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Abstract

This paper investigates the statistical properties of estimators of the parameters
and unobserved series for state space models with integrated time series. In
particular, we derive the full asymptotic results for maximum likelihood estima-
tion using the Kalman filter for a prototypical class of such models – those with
a single latent common stochastic trend. Indeed, we establish the consistency
and asymptotic mixed normality of the maximum likelihood estimator and show
that the conventional method of inference is valid for this class of models. The
models we explicitly consider comprise a special – yet useful – class of models
that may be employed to extract the common stochastic trend from multiple
integrated time series. Such models can be very useful to obtain indices that
represent fluctuations of various markets or common latent factors that affect a
set of economic and financial variables simultaneously. Moreover, our derivation
of the asymptotics of this class makes it clear that the asymptotic Gaussian-
ity and the validity of the conventional inference for the maximum likelihood
procedure extends to a larger class of more general state space models involving
integrated time series. Finally, we demonstrate the utility of this class of models
extracting a common stochastic trend from three sets of time series involving
short- and long-term interest rates, stock return volatility and trading volume,
and Dow Jones stock prices.
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1. Introduction

The Kalman filter is a very widely used modeling tools – not only in econometrics and fi-
nance, but also in such diverse fields as artificial intelligence, aeronautical engineering, and
many others. Under linear, Gaussian, and stationary assumptions, the asymptotic proper-
ties of maximum likelihood (ML) estimators based on the filter are well-known. If linearity
is violated, then the extended Kalman filter is a standard alternative. If Gaussianity is
violated, then ML estimation is instead pseudo-ML estimation. As long as the conditional
distribution of the state (or transition) equation has a finite second moment, then the filter
retains some of its optimal properties. See Caines (1988) and Hamilton (1994) for the statis-
tical properties of the filter and the ML procedure. The filter seems to generate reasonable
parameter estimates even when the distributions have thick tails, as illustrated by Miller
and Park (2004).

In this paper, we focus mainly on a violation of stationarity. Many empirical analyses
in the literature use nonstationary data or assume a nonstationary unobservable variable
or vector. The reader is referred to Kim and Nelson (1999) for an excellent survey and
many concrete examples. The properties of the Kalman filter under such assumptions,
however, are not well-known. To the best of our knowledge, no formal theory has yet been
developed for the Kalman filter applied to models with nonstationary time series. Moving
from stationary to nonstationary processes in any model calls into question rates of conver-
gence of the parameter estimates, if not the parameter estimates themselves. Moreover, the
asymptotic theory of the ML estimates may diverge from the standard Gaussian framework.
Consequently, a solid theoretical analysis of the Kalman filter with nonstationary data is
needed.

In this analysis, we focus on an important class of nonstationary models – those that
include integrated time series. More precisely, we consider state space models with a single
latent common integrated stochastic trend, and we analyze the properties of ML estimators
of both the parameters and the unobservable trend based on the Kalman filter. For this class
of models, we derive the full asymptotics of ML estimation and establish the consistency
and Gaussianity of the ML estimator. The limit theory for our models differ from the
standard asymptotics for stationary models. The convergence rates are a mixture of

√
n

and n, and the limit distributions are generally mixed normals. However, the Gaussian
limit distribution theory means that the conventional method of inference remains valid for
our models. Although our results are explicitly developed for simple prototypical models,
it is clear that our main findings extend to more general state space models with integrated
time series.

The state space models considered in the paper assume that the included time series
share one common stochastic trend. This, of course, implies that there are (m − 1) inde-
pendent cointegrating relationships, if we set m to be the number of the time series in the
models. We show below how our state space models are related error correction representa-
tions of standard cointegrated models. We also explore decompositions into the permanent
and transitory components of a given time series. Our state space models suggest a nat-
ural choice for such decompositions. However, decompositions based on error correction
representations of our models are also appropriate.



2

We consider three illustrative empirical examples using the Kalman filter to extract a
common stochastic trend. We first take on a very common application in the macroeco-
nomics literature: extracting a common trend from short- and long-term interest rates.
Subsequently, we explore a popular application from the finance literature. We look at the
relationship between stock return volatility and trading volume by extracting a common
stochastic trend from those two series. In the third application, we extract the common
trend from 30 series of prices of those stocks comprising the Dow Jones Industrial Average.

The rest of the paper is organized as follows. In Section 2, we introduce the state space
model and outline the technique used to estimate the model. We also present some prelimi-
nary results that simplify the theoretical analysis and are useful in estimation, and we show
that the extracted trend (using the true parameters) is cointegrated with the true trend. We
present the main theoretical findings of our analysis in Section 3. Here we analyze the ML
procedures and obtain their asymptotics. In particular, we show that the ML estimators
are consistent and asymptotically mixed normal. Section 4 includes some important results
on the relationship between our state space models and the usual error correction represen-
tation of cointegrated models. We also discuss permanent-transitory decompositions based
on our models. In Section 5, we present the three empirical applications, and we conclude
with Section 6. Mathematical proofs of our theoretical results are contained in an appendix.

2. The Model and Preliminary Results

We consider the state space model given by

yt = β0xt + ut

xt = xt−1 + vt, (1)

where we make the following assumptions:

SSM1: β0 is an m-dimensional vector of unknown parameters,

SSM2: (xt) is a scalar latent variable,

SSM3: (yt) is an m-dimensional observable time series,

SSM4: (ut) and (vt) are m- and 1-dimensional sequences of independent, identically dis-
tributed (iid) errors that are normal with mean zero and variances Λ0 and 1, respec-
tively, and independent of each other, and

SSM5: x0 is independent of (ut) and (vt), and assumed to be given.

The variance of (vt) is set to be unity for the identification of β, which is identified under
this condition up to multiplication by −1. The other conditions are standard and routinely
imposed in this type of model.

Our model can be used to extract a common stochastic trend in the time series (yt). Note
that the latent variable (xt) is defined as a random walk, and may be regarded as a common
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stochastic trend in (yt). Here we do not introduce any dynamics in the measurement
equation, and mainly consider the simplest prototypical state space model. This is purely
for the purpose of exposition. It will be made clear that our subsequent results are directly
applicable for a more general class of state space models, where we have an arbitrary number
of lagged differences of the observed time series in the measurement equation.

The model given in (1) may be estimated by the usual Kalman filter. Let Ft be the
σ-field generated by y1, . . . , yt, and for zt = xt or yt, we denote by zt|s the conditional
expectation of zt given Fs, and by ωt|s and Σt|s the conditional variances of xt and yt given
Fs, respectively. The Kalman filter consists of prediction and updating steps. For the
prediction step, we utilize the relationships

xt|t−1 = xt−1|t−1,

yt|t−1 = βxt|t−1,

and

ωt|t−1 = ωt−1|t−1 + 1,

Σt|t−1 = ωt|t−1ββ′ + Λ.

On the other hand, the updating step relies on the relationships

xt|t = xt|t−1 + ωt|t−1β
′Σ−1

t|t−1(yt − yt|t−1),

ωt|t = ωt|t−1 − ω2
t|t−1β

′Σ−1
t|t−1β.

The model parameters are estimated using ML estimation.
Smoothing is frequently used in conjunction with the Kalman filter, when the unobserved

series (the stochastic trend, in this case) is of primary interest. Smoothing is implemented
after the model parameters are estimated, so this procedure has no effect on the parameter
estimates. The idea behind smoothing is simply to update xt|t with xt|n. The smoothed
series

(

xt|n

)

is estimated conditionally on all of the information in the sample – not just the
information up to t. The technique is simple to implement using the smoothing formula,

xt|n = xt|t + ωt|tω
−1
t+1|t

(

xt+1|n − xt+1|t

)

,

where ωt|t and ωt+1|t may be replaced by their steady state values ω−1 and ω, respectively,
the series

(

xt|t

)

and
(

xt+1|t

)

are generated by the estimation procedure, and xt+1|n is found
recursively. Specifically, in the first iteration, xt+1|n is set to xn|n, which is the last element
of the series

(

xt|t

)

, and the recursion works backwards to the beginning of the sample. The
reader is referred to, e.g., Hamilton (1994) or Kim and Nelson (1999) for more details on
these procedures.

For any given values of β and Λ, there exist steady state values of ωt|t−1 and Σt|t−1,
which we denote by ω and Σ.
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Lemma 2.1 The steady state values ω and Σ exist and are given by

ω =
1 +

√

1 + 4/(β′Λ−1β)

2
, (2)

Σ =
1 +

√

1 + 4/(β′Λ−1β)

2
ββ′ + Λ (3)

for any m-dimensional vector β and m × m matrix Λ.

From now on, we set
ω0|0 = ω − 1 (4)

so that ωt|t−1 = ω for all t ≥ 1, and both
(

ωt|t−1

)

and
(

Σt|t−1

)

become time invariant.
This causes no loss of generality in our asymptotic analysis, since (ωt|t−1) converges to its
asymptotic steady state value ω as t increases. The following lemma specifies (xt|t−1) more
explicitly as a function of the observed time series (yt) and the initial value x0. Here and
elsewhere in the paper, we assume (4). To simplify the presentation, we also make the
convention y0 = 0.

Lemma 2.2 We have

xt|t−1 =
β′Λ−1

β′Λ−1β

[

yt −
t−1
∑

k=0

(1 − 1/ω)k△yt−k

]

+ (1 − 1/ω)t−1 x0

for all t ≥ 2.

The result in Lemma 2.2 is given entirely by the prediction and updating steps of the Kalman
filter given above. In particular, it holds regardless of misspecification of our model in (1).

In addition to the initial value of ωt|t−1 given by (4), we let

x0 = 0 (5)

throughout our theoretical analysis. It is clearly seen from Lemma 2.2 that relaxing this
simplifying assumption would not affect our subsequent asymptotic analyses. Note that
ω > 1, and therefore, 0 < 1 − 1/ω < 1. Hence, the magnitude of the term (1 − 1/ω)t−1x0

is geometrically declining as t → ∞, as long as x0 is fixed and finite a.s.
Let ω0 be the value of ω defined with the true values β0 and Λ0 of β and Λ. Moreover,

we denote by x0
t|t−1 the value of xt|t−1 under model (1).

Proposition 2.3 We have

x0
t|t−1 = xt + (1/ω0)

t−1
∑

k=1

(1 − 1/ω0)
k−1 β′

0Λ
−1
0 ut−k

β′
0Λ

−1
0 β0

−
t−1
∑

k=0

(1 − 1/ω0)
kvt−k

for all t ≥ 2.
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Proposition 2.3 implies in particular that we have

x0
t|t−1 − xt = (1/ω0)pt−1 − qt, (6)

where

pt =

∞
∑

k=0

(1 − 1/ω0)
k β′

0Λ
−1
0 ut−k

β′
0Λ

−1
0 β0

and qt =

∞
∑

k=0

(1 − 1/ω0)
kvt−k

asymptotically. If we let (ut) and (vt) be iid random sequences, then the time series (pt)
and (qt) introduced in (6) become the stationary first-order autoregressive processes given
by

pt = (1 − 1/ω0)pt−1 +
β′

0Λ
−1
0

β′
0Λ

−1
0 β0

ut

qt = (1 − 1/ω0)qt−1 + vt

respectively. As noted earlier, we have 0 < 1 − 1/ω0 < 1.
There is also an important relationship between the smoothed series (x0

t|n) and the

extracted series (x0
t|t), as we show in the following proposition.

Proposition 2.4 We have

x0
t|n = x0

t|t +

n−t
∑

k=1

(1 − 1/ω0)
k△x0

t+k|t+k

for all t ≤ n − 1.

Evidently, (x0
t|t−1) is cointegrated with (xt) and (x0

t|n) is cointegrated with (x0
t|t), both

with unit cointegrating coefficient. Since x0
t|t = x0

t+1|t from the prediction step, and since

xt+1 = xt +vt+1 from (1), it is clear that (x0
t|t−1), (x0

t|n), and (xt) have a common stochastic

trend. The stochastic trend of (xt) may therefore be analyzed by that of (x0
t|t−1) or (x0

t|n).
It should be emphasized that the results in Propositions 2.3 and 2.4 merely assume our
model specification in (1). They do not rely upon the assumption that (ut) and (vt) are
iid. The Kalman filter estimation and smoothing procedures extract the common stochastic
trend of (yt) as long as (ut) and (vt) are general stationary processes – i.e., as long as (yt)
is a vector of integrated processes. Unlike (xt), however, (x0

t|t−1) and (x0
t|n) are not pure

random walks, even if (ut) and (vt) are iid random sequences. The latter deviates from the
former up to stationary error sequences. These results assume that the true parameters of
the model are known. Of course, the true parameter values are unknown and have to be
estimated. Nevertheless, it is rather clear that our conclusions remain valid as long as we
use the consistent parameter estimates.

The results in Proposition 2.3 and 2.4 are valid for state space models with the mea-
surement equation given by

yt = β0xt +

p
∑

k=1

Φk△yt−k + ut (7)
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(or with other stationary covariates), instead of the one in (1). Under this specification, the
Kalman filter has exactly the same prediction and updating steps, except

yt|t−1 = βxt|t−1 +

p
∑

k=1

Φk△yt−k

replaces yt|t−1 = βxt|t−1. Consequently, Lemma 2.1 holds without modification. Moreover,
we may easily obtain the result corresponding to Lemma 2.2 by replacing (yt) with (yt −
∑p

k=1 Φk△yt−k). As a result, Propositions 2.3 and 2.4 hold as is. This can be seen clearly
from the respective proofs.

3. Asymptotics for Maximum Likelihood Estimation

In this section, we consider the maximum likelihood estimation of our model. In particular,
we establish the consistency and asymptotic Gaussianity of the ML estimator of the pa-
rameter vector under normality. Since our model includes an integrated process, the usual
asymptotic theory for ML estimation of state space models given by, for instance, Caines
(1988), does not apply. We develop our asymptotic theory in a much more general setting
than that given by our model (1). As will be seen clearly in what follows, our general theory
established here would be very useful to obtain the asymptotics for ML estimation in a va-
riety of models including integrated time series, both latent and observed. We first develop
general asymptotic theory of ML estimation, which allows for the presence of nonstationary
time series, and then we apply the theory to obtain the asymptotics of the ML estimator
of the parameters of our model (1).

We let θ be a κ-dimensional parameter and define

εt = yt − yt|t−1 (8)

to be the prediction error with conditional mean zero and covariance matrix Σ. Under
normality, the log-likelihood function of y1, . . . , yn is given by

ℓn(θ) = −n

2
log det Σ − 1

2
tr Σ−1

n
∑

t=1

εtε
′
t, (9)

ignoring the unimportant constant term. Note that Σ and (εt) are in general given as
functions of θ. If we denote by sn(θ) and Hn(θ) the score vector and Hessian matrix – i.e.,

sn(θ) =
∂ℓn(θ)

∂θ
and Hn(θ) =

∂2ℓn(θ)

∂θ∂θ′
,

then it follows directly from (9) that

Lemma 3.1 For the log-likelihood function given in (9), we have

sn(θ) = −n

2

∂(vec Σ)′

∂θ
vec (Σ−1) +

1

2

∂(vec Σ)′

∂θ
vec

(

Σ−1
n
∑

t=1

εtε
′
tΣ

−1

)

−
n
∑

t=1

∂ε′t
∂θ

Σ−1εt,
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and

Hn(θ) = −n

2

[

Iκ ⊗
(

vec Σ−1
)′
]

[

∂2

∂θ∂θ′
⊗ (vec Σ)

]

+
1

2

[

Iκ ⊗
(

vec Σ−1

(

n
∑

t=1

εtε
′
t

)

Σ−1

)′]
[

∂2

∂θ∂θ′
⊗ (vec Σ)

]

+
n

2

∂(vec Σ)′

∂θ

(

Σ−1 ⊗ Σ−1
) ∂(vec Σ)

∂θ′

− 1

2

∂(vec Σ)′

∂θ

[

Σ−1 ⊗ Σ−1

(

n
∑

t=1

εtε
′
t

)

Σ−1 + Σ−1

(

n
∑

t=1

εtε
′
t

)

Σ−1 ⊗ Σ−1

]

∂(vec Σ)

∂θ′

−
n
∑

t=1

∂ε′t
∂θ

Σ−1 ∂εt

∂θ′
−

n
∑

t=1

(

I ⊗ ε′tΣ
−1
)

(

∂2

∂θ∂θ′
⊗ εt

)

+
∂(vec Σ)′

∂θ

(

Σ−1 ⊗ Σ−1
)

n
∑

t=1

(

∂εt

∂θ′
⊗ εt

)

+

n
∑

t=1

(

∂ε′t
∂θ

⊗ ε′t

)

(

Σ−1 ⊗ Σ−1
) ∂(vec Σ)

∂θ′
.

In Lemma 3.1 and elsewhere in the paper, vec A denotes the column vector obtained by
stacking the rows of matrix A.

Denote by θ̂n the ML estimator of θ, the true value of which is denoted by θ0. As in the
standard stationary model, the asymptotics of θ̂n in our model can be obtained from the
first order Taylor expansion of the score vector, which is given by

sn(θ̂n) = sn(θ0) + Hn(θn)
(

θ̂n − θ0

)

, (10)

where θn lies in the line segment connecting θ̂n and θ0. Of course, we have sn(θ̂n) = 0 if θ̂n

is an interior solution. Therefore, it is now clear from (10) that we may write

ν ′
nT−1(θ̂n − θ0) = −

[

ν−1
n T ′Hn(θn)Tν−1′

n

]−1 [
ν−1

n T ′sn(θ0)
]

(11)

for appropriately defined κ-dimensional square matrices νn and T , which are introduced
here respectively for the necessary normalization and rotation.

Upon appropriate choice of the normalization matrix sequence νn and rotation matrix
T , we will show that:

ML1: ν−1
n T ′sn(θ0) →d N as n → ∞ and

ML2: −ν−1
n T ′Hn(θ0)Tν−1′

n →d M > 0 a.s. as n → ∞,

for some M and N , and that

ML3: There exists a sequence of invertible normalization matrices µn such that µnν−1
n → 0

a.s., and such that

sup
θ∈Θ0

∥

∥

∥
µ−1

n T ′
(

Hn(θ) − Hn(θ0)
)

Tµ−1′
n

∥

∥

∥
→p 0,
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where Θn =
{

θ
∣

∣

∥

∥µ′
nT−1(θ − θ0)

∥

∥ ≤ 1
}

is a sequence of shrinking neighborhoods of
θ0,

subsequently below. The roles played by the matrices T , νn, N , and M will become clearer
when we later focus on our model given by (1).

As shown by Park and Phillips (2001) in their study of the nonlinear regression with
integrated time series, conditions ML1-ML3 above are sufficient to derive the asymptotics for
θ̂n. In fact, under conditions ML1-ML3, we may deduce from (11) and continuous mapping
theorem that

ν ′
nT−1(θ̂n − θ0) = −

[

ν−1
n T ′Hn(θ0)Tν−1′

n

]−1 [
ν−1

n T ′sn(θ0)
]

+ op(1)

→d M−1N (12)

as n → ∞. In particular, ML3 ensures that sn(θ̂n) = 0 with probability approaching one
and

ν−1
n T ′

(

Hn(θn) − Hn(θ0)
)

Tν−1′
n →p 0

as n → ∞. This was shown by Wooldridge (1994) for the asymptotic analyses of extremum
estimators in models including nonstationary time series.

To derive the asymptotics for sn(θ0), let ε0
t , (∂/∂θ′)ε0

t and (∂/∂θ′)vec Σ0 be defined
respectively as εt, (∂/∂θ′)εt and (∂/∂θ′)vec Σ evaluated at the true parameter value θ0 of
θ. We have

sn(θ0) =
1

2

∂(vec Σ0)
′

∂θ

(

Σ−1
0 ⊗ Σ−1

0

)

vec

[

n
∑

t=1

(

ε0
t ε

0′
t − Σ0

)

]

−
n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t ,

for which we note the following.

Remarks We have ε0
t = yt − y0

t|t−1 = β0(xt − x0
t|t−1) + ut. For sn(θ0),

[a] (ε0
t ,Ft) is a martingale difference sequence (an mds) with conditional variance Σ0, by
construction and due to (6), and becomes iid N(0,Σ0) under the assumption of nor-
mality. In particular, we have

1√
n

n
∑

t=1

(ε0
t ε

0′
t − Σ0) →d N

(

0, (I + K)(Σ0 ⊗ Σ0)
)

(13)

as n → ∞, where K is the commutation matrix.

[b] (∂/∂θ′)ε0
t is Ft−1-measurable, and consequently, ((∂ε0′

t /∂θ)Σ−1
0 ε0

t ) is an mds. Both

n
∑

t=1

(

ε0
t ε

0′
t − Σ0

)

and
n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t

become independent asymptotically.
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For the asymptotic result in (13), see, e.g., Muirhead (1982, pp. 90-91).
It is now clear that the asymptotics of sn(θ0) can be readily deduced from our remarks

above, if our model were stationary. Indeed, if the mds ((∂ε0′
t /∂θ)Σ−1

0 ε0
t ) admits the stan-

dard central limit theory (CLT), then we have as n → ∞

1√
n

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d N(0,Ω) (14)

with the asymptotic variance Ω given by

Ω = plim
n→∞

1

n

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0

∂ε0
t

∂θ′
, (15)

as is well-known. The reader is referred to, e.g., Hall and Heyde (1980) for the details. Due
to the nonstationarity of our model, however, the usual mds CLT is not applicable to our
model, and therefore the standard asymptotics given by (14) and (15) do not hold. Our
subsequent asymptotic theories focus on the case where (∂ε0

t /∂θ′) is nonstationary, and
given by a mixture of integrated and stationary processes.

We now look at our model introduced in (1) more specifically. The parameter θ in the
model is given by

θ = (β′, v(Λ)′)′, (16)

with the true value θ0 = (β′
0, v(Λ0)

′)′. Here and elsewhere in the paper we use the notation
v(A) to denote the subvector of vec A with all subdiagonal elements of A eliminated. It
is well known that v(A) and vec A are related by Dv(A) = vec A, where D is the matrix
called the duplication matrix. See, e.g., Magnus and Neudecker (1988, pp. 48-49). The
dimension of θ is given by κ = m + m(m + 1)/2, since there are only m(m + 1)/2 number
of nonredundant elements in Λ.

For our model (1), we may easily deduce from Lemma 2.2 and Proposition 2.3 that

Lemma 3.2 For our model (1), we have

∂ε0′
t

∂β
= −

(

I − Λ−1
0 β0β

′
0

β′
0Λ

−1
0 β0

)

xt + at(u, v) and
∂ε0′

t

∂vecΛ
= bt(u, v),

where at(u, v) and bt(u, v) are stationary linear processes driven by (ut) and (vt).

It is now clear from Lemma 3.2 that

∂ε0′
t

∂θ
=

(

∂ε0
t

∂β′
,

∂ε0
t

∂v(Λ)′

)′

is a matrix time series consisting of a mixture of integrated and stationary processes.
To further analyze the nonstationarity in (∂ε0′

t /∂θ), let εt = (εit)
m
i=1 and consider

(∂ε0
it/∂θ) individually for each i = 1, . . . ,m. It is easy to see for any i = 1, . . . ,m that

(∂ε0
it/∂β) is an m-dimensional integrated process with a single common trend. Naturally,
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there are (m − 1)-cointegrating relationships in (∂ε0
it/∂β) for each i = 1, . . . ,m. There is,

however, one and only one cointegrating relationship in (∂ε0
it/∂β) that is common for all

i = 1, . . . ,m, which is given by β0. Notice that

P = I − Λ−1
0 β0β

′
0

β′
0Λ

−1
0 β0

(17)

is a (m − 1)-dimensional (non-orthogonal) projection on the space orthogonal to β0 along
Λ−1

0 β0. Consequently, β0 annihilates the common stochastic trend in (∂ε0
it/∂β) for all

i = 1, . . . ,m, and (β′
0(∂ε0

it/∂β)) becomes stationary for all i = 1, . . . ,m. Unlike (∂ε0
it/∂β),

the process (∂ε0
it/∂vecΛ) is purely stationary for all i = 1, . . . ,m.

To effectively deal with the singularity of the matrix P in (17), we need to rotate the
score vector sn(θ0). To introduce the required rotation, we let Γ0 be an m× (m− 1) matrix
satisfying the conditions

Γ′
0Λ

−1
0 β0 = 0 and Γ′

0Λ
−1
0 Γ0 = Im−1. (18)

It is easy to deduce that

P = I − Λ−1
0 β0β

′
0

β′
0Λ

−1
0 β0

= Λ−1
0 Γ0Γ

′
0, (19)

since P is a projection such that β′
0P = PΛ−1

0 β0 = 0. Now we define the κ-dimensional
rotation matrix

T = (TN , TS), (20)

where TN and TS are matrices of dimensions κ × κ1 and κ × κ2 with κ1 = m − 1 and
κ2 = 1 + m(m + 1)/2, which are given by

TN =

(

Γ0

0

)

and TS =





β0

(β′
0Λ

−1
0 β0)1/2

0

0 Im(m+1)/2



 ,

respectively. We have from Lemma 3.2, (18), and (19) that

T ′
N

∂ε0′
t

∂θ
= −Γ′

0xt + cN
t (u, v) and T ′

S

∂ε0′
t

∂θ
= cS

t (u, v) (21)

for some stationary linear processes cN
t (u, v) and cS

t (u, v) driven by (ut) and (vt). Also, we
may easily deduce that

T−1 =









Γ′
0Λ

−1
0 0

β′
0Λ

−1
0

(β′
0Λ

−1
0 β0)1/2

0

0 Im(m+1)/2









(22)

from our definition of T given above in (20).
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Lemma 3.3 Under our model (1), the invariance principle holds for the partial sums
defined by

(

Un(r), Vn(r),Wn(r)
)

=





1√
n

[nr]
∑

t=1

Σ−1
0 ε0

t ,
1√
n

[nr]
∑

t=1

△T ′
N

∂ε0′
t

∂θ
,

1√
n

[nr]
∑

t=1

T ′
S

∂ε0′
t

∂θ
Σ−1

0 ε0
t





for r ∈ [0, 1], and we have
(

Un, Vn,Wn

)

→d

(

U, V,W
)

,

where U , V and W are (possibly degenerate) Brownian motions such that V and W are
independent of U , and such that

∫ 1
0 V (r)Σ−1

0 V (r)′dr is of full rank a.s.

The result in Lemma 3.3 enables us to obtain the joint asymptotics of

1

n
T ′

N

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d

∫ 1

0
V (r) dU(r), (23)

and
1√
n

T ′
S

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0 ε0
t →d W, (24)

where we denote W (1) simply by W . This convention will be made for the rest of the paper.
Note that the independence of V and U makes the limit distribution in (23) mixed Gaussian.
On the other hand, the independence of W and U renders the two limit distributions in
(23) and (24) to be independent. Clearly, we have W =d N(0, var (W )), where

var(W ) = plim
n→∞

T ′
S

(

1

n

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0

∂ε0
t

∂θ′

)

TS . (25)

Moreover, we may in fact represent the limit distribution in (23) as

(∫ 1

0
B2(r) dB1(r)

)

Iκ1
,

as shown in the proof of Lemma 3.3, where B1 and B2 are two independent univariate
standard Brownian motions.

We also have

Lemma 3.4 If we let

Zn =
1

2
T ′

S

∂(vec Σ0)
′

∂θ

(

Σ−1
0 ⊗ Σ−1

0

)

vec

[

1√
n

n
∑

t=1

(

ε0
t ε

0′
t − Σ0

)

]

,

then we have
Zn →d Z,
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where Z =d N(0, var (Z)) with

var(Z) =
1

2
T ′

S

[

∂(vec Σ0)
′

∂θ

(

Σ−1
0 ⊗ Σ−1

0

) ∂(vec Σ0)

∂θ′

]

TS , (26)

and is independent of U , V and W introduced in Lemma 3.3.

Now we are ready to derive the limit distribution for the ML estimator θn of θ defined in
(16). This distribution is given by (12) with the rotation matrix T in (20) and the sequence
of normalization matrices

νn = diag
(

nIκ1
,
√

nIκ2

)

, (27)

as we state below as a theorem.

Theorem 3.5 All the conditions in ML1-ML3 are satisfied for our model (1). In particular,
ML1 and ML2 hold, respectively, with

N =





−
∫ 1

0
V (r) dU(r)

Z − W





and

M =





∫ 1

0
V (r)Σ−1

0 V (r)′dr 0

0 var (W ) + var(Z)





in notations introduced in Lemmas 3.3, 3.4, (25), and (26).

Let

Q = −
(∫ 1

0
V (r)Σ−1

0 V (r)′dr

)−1 ∫ 1

0
V (r) dU(r)

and
(

R
S

)

= −[var(W ) + var(Z)]−1(W − Z),

where R and S are 1- and m(m + 1)/2-dimensional, respectively. Note that Q has a mixed
normal distribution, whereas R and S are jointly normal and independent of Q. Now we
may readily deduce from Theorem 3.5

√
n
(

v(Λ̂n) − v(Λ0)
)

→d S,

and

Γ′
0Λ

−1
0

[

n(β̂n − β0)
]

→d Q (28)

β′
0Λ

−1
0

(β′
0Λ

−1
0 β0)1/2

[√
n(β̂n − β0)

]

→d R. (29)
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In particular, it follows immediately from (28) and (29) that

√
n(β̂n − β0) →d

β0

(β′
0Λ

−1
0 β0)1/2

R, (30)

which has degenerate normal distribution. The ML estimators β̂n and Λ̂n converge at the
standard rate

√
n, and have normal limit distributions. However, the limit distribution

of β̂n is degenerate. In the direction Γ′
0Λ

−1
0 , it has a faster rate of convergence n and a

mixed normal limit distribution. As will be seen in the next section, Λ−1
0 Γ0 is matrix of

cointegrating vectors for (yt). The normal and mixed normal distribution theories of the ML
estimators ensure that the standard inference is valid for hypothesis testing in the context of
state space models with an integrated latent common trend. Hence, the usual t-ratios and
the asymptotic tests such as Likelihood Ratio, Lagrange Multiplier and Wald tests based
on the ML estimates are all valid and can be used with these nonstationary state space
models.

It is easy to see that our asymptotic results for the ML estimation hold – at least
qualitatively – for the more general state space model introduced in (7). In particular, the
convergence rates, degeneracy of the limit distribution and asymptotic Gaussianity that we
establish for model (1) are also applicable for model (7). Note that Σ is still a function of
only β and Λ for the more general measurement equation in (7). This is because Lemma
2.1 is valid for model (7) as well as model (1), as mentioned in the previous section. The
additional parameters Φ1, . . . ,Φp appearing in the lagged differenced terms of (yt) therefore
affect the log-likelihood function in (9) only through (εt). Moreover, the first-order partial
derivative of (εt) with respect to (Φk) yields (△yt−k), with all their repeated derivatives
vanishing. Consequently, the score function in Lemma 3.1 with

θ = (β′, vec(Φ1)
′, . . . , vec(Φp)

′, v(Λ)′)′

has now only additional stationary terms involving the products of (△yt−k) and (εt). In
particular, the presence of the additional parameters Φ1, . . . ,Φp does not affect the nonsta-
tionary component of the score function.

Our results here also shed a light on the asymptotics for various other types of non-
stationary state space models that are not explicitly considered in the paper. The state
space models used in practical applications are often more complicated than the one given
in (1) or (7). First, the time series to be analyzed may have deterministic trends, as well
as stochastic trends. As is well known, some economic and financial time series have a
deterministic upward trend, which we routinely fit using a linear time trend. The asymp-
totics in this case can be developed similarly as in the paper, after rotating the given time
series to separate out the component dominated by a deterministic linear time trend and
the component represented as a purely stochastic integrated process. See, e.g., Park (1992),
for the details of such rotation. Asymptotically, the rotated time series behaves like a time
series, which consists of a deterministic linear time trend and purely stochastic integrated
processes. Second, we may have multiple common trends. The asymptotics for the models
with multiple trends are much more complicated. Nevertheless, they can be readily derived
in parallel to our asymptotics in the paper, mainly because the conditions ML1-ML3 are
sufficient also in this case to establish the asymptotics for the ML estimator.
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4. Cointegration and Error Correction Representation

Our model (1) implies that (yt) is cointegrated with the matrix of cointegrating vectors
given by an m× (m− 1) matrix Λ−1

0 Γ0. Recall that Γ0 is the m× (m− 1) matrix satisfying
the condition Γ′

0Λ
−1
0 β0 = 0, as defined in (18). We have Γ′

0Λ
−1
0 yt = Γ′

0Λ
−1
0 ut, which is

stationary, and therefore Λ−1
0 Γ0 defines the matrix of cointegrating vectors of (yt). Having

(m − 1) linearly independent cointegrating relationships, (yt) has one common stochastic
trend. Moreover, it follows from Lemma 2.2 that

Proposition 4.1 We have

△yt = −Γ0A
′yt−1 −

t−1
∑

k=1

Ck△yt−k + ε0
t , (31)

where

A = Λ−1
0 Γ0 and Ck =

β0β
′
0Λ

−1
0

β′
0Λ

−1
0 β0

(1 − 1/ω0)
k

and we follow our previous convention and use ω0 and (ε0
t ) to denote ω and (εt) evaluated

at the true parameter value.

The result in Proposition 4.1 makes clear the relationship between our model (1) and the
usual error correction representation of a cointegrated model. Our model differs from the
conventional error correction model (ECM) in two aspects. First, our ECM model de-
rived from our state space model is not representable as a finite-order vector autoregression
(VAR). Here (yt) is given as VAR(t), where the order increases with time and is therefore
represented as an infinite-order VAR. Second, our representation implies that we have rank
deficiencies in the short-run coefficients (Ck), as well as in the error correction term Γ0A

′.
Note that (Ck) are of rank one and A′Ck = 0 for all k = 1, 2, . . .. In the conventional ECM,
on the other hand, there is no such rank restriction imposed on the short-run coefficient
matrices.

Our results for (1) can also be used to decompose a cointegrated time series (yt) into
the permanent and transitory components, say (yP

t ) and (yT
t ), such that

yt = yP
t + yT

t ,

where (yP
t ) is I(1) and (yT

t ) is I(0). Of course, the permanent-transitory (PT) decomposition
is not unique, and can be done in various ways. The most obvious PT decomposition based
on our model is the one given by

yP
t = β0x

0
t|t−1 and yT

t = yt − β0x
0
t|t−1, (32)

defining (x0
t|t−1) as the common stochastic trend. The PT decomposition introduced in

(32) has the property that (yP
t ) is predictable, while (yT

t ) is an mds. The decomposition
introduced in (32) will be referred to as KF-SSM, since we use the Kalman filter to extract
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a common trend from a state space model. Obviously, we may estimate the common
stochastic trend using the values of (xt|t−1) evaluated at the ML parameter estimates. The
transitory component can also be estimated accordingly.

The PT decomposition proposed by Park (1990) and Gonzalo and Granger (1995) is
particularly appealing in our context. The decomposition is based on the error correction
representation of a cointegrated system, and is given by

yP
t =

β0β
′
0Λ

−1
0

β′
0Λ

−1
0 β0

yt = β0xt +
β0β

′
0Λ

−1
0 ut

β′
0Λ

−1
0 β0

(33)

and
yT

t = Γ0Γ
′
0Λ

−1
0 yt = Γ0Γ

′
0Λ

−1
0 ut. (34)

Clearly, (yP
t ) and (yT

t ) defined in (33) and (34) are I(1) and I(0), respectively. They decom-
pose (yt) into two directions, β0 and Γ0. Note that β0β

′
0Λ

−1
0 /β′

0Λ
−1
0 β0 is the projection on

β0 along Γ0, and that Γ0Γ
′
0Λ

−1
0 is the projection on Γ0 along β0. In particular, we have

β0β
′
0Λ

−1
0

β′
0Λ

−1
0 β0

+ Γ0Γ
′
0Λ

−1
0 = I,

and yt = yP
t + yT

t .
The directions that are orthogonal to the matrix of cointegrating vectors characterize

the long-run equilibrium path of (yt). In fact β0, defines the direction orthogonal to the
matrix of cointegrating vectors Λ−1

0 Γ0, since Γ′
0Λ

−1
0 β0 = 0 and therefore the shocks in the

direction of β0 lie in the equilibrium path of (yt). This in turn implies that such shocks
do not disturb the long-run equilibrium relationships in (yt). On the other hand, Γ0 is
the matrix of error correction coefficients as shown in Proposition 4.1, and, as a result,
the shocks in the direction of Γ0 only have a transient effect. The shocks in every other
direction than the direction given by Γ0 have a permanent effect that may interfere with
the long-run equilibrium path of (yt), thereby distorting the long-run relationships between
the components of yt. The only permanent shocks that do not disturb the equilibrium
relationships at the outset are those in the direction of β0, as discussed above. The reader
is referred to Park (1990) for more details. Moreover, the decomposition given in (33)
and (34) has an important desirable property that is not present in the usual ECM. The
permanent and transitory components are independent of each other. This is because

cov(β′
0Λ

−1
0 ut,Γ

′
0Λ

−1
0 ut) = 0,

as one may easily check.
In our subsequent empirical applications, we also obtain the decomposition introduced

in (33) and (34). The common stochastic trend and stationary component in the decompo-
sition are given by

β′
0Λ

−1
0 yt and Γ′

0Λ
−1
0 yt

respectively. These can be readily estimated using the ML estimates of the parameters
in our model. However, to be more consistent with the methodology in Park (1990) and
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Gonzalo and Granger (1995), we rely on the method by Johansen (1988) and compute
them using the ML estimates of the parameters based on a finite-order ECM. Note that the
estimates of the parameters Λ−1

0 β0 and Λ−1
0 Γ0 are easily obtained from the estimates Γ̂ and

Â respectively of Γ0 and A in ECM (31). Λ−1
0 β0 is a vector orthogonal to Γ0 and Λ−1

0 Γ0 is
given by A. In what follows, the decomposition will be referred to as ML-ECM, in contrast
to KF-SSM.

For the more general state space model with measurement equation in (7), the error
correction representation (31) in Proposition 4.1 is not valid. However, we may readily
obtain a valid representation from the result in Proposition 4.1 simply by replacing (yt) by
(yt−

∑p
k=1 Φk△yt−k). This is obvious from the proof of Proposition 4.1 and the discussions

in Section 2. Consequently, for t sufficiently large, we have the error correction representa-
tion of (yt) generated by (7) that is identical to (31) with newly defined coefficients (Ck).
The coefficient A would not change. In sum, the general model (7) would have the same er-
ror correction representation as in (31) with no rank restriction in (Ck). The decomposition
in (32) and that in (33) and (34) can be defined accordingly.

5. Empirical Applications

In order to avoid identification problems, we restrict σ2
v = 1 as mentioned in Section 2.

Moreover, to ensure positive semi-definiteness of Λ, we estimate the Cholesky decomposition
Π = (πij) of Λ with diagonal elements πii > 0.

In our applications, x0 6= 0, and selection of x0|0 is not as obvious as the selection of ω0|0

discussed in Section 2. Indeed, β0x0 may be viewed as a vector of constant terms in (1).
We showed in Lemma 2.2 that in estimation the initial value is asymptotically negligible.
However, it may still have a substantial impact on the likelihood for values of t close to
zero and finite n. To this end, Kim and Nelson (1999) and others suggest dropping some of
the initial observations when evaluating the likelihood function. A two-step methodology
that avoids dropping observations in the final step is to drop some initial observations in
the first step, so that reasonable parameter estimates are obtained regardless of x0|0. The
second step involves re-estimation with all observations and with a value of x0|0 that is
“close” to where the series

(

xt|t

)

appears to begin.5 In applications with a small number
of parameters, it may be computationally easier to estimate x0|0 as a model parameter in
the first step, and then in the second step set x0|0 equal to the estimated value from the
first step. We expect that this estimates x0 consistently, so that x0|0 is fixed and finite
a.s., as required. However, we do not show this rigorously. (Empirically, either approach
yields roughly the same parameter estimates in the parsimonious applications discussed in
Sections 5.1 and 5.2 below.)

In order to illustrate the uses of the KF in extracting a common stochastic trend, we
examine three well-known applications from the literature. The first two feature bivari-

5We do not have any rigorous methodology for ascertaining “closeness”. However, comparing the mag-
nitudes of

(

yt − yt|t−1

)2
for t close to zero with those of

(

yt − yt|t−1

)2
for t close to the end of the sample

provides a rough notion. If the magnitudes are similar at the end of the sample and at the beginning of the
sample, then x0|0 is close enough to x0 so that differences may be attributed to measurement error.
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Figure 5.1: Log of one plus the federal funds rate and the 30-year mortgage rate (April 7, 1971 –

October 11, 2006).

ate (yt), and the third features thirty-dimensional (yt). We smooth our estimated trends
according to the Kalman smoothing technique discussed above, and we present the PT
decompositions based on both KF-SSM and ML-ECM.

5.1 Short- and Long-Term Interest Rates

There are a number of analyses in the literature aimed at the linkage between short- and
long-term interest rates. If economic agents have rational expectations, they buy or sell
assets based on expected future interest rates. This means that the rate of return on an
asset with a longer term (long rate) is correlated with the rate of return on that of a shorter
term (short rate), since investors may choose to purchase a long-term asset or a sequence
of short-term assets. We therefore expect a stochastic trend common to rates on assets of
different terms. A more thorough discussion may be found in Modigliani and Shiller (1973)
or Sargent (1979), for example. Early theoretical analyses of cointegration and estimation
using an error correction model, such as Engle and Granger (1987), Campbell and Shiller
(1987), and Stock and Watson (1988), use this application to test the relationship between
short and long rates. More recent applied work, such as Bauwens et al. (1997) and Hafer
et al. (1997), analyze common trends among interest rates in more general international
contexts.

We extract the common stochastic trend from the federal funds rate (short rate) and
the 30-year conventional fixed mortgage rate (long rate), obtained from the Federal Reserve
Bank of St. Louis. These series are sampled at weekly intervals over the period April 7,
1971 through October 11, 2006,6 and we transform them by taking the natural logarithm

6The federal funds rate is measured on Wednesday of each week, whereas the mortgage rate is measured
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Figure 5.2: (a) Common stochastic trend extracted using KF-SSM; (b) Stationary components

extracted using KF-SSM; (c) Common stochastic trend extracted using ML-ECM; (d) Stationary

component extracted using ML-ECM.

of one plus the interest rate. The transformed series are illustrated in Figure 5.1. The
following table shows parameter estimates using our technique.

Table 5.1: Parameter Estimates from KF-SSM

Parameter Estimate Std. Error

β1 0.0008 9.8 × 10−6

β2 0.0010 1.1 × 10−5

π11 0.0187 3.3 × 10−4

π12 −0.0003 1.6 × 10−4

π22 6.1 × 10−11 2.9 × 10−5

All parameter estimates are significant except the last one. This possibly degenerate vari-
ance implies that the common trend is very similar to the long rate. This implication is
clearly visible from the trend extracted using our technique, which is represented in Figure
5.2(a), top left panel. Also, note that the more dominant of the two transitory components
[Figure 5.2(b), top right panel] more closely resembles the short rate – although it naturally
appears more stationary.

In contrast to KF-SSM, the trend extracted using ML-ECM [Figure 5.2(c), bottom left
panel] seems to more closely follow the short rate, as does the transitory component [Figure
5.2(d), bottom right panel] – at least up to a negative scale transformation. This transitory
component does not appear to be stationary.

on Friday of each week until January 2, 2004, and on Thursday of each week thereafter.
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5.2 Stock Return Volatility and Trading Volume

There is a large literature on the relationship between stock price volatility and trading
volume. There appears to be little consensus on how to model this relationship, as some
authors have chosen a structural approach, while others have estimated reduced form mod-
els. In fact, there are differing views on simply how to measure volume and especially
volatility.

Many authors seem to agree that detrending the natural logarithm of trading volume
appears to be the most reasonable approach. However, the approach to detrending varies.
For example, Tauchen and Pitts (1983) use a linear time trend to detrend log volume.
Gallant et al. (1992) detrend using linear and quadratic time trends, with the addition
of more than 30 indicator variables to control for various effects. Anderson (1996) uses
a detrending technique that takes into account both deterministic and stochastic trends.
Being suspicious of over-fitting, Fleming et al. (2006) use a procedure similar to Gallant
et al. (1992), but they omit the indicator variables. They then estimate a model that
explicitly allows for a stochastic trend in both volume and volatility. Based on these different
approaches, it seems reasonable to use an approach that tries to remove any deterministic
trend, while allowing for a stochastic trend in trading volume. We employ such an approach.
We detrend the log of volume with a deterministic trend. And, like Fleming et al. (2006),
our model explicitly estimates the stochastic trend that is common to volume and volatility.

There is much less consensus on how to measure volatility. In his survey of the early
literature on this issue, Karpoff (1987) classifies the different approaches up to that time
into analyses that measure volatility as a function of the absolute value of a price change
and those that use a function of the price change itself. For example, in one of the earliest
formulations of an explicit relationship between volume and volatility, Clark (1973) uses
squared price changes. So do Tauchen and Pitts (1983). There appears to be a shift in
subsequent thinking, so that many analyses since Karpoff (1987) have used either squared
changes in the log of the price or squared percentage changes in price. Implicitly, this
means dividing a time series with stochastic and deterministic trends by lags of itself,
rather than subtracting time series with such trends. The empirical effect of this seems to
be a cancellation of the trend in some sense. The resulting time series generally appear
to be stationary. In the late 1980’s, nonstationarity was known to cause spurious results,
but cointegration and other ways of handling nonstationary data were still in their infancy.
So, it is not surprising that authors preferred a technique that appeared to remove the
nonstationarity.7 We embrace this nonstationarity in our analyses, because it informs us
about the trend shared by these series. In this light, we use squared absolute returns rather
than squared log returns.

Another issue that plagues the measurement of return volatility is that volatility itself is
unobservable, and examining squared returns is only an estimate of volatility. For the most
part, the literature mentioned in the previous paragraphs do not address this issue. Ander-
sen and Bollerslev (1998) found a solution for exchange rate data, which was later extended
to stock price data by Andersen, Bollerslev, Diebold, and Ebens (2000). The approach is

7Much more is known about the statistical properties of differencing time series than about fractions
involving time series.
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Figure 5.3: Detrended log of monthly DJIA trading volume and return volatility (October 1928 –

September 2006).

straightforward. Expected daily volatility is approximated with a sample analog, the sum of
intradaily squared returns. As the number of intradaily trading periods approaches ∞, the
sample analog approaches its population counterpart. Our approach is similar in spirit. We
use a sum of intramonthly (i.e., daily) squared returns to approximate expected monthly
volatility.

We employ daily data similar to those used by Gallant et al. (1992). Specifically, we
look at the Dow Jones Industrial Average (DJIA) obtained from Yahoo! Finance. With
the approach discussed above, (summing squared returns and volume across months), our
sample consists of 936 months, from October 1928 through September 2006. We detrend
both the log of trading volume and the log of squared returns using a constant and linear
time trend. The detrended series are illustrated in Figure 5.3. A stochastic trend clearly
remains after the deterministic trend is removed. Visual inspection of the figure suggests
that the series appear more persistent during some periods than during others. For example,
detrended return volatility appears stationary over roughly the middle third of the sample,
yet over preceding and succeeding thirds the series appears nonstationary. The evidence
for this trend being I(1) or I(0) using standard unit root tests is mixed. For ADF tests, the
short-term volatility of each series clouds the long-term trend when the order of the ADF
test is small. Figures 5.4(a) and (b) illustrate values of the two ADF tests, the coefficient
test and the t-test, for these two time series as the number of lags p increases up to o

(

n1/2
)

,
consistent with the asymptotic results of Chang and Park (2002).

On the other hand, KPSS tests clearly reject nulls of stationarity, with statistics of 2.80
and 1.76 for volume and volatility, respectively. Consequently, we face mixed test results
against I(1) but conclusive test results against I(0).
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Figure 5.4: (a) Coefficient test statistics and (b) t-test statistics on detrended log of trading volume

and detrended log of return volatility, with increasing p.

Some previous analyses in the literature have used additional deterministic trends to
further stationarize these series. Gallant et al. (1992) used a large number of exogenously-
chosen dummy variables, which empirically removed persistence from the 1930’s and 1940’s.
The detrended series clearly exhibit more persistence since 1987 (beyond the end of their
sample), as well. We agree with Andersen (1996) that a stochastic trend is a more appropri-
ate (and certainly more parsimonious) way of modeling these series. The shared trend that
is apparent from the figure, and which we extract below, may not be integrated – it may
only be fractionally integrated. However, a theoretical analysis of extracting a fractionally
integrated trend is beyond the scope of the present analysis.

Both our model and our estimation technique are very similar to the two-factor model
employed by Fleming et al. (2006), which is based on the model used by Andersen (1996).
There are two major differences. Fleming et al. (2006) used log returns instead of returns.
Moreover, we estimate only a one-factor model, rather than a two-factor model. The second
factor in their model is simply an error term. By not estimating the second factor directly,
we are merely augmenting the error term already in the model. Hence this difference is
really one of identification of the variance of the second factor. It is not identified in our
model. Our parameter estimates are summarized below.

Table 5.2: Parameter Estimates from KF-SSM

Parameter Estimate Std. Error

β1 0.1361 0.0073

β2 0.1782 0.0103

π11 0.1532 0.0087

π12 −0.1138 0.0553

π22 0.8011 0.0279

In light of the discussion above, we also estimated a similar model in which the autoregres-
sive parameter of the trend was not restricted to unity. We obtained very similar parameter
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Figure 5.5: (a) Common stochastic trend extracted using KF-SSM; (b) Stationary components

extracted using KF-SSM; (c) Common stochastic trend extracted using ML-ECM; (d) Stationary

component extracted using ML-ECM.

estimates (β1 and β2 are estimated to within a standard deviation of the restricted esti-
mates), with the autoregressive parameter estimated to be 0.98.

Figure 5.5(a) [top left panel] (b) [top right panel] illustrate our trend and vector of noise
extracted from the two series. The bottom panels of Figure 5.5 show the corresponding
components extracted using ML-ECM. The trends extracted are very similar, as expected
in the two-dimensional case. The residuals appear to be effectively detrended – or at least
more so than the original series.

5.3 Stock Market Index

In the final application, we consider a stock market index. We wish to extract the common
stochastic trend embedded in 30 series of prices of the stocks that comprise the DJIA. We
may thus compare the common trend with the index itself. This methodology could easily
be used to extract the common stochastic trend from the prices of any set of stocks. The
novelty of this approach is that it may easily be generalized to incorporate any group of
assets. KF-SSM provides a way to extract a common stochastic trend or a customized
index, with weights that are chosen by the principles of maximum likelihood. This avoids
the need to weight stocks by market capitalization or by trading volume, as some indices
do.

We expect ML-ECM to fail in this application, because the parameters are estimated
using Johansen’s method. Essentially, ML-ECM is designed to extract the best trends,
with the number of trends unrestricted. KF-SSM extracts the best single trend. In two-
dimensional applications, such as the previous two, both approaches must extract only one
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Figure 5.6: Log of the DJIA (December 2, 1999 – April 7, 2004).

trend. In higher-dimensional applications, only one trend may be desired. In this case,
KF-SSM provides a better approach.

Gonzalo and Granger (1995) recommend dividing such a high-dimensional cointegrated
system into cohorts when analyzing with ML-ECM.8 Essentially, those authors propose a
two-step methodology to extract a single common trend. A common trend is extracted
from the common trends that are first extracted from each of these cohorts. This reduces
the dimensionality involved in each step. Natural cohorts may be difficult to identify. For
example, in this application, it would be reasonable to group American Express, Citigroup,
and JP Morgan Chase as financial companies. But other companies such as Exxon Mobil
cannot easily be grouped with others. Moreover, with current computing power, this is
unnecessary. Calculations with a 30 × 30 matrix can be accomplished with GAUSS on a
desktop computer in a reasonable amount of time.

In this application, we use prices from Yahoo! Finance. These daily closing prices are
adjusted to take into account stock splits and dividends using the methodology developed
by the Center for Research in Security Prices. Figure 5.6 illustrates the DJIA observed from
December 2, 1999 through April 7, 2004, which is the longest recent stretch during which
the companies comprising the DJIA did not change (we have 1, 092 observations, excluding
weekends and holidays). Figure 5.7 shows the 30 series. We include this figure to illustrate
the behavioral diversity of these 30 stocks comprising the index. It is not obvious from
casual observation of these 30 series how the common stochastic trend should look.

The implementation of KF-SSM is not as straightforward as that of ML-ECM, since

8To put their recommendation in proper context, it should be noted that Gonzalo and Granger (1995)
propose the cohort approach more to justify extracting common trends from cohorts of cointegrated systems
than to actually estimate the parameters of a high-dimensional cointegrated system. They do not propose
the cohort approach as an alternative to one-step estimation.
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Figure 5.7: Log of the 30 stocks comprising the DJIA (December 2, 1999 – April 7, 2004).

numerical optimization is required. In order to reduce the complexity and necessary com-
puting time created by the large number of parameters, we restrict Λ to be diagonal in this
application (πij = 0 for i 6= j). This reduces the number of parameters to be estimated
using MLE from 495 to 60. Parameter estimates and standard errors for β using KF-SSM
are given in the following table.

Table 5.3: Parameter Estimates from KF-SSM

Parameter Estimate Std. Error Parameter Estimate Std. Error

β1 0.0093 5.7 × 10−5 β16 0.0087 5.1 × 10−5

β2 0.0080 4.6 × 10−5 β17 0.0082 4.8 × 10−5

β3 0.0084 5.4 × 10−5 β18 0.0080 5.2 × 10−5

β4 0.0088 5.1 × 10−5 β19 0.0107 6.1 × 10−5

β5 0.0094 7.5 × 10−5 β20 0.0084 4.9 × 10−5

β6 0.0087 5.1 × 10−5 β21 0.0084 5.0 × 10−5

β7 0.0090 5.5 × 10−5 β22 0.0091 5.4 × 10−5

β8 0.0087 5.0 × 10−5 β23 0.0076 4.5 × 10−5

β9 0.0091 5.2 × 10−5 β24 0.0094 5.4 × 10−5

β10 0.0087 5.0 × 10−5 β25 0.0080 4.7 × 10−5

β11 0.0083 4.9 × 10−5 β26 0.0084 5.1 × 10−5

β12 0.0085 4.8 × 10−5 β27 0.0080 4.8 × 10−5

β13 0.0084 4.9 × 10−5 β28 0.0098 5.7 × 10−5

β14 0.0090 5.2 × 10−5 β29 0.0093 5.4 × 10−5

β15 0.0074 4.8 × 10−5 β30 0.0075 4.5 × 10−5
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Figure 5.8: (a) Common stochastic trend extracted using KF-SSM; (b) Common stochastic trend

extracted using ML-ECM.

In the interest of brevity, we do not report parameter estimates or standard errors for the
variance parameters.

We cannot reproduce the DJIA exactly, because we restrict σ2
v = 1 for the identification

of β.9 In light of this restriction, we expect to extract a common trend resembling the
DJIA only up to an affine transformation. Figure 5.8(a) shows the common trend extracted
using KF-SSM, and may be directly compared with the actual DJIA shown in Figure 5.6.
The similarity suggests that KF-SSM works quite well. (We do not illustrate the transitory
components in this application, since the thirty-dimensional series generated by KF-SSM
does not contribute anything substantial to our exposition.)

Figure 5.8(b) shows the trend extracted using ML-ECM. The failure of ML-ECM to
replicate anything resembling the actual Dow Jones Industrial Average supports our intu-
ition about the dangers of restricting the number of trends to be estimated when using that
technique. Essentially, it restricts the number of common trends after multiple trends are
extracted. Whereas, KF-SSM imposes the restriction before the trend is extracted. If the
restriction is desired – as it is in this application – KF-SSM is clearly a more appealing
approach.

6. Conclusions

The chief aim of this paper from a theoretical point of view is to justify the use of the Kalman
filter when the underlying state space model contains integrated time series. Specifically,
this class of models is useful when a single stochastic trend is common to a vector of observ-
able cointegrated time series. Our technique is certainly not novel. The literature contains
many applications that employ the Kalman filter when the assumption of stationarity can-

9Alternatively, we could set σ
2

v equal to the variance of the differenced DJIA, which might reasonably
yield a common trend more closely resembling the DJIA. However, in more general applications, no obvious
choice for σ2

v exists.
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not be maintained. The filter seems to work reasonably well in such applications, but there
is no well-known theory to support its use in the nonstationary case. Therein lies the raison
d’être of our theoretical analysis. Our empirical applications demonstrate how our models
and theories are useful in practice.

Our research suggests many avenues for future efforts along these lines. We limit our
focus to extracting a single stochastic trend, but certainly the Kalman filter could be applied
with an unobservable vector of trends. More formal testing procedures could perhaps be
developed to test for the number of trends, as has been done for error correction models.
An advantage of the approach based on state space models is that it does not require
nonstationarity. It is easily conceivable that a common trend with a near-unit root or an
unobservable vector with a combination of stationary and nonstationary components, for
example, could be extracted using such an approach. Although we find some evidence of a
unit root in the common trend extracted from stock return volatility and trading volume,
we do not have a formal test other than a standard unit root test on the extracted series.
We leave these and other challenges for future research.
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Appendix: Mathematical Proofs

Proof of Lemma 2.1 We have

ωt+1|t = 1 + ωt|t−1 − ω2
t|t−1β

′Σ−1
t|t−1β, (35)

which follows directly from the prediction and updating steps of the Kalman filter. More-
over, we may easily deduce that

Σ−1
t|t−1 = Λ−1 −

ωt|t−1

1 + ωt|t−1β′Λ−1β
Λ−1ββ′Λ−1, (36)

and therefore,

β′Σ−1
t|t−1β = β′Λ−1β −

ωt|t−1(β
′Λ−1β)2

1 + ωt|t−1β′Λ−1β
=

β′Λ−1β

1 + ωt|t−1β′Λ−1β
. (37)

Therefore, it follows from (35) and (37) that

ωt+1|t = 1 +
ωt|t−1

1 + ωt|t−1β′Λ−1β
, (38)

which defines a first order difference equation for ωt|t−1.
Now we may readily see that the first order difference equation in (38) has the unique

asymptotic steady state solution given in Lemma 1. For this, consider the function

f(x) = 1 +
x

1 + τx

for x ≥ 1, with any τ ≥ 0. The function has an intersection with the identity function at

x =
1 +

√

1 + 4/τ

2

over its domain x ≥ 1. Moreover, the function is monotone increasing with

f ′(x) =
1

(1 + τx)2
< 1

for all x ≥ 1. This completes the proof for the existence of the stable value of ωt|t−1. The
proof of Σt|t−1 follows immediately from that of ωt|t−1. �

Proof of Lemma 2.2 From the prediction and updating steps of the Kalman filter, we
have

xt+1|t = xt|t−1 + ωt|t−1β
′Σ−1

t|t−1(yt − yt|t−1)

= xt|t−1 + ωt|t−1β
′Σ−1

t|t−1(yt − βxt|t−1). (39)
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However, it follows from (36) that

Σ−1 = Λ−1 − ω

1 + ω β′Λ−1β
Λ−1ββ′Λ−1, (40)

where Σ is the asymptotic steady state value of Σt|t−1 given in (3). Therefore, we have from
(36)

Σ−1β = Λ−1β − ω

1 + ω β′Λ−1β
Λ−1ββ′Λ−1β

=
1

1 + ω β′Λ−1β
Λ−1β,

=
β′Λ−1β

1 + ω β′Λ−1β

Λ−1β

β′Λ−1β
(41)

and

β′Σ−1β = β′Λ−1β − ω

1 + ω β′Λ−1β
β′Λ−1ββ′Λ−1β

=
β′Λ−1β

1 + ω β′Λ−1β
. (42)

Moreover, we may deduce that

ω β′Σ−1β =
ω β′Λ−1β

1 + ω β′Λ−1β
=

1

ω
(43)

due to (35) and (42).
Now we have from (39), (41) and (43) that

xt+1|t = xt|t−1 +
1

ω

β′Λ−1

β′Λ−1β
yt −

1

ω
xt|t−1

=

(

1 − 1

ω

)

xt|t−1 +
1

ω

β′Λ−1

β′Λ−1β
yt,

and consequently,

xt|t−1 =
1

ω

t−1
∑

k=1

(

1 − 1

ω

)k−1 β′Λ−1

β′Λ−1β
yt−k +

(

1 − 1

ω

)t−1

x1|0. (44)

Moreover,

1

ω

t−1
∑

k=1

(

1 − 1

ω

)k−1

yt−k =

[

1 −
(

1 − 1

ω

)] t−1
∑

k=1

(

1 − 1

ω

)k−1

yt−k

= yt −
t−2
∑

k=0

(

1 − 1

ω

)k

△yt−k −
(

1 − 1

ω

)t−1

y1. (45)

The stated result now follows from (44) and (45) in a straightforward manner. Note that
x1|0 = x0|0 = x0 and y0 = 0. The proof is therefore complete. �
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Proof of Proposition 2.3 It follows from Lemma 2.2 that

x0
t|t−1 =

β′
0Λ

−1
0

β′
0Λ

−1
0 β0

[

(β0xt + ut) −
t−1
∑

k=0

(

1 − 1

ω0

)k

(β0vt−k + (ut−k − ut−k−1))

]

= xt +
β′

0Λ
−1
0

β′
0Λ

−1
0 β0

[

ut −
t−1
∑

k=0

(

1 − 1

ω0

)k

(ut−k − ut−k−1)

]

−
t−1
∑

k=0

(

1 − 1

ω0

)k

vt−k.(46)

However, we may easily deduce that

t−1
∑

k=0

(

1 − 1

ω0

)k

(ut−k − ut−k−1) = ut −
1

ω0

t−1
∑

k=1

(

1 − 1

ω0

)k−1

ut−k. (47)

The stated result now follows readily from (46) and (47). �

Proof of Proposition 2.4 Starting with the smoothing formula, steady state values for
ωt|t and ωt+1|t (which are ω− 1 and ω, respectively), and evaluating all parameters at their
true values, we may write

x0
t|n = x0

t|t + (1 − 1/ω0)
(

x0
t+1|n − x0

t+1|t

)

,

which is equivalent to

x0
t|n =

1

ω0
x0

t|t +

(

1 − 1

ω0

)

x0
t+1|n

since x0
t+1|t = x0

t|t from the prediction step. This may be rewritten as

x0
t|n =

1

ω0

n−t−1
∑

k=0

(

1 − 1

ω0

)k

x0
t+k|t+k +

(

1 − 1

ω0

)n−t

x0
n|n

by recursion. Since 1/ω0 = 1−(1 − 1/ω0), we may use a technique similar to that employed
in the proof of Lemma 2.2 to obtain

x0
t|n =

n−t
∑

k=0

(

1 − 1

ω0

)k

x0
t+k|t+k −

n−t−1
∑

j=0

(

1 − 1

ω0

)j+1

x0
t+j|t+j ,

where the initial condition is subsumed in the first summation. By bringing the term for
which k = 0 out of the first summation, and by relabeling the index on the second as
k = j + 1, the stated result follows. �

Proof of Lemma 3.1 The proof just requires the standard rules of differentiation, and
the details are therefore omitted. �
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Proof of Lemma 3.2 In the proof, we use the generic notation wt to signify any sta-
tionary linear process driven by (ut) and (vt). In particular, the definition of wt is different
from line to line. Due to Lemma 2.2, we may write

xt|t−1 =
β′Λ−1

β′Λ−1β
yt + wt. (48)

for all values of β and Λ. Moreover, we may readily deduce that

∂xt|t−1

∂β
=

Λ−1

β′Λ−1β

(

I − 2
ββ′Λ−1

β′Λ−1β

)

yt + wt (49)

∂xt|t−1

∂vecΛ
= −Λ−1β ⊗ Λ−1

β′Λ−1β

(

I − ββ′Λ−1

β′Λ−1β

)

yt + wt (50)

for all values of β and Λ. As a consequence, if we use the superscript “0” to denote the
derivative ∂xt|t−1/∂θ evaluated at the true parameter values consistently with our earlier
notations, then we have

∂x0
t|t−1

∂β
= − Λ−1

0 β0

β′
0Λ

−1
0 β0

xt + wt and
∂x0

t|t−1

∂vecΛ
= wt. (51)

We now note that

∂ε0′
t

∂β
= −x0

t|t−1 I −
∂x0

t|t−1

∂β
β′ and

∂ε0′
t

∂vecΛ
= −

∂x0
t|t−1

∂vecΛ
β′,

from which the stated result follows immediately. �

Proof of Lemma 3.3 It follows follow immediately from (21) that

Vn(r) = −Γ′
0

1√
n

[nr]
∑

t=1

vt + op(1).

Moreover, due to (21), T ′
S(∂ε0′

t /∂θ) is a stationary linear process. Moreover, it is Ft−1-
measurable. Consequently, Wn is a partial sum process of the martingale difference sequence
T ′

S(∂ε0′
t /∂θ)Σ−1

0 ε0
t . The stated results can therefore be readily deduced from the invariance

principle for the martingale difference sequence. �
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Proof of Lemma 3.4 To deduce the stated result, we simply note that

∂(vec Σ0)
′

∂θ
vec

[

Σ−1
0

1√
n

n
∑

t=1

(

ε0
t ε

0′
t − Σ0

)

Σ−1
0

]

=
∂v(Σ0)

′

∂θ
D′
(

Σ−1
0 ⊗ Σ−1

0

)

vec

[

1√
n

n
∑

t=1

(

ε0
t ε

0′
t − Σ0

)

]

→d
∂v(Σ0)

′

∂θ
D′
(

Σ−1
0 ⊗ Σ−1

0

)

N

(

0, (I + K)(Σ0 ⊗ Σ0)
)

=d
∂v(Σ0)

′

∂θ
N
(

0, 2D′
(

Σ−1
0 ⊗ Σ−1

0

)

D
)

=d
∂(vec Σ0)

′

∂θ
N
(

0, 2
(

Σ−1
0 ⊗ Σ−1

0

))

.

Here we use the fact
KD = D,

as shown in, e.g., Magnus and Neudecker (1988, p.49). �

Proof of Theorem 3.5 The proof will be done in three steps, for each of ML1 – ML3. In
the proof, we use the following notational convention:

(a) (wt) denotes a linear process driven by (us)
t
s=1 and (vs)

t
s=1 that has geomet-

rically decaying coefficients, and

(b) (wt) is such a process that is Ft-measurable.

The notations wt and wt are generic and signify any processes satisfying the conditions
specified above. In general, wt and wt appearing in different lines represent different pro-
cesses.

First Step We have

1

n
T ′

Nsn(θ0) =
1

2
√

n
T ′

N

∂(vec Σ0)
′

∂θ

(

Σ−1
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0

)
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[

1√
n

n
∑
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(

ε0
t ε

0′
t − Σ0

)

]

− 1

n

n
∑

t=1

T ′
N

∂ε0′
t

∂θ
Σ−1

0 ε0
t

= − 1

n

n
∑

t=1

T ′
N

∂ε0′
t

∂θ
Σ−1

0 ε0
t + Op(n

−1/2)

= −
∫ 1

0
Vn(r) dUn(r) + op(1)

→d −
∫ 1

0
V (r) dU(r) (52)
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as n → ∞. On the other hand, we may deduce that

1√
n

T ′
Ssn(θ0) =

1

2
T ′

S

∂(vec Σ0)
′

∂θ

(

Σ−1
0 ⊗ Σ−1

0

)
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[

1√
n

n
∑

t=1

(

ε0
t ε
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t − Σ0

)

]

− 1√
n

n
∑

t=1

T ′
S

∂ε0′
t

∂θ
Σ−1

0 ε0
t

= Zn − Wn

→d Z − W (53)

as n → ∞. Consequently, it follows from (52) and (53) that ML1 holds with N given in the
theorem.

Second Step Next we establish ML2. First, we note that

1

n2
T ′

NHn(θ0)TN = − 1

n2
T ′

N

(

n
∑

t=1

∂ε0′
t

∂θ
Σ−1

0

∂ε0
t

∂θ′

)

TN + Op(n
−1)

= −
∫ 1

0
Vn(r)Σ−1
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→d −
∫ 1

0
V (r)Σ−1

0 V (r)′dr (54)

as n → ∞, and that
1

n3/2
T ′

NHn(θ0)TS = Op(n
−1/2) (55)

for large n, which are in particular due to

n
∑
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(
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t Σ−1

0

)

(

∂2

∂θ∂θ′
⊗ ε0

t

)
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∂(vec Σ0)
′

∂θ

(

Σ−1
0 ⊗ Σ−1

0

)

n
∑

t=1

(

∂ε0
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∂θ
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)

(
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0

) ∂(vec Σ0)

∂θ′
= Op(n)

for large n.
Secondly, we show that

1

n
T ′

SHn(θ0)TS →p −[var(W ) + var (Z)], (56)

which establishes ML2, together with (54) and (55). To derive (56), we first write

1

n
T ′

SHn(θ0)TS = An + Bn + Cn + (Dn + D′
n) + op(1), (57)
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where

An = −1

2
T ′

S
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0

∂ε0
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)
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∂θ′
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TS .

As shown earlier, we have

An = −var (Z) + op(1) and Bn = −var(W ) + op(1). (58)

Moreover, since

T ′
S

∂ε0′
t

∂θ
= wt−1,

we have

Dn = T ′
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∂(vec Σ0)
′

∂θ

(
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) 1

n
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∂ε0
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∂θ′
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t

)

]

= Op(n
−1/2) (59)

for large n.
Now it suffices to show that

Cn =

(

Cn(β, β) Cn(β,Λ)
Cn(Λ, β) Cn(Λ,Λ)

)

= Op(n
−1/2), (60)

since (56) follows immediately from (57) – (60). For the subsequent proof, it will be very
useful to note that

xt|t−1 + β′∂xt|t−1

∂β
= wt−1

for all β and Λ. Therefore, we have upon differentiating with respect to β and Λ

2
∂xt|t−1

∂β′
+ β′ ∂

2xt|t−1

∂β∂β′
= wt−1 (61)

∂xt|t−1

∂(vec Λ)′
+ β′ ∂2xt|t−1

∂β∂(vec Λ)′
= wt−1, (62)

which hold for all β and Λ.
For (60), we first prove
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n
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0 )

(
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t
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β0 = Op(n
−1/2). (63)
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This can be easily derived, since we have
(
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t

)

β0 =
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∂β′
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and it follows that
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0
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0
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from which we may deduce (63), upon noticing
n
∑

t=1

wt−1ε
0
t = Op(n

1/2)

for large n.
Similarly, we have for any vector λ of conformable dimension
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as was to be shown. The proof for Cn(Λ,Λ) is straightforward, since

∂x0
t|t−1

∂vec Λ
= wt−1 and

∂2x0
t|t−1

∂vec Λ∂(vec Λ)′
= wt−1. (64)

This can be easily deduced after some tedious but straightforward algebra. The proof for
ML2 with given M is therefore complete.
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Third Step To establish ML3, we let

µn = ν1−δ
n

for some δ > 0 small, and let θ ∈ Θn be arbitrarily chosen. Since

Γ′
0Λ

−1
0 (β − β0) = O(n−1+δ)

β′
0Λ

−1
0

(β′
0Λ

−1
0 β0)1/2

(β − β0) = O(n−1/2+δ),

we may set

β = β0 + n−1/2+δβ0 + n−1+δΓ0 (65)
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without loss of generality.
We will show that
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for all β and Λ satisfying (65) and (66).
Here we only prove that the nonstationary components in (67) – (76) satisfy the re-

quired conditions. It is rather obvious that the required conditions hold for the stationary
components. In what follows, we use the generic notation ∆(nκxt) to denote the terms
which include nκ (or of a lower order) times (xt). Clearly, we have

εt − ε0
t ,

∂ε′t
∂θ

− ∂ε0′
t

∂θ
,

∂2

∂θ∂θ′
⊗
(

εt − ε0
t

)

= ∆(n−1/2+δxt) + wt, (77)

since both β = β0 +O(n−1/2+δ) and Λ = Λ0 +O(n−1/2+δ). The results in (67) – (73) follow
immediately from (77).

The proofs for (74) – (76) are more involved. For (75) and (76), we need to show

x0
t|t−1 = xt + wt (78)

xt|t−1 − x0
t|t−1 = −n−1/2+δxt + ∆(n−1+2δxt) + wt. (79)

The result in (78) follows directly from (48). To establish (79), note that
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0
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)
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from which, together with (77), we may easily deduce (75) and (76).
Finally, we prove (74). To do so, we first show that
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∂x0
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= 2n−1/2+δxt + ∆(n−1+2δxt) + wt. (82)

The result in (81) follows immediately from (51). To derive (82), we note that
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which follow from (51), (61) and (62). Consequently, we have
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due to (79), (81) and (82).
Moreover, we have
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due to (64) and (83). Consequently, it follows directly from (85) that
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Now (84) and (86) yield (74), and the proof is complete. �

Proof of Proposition 4.1 The stated result follows immediately from Lemma 2.2 and
the result in (19). Note that we have from Lemma 2.2

β0x
0
t|t−1 =

β0β
′
0Λ

−1
0

β′
0Λ

−1
0 β0

[

yt −
t−1
∑

k=0

(1 − 1/ω0)
k△yt−k

]

under the convention (5), and the stated result may now be easily derived using (19) and

β0x
0
t|t−1 = yt − ε0

t ,

which is due to the definition of (ε0
t ). �


