any large-scale MnI redistribution. This result not only corroborates the 

formation of a p-n junction at the GaAs/Ga1-xMnxAs interfaces during annealing [15, 33], 

it additionally suggests that the presence of two such interfaces somehow inhibits 

migration of Mn ions from the outset.  However, while it does not appear that large 

amounts of MnI are vertically migrating during annealing, it is possible that the added 

energy causes a small number of Mn to break free of the lattice, and form Mn clusters or 

MnAs inclusions.  These Mn may well be freed from Ga sites, in addition to interstitial 

ones - resulting in a net loss in ferromagnetically active MnGa, which could explain the 

observed drop in TC and net M upon annealing.    
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4.6 Conclusion 

 In summary, we have observed that a GaAs capping layer not only eliminates the 

beneficial effects of annealing, but it also appears to prevent annealing from altering the 

depth-dependence of the magnetization in Ga1-xMnxAs.  This suggests that the cap 

somehow inhibits large scale vertical migration of MnI.   Additionally, these results lend 

further support to a model of annealing for uncapped Ga1-xMnxAs in which the added 

energy pries MnI ions from the lattice, allowing them to eventually diffuse to the free 

surface - freeing additional MnGa to participate in the ferromagnetic exchange.  Finally, 

we see more evidence that a non-uniform magnetization is a common pitfall of Ga1-

xMnxAs growth - a factor that may warrant consideration for potential device 

applications.   
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Chapter 5 

 

Search for Magnons in Ga1-xMnxAs  

 

5.1 Introduction 

 For the final chapter of this dissertation, we will switch gears, and discuss the 

results of inelastic neutron scattering measurements performed on Ga1-xMnxAs samples.  

These experiments constituted an ambitious effort to be the first to detect magnons (spin-

waves) [59] in this very dilute ferromagnetic system.  While some very weak evidence of 

magnons was found, the evidence was inconclusive and not wholly reproducible.  So, the 

following discussion describes a study that is incomplete, and has primary utility as a 

starting point for future attempts to detect magnetic excitations in this challenging 

material. 

 

5.2 Theoretical Magnon Dispersion 

 In order to determine limits on TC for Ga1-xMnxAs, it is important to understand 

the fundamental exchange interactions between magnetic ions.  This understanding 
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would benefit from a measurement of the energy required to excite (or annihilate) a 

propagating precession of the ferromagnetically aligned MnGa ions about their z-axes.  

Such collective excitations are known as magnons, or spin-waves, and the energy 

associated with them is typically dependent on the excitation wavevector q.  The q-

dependence of the magnon energy is known as the magnon dispersion.     

 In the Heisenberg model of the ferromagnet [60], the system Hamiltonian is 

described in terms of an exchange energy J that results from electrostatic interactions 

among atoms, and the Fermionic asymmetry of those atoms’ electrons.  In the 

approximation that only interactions among nearest neighbor MnGa ions are considered, 

the Heisenberg magnon dispersion is expressed as 

 

                                       ( ) ,i
r

SJrEm
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



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⋅−= ∑
ρ

ρqexp112                                    (36) 

 

where r is the number of nearest neighbors, S is the MnGa spin (5/2), and ρ is the position 

vector between interacting ions.  For q⋅ρ << 1 (i.e. low q), Eq. 36 can be approximated to 

a parabolic form 

 

                                                  Em ≈  Dq2,                                                           (37) 

 

where D is the spin stiffness – very apt nomenclature, as D is a measure of how 

“securely” magnetic moments are held in ferromagnetic alignment.  Eq. 37 describes a 
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“pure” Heisenberg system with isotropic magnons, but real systems commonly feature a 

constant energy gap ∆ in addition to the quadratic term, 

 

                                                   Em ≈ ∆ + Dq2.                                            (38) 

 

The energy gap usually arises from a magnetic anisotropy, and is a measure of the energy 

required to excite a magnon of infinite wavelength.   In the nearest-neighbor Heisenberg 

model, the spin stiffness is predicted to be dependent on the number of nearest neighbors, 

and the distance between them 

 

                                                           
3

2ρSJr
D = .                                                     (39) 

 

But, with Ga1-xMnzAs, we are dealing with a very dilute, random distribution of ions that 

do not have well defined nearest neighbors, and are thought to communicate via a long-

range interaction mediated by itinerant carriers.  Therefore, a more complex model is 

likely required to describe the spin stiffness in Ga1-xMnxAs.  

König et al. have used a Kohn-Luttinger Hamiltonian [61] to produce a theory of 

the long wavelength magnetic properties of Ga1-xMnxAs that attempts to account for 

details of the GaAs semiconductor band structure [62].  In König’s model, the magnon 

dispersion is 
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where N is the MnGa number density, A is an exchange constant, and λ’s 1 and 2 are 

anisotropy parameters.  To order q2, Eq. 39 is of the same form as Eq. 38, therefore, in 

Heisenberg terms, the energy gap is 

 

                                              ∆ = (2λ1λ2) / (NS),                                                 (41) 

 

 and the spin stiffness is  

 

                                                   D = (2A/NS).                                                     (42) 

 

Numerical calculations in Ref. 62 suggest that the energy gap is small compared to the 

energy bandwidth, and that the spin stiffness is nearly isotropic.  Furthermore, the authors 

numerically calculate the zero-temperature spin stiffness as a function of itinerant-carrier 

concentration p for two experimentally plausible values of the exchange energy density 

Jpd [63, 64, 65].  While not terribly precise, these calculations of D provide a starting 

point for trying to experimentally map the magnon dispersion. 

 

5.3 Inelastic Neutron Scattering 

 Thermal neutrons are the ideal probe for probing magnetic excitations in solids, as 

the neutron magnetic moment can interact with moments in the sample, and the neutron 
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energy is comparable to the typical energy range of the excitations.  This is the realm of 

inelastic neutron scattering, in which neutrons of a known energy Ei are incident on a 

sample, and scattered neutrons are looked for at a specific final energy Ef.  Thus, by 

either fixing Ei and scanning Ef (or vice-versa), one can measure the scattered intensity as 

a function of energy transfer, 

 

                                                    ∆E = Ei - Ef .                                                    (43) 

 

This change of energy can then be attributed to the creation or annihilation of an 

excitation in the sample.  Commonly, inelastic measurements made on a triple-axis 

spectrometer (see below) also allow for selection of a particular wavevector transfer that 

corresponds to the selected energy transfer.  The wavevector transfer is defined in terms 

of the incident and final neutron wavevectors, ki and kf 

 

                                            Q = ki - kf = 2πτ + q,                                        (44) 

 

where τ is a reciprocal lattice vector corresponding to the crystal structure of the sample, 

and q is the wavevector associated with the excitation.   

 The standard instrument for measuring the scattered intensity as a function of 

energy transfer and wavevector transfer S(∆E, Q) is the triple-axis neutron spectrometer 

[66].  Triple -axis refers to the three primary scattering events that occur as a neutron 

travels from the source to the detector 
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• Off a monochromator crystal, which scatters only [67] neutrons of energy  Ei towards 

the sample 

• Off the sample, resulting in scattered neutrons with a spectrum of Ef and Q values 

• Off an analyzer crystal, which scatters only neutrons of a desired energy Ef towards the 

detector.   

 

5.4 World Record Samples 

 In order to attempt inelastic measurements, Ga1-xMnxAs films thicker than any 

ever produced were required.  With this in mind, Tomek Wojtowicz of Prof. Furdyna’s 

group at Notre Dame endured a tour de force of MBE films growth, and produced a 

series of Ga1-xMnxAs films each with a thickness on the order of 10 µm - world record 

samples, to the best of our knowledge.  However, the increased thickness did limit the 

MnGa concentration x to approximately 0.04 for each of the samples, and TC was only 47 

K.   Hall effect measurements revealed a carrier concentration of p ≈  0.065 nm-3.   

Attempts to enhance these samples through annealing were unsuccessful - likely because 

interstitial Mn could not reach the surface in such a thick (two orders of magnitude larger 

than those discussed in Chapter 3) sample.  

 

5.5 SPINS Measurements 

 Assisted by Sungil Park, inelastic neutron scattering measurements were made 

using the SPINS triple-axis spectrometer at the NCNR.  To maximize magnetic signal, 

six of the thick Ga1-xMnxAs samples were stacked together for measurement, providing a 

collective Ga1-xMnxAs layer thickness of 46.1 µm.  The instrument was aligned on the 
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[200] Bragg peak in reflection geometry, and constant-Q scans were taken in the [q00] 

direction.  The final energy was fixed at 5 meV, and the energy resolution was 

approximately 0.2 meV.  80’ collimation was used between the monochromator and the 

sample, and between the sample and the analyzer.  Counting times ranged from 20-30 

minutes per q value, and the intensity was approximately 500,000 counts per minute.  

Fig. 5.1 shows scans at four different q values that (with a little imagination) show some 

evidence of excitations.  The red solid lines are Gaussian fits to the data.  Using those fits 

to determine energy positions, the magnon energy dispersion is shown in Fig. 5.2.  The 

spin stiffness and energy gap were then determined by fitting the data to a parabola (in 

accordance with the Heisenberg or König models).  The fit is shown in red, and indicates 

that D = 53 meV⋅Å2, and ∆ = 0.3 meV.   

 These results can be compared with the theoretical results of König’s six-band 

Luttinger model.  By plugging the numerically calculated value of the exchange constant 

A from Ref. 62, and the experimentally determined value of the MnGa number density N 

into Eq. 42, a König model estimate of D can be determined. The calculations for A as a 

function of p were carried out for two values of Jpd that correspond to low and high-end 

estimates for Ga1-xMnxAs with optimal x, and TC = 110 K.  Since our samples have lower 

x and TC, the most reasonable comparison is with the calculation utilizing low-end Jpd = 

68 meV⋅nm-3.  Furthermore, the minimum p at which A was calculated was 0.1 nm-3,  

which is still about double the value found for our samples.  That, coupled with the fact 

that the calculations were done for zero temperature, while the measurements were done 

at T = 20 K (which could noticeably soften the dispersion), imply that the calculated D 

should be taken as an upper limit on the spin stiffness.  With all of this in mind, the  
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Figure 5.1:  Scattered neutron intensity as a function of energy transfer for 
selected wavectors.  Solid red lines are gaussian fits to the data.   
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König value of the spin stiffness is estimated to be D = 182 meV⋅Å2.  This value is used 

in Eq. 37 to produce a theoretical dispersion, which is shown as the blue dashed line in 

Fig. 5.2.  Since König’s calculations suggest that ∆ is small compared with the energy 

bandwidth, it is taken to be zero for our purposes.  Comparison of the measured and 

calculated dispersion insinuates that the measured dispersion is at least plausible.   

 However, the evidence we find for these excitations is quite weak, as the data 

shown in Fig 5.2 are far from being conclusive.  Furthermore, a later set of SPINS 

measurements did not reproduce the peak found at q = 0.194 Å-1, and found no evidence 

of low energy (scanning 0-1 meV) excitations at q = 0.111 Å-1 (which should have been 

present if the original dispersion was correct).  While it is conceivable that instrumental 

differences between the two experiments accounts for this lack of reproducibility 

(increased background for instance), it is also entirely possible that the original data does 

not constitute actual excitations.  Therefore, this study is definitively non-definitive.   

 If this study is to be continued, and the magnon dispersion in these samples is to 

be further pursued, the experiments should: 

1. employ energy scans that encompass the full-range of reasonable magnon 

energies, at least to the upper-end dispersion suggested by the König model. 

2. use increased statistics - with such low magnetic ion concentration, increased 

neutron count and reduced background will likely be required to produce 

believable evidence of magnetic excitations.     

It may indeed be possible to map out the magnon dispersion in these samples, but it will 

require a much more involved effort (i.e. a lot more beamtime than we’ve received so 

far!). 
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Appendix A 

 

Reflpol Models 

 

The following tables summarize the Reflpol parameters used to create the scattering 

length density models shown in Chapters 3 and 4 (see Section 2.7, and Ref. 43 for 

information about fitting PNR data with Reflpol).  For all of the models, the magnetic 

layer thickness DM is restrained to be equal to the chemical layer thickness D, the 

absorption MU = 2 x 10-20 for each layer (except for the vacuum layer, where MU = 1 x  

10-20), and the magnetic moment angle TH = 270 ° (unless otherwise noted).  As for the 

beam parameters, for all models, intensity = 1.0, background  = 1 x 10-10, wavelength = 

4.75 Å, and wavelength divergence = 0.021 Å. 
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Table A.1:  Sample A, As-Grown, High-Field Scan 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.39081 41.1642 5.0 1.69434 5.0 

2 1.40242 90.9586 40.0 4.71854 40.0 

3 1.39971 251.063 25.0 3.85932 90.0 

4 1.40445 161.48 25.0 2.17344 160.0 

5 1.54623 100.0 5 0.0 5.0 

 

angular divergence = 0.0008 radians 
 
 
 
Table A.2:  Sample A, Annealed, High-Field Scan 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.52533 49.2333 8.81511 1.84073 8.81511 

2 1.38233 517.976 48.0 7.6985 10.0 

3 1.50998 100.0 56.062 0 11.2303 

 

angular divergence = 0.0008 radians 
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Table A.3:  Sample A, As-Grown, High-Field Scan, 3 layers 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.38555 41.0 5.0 1.6 5.0 

2 1.40502 500.594 5.0 3.54008 5.0 

3 1.54481 100 7.63182 0.0 25.0 

 

angular divergence = 0.0008 radians 
 
 
 
Table A.4:  Sample A, Annealed, High-Field Scan, 5 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.54213 41.3736 8.03377 0.286874 8.03377 

2 1.38841 110.676 20.0 8.19373 5.0 

3 1.36528 299.893 100.0 8.86257 100.0 

4 1.37150 113.894 25.0 8.09464 100.0 

5 1.49722 100.00 50.0 0.0 25.0 

 

angular divergence = 0.0008 radians 
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Table A.5:  Sample A, Annealed, Spinflip, 3 layers 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.53353 46.2766 8.68635 1.25677 8.68635 

2 1.38544 520.512 45.0 8.00087 5.0 

3 1.51303 100.0 56.3144 0.0 11.2303 

 

angular divergence = 0.0008 radians 
 
TH = 250.643  for  layers 1-3 (canting angle) 
 
 
 
Table A.6:  Sample A, As-Grown, Low-Field Scan, 6 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.42572 53.4529 1.0 2.97669 1.0 

2 1.44503 99.6431 50.0 4.45752 20.0 

3 1.47284 137.643 50.0 2.80193 75.0 

4 1.48773 141.841 125.0 2.48271 55.0 

5 1.44937 110.484 100.0 2.2319 100.0 

6 1.54858 100.0 10.0 0.0 5.0 

 

angular divergence = 0.0009 radians 
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Table A.7:  Sample A, Annealed, Low-Field Scan, 5 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.56737 44.9209 1.7774 0.467444 1.7774 

2 1.42311 214.955 38.9254 8.55355 25.0 

3 1.44579 203.322 92.1386 8.37688 25.0 

4 1.44664 106.802 50.0 7.37532 50.0 

5 1.60818 100.0 80.1652 0.0 5.0 

 

angular divergence = 0.0009 radians 
 
 
 
Table A.8:  Sample B, As-Grown, 6 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.44708 32.3978 1.0 0.0 1.0 

2 1.4757 178.559 5.0 4.0265 5.0 

3 1.4743 403.392 125.0 2.7307 125.0 

4 1.47137 301.636 250.0 1.83426 250.0 

5 1.46013 154.935 30.0 1.82934 30.0 

6 1.55396 100.0 5.0 0.0 5.0 

 

angular divergence = 0.0005 radians 
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Table A.9:  Sample B, Annealed, 6 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.58588 46.1736 1.0 0.0 1.0 

2 1.49062 255.072 5.0 7.37021 45.0 

3 1.49394 486.96 5.0 8.3118 20.0 

4 1.49038 203.43 5.0 7.37397 25.0 

5 1.50181 86.9446 5.0 4.97338 85.0 

6 1.59125 100.0 30.0 0.0 35.0 

 

angular divergence = 0.0006 radians 
 
 
 
Table A.10:  Sample B, As-Grown, 4 layers 
Figs 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.50786 59.1778 18.0421 2.71466 18.0421 

2 1.47026 765.981 25.0 4.53827 25.0 

3 1.46014 245.045 240.0 2.13161 240.0 

4 1.55335 100.0 4.78176 0.0 5.0 

 

angular divergence = 0.0005 radians 
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Table A.11:  Sample B, Annealed, 3 layers 

 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.5844 46.2038 1.0 0.0 1.0 

2 1.49552 1028.82 1.0 7.25773 45.0 

3 1.5897 100.0 51.4085 0.0 83.4488 

 

angular divergence = 0.0006 radians 
 
 
 
Table A.12:  Sample C, As-Grown, 4 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.34757 39.2768 5.0 0.0 5.0 

2 1.41492 350.722 15.0 4.06843 10.0 

3 1.37744 114.638 98.487 4.06843 10.0 

4 1.47579 100.00 5.0 0.0 25.0 

 

angular divergence = 0.00055 radians 
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Table A.13:  Sample C, Annealed, 3 layers 

 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.42789 28.7854 4.9701 0.0 4.9701 

2 1.43113 528.342 28.0 5.94935 1.0 

3 1.53983 100.0 80.0 0.0 10.0 

 

angular divergence = 0.00085 radians 
 
 
 
Table A.14:  Capped, As-Grown, 18 K Scan, 5 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.54123 83.9254 1.0 0.0 1.0 

2 1.42349 20.3251 15.0 3.08855 5.0 

3 1.45753 634.423 10.0 5.07656 25.0 

4 1.45645 286.068 55.0 1.94938 285.0 

5 1.55354 100.0 45.0727 0.0 150.0 

 

angular divergence = 0.0006 radians 
 

 

 

 



    136

Table A.15:  Capped, Annealed, 18 K Scan, 5 layers 

 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.50632 79.6136 1.0 0.0 1.0 

2 1.43133 440.987 5.0 3.68904 27.6156 

3 1.42013 245.55 5.0 3.56019 134.743 

4 1.41383 268.619 5.0 1.61322 245.0 

5 1.51993 100.0 74.7787 0.0 135.0 

 

angular divergence = 0.0006 radians 
 
 
 
Table A.16:  Capped, As-Grown, 13 K Scan, 5 layers 
 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.50243 63.0506 1.0 0.0 1.0 

2 1.42511 37.5841 5.0 2.44842 5.0 

3 1.42358 652.018 5.0 5.07068 5.0 

4 1.4226 290.774 5.0 1.15385 290.0 

5 1.52632 100.00 28.9807 0.0 5.0 

 

angular divergence = 0.00055 radians 
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Table A.17:  Capped, Annealed, 13 K Scan, 5 layers 

 

Layer QC 

(10-4 Å-2) 

D 

(Å) 

RO 

(Å) 

QM 

(10-6 Å-2) 

RM 

(Å) 

1 1.51896 82.7079 1.0 0.0 1.0 

2 1.42552 44.0366 25.0 3.80208 30.8159 

3 1.46796 687.371 78.238 3.80603 75.0 

4 1.45434 224.686 224.0 1.59548 224.0 

5 1.55284 100.0 85.0 0.0 85.0 

 

angular divergence = 0.00060 radians 
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