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Abstract

Information aggregation, a key concern for uniform-price, common-value auctions

with many bidders, has been characterized in models where bidders know exactly how

many rivals they face. A model allowing for uncertainty over the number of bidders is

essential for capturing a critical condition for information to aggregate: as the num-

bers of winning and losing bidders grow large, information aggregates if and only if

uncertainty about the fraction of winning bidders vanishes. It is possible for the seller

to impart this information by precommitting to a specified fraction of winning bid-

ders, via a proportional selling policy. Intuitively, this makes the proportion of winners

known, and thus provides all the information that bidders need to make winner’s curse

corrections.

Keywords: information aggregation, common-value auctions, uncertain level of com-

petition
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1 Introduction

The uniform-price, common-value auction has become the principal game-theoretic model of

competitive price formation in economies where information related to the values of goods

and services is diversely held. An important concern for a market mechanism is its abil-

ity to aggregate private information as the number of market participants becomes large.

Wilson (1977) and Milgrom (1979) demonstrate that a single-object auction may aggregate

information: the auction price may converge to the unknown true value of the object as the

number of bidders grows. Information aggregates under stringent conditions on the potential

informativeness of a bidder’s signal. Pesendorfer and Swinkels (1997) replace these statistical

requirements with two simple economic conditions: they consider a sequence of uniform-price,

common-value auctions (each auction with k objects, n bidders, each bidder demanding one

object), and show that the unique symmetric equilibrium aggregates information if and only

if the number of winners, k, and the number of losers, n − k, both grow to infinity.1 They

argue that studying symmetric equilibria along such a sequence of auctions is a reasonable

analogy for studying information aggregation in large economies.

An implicit assumption in auction models studying information aggregation is that the

number of bidders is common knowledge. It seems unrealistic, however, to suppose that each

bidder knows the exact number of rivals in sealed-bid auctions, especially when studying

large economies. It is common in sealed-bid auctions for the number of bids submitted to be

new information at the time that bids are opened.2 An uncertain number of bidders is more

likely when the prospect of dozens or hundreds of competitors arises. Electronic call markets

face bidders with this uncertainty.

A natural question is whether the same information aggregation conditions extend to a

setting where the number of bidders is exogenously random: is common knowledge that the

number of winners and the number of losers both surely grow to infinity still sufficient for

information aggregation?

The main insight of this paper is that information aggregation is not automatic when

bidders in large auctions may not know exactly how many rivals they face. Controlling for

uncertainty about the level of competition turns out to be critical. We show that Pesendorfer

and Swinkels’ (1997) conditions, that the numbers of winning and losing bidders grow to

1We model the case of a single seller with variable supply selling to multiple competing buyers. All results
have complete analogues in the situation with a single buyer with variable demand buying from multiple
competing sellers.

2For example, the number of bidders in offshore oil auctions, despite being small, is an important uncer-
tainty. In the mid-1980’s, a major oil company approached one of the authors about building a model to
predict the number of bidders.
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infinity, are no longer sufficient to aggregate information. An additional critical condition

is that uncertainty about the proportion of winners vanishes, that is, the success ratio s =

k/n (the proportion of winners) must be known for information to aggregate. This critical

distinction between bidders knowing the numbers of bidders and objects sold, versus merely

knowing the success ratio, can only be grasped in a model of the type presented below: we

consider a sequence of auctions, with an exogenous distribution of the number of bidders

for each element of the sequence.3 Moreover, this distinction helps to clarify what causes

information aggregation. Were n and k to be fixed (e.g., as in Pesendorfer and Swinkels,

1997) rather than stochastic at each element of the sequence, we could not study the impact

of this uncertainty on information aggregation, let alone address the question of whether

bidders need to know the number of rivals or merely know the fraction of winning bidders.

We show that the increasing equilibrium bid function (when it exists) is a weighted

average of the equilibrium bid functions for the case where n is known. Critically, when

the supply/demand ratio is bounded away from zero and one, each of these bid functions is

asymptotically a function solely of the success ratio s = k/n (a bidder observing signal x0

comes to bid that value v for which the probability of observing a signal X ≥ x0 equals s).

Thus, if the possible success ratios related to different realizations of the number of bidders

approach a common limit, then bidders bid (approximately) as if they knew the number

of bidders, and information aggregates. On the other hand, if these success ratios remain

distinct, bidders bid significantly differently (from the case with a known number of bidders)

and information aggregation cannot be attained. In particular, information aggregates only

when the sequence of ratios of the largest possible to the smallest possible number of bidders

(in each auction along the sequence) converges to one. In other words, information aggregates

only if uncertainty over the number of bidders becomes negligible.

From the seller’s perspective, the stochastic process that governs the number of bidders is

out of his control (since bidders’ participation is exogenous). However, if the seller could vary

the quantity sold,4 he could adjust it in accordance with the number of bids submitted (once

bids are submitted, the seller does not face uncertainty as to the number of submissions); for

example, the seller could precommit to sell ki objects if ni bids are submitted. Regardless

of its practical implications and feasibility, this more general setting highlights a crucial

condition for information aggregation: at the moment of bid submission, bidders do not

have to know the number of bidders or the number of objects; however, for information to

3This exogenous randomness is specified as in Matthews’ (1987) model of private-values auctions and
Harstad et al.’s (1990) model of common-value auctions. Both of those papers considered only a single-
object setting with independently drawn private information.

4For example, this is possible in auctions of financial instruments (e.g., stocks, bonds, T-bills, et al.).
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aggregate, they must know the proportion of winners. Hence, when uncertainty about the

number of bidders remains asymptotically significant, information aggregation is attained

only if the seller commits to proportional selling.

This raises the question of whether proportional selling serves the expected-revenue-

maximization goal of a risk-neutral seller. As information aggregation leads bidders’ individual-

rationality constraints to converge to becoming binding, asymptotically a seller can do no

better; the example in the next section indicates he can do notably worse (even in the limit).

Under stricter distributional assumptions, Appendix A demonstrates that common-value auc-

tions are weakly asymptotically extractive if and only if proportional selling is used. This

is a stronger sense in which information aggregation is in seller’s best interests: any other

sales mechanism exhibits an unbounded expected revenue shortfall relative to proportional

selling.

After a general model definition and characterization of an increasing symmetric equilib-

rium, Section 3 establishes necessary and sufficient conditions for information aggregation.

Section 4 discusses some generalizations and Section 5 concludes. All proofs are in Appen-

dices B-D.

2 An Illustrative Example

The value of any one of the identical objects sold at auction is a random variable V ; each

bidder i privately observes an estimate Xi. For this example, let the common value V

be uniform on [0; v], v > 1, and the conditional estimate density for all Xi be uniform

on [v − 1/2; v + 1/2]. For simplicity of the illustration, we ignore bidding outside z =

[1/2, v − 1/2]; theorems below show that results are unaffected.5

The first case fits the Pesendorfer and Swinkels (1997) assumptions. Consider a sequence

of auctions A1,A2, . . .; in auction Ak, it is common knowledge that k objects are sold to

n = 4k bidders. The symmetric equilibrium bid is then b∗“4k” (x) = x+ k/n− 1/2 = x− 1/4,

x ∈ z.6 This leads directly to information aggregation, as the distribution of the pivotal

bidder’s signal asymptotically collapses to x = v + 1/2− k/n = v + 1/4.

Second, consider a sequence of auctionsA1,A2, . . .; in auctionAk, it is common knowledge

that k objects are sold, and that the number of bidders n is either 4k or 8k, with equal

5For sizable v, z is nearly the entire support of Xi.
6The feature that, for all n,k, b∗ depends on k and n only through their ratio is a pathology of the uniform

distibutions in this example. Lemma 4.1 below obtains a corresponding characterization asymptotically for
general distributions.
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probabilities. If a bidder knew n, he would bid b∗“4k” (x) = x−1/4 for n = 4k, and b∗“8k” (x) =

x−3/8 for n = 8k, again yielding information aggregation. However, not knowing whether 4k

or 8k bidders are present, Theorem 3.1 below shows the symmetric equilibrium in this example

is to bid based on the average number of bidders, 6k, yielding the equilibrium bid function

b∗ (x) = x− 1/3. Despite satisfying the Pesendorfer/Swinkels conditions (that the numbers

of winners and losers both go to infinity), information cannot aggregate in this second case:

the distribution of the pivotal bidder’s signal asymptotically collapses to {v + 1/4, v + 3/8},
each with probability 1/2. The asymptotic price will be {v − 1/12, v + 1/24}, equally likely.

Third, consider the same sequence of auctions as the second case, except now allow the

seller to use proportional selling. One example would be for the seller in auction Ak to pre-

commit to a policy of counting the number of bids submitted, and selling k objects if he counts

4k bids, but 2k objects if there are 8k bids. This policy leads to bidders knowing neither n nor

k, but knowing their chance of success, s = k/n = k/4k = 2k/8k = 1/4. Applying Theorem

3.1, the equilibrium bid in this case depends on the means k and n: b∗ (x) = x+k/n−1/2 =

x + 1.5k/6k − 1/2 = x − 1/4. Proportional selling leads to information aggregation: the

distribution of the pivotal bidder’s signal asymptotically collapses to {v + 1/4, v + 2/8}, each

with probability 1/2. In this example, then, knowledge of the number of bidders is not critical

to information aggregation, but knowledge of the success ratio s is critical. Below we develop

the apparatus necessary to show that this example is in no way special.

3 A General Model of Stochastic Competition

This model generalizes Milgrom’s (1981) multi-unit common-value auction model with unit

demands, by allowing the exact number of bidders to be unknown at the moment of bid

submission. As in Milgrom’s model, all auctions considered here are sealed-bid auctions with

highest-rejected-bid pricing: k homogeneous objects are sold to the k highest bidders at a

uniform price equal to the (k + 1)st-highest bid, ties broken randomly.

Bidders are drawn from a pool of N ≤ ∞ potential bidders in accordance with an ex-

ogenous symmetric stochastic process, Ω = {(n1, π1), ..., (nM , πM)}, specifying that ni bid-

ders are present with probability πi. The ni are labeled ascendingly: ni < ni′ for i < i′.

Let n =
∑M

i=1 πini, the expected number of bidders. If the seller commits to a policy

k = {k1, . . . , kM} to sell ki items if ni bids are submitted, ki < ni,∀i, the resulting stochastic

process is

Ωk = {(n1, k1, π1), ..., (nM , kM , πM)}.
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As usual, Ωk is assumed to be common knowledge.7 Note that the policy k is a deterministic

policy choice by seller, but that it acquires its determinism only after bids are submitted;

at the time of bidding, it serves to make (k, n) a stochastic pair from the standpoint of a

bidder.8

The usual case with known k objects and n bidders corresponds to Ωk = {(n, k, 1)}.
If the number of objects is fixed at k, but the number of bidders is unknown, then Ωk =

{(n1, k, π1), ..., (nM , k, πM)}. Finally, distinct ki could correspond to different ni.

For a given ki and ni, the fraction of winning bidders is called the success ratio, si = ki/ni.

The policy Ωk represents proportional selling if there is (almost) no uncertainty about the

success ratio, i.e., if all success ratios si = ki/ni, i = 1, . . . ,M , are approximately equal.9

The seller and all potential bidders are risk-neutral. The value of any one of the identical

objects is a random variable V with twice differentiable probability density function g. Let

the support of g be convex, i.e., g(v) > 0 if v ∈ [v; v], −∞ ≤ v < v ≤ ∞, and g(v) = 0

otherwise. Bidder j observes a signal Xj, a random scalar distributed with cumulative

distribution function F (x|v) and density f(x|v) conditional on V = v, where f is assumed

to have a third derivative with respect to v, and is continuous in x.

We assume that f satisfies the Strict Monotone Likelihood Ratio Property (SMLRP):10

f(x|v)
f(x|v′)

>
f(x′|v)
f(x′|v′)

∀x > x′, v > v′. (1)

Because of SMLRP, F (x|v) is decreasing in v. A slight technical strengthening of this as-

sumption, adding that ∂F (x|v)/∂v < 0 for all x, v such that 0 < F (x|v) < 1, will be used in

the proof of Lemma 4.1.11

Symmetry allows focusing on realized bidder 1. Bidder 1 is said to be pivotal if his bid is

on the boundary between winning and losing. Let the pivotal rival to bidder 1 be the rival

7This model of exogenous bidders’ participation is standard: the single-object case k1 = . . . = kM = 1
has been studied in Matthews (1987) and Harstad et al. (1990).

8We treat the seller as able to demonstrate ex post to suspicious bidders the number of bids submitted,
and thus for such a deterministic policy to be credible. In contrast, a seller who stated that “if ni bids are
submitted, then I will sell ki1 objects with probability ϑ and ki2 objects with probability 1− ϑ” would have
no way of demonstrating ex post that the (allegedly) committed policy had in fact been applied.

9Since ki and ni are integers, only approximate equality is attainable. However, for large ni this integer
constraint becomes negligible.

10Milgrom (1981) makes the same assumption, and Pesendorfer and Swinkels (1997) assume MLRP. Infor-
mation aggregation results in Wilson (1977) and Milgrom (1979) rely on much stronger assumptions (see the
discussion in Pesendorfer and Swinkels, 1997). On well-behaved domains, the assumption that v and the x’s
are affiliated is equivalent up to the interpretation of strictness; cf. Milgrom and Weber (1982), pp. 1098-1101
and 1118-1121. Riley (1988) explains that the assumption that the x’s are strictly stochastically ordered by
v is virtually indistinguishable from SMLRP.

11Hong and Shum (2004, Corollary 1) require the same strengthening.
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bidder with the kth
i -highest signal, of the ni− 1 rivals. Among all ni bidders, the price-setter

is the bidder submitting the (ki + 1)st-highest bid. Given Ωk, the identities of these order

statistics may be stochastic, but are well-defined.

An auction is defined by A = {Ωk, g (·) , f (·)}, specifying the stochastic structure of

bidders and objects sold, the prior distribution of the common value, and the conditional

distribution of any one bidder’s signal.

3.1 Symmetric equilibrium

This subsection characterizes a symmetric equilibrium in auction A = {Ωk, g (·) , f (·)}. Ini-

tially, consider the case of a known number of bidders (n) and objects (k), which corresponds

to Ωk = {(n, k, 1)}. Let vnk denote the usual conditional value function

vnk (x, y) = E
[
V |X1 = x, Y k

n−1 = y
]
,

where Y k
n−1 is the kth-highest of n− 1 signals. Then

bnk(x) = vnk (x, x) , (2)

the expected value given that bidder 1 is pivotal in an n-bidder auction for k objects, is

the unique symmetric equilibrium bid function (Milgrom (1981), Pesendorfer and Swinkels

(1997)).

Theorem 3.1 considers a bidding function for an unknown number of bidders that is a

weighted average of the bidding functions for each (ni, ki) pair. The weights are Bayesian

updatings of the probabilities of ni bidders and ki objects (the ith component of Ωk) under

the assumption that bidder 1 is pivotal. Denote

wi(x) =

πini(ni−1)!
(ki−1)!(ni−ki−1)!

∫ v
v
f 2(x|t)F ni−ki−1(x|t)

(
1− F (x|t)

)ki−1
g(t)dt∑M

j=1
πjnj(nj−1)!

(kj−1)!(nj−kj−1)!

∫ v
v
f 2(x|t)F nj−kj−1(x|t)

(
1− F (x|t)

)kj−1
g(t)dt

. (3)

Theorem 3.1 If there exists a symmetric equilibrium b∗: < → < in increasing strategies for

A = {Ωk, g (·) , f (·)}, then it is

b∗(x) =
M∑
i=1

wi(x)bniki
(x), (4)

where bniki
and wi are defined by (2) and (3). Conversely, if b∗ is increasing, then it is the

unique symmetric equilibrium in increasing strategies.
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The proof defines a function v (x, y) that is expected value of an object if a bidder observes

signal x, and his pivotal rival observes signal y, given the distributions of the numbers of

bidders and objects. The existence of an increasing symmetric equilibrium bid function is

shown to imply that v(x, x) is increasing. Given this fact, b∗ (x) = v (x, x), and any deviation

from v (x, x) when rivals all bid b∗ is then unprofitable. Details of the proof are in Appendix B.

Theorem 3.1 cannot be strengthened to guarantee existence of an increasing symmetric

equilibrium.12 Example 3.2 finds that existence or non-existence of equilibrium in increasing

strategies can be attained simply by changing the degree of uncertainty about the number of

bidders.

Example 3.2 Consider an auction for k = 1 object with Ωk = {(2, 1, 1/2), (n2, 1, 1/2)},
that is, there are either 2 or n2 bidders, each equally likely. Let g(v) be uniform on [0; v],

v > 1, and let f(x|v) be uniform on [v − 1/2; v + 1/2]. Note that uniform distribution does

not satisfy SMLRP (eq. (1)),13 but the proof of Theorem 3.1 is valid for this distribution as

well, because property (13) of the posterior distribution is satisfied for v > 1, and therefore

the corresponding v(x, y) is increasing in x. For x < 1/2, derivation in Appendix B yields:

b∗(x) = x+
1

2
−

(x+ 1
2
) + (n2 − 1)(x+ 1

2
)n2−1

2 + n2(x+ 1
2
)n2−2

.

As x ↗ 1/2, i.e., for x close enough to but less than 1/2, this function is increasing for

n2 ≤ 5 and is decreasing for n2 ≥ 6. Therefore, by Theorem 3.1, an increasing symmetric

equilibrium exists for n2 ≤ 5, but no such equilibrium exists if n2 ≥ 6.

This example uses small values of n and k for computational ease. It is straightforward

to generalize the example and construct a sequence of auctions, with numbers of winners

and losers surely going to infinity, and si’s bounded away from 0 and 1, but no increasing

symmetric equilibrium for any element of the sequence.14 In conclusion, it appears that an

increasing symmetric equilibrium will exist for any Ωk in which the variability of n and k is

12While vnk (x, y) is increasing in both arguments, v (x, y) is increasing in x but sufficient variability in the
uncertain number of bidders will prevent it from being increasing in y.

13However, the uniform distribution satisfies MLRP and might be viewed as a limit as a → 0 of the
following distributions on [v − 1/2; v + 1/2]: fa(x|v) = 1 − a(x − v)2 + a/12. For any 6 ≥ a > 0, fa(x|v)
satisfies SMLRP (1).

14Theorem 3.1 is necessarily weaker than the equilibrium existence theorem in Pesendorfer and Swinkels
(1997), due to uncertainty over the number of bidders. Remark 8.1 in Appendix A demonstrates that the
“loser’s curse” on which they rely cannot be extended to this more general model. The critical aspect of their
proof is this: if a bidder is told that he is tied for being the last winning bidder, the conditional expectation
of V is then increasing in the number of biddders who are tied with him. In this model, if a pivotal bidder
is told that he has lost a tie breaker, it is possible that more of a given n − 1 rivals were tied with him,
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not too extreme. Unfortunately, no simple statement of the threshold, between Ωk which are

too extreme, and nondegenerate Ωk for which increasing symmetric equilibria are assured to

exist, can be found.

4 Information Aggregation

Information aggregation and other asymptotic properties will be investigated on sequences

of auctions A1,A2, . . ., denoted by {Aζ}ζ=1,2,..., along which the numbers of bidders and

objects grow large while, for expositional clarity, keeping the probability vector (π1, . . . , πM),

common value distribution, and bidders’ signal distribution fixed. Thus, all sequences of

auctions {Aζ} considered below satisfy:15

[i] n1ζ
→∞ as ζ →∞

[ii] πiζ = πi > 0 for all i = 1, . . . ,M , all ζ = 1, 2, . . .

[iii] gζ(·) = g(·) and fζ(·) = f(·) for all ζ = 1, 2, . . . (5)

4.1 Asymptotic dependence of bnk on success ratio only

As shown by (4), b∗ is a weighted average of the increasing equilibrium bid functions for

known numbers of bidders. Thus, information aggregation in the presence of uncertainty

over the number of bidders and objects depends on the asymptotic behavior in large auctions

of the function bnk, (2) above. If (n, k) were known, this function would be the symmetric

equilibrium bid function. This subsection shows that bnk comes to depend on (n, k) only

through the success ratio s = k/n.

The equilibrium bid function for a known number of bidders, bnk, is a conditional expec-

tation of V , conditioned on a signal x being tied for the kth-order and (k+1)st-order statistics

out of n signals. All a bidder would care about, if a large enough (known) number of bids

were submitted, is a simpler approximation: the expected value of V conditional on s = k/n

being the probability that any single signal is x or larger. Let κ (x, s) denote a realization

suggesting a higher expected value. However, it is also possible that a greater number of bidders tied for
pivotal bid means no more than an increase in the likelihood of events with a greater number of bidders.
Lack of a general relationship between the number of bidders tied for pivotal bid and the number of bids
submitted prevents a general existence theorem.

15These particular sequences are chosen for ease of exposition only. We discuss in Sections 3.2 and 4 below
how the necessary and sufficient conditions apply more generally. Also note that, as shown by Theorem 3.1,
bidding strategies do not depend upon N , the number of potential bidders. Thus, along a sequence of
auctions, N can change in any pattern subject to the constraint N ≥ nMζ

.
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for v with the property that the probability of getting a signal of x or greater is exactly

s = k/n. Thus, κ(x, t) is a solution of the equation 1 − F
(
x|κ(x, t)

)
= t if such a solution

exists. Further, denoting [vx, vx] the support of the posterior distribution of v given x, κ is

defined for all 0 < t < 1:

κ(x, t) =


vx,

κ(x, t) such that 1− F
(
x|κ(x, t)

)
= t,

vx,

t < 1− F (x|vx),
1− F (x|vx) ≤ t ≤ 1− F (x|vx),
1− F (x|vx) < t.

To formalize the asymptotic dependence of bnk(x) on the success ratio only, consider a

sequence of auctions {Au}u=1,2,.... Along this sequence, Ωku = {(nu, ku, 1)} ∀u and, by (5),

nu →∞ as u→∞. That is, the numbers of bidders and objects sold are always known, with

the number of bidders approaching infinity. The number of objects ku in auction Au, and

thus the success ratio su, may take any pattern as long as 0 < lim inf su ≤ lim sup su < 1.

The following Lemma states that bnk(x) and κ(x, s) are asymptotically equal, i.e., as n

gets large, the equilibrium bid bnk(x) converges to the value of v that yields a probability s

of observing a signal greater or equal to x.16 The standard O notation is used, defined by

lim supt→0 |O(t)/t| <∞.

Lemma 4.1 Let {Au}u=1,2,... with Ωku = {(nu, ku, 1)}, such that 0 < lim inf su ≤ lim sup su <

1. Then, for every signal x

bnuku(x) = κ (x, su) +O

(
1

nu

)
.

4.2 Aggregation with an unknown number of bidders

This subsection analyzes necessary and sufficient conditions for information aggregation when

there is uncertainty about the number of bidders. It turns out that proportional selling, i.e.,

keeping the success ratio s = ki/ni constant, is crucial.

Consider a sequence of auctions {Aζ}ζ=1,2,.... By (5), n1ζ
→ ∞ as ζ → ∞, that is, while

the number of bidders remains uncertain, the smallest possible realization of the number

of bidders, n1ζ
, grows unboundedly large. Also note that whenever the success ratio is

bounded away from zero and one, 0 < mini lim infζ siζ ≤ maxi lim supζ siζ < 1, Pesendorfer

16This Lemma demonstrates, as a general result, a clarification of a conjecture, relative to a special example,
in Pesendorfer and Swinkels: “Note that in the limit it must be the case that whenever a bid is pivotal then
the value of the object is equal to that bid. And for large n, the actual number of signals below x will always
be very close to F (x|v) if the true value is v.” ([1997], pg. 1261, notation in quotation changed to fit this
model.) A similar result was independently obtained by Hong and Shum (2004), see their proof of Theorem 2,
eq.(A.9).
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and Swinkels’ conditions for information aggregation when there is no uncertainty about

the number of bidders are automatically satisfied (i.e., both the number of winners and the

number of losers grow unboundedly). Let P ζ denote the random (per object) selling price for

auction Aζ . By definition (see, e.g., Pesendorfer and Swinkels, 1997) the sequence of auctions

{Aζ} aggregates information if

∀ε > 0 limζ→∞ Pr
[
|P ζ − V | > ε

]
= 0.

Theorem 4.2 Consider a sequence of auctions {Aζ}ζ=1,2,... such that b∗ζ is a symmetric equi-

librium for each Aζ. If there exists s ∈ (0, 1) such that limζ→∞ siζ = s for all i = 1, . . . ,M ,

then {Aζ} aggregates information.

Theorem 4.2 provides a sufficient condition for information aggregation: proportional

selling allows every bidder to know the success ratio even if the number of bidders is unknown,

and, as shown by Lemma 4.1, a bidder in an auction with a large number of bidders cares

only about the success ratio.17 In particular, when the number of objects sold is invariant

with respect to the number of bidders, information aggregates whenever uncertainty about

the number of bidders is negligible:

Corollary 4.3 Let {Aζ}ζ=1,2,... be a sequence of auctions such that kiζ = kζ for all i, ζ and

such that b∗ζ is a symmetric equilibrium for each Aζ. Suppose that 0 < lim infζ→∞ kζ/nMζ
≤

lim supζ→∞ kζ/n1ζ
< 1. Then information aggregates if limζ→∞ nMζ

/n1ζ
= 1.

Essentially, Theorem 4.2’s sufficient condition, proportional selling, is also necessary. If

the price-setting bidder is not bidding as if the success ratio is known, then information does

not aggregate. Suppose the success ratio cannot be known at least for some signals. That is,

suppose there exist L,U ∈ {1, . . . ,M} such that 0 < limζ→∞ sLζ
= sL < sU = limζ→∞ sUζ

<

1, and there exists x0 such that v < κ(x0, sL) < κ(x0, sU) < v. As a result, a price-setting

bidder, observing signal x in some neighborhood of x0, cannot distinguish between the events

{v = κ(x0, sLζ
)} and {v = κ(x0, sUζ

)} near the limit as ζ →∞, so his price-setting bid cannot

aggregate information in at least one of these events.18 The formal statement:

17Note that if the asymptotic success ratio is s = 0 or s = 1, the question of information aggregation
depends on further assumptions about model elements (Pesendorfer and Swinkels, 1997; Hong and Shum,
2004).

18In the terminology of Milgrom, 1979, pg. 681, eq. (4), the events {v = κ(x0, sLζ
)} and {v = κ(x0, sUζ

)}
are not distinguishable given the signal x0 as ζ →∞.
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Theorem 4.4 Consider a sequence of auctions {Aζ}ζ=1,2,... such that b∗ζ is a symmetric equi-

librium for each Aζ. Suppose there exist L,U ∈ {1, . . . ,M}, sL, sU and an infinite subse-

quence {Aζ′}ζ′=1,2,... of {Aζ} such that 0 < limζ′→∞ sLζ′
= sL < sU = limζ′→∞ sUζ′

< 1,

and there exists a signal x0 such that v < κ(x0, sL) < κ(x0, sU) < v. Then {Aζ} does not

aggregate information.

Thus, Theorems 4.2 and 4.4 provide the sense in which proportional selling joins the

Pesendorfer-Swinkels “double largeness” as necessary and sufficient conditons for information

aggregation.19

5 Possible Generalizations

Asymptotic properties for large auctions have been analyzed for sequences Aζ in which the

probability distribution of the numbers of bidders and objects is fixed along the sequence. For

necessity, Theorem 4.4, dealing with such constrained sequences suffices. As for sufficiency,

Theorem 4.2 readily generalizes if this assumption is relaxed to limζ→∞ πiζ = πi > 0, i =

1, . . . ,M . Furthermore, if the model of stochastic competition is generalized to allow for

infinite M , Theorem 4.2 extends provided that whenever convergence is required for all i

(e.g., lim siζ = s in Theorem 4.2), it is at a uniform rate.

Our model assumes the number of bidders is independent of V , and bidders’ signals are

independent conditional on V . Both these assumptions ease exposition and can be relaxed.

First, Theorem 3.1, Theorem 4.2, and Theorem 4.4 readily extend if, for each realization ni

of the number of bidders, the common value V is drawn via a different pdf gi(v). Such a

description could model more optimistic views about V should a larger number of bidders

compete, e.g., E[V |nU ] > E[V |nL] ⇔ nU > nL.

Second, the formula for b∗ remains almost unchanged when conditionally dependent sig-

nals are allowed in the following sense. Conditional on a common factor c that is drawn from

a density g(c), signals are independently drawn from a density f(x|c) that satisfies SMLRP.20

The common value V is then drawn from a density q(v|c) with support Vc, and conditional

on c, V and signals are independent. Theorem 3.1 extends if q(v|c) either satisfies SMLRP

or is unbiased (i.e., E[V |c] = c). Note that in this setting a sequence of auctions might

19The following corollary is roughly parallel to Corollary 4.3: Let {Aζ}ζ=1,2,... be a sequence of auc-
tions such that kiζ

= kζ for all i, ζ and such that b∗ζ is a symmetric equilibrium for each Aζ . Sup-
pose lim infζ→∞ nMζ

/n1ζ
> 1, and there exist L,U ∈ {1, . . . ,M}, sL, sU and an infinite subsequence

{Aζ′}ζ′=1,2,... of {Aζ} such that 0 < limζ′→∞ sLζ′ = sL < sU = limζ′→∞ sUζ′ < 1, and a signal x0 such that
v < κ(x0, sL) < κ(x0, sU ) < v. Then {Aζ} does not aggregate information.

20See also Milgrom (1981), Assumption A2* on pg. 938.
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aggregate information only about the common factor c, but the variance of V conditional on

the auction price cannot be lower than the conditional variance of V given c.

Combining these two generalizations, let common factor c be drawn from gi(c) with

supports Ci, where different gi(c) correspond to different ni. For this combination, the

unique candidate for an increasing symmetric equilibrium bid function is

b∗(x) =

∑M
i=1

πini(ni−1)!
(ki−1)!(ni−ki−1)!

∫
Ci

(∫
Vc
vq(v|c)dv

)
f 2(x|c)F ni−ki−1(x|c)

(
1− F (x|c)

)ki−1
gi(c)dc∑M

i=1
πini(ni−1)!

(ki−1)!(ni−ki−1)!

∫
Ci
f 2(x|t)F ni−ki−1(x|t)

(
1− F (x|t)

)ki−1
gi(t)dt

.

As mentioned, Theorem 3.1 extends.

Finally, the model’s restriction to single-unit demand can be extended somewhat. Con-

sider an auction for k = m ∗ l objects in which every bidder is allowed to obtain no more

than l units, and can submit up to l bids, which need not be identical. Then one symmetric

equilibrium (there might be others) calls for each bidder to submit l identical bids, each equal

to the bid that would be submitted in an auction for m objects with a single-unit purchase

restriction.21 For example, if there are 2 l objects for sale and bidders can bid for 1, . . . , l

objects, then a symmetric equilibrium is the following: every bidder submits l identical bids,

and the bid function is as if there were two objects for sale.

6 Conclusions

In ordinary auctions, a large amount of competition is likely to be accompanied by some

degree of uncertainty on the part of bidders as to exactly how many bidders are competing.

In the presence of this uncertainty, information does not automatically aggregate. The basic

reason for this is not a technical issue over properties of signals, as in Wilson (1977) and

Milgrom (1979). Rather it is because a bidder, uncertain as to the extent of rivalry, does not

know how much of a winner’s curse correction to make.22 For a fixed number of objects, the

above effect places a bound on the uncertainty about the number of bidders: if the difference

between the largest and the smallest numbers of bidders grows unboundedly, but at a slower

rate than the (smallest) number of bidders grows, then the conditions of Corollary 4.3 are

satisfied and information aggregates.

21This suggests that, in general, properties of the unit-demand common-value auction models might also
be valid in some multi-unit demand settings.

22Note that, in the independent private-values setting, the assumption that the number of bidders is known
is rather innocuous: bidding strategies directly extend to the case of an unknown number of bidders, and
revenue equivalence holds (Matthews, 1987). In the common-value setting, on the contrary, this assumption
significantly changes the picture of symmetric equilibrium bidding strategies and information aggregation
properties.

14



The analysis presented here demonstrates that in large auctions bidders do not have

to know the number of bidders and the number of objects, but they have to know the

success ratio (proportion of winners). Thus a proportional selling policy yields information

aggregation. That is, by committing to vary the number of objects sold proportionally to

the number of bids submitted, the seller can implicitly let bidders know the success ratio

when they (and he) are still uncertain about the number of bidders. Proportional selling is

also necessary, in that any systematic deviation from it results in a failure of information

aggregation.

Beyond technical issues, these results place a different philosophical bent on the efficiency

of competitive markets. Prior papers made information aggregation a function of statistical

properties of signals (Wilson, 1977 and Milgrom, 1979), or of the extent of competition (Pe-

sendorfer and Swinkels, 1997). In either case, information either aggregated automatically, or

automatically failed to aggregate. The recognition here that bidders may face non-negligible

uncertainty over the number of rivals makes information aggregation depend on whether

proportional selling is used, and thus makes it an issue of selling policy.
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7 Appendix A: Asymptotic Extraction

Information aggregation is per se more useful to the analyst than to the seller: even if the

price per unit converges to the true value, the number of objects being sold could converge to

infinity faster than the convergence of the price. Hence the seller may be left with an infinite

shortfall of total revenue below the total value of objects sold.

Total expected profit (summed over potential bidders) in auction A = {Ωk, g (·) , f (·)} is:

S(Ωk) =
M∑
i=1

πikiE[V − Pi]; (6)

in this expression Pi denotes the (per-object) price conditional on the realization of the ith

element of Ωk when all bidders use b∗ (eq. (4)).23

A sequence {Aζ}ζ=1,2,... attains full asymptotic extraction if limζ→∞ S(Ωkζ
) = 0. If the

number of objects is bounded, i.e., lim supζ→∞ kiζ < ∞ for every i, asymptotic extraction

coincides with asymptotic efficiency. By asymptotic efficiency is meant that objects will

be sold whenever the common value exceeds the seller’s valuation. Thus, if the seller’s

valuation is v − ε, asymptotic efficiency requires that the expected auction price converges

to v (Pesendorfer and Swinkels, 1997, pg. 1265).24

If the number of objects is unbounded, i.e., for some i, lim supζ→∞ kiζ = ∞, asymptotic

extraction is stronger than asymptotic efficiency: along an asymptotically efficient sequence

of auctions, the total expected profit could be bounded above zero or even grow unbound-

edly. A sequence of auctions is weakly asymptotically extractive if lim supζ→∞ S(Ωkζ
) < ∞.

Weak asymptotic extraction guarantees that the total expected profit is bounded and, for

an unbounded number of objects, is a stronger property than asymptotic efficiency. Further-

more, (weak) asymptotic extraction is not nested with respect to information aggregation,

because the latter requires that the variance of the difference between the auction price and

v vanishes.

The importance of eliminating any uncertainty about the success ratio, by selling pro-

portionally, extends beyond concern about information aggregation. This appendix demon-

strates that, under the following two assumptions, a sequence of auctions {Aζ}ζ=1,2,... is

weakly asymptotically extractive if and only if Ωkζ
satisfies proportional selling.

23An individual participating bidder’s expected profit is
∑M

i=1(πini/n)(ki/ni)E[V −Pi] = S(Ωk)/n, where
n =

∑M
i=1 πini, since πini/n is the probability of ni bidders given that the bidder participates in the auction,

and E[V − Pi] is the expected profit in the event of winning and this event has (ex-ante) probability ki/ni,
conditioned on ni bidders, and is ex-ante in that it is not conditioned on a realization of a bidder’s signal.

24Note that asymptotic efficiency is a weaker property than information aggregation: the former only
requires convergence of the expected price, while the latter requires zero variance of (P − V ). Several such
useful distinctions are in Kremer (2002).
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Assumption 7.1 Location invariance: the pdf of conditional density of signals f is location-

invariant, i.e., has the form f(x|v) = h(x−v), with the corresponding cdf F (x|v) = H(x−v).

Assumption 7.2 Diffuse prior: the distribution of the common value v is diffuse relative to

the signal distribution, i.e., the posterior density of v given x is g(v|x) = f(x|v)/
∫∞
−∞ f(x|t)dt.

Assumption 7.2 is equivalent to assuming an improper density g(v) ∼ const on the whole

real line. Alternatively, an improper diffuse prior distribution might be viewed as a limit of

a normal distribution as its variance goes to infinity. Assumptions 7.1 and 7.2 are used and

discussed in, e.g., Klemperer (1999) and Winkler and Brooks (1980).

Corollary 7.3 Under Assumptions 7.1 and 7.2, b∗ is increasing in x for any Ωk, so by

Theorem 3.1, it is the unique increasing symmetric equilibrium.

Theorem 7.4 Let Assumptions 7.1 and 7.2 hold for a sequence of auctions {Aζ}ζ=1,2,...

[i] Assume that there exists µ ∈ (1,∞) such that nMζ
/n1ζ

< µ ∀ζ. If there exists s0 ∈ (0, 1)

and ω ∈ (0,∞) such that |(siζ − s0)n1ζ
| < ω ∀i, ζ, then

lim sup
ζ→∞

S(Ωkζ
) <∞. (7)

[ii] If there exists a subsequence {Aζ′}, L, U , sL, and sU , such that 0 < limζ′→∞ sLζ′
= sL <

sU = limζ′→∞ sUζ′
< 1, then

lim sup
ζ→∞

S(Ωkζ
) = ∞. (8)

Note that [i] assumes that the relative uncertainty over the number of bidders does not

grow unboundedly as the average number of bidders grows (since nMζ
/n1ζ

< µ ∀ζ), and that,

for every i, siζ converges to s0 as fast as 1/n1ζ
converges to zero (since |(siζ − s0)n1ζ

| < ω).

The proofs of Corollary 7.3 and Theorem 7.4 are in Appendix D.

Theorem 7.4 shows that {Aζ} is weakly asymptotically extractive, i.e., the total bidders’

profit is bounded, if and only if proportional selling is used: it is weakly extractive if [i]

holds and it is not efficient (and therefore not extractive) if [ii] holds.25 If neither [i] nor

[ii] hold, then the sequence of auctions is asymptotically efficient but might not be weakly

asymptotically extractive. An important special case are auctions in which the number of

objects ki cannot be varied, i.e., ki ≡ k ∀i.
25 This result assumes 0 < limζ→∞ siζ

< 1. Under an additional assumption that h(t) 6= 0 ⇒ h(t) > θ for
some θ > 0, which is similar to the Assumption (A1) of Jackson and Kremer (2005, pg. 11), all asymptotic
approximations are valid for 0 ≤ limζ→∞ siζ

≤ 1.
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Corollary 7.5 Let Assumptions 7.1 and 7.2 hold for a sequence of auctions {Aζ}ζ=1,2,... such

that kiζ = kζ for all i, ζ. Suppose that 0 < lim infζ→∞ kζ/nMζ
≤ lim supζ→∞ kζ/n1ζ

< 1. Then

lim supζ S(Ωkζ
) <∞ if there exists ω such that |nMζ

− n1ζ
| < ω and lim supζ S(Ωkζ

) = ∞ if

limζ→∞ nMζ
/n1ζ

> 1.

8 Appendix B: Proofs and Derivations

8.1 Proof of Theorem 3.1.

Assume that an increasing function b0 is a symmetric equilibrium bid function. Hence the bid

b0(x) maximizes expected profit for a bidder who observes the signal x when all rivals use b0.

Consider such a bidder observing signal x. Denote by fn−1,k(y|v) the conditional probability

density function of Y k
n−1, the kth-highest order statistic out of n− 1 signals, given v:

fn−1,k(y|v) =
(n− 1)!

(k − 1)!(n− k − 1)!
f(y|v)F n−k−1(y|v)(1− F (y|v))k−1. (9)

By assumption b0(x) is increasing but does not have to be continuous. Define b−1
0 (b) =

sup{x : b0(x) ≤ b}, i.e., b−1
0 (b) is the largest x such that b0(x) ≤ b. Then b−1

0 is defined for

all b and, for all x, x = b−1
0 (b0(x)). Conditional on a realized common value v, and numbers

of bidders and objects (ni, ki), expected profit Πi(b|v) of a bidder that bids b when all rivals

use the function b0 is:

Πi(b|v) =

∫ b−1
0 (b)

−∞
(v − b0(y))fni−1,ki

(y|v)dy.

Using Matthews (1987), the probability of ni bidders is πini/n̄, where n̄ =
∑M

i=1 πini. Denote

by g(v|x) the distribution of v given x, which by Bayes’ Theorem is:

g(v|x) =
f(x|v)g(v)∫ v
v
f(x|t)g(t)dt

.

Ex ante unconditional expected profit for a bidder that observes signal x and bids b (i.e.,

taking the expectation over v and all pairs (ni, ki)), is

Π(b, x) =
M∑
i=1

πini
n̄

∫ v

v

Πi(b|v)g(v|x)dv =

∑M
i=1 πini

∫ v
v

Πi(b|v)f(x|v)g(v)dv

n̄
∫ v
v
f(x|t)g(t)dt

=

∑M
i=1 πini

∫ v
v

(∫ b−1
0 (b)

−∞ (v − b0(y))fni−1,ki
(y|v)dy

)
f(x|v)g(v)dv

n̄
∫ v
v
f(x|t)g(t)dt

. (10)
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Define

v(x, y) =

∑M
i=1 πini

∫ v
v
vfni−1,ki

(y|v)f(x|v)g(v)dv∑M
i=1 πini

∫ v
v
fni−1,ki

(y|t)f(x|t)g(t)dt
, (11)

and denote by fY the density of the pivotal rival signal:

fY (y|x) =

∑M
i=1 πini

∫ v
v
fni−1,ki

(y|v)f(x|v)g(v)dv

n̄
∫ v
v
f(x|t)g(t)dt

.

Then, by Fubini’s theorem, (10) can be expressed as

Π(b, x) =

∫ b−1
0 (b)

−∞

(∑M
i=1 πini

∫ v
v
vfni−1,ki

(y|v)f(x|v)g(v)dv
)
dy

n̄
∫ v
v
f(x|t)g(t)dt

−
∫ b−1

0 (b)

−∞
b0(y)fY (y|x)dy

=

∫ b−1
0 (b)

−∞ v(x, y)
(∑M

i=1πini
∫ v
v
fni−1,ki

(y|v)f(x|v)g(v)dv
)
dy

n̄
∫ v
v
f(x|t)g(t)dt

−
∫ b−1

0 (b)

−∞
b0(y)fY (y|x)dy

=

∫ b−1
0 (b)

−∞

(
v(x, y)− b0(y)

)
fY (y|x)dy, (12)

where, obviously, fY (y|x) is non-negative. Also note that v(x, y) is increasing in its first

argument, and is continuous. To show this rewrite (11) (using equation (3.5) in Milgrom,

1981):

v(x, y) =

∫ v
v
vf(x|v)gy(v)dv∫ v
v
f(x|t)gy(t)dt

,

where gy(v) =
∑M

i=1 πinifni−1,ki
(y|v)g(v)/n. Since f(·|v) satisfies SMLRP (eq. (1)), by

Theorem 2.1 of Milgrom (1981), for every nondegenerate prior distribution G with pdf g

and every xL and xU in the support of X1 such that xL < xU , G(·|X = xU) dominates

G(·|X = xL) in the sense of strict first-order stochastic dominance. In particular, for Gy

with pdf gy

xL < xU ⇒ v(xL, y) = E[V |xL] < E[V |xU ] = v(xU , y), (13)

so the claim follows.

In order to show that b∗, given by (4), is a symmetric equilibrium if it is increasing, first

note that setting x = y in (11) yields b∗ = v(x, x) (and b∗ is continuous). Suppose v(x, x) is

increasing. Then, using (12),

Π(b, x)−Π(b∗(x), x) =

∫ b∗−1(b)

x

(
v(x, y)− v(y, y)

)
fY (y|x)dy. (14)

Thus, since v(x, y) is increasing in its first argument, (14) is non-positive for all b 6= b∗(x).

Hence the bid b∗(x) maximizes expected profit for a bidder who observes the signal x when

all rivals use b∗, i.e., b∗ is a symmetric equilibrium bid function.

19



Finally, suppose there exists an increasing symmetric equilibrium bid function b0, b0 6= b∗,

i.e., suppose that there exists x0 such that b0(x0) 6= v(x0, x0). Consider the case b0(x0) <

v(x0, x0) (the case b0(x0) > v(x0, x0) is treated similarly). If b0 is continuous from the right

at x0, then there exist x1 < x2 in the neighborhood of x0 such that for all y, x1 ≤ y ≤ x2,

b0(y) < v(x1, y) and fY (y|x1) > 0. Then, using (12),

Π(b0(x2), x1)−Π(b0(x1), x1) =

∫ x2

x1

(
v(x1, y)− b0(y)

)
fY (y|x)dy > 0,

so a bidder observing signal x1 benefits by deviating from bidding b0(x1) to bidding b0(x2).

If b0(x0) is discontinuous from the right at x0, then there exists b1, b0(x0) < b1 < v(x0, x0).

Note that by definition b−1
0 (b1) = b−1

0 (b0(x0)) = x0. A bidder that observes signal x0 benefits

by bidding b1 instead of b0(x0) in the case of a tie with the pivotal bid (recall that ties are

settled randomly): conditional on a pivotal bidder having signal x0, the expected value is

v(x0, x0) and the price is b(x0) < v(x0, x0).

Therefore, if b∗ is increasing, it is the unique symmetric equilibrium in increasing strate-

gies.

Remark 8.1 Pesendorfer and Swinkels’ (1997) proof that an equilibrium bid function cannot

have “flat segments” is a key step in showing that a symmetric equilibrium is increasing. As

illustrated below, the “loser’s curse” characterization in their Lemma 7 does not extend to

auctions with an unknown number of bidders.

Suppose bidders all use nondecreasing bid function b0 (which might not be an equilibrium

strategy) such that there exists b ∈ (v, v) and a nondegenerate interval I = {x ∈ <|b0(x) = b}.
Consider bidder 1 observing signal X1 = x ∈ I. Let Y be the pivotal rival’s signal (i.e.,

the kth
i highest of ni − 1 rival signals), and denote by E[V |b wins, Y ∈ I,X1 = x] (resp.,

E[V |b loses, Y ∈ I,X1 = x]) expected value given that bidder 1 wins (loses) by bidding b,

that the pivotal rival’s bid is b (i.e., that Y ∈ I), and that he observed x. Pesendorfer and

Swinkels find that, for known number of bidders,

E[V |b wins, Y ∈ I,X1 = x] < E[V |b loses, Y ∈ I,X1 = x].

The intuition: a bidder is more likely to lose a tie-breaker when tied with more of the

known n − 1 rivals and when more rivals bid above b, which in turn is more likely when

the objects’ value is higher. In contrast, when the number of bidders is unknown, losing a

tie-breaker may simply mean that there were more bids submitted, which might overwhelm

any inference about E [V ] drawn from losing a tie-breaker given a particular number of

participating bidders. So, if the number of bidders is unknown, it is possible that

E[V |b wins, Y ∈ I,X1 = x] > E[V |b loses, Y ∈ I,X1 = x].
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For example, consider an auction for a single object, with two or four possible bidders,

uniform prior and uniform signal distribution, i.e., let A = {Ωk, g (·) , f (·)} with Ωk =

{(2, 1, 0.6), (4, 1, 0.4)}, g(v) ∼ U [−1, 1.1], and f(x|v) ∼ U [v − 0.5, v + 0.5].

Let b0 be a nondecreasing bid function such that there exists b ∈ (−1, 1.1) with I =

{x ∈ <|b0(x) = b} = [0, 0.1]. Suppose that all bidders use b0. Then

E[V|b wins,Y ∈ I,X1 = 0] ≈ −0.0328 > E[V|b loses,Y ∈ I,X1 = 0] ≈ −0.0347. (15)

To check (15), first note that, given v, for 1 object and n bidders, the probability that j rival

signals, including the pivotal rival’s signal Y , are in I is:

(n− 1)!

j!(n− j − 1)!
F (0|v)n−j−1

(
F (0.1|v)− F (0|v)

)j
.

Thus, given that j rivals are tied with bidder 1, then (since ties are broken at random) the

probability of bidder 1 winning is 1/ [j + 1] and the probability of bidder 1 losing is j/ [j + 1].

Given v, the joint event probabilities are

Pr[b wins, Y ∈ I,X1 = 0|v]

= f(0|v)
M∑
i=1

πini
n

ni−1∑
j=1

1

j + 1

(ni − 1)!

j!(ni − j − 1)!
F (0|v)ni−j−1

(
F (0.1|v)− F (0|v)

)j
,

Pr[b loses, Y ∈ I,X1 = 0|v]

= f(0|v)
M∑
i=1

πini
n

ni−1∑
j=1

j

j + 1

(ni − 1)!

j!(ni − j − 1)!
F (0|v)ni−j−1

(
F (0.1|v)− F (0|v)

)j
.

Then

E[V |b wins, Y ∈ I,X1 = 0] =

∫ v
v
v Pr[b wins, Y ∈ I,X1 = 0|v]g(v)dv∫ v
v

Pr[b wins, Y ∈ I,X1 = 0|t]g(t)dt

=

∑M
i=1 πi

∑ni−1
j=1

ni!
(j+1)!(ni−j−1)!

∫ v
v
vF (0|v)ni−j−1

(
F (0.1|v)− F (0|v)

)j
f(0|v)g(v)dv∑M

i=1 πi
∑ni−1

j=1
ni!

(j+1)!(ni−j−1)!

∫ v
v
F (0|t)ni−j−1

(
F (0.1|t)− F (0|t)

)j
f(0|t)g(t)dt

;

E[V |b loses, Y ∈ I,X1 = 0] =

∫ v
v
v Pr[b loses, Y ∈ I,X1 = 0|v]g(v)dv∫ v
v

Pr[b loses, Y ∈ I,X1 = 0|t]g(t)dt

=

∑M
i=1 πi

∑ni−1
j=1

ni!j
(j+1)!(ni−j−1)!

∫ v
v
vF (0|v)ni−j−1

(
F (0.1|v)− F (0|v)

)j
f(0|v)g(v)dv∑M

i=1 πi
∑ni−1

j=1
ni!j

(j+1)!(ni−j−1)!

∫ v
v
F (0|t)ni−j−1

(
F (0.1|t)− F (0|t)

)j
f(0|t)g(t)dt

.

Direct numerical calculations of these two equations yield (15).
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8.2 Derivation of Example 3.2

Consider an auction for k = 1 object with Ωk = {(2, 1, π1), (n2, 1, 1 − π1)}. Let g(v) be

uniform on [0; v], v > 1, and let f(x|v) be uniform on [v − 1/2; v + 1/2]. Then f(x|v) = 1

if |x − v| ≤ 1/2 and f(x|v) = 0 if |x − v| > 1/2. Correspondingly, F (x|v) = x − v + 1/2 if

|x − v| ≤ 1/2, F (x|v) = 0 if x < v − 1/2 and F (x|v) = 1 if x > v − 1/2. Support of the

posterior distribution of v is bounded by vx = max(0, x − 1/2), vx = min(v, x + 1/2). The

support of X1 is [−1/2; v + 1/2]. Equation (4) becomes

b∗(x) =

∑2
i=1 πini(ni − 1)

∫ vx

vx
v(x− v + 1

2
)ni−2dv∑2

i=1 πini(ni − 1)
∫ vx

vx
(x− v + 1

2
)ni−2dv

.

Changing variables t = x− v + 1/2 yields dv = −dt, v = x− t+ 1/2, so

b∗(x) =

∑2
i=1 πini(ni − 1)

∫ x−vx+1/2

x−vx+1/2
(x− t+ 1

2
)tni−2dt∑2

i=1 πini(ni − 1)
∫ x−vx+1/2

x−vx+1/2
tni−2dt

. (16)

Consider x such that x < v−1/2. In that case x−vx+1/2 = min(x+1/2, 1), x−vx+1/2 = 0,

and (16) becomes

b∗(x) =

∑2
i=1 πini(ni − 1)

∫ 0

min(x+1/2,1)
(x− t+ 1

2
)tni−2dt∑2

i=1 πini(ni − 1)
∫ 0

min(x+1/2,1)
tni−2dt

=

∑2
i=1 πini(ni − 1)

(
(x+ 1

2
) 1
ni−1

(
min(x+ 1

2
, 1)
)ni−1 − 1

ni

(
min(x+ 1

2
, 1)
)ni

)
∑2

i=1 πini(ni − 1) 1
ni−1

(
min(x+ 1

2
, 1)
)ni−1

= x+
1

2
−
∑2

i=1 πi(ni − 1)
(
min(x+ 1

2
, 1)
)ni∑2

i=1 πini
(
min(x+ 1

2
, 1)
)ni−1 .

Consider x < 1/2. Using n1 = 2,

b∗(x) = x+
1

2
−
π1(x+ 1

2
)2 + (1− π1)(n2 − 1)(x+ 1

2
)n2

π12(x+ 1
2
) + (1− π1)n2(x+ 1

2
)n2−1

= x+
1

2
−
π1(x+ 1

2
) + (1− π1)(n2 − 1)(x+ 1

2
)n2−1

2π1 + (1− π1)n2(x+ 1
2
)n2−2

.

8.3 Proof of Lemma 4.1.

Recall that the (untruncated) beta distribution with parameters n − k and k is defined by

its pdf

β(y;n− k, k) =
yn−k−1(1− y)k−1∫ 1

0
tn−k−1(1− t)k−1dt

, (17)
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and that it has expected value 1− k/n and variance k(n− k)/ [n2(n+ 1)] < 1/n. Also recall

that β(y;n− k, k) has a unique maximum at 1− (k − 1)/(n− 2) for n > 2.

Let 0 ≤ y < y ≤ 1 and define the truncated beta distribution with parameters n− k and

k on [y, y] by its pdf

βT (y;n− k, k) =
yn−k−1(1− y)k−1∫ y
y
tn−k−1(1− t)k−1dt

. (18)

Denote its expected value by EβT and its variance by V arβT . To avoid overly convoluted

notation, the dependence of βT , EβT and V arβT on y, y is submersed. Note that V arβT < 1/n

since the variance of the truncated beta distribution (18) is no higher than the variance of the

corresponding (untruncated) beta distribution (17). Also, by properties of beta distributions,

there exists a constant θ > 0 such that |EβT − ynk| < θ/n, where

ynk =


y,

1− k/n,

y,

k/n < 1− y,

1− y ≤ k/n ≤ 1− y,

1− y < k/n.

(19)

Concentration properties of truncated beta distributions (similar to Ito’s Lemma), de-

scribed in Lemma 9.1 in Appendix C, play an important role in the proof of Lemma 4.1.

Proof of Lemma 4.1.

Consider a bidder in auction Au, and, for the remainder of the proof, fix arbitrarily the signal

x ∈ supp(X1) he observes.

Define γx(t) as the solution to the equation

F
(
x|γx(t)

)
= t.

Let [vx, vx] be the support of the posterior distribution g(v|x) = f(x|v)g(v)/
∫ v
v
f(x|t)g(t)dt.

Denote

y = F (x|vx), y = F (x|vx).

Note that f(x|v) satisfies SMLRP, so f(x|v) first-order stochastically dominates f(x|v′) for all

v > v′, i.e., F (x|v) < F (x|v′) ∀x, v, v′ such that v > v′. Therefore, γx(t) is strictly decreasing

on (y, y). Also note that, by the Implicit Function Theorem, γx is thrice differentiable. Denote

by γ′x the derivative of γx. Note that γ′x(y) = 1/∂F (x|γx(y))
∂v

< 0 exists by assumption.

Using (9) and substituting γx(y) for v (and using dv = γ′x(y)dy) in equation (2) yields

bnuku(x) =

∫ vx

vx
vfnu−1,ku(x|v)f(x|v)g(v)dv∫ vx

vx
fnu−1,ku(x|t)f(x|t)g(t)dt

=

∫ y
y
γx(y)f

(
x|γx(y)

)
ynu−ku−1(1− y)ku−1f

(
x|γx(y)

)
g
(
γx(y)

)
γ′x(y)dy∫ y

y
f
(
x|γx(t)

)
tnu−ku−1(1− t)ku−1f

(
x|γx(t)

)
g
(
γx(t)

)
γ′x(t)dt

.
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In turn, this expression can be rewritten via a truncated beta distribution (18). Then

bnuku(x) =

∫ y
y
γx(y)f

2
(
x|γx(y)

)
g
(
γx(y)

)
γ′x(y)β

T (y;nu − ku, ku)dy∫ y
y
f 2
(
x|γx(t)

)
g
(
γx(t)

)
γ′x(t)β

T (t;nu − ku, ku)dt
. (20)

Applying Lemma 9.1 to both numerator and denominator of (20) yields26

bnuku(x) =
γx(ynuku)f 2

(
x|γx(ynuku)

)
g
(
γx(ynuku)

)
γ′x(ynuku) +O

(
1
nu

)
f 2
(
x|γx(ynuku)

)
g
(
γx(ynuku)

)
γ′x(ynuku) +O

(
1
nu

) = γx(ynuku) +O

(
1

nu

)
.

(21)

Defining κ via

κ(x, t) =


γx(y),

γx(1− t),

γx(y),

t < 1− y,

1− y ≤ t ≤ 1− y,

t > 1− y

completes the proof.

Remark 8.2 Equation (21) states only pointwise convergence. However, by Lemma 9.1, the

bounds in both numerator and denominator are continuous in x, and thus are bounded for any

compact set. Therefore, Lemma 4.1 can be strengthened as follows: for any compact set D in

the support of X1 and any ε > 0 there exists A and n∗ such that |bnuku(x)−κ(x, su)| < A/nu

if ε < ku/nu < 1− ε, nu > n∗, and x ∈ D.

Proof. Denote q(x) = f 2
(
x|γx(ynuku)

)
g
(
γx(ynuku)

)
γ′x(ynuku), and note that q(x) < 0 for

all x ∈ D, because γ′x(y) < 0 as shown in the proof of Lemma 4.1. By Lemma 9.1, (20) can

be expressed as

bnuku(x) =
γx(ynuku)q(x) + a1(x)/nu

q(x) + a2(x)/nu
= κ(x, su)

1 + a1(x)
q(x)

/nu

1 + a2(x)
q(x)

/nu
.

where a1(x) and a2(x) are continuous. Let A1 = maxx∈D|a1(x)
q(x)

|, A2 = maxx∈D|a2(x)
q(x)

|. Since D
is compact, such A1 and A2 exist. Then, for nu >

1
2A2

, 1−A1/nu ≤ 1+ a1(x)
q(x)

/nu ≤ 1+A1/nu

and 1− A2/nu ≤ 1
1+A2/nu

≤ 1

1+
a2(x)
q(x)

/nu

≤ 1
1−A2/nu

≤ 1 + 2A2/nu. Therefore,

(1− A1/nu)(1− A2/nu) ≤
1 + a1(x)

q(x)
/nu

1 + a2(x)
q(x)

/nu
≤ (1 + A1/nu)(1 + 2A2/nu).

26 Using Υ(x, y) = γx(y)f2
(
x|γx(y)

)
g
(
γx(y)

)
γ′x(y) for the numerator, and, separately, Υ(x, y) =

f2
(
x|γx(y)

)
g
(
γx(y)

)
γ′x(y) for the denominator. Note that the last equality in (21) holds because the function

of ynuku
in the denominator is negative and, for q 6= 0, [p+O(1/n)] / [q +O(1/n)] = p/q +O(1/n).
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Finally,

|bnuku(x)− κ(x, su)| = |κ(x, su)|

∣∣∣∣∣1 + a1(x)
q(x)

/nu

1 + a2(x)
q(x)

/nu
− 1

∣∣∣∣∣ ≤ |κ(x, su)|
(
A1 + 2A2 + 2A1A2/nu

nu

)
.

Setting A = (A1 + 2A2 + 1)maxs∈[ε,1−ε],x∈D|κ(x, s)| and n∗ = max
(

1
2A2

, 2A1A2

)
completes

the proof.

8.4 Proof of Theorem 4.2.

Preparation for the proof considers the properties of simpler sequences of auctions. First con-

sider auctions in which both the number of bidders n and the number of objects k are known.

Specifically, consider a vector of sequences of auctions

({
A

[i]
r

}
r=1,2,...

)
i=1,...,M

constructed

based on {Aζ} by setting Ω
[i]
kr

=
(
n

[i]
r , k

[i]
r , 1

)
, where r = ζ ⇒

(
n

[i]
r , k

[i]
r

)
=
(
niζ , kiζ

)
∀i =

1, . . . ,M . That is, along the ith sequence, the number of bidders and the number of objects

are set nonstochastically at levels matching the ith element of Ωkζ
. Let P

[i]
r denote the price

in A
[i]
r . Then each sequence

{
A

[i]
r

}
satisfies the assumptions of Theorem 1 in Pesendorfer

and Swinkels (1997),27 so each sequence aggregates information:

∀i = 1, . . . ,M,∀ε[i] > 0, limr→∞ Pr
[
|P [i]
r − V | > ε[i]

]
= 0. (22)

Next consider a counterfactual sequence of auctions {Ar}r=1,2,... with {r = ζ} ⇒{
Ωkr = Ωkζ

}
, however with the assumption that the seller is somehow able to reveal to

the bidders the number of realized bidders and number of objects being sold prior to bid

submission.28 Thus, in auction Ar, when (with probability πi) there are kir objects sold to

nir bidders, each bidder learns these numbers prior to bid submission and therefore uses bid

function bnirkir
. The price in Ar is then P r

R, which combines the P
[i]
r with probabilities πi.

29

Hence, using (22),

∀ε > 0, limr→∞ Pr [|P r
R − V | > ε] = 0. (23)

27Technically, they assume signals have compact support, which we do not. This issue is dealt with carefully
below, in reaching (27), and the same treatment can be applied for the next two equations.

28Such auctions are counterfactual in the sense that they cannot be described within our model of stochastic
competition.

29Harstad et al. (1990) point out that this auction could be attained via a contingent-bid auction, in which
bidders submit a vector of bids (b(1), . . . , b(M)), with the seller committed to a policy of using the ith element
of each vector corresponding to the number of bids submitted.
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Finally consider the original sequence of auctions {Aζ}. Let Zζ denote the price-setting

signal in Aζ ; this is with probability πi the
(
kiζ + 1

)st
-order statistic out of niζ signals,

i = 1, . . . ,M . This stochastic specification of the price-setting signal, Z, is identical, element

by element, in the sequences {Ar} and {Aζ}, since Ωkr = Ωkζ
.

Several aspects relating to the price come together far enough along the sequence {Aζ}.
By proportional selling, for any δ1 > 0, there exists ζ1 <∞ such that

ζ > ζ1 ⇒
∣∣siζ − s

∣∣ < δ1,∀i = 1, . . . ,M. (24)

Let D be an arbitrary compact subset of the support of X1. Since niζ → ∞ as ζ → ∞, by

Lemma 4.1, Remark 8.2, and by continuity of κ(x, s) and (24), for any δ2 > 0, there exists

ζ2 such that

{ζ > ζ2, x ∈ D} ⇒
∣∣∣bniζ

kiζ
(x)− κ (x, s)

∣∣∣ < δ2,∀i = 1, . . . ,M. (25)

By (4), b∗ζ is a weighted average of bniζ
kiζ

, i = 1, . . . ,M . Therefore, using (25), for any δ3 > 0,

there exists ζ3 such that

{ζ > ζ3, x ∈ D} ⇒
∣∣∣bniζ

kiζ
(x)− b∗ζ (x)

∣∣∣ < δ3,∀i = 1, . . . ,M. (26)

These preliminaries allow the argument that {Aζ} aggregates information to be built,

beginning by letting ε > 0, δ > 0 be arbitrary. We claim that P ζ is within ε of V with

probability at least 1− δ, for large enough ζ.

To show this claim, let V be a compact subset of the support of V satisfying Pr [v ∈ V ] >

1 − δ/8. Specify the heretofore arbitrary D to be a large enough compact set so that

infζ>ζ4 Pr [Zζ ∈ D|v ∈ V ] > 1 − δ/8, for some ζ4.
30 Then infζ>ζ4 Pr [Zζ ∈ D] > 1 − δ/4.

This allows combining (25) and (26) to imply that there exists ζ5 ≥ ζ4 so that

{r = ζ > ζ5} ⇒ Pr
[
|P r
R − P ζ | > ε

2
| Zζ ∈ D

]
<
δ

4
, (27)

and, therefore,

{r = ζ > ζ5} ⇒ Pr
[
|P r
R − P ζ | > ε

2

]
<
δ

2
.

From (23), there exists ζ6 ≥ ζ5 so that

{r = ζ > ζ6} ⇒ Pr
[
|P r
R − V | > ε

2

]
<
δ

2
.

30It is possible to make D large enough to satisfy Pr [Zζ ∈ D|v ∈ V] > 1 − δ/8 for some ζ, call it ζ4, by
compactness of V, continuity of f , and the law of large numbers. This ζ4 suffices to establish the infimum,
as the conditional distribution of Zζ narrows as ζ increases. Note that if the support of X1 is compact, then
setting D equal to the support of X1 and ζ4 = 1 suffices.
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Finally, the last two developments yield, for all r = ζ > ζ6:

Pr
[
|P ζ − V | > ε

]
≤ Pr

[
|P ζ − P r

R| >
ε

2

]
+ Pr

[
|P r
R − V | > ε

2

]
< δ,

which completes the proof as ε and δ were arbitrary.

8.5 Proof of Theorem 4.4.

Denote vU = κ(x0, sU), vL = κ(x0, sL). Denote by b∗ζ′ the bid function (eq. (4)) that corre-

sponds to Aζ′ .

Fix ε0 = min {(vL − v) /2, (vU − vL) /4, (v − vU) /2} > 0. Since b∗ζ′ is increasing and

continuous, there exists a separating sequence
{
x∗ζ′
}
ζ′=1,2,...

corresponding to {Aζ′} such that

|b∗ζ′(x)− vL| ≤ ε0 ⇒ x < x∗ζ′ and |b∗ζ′(x)− vU | ≤ ε0 ⇒ x > x∗ζ′ (x∗ζ′ is not uniquely determined

by this requirement). From a real-valued sequence
{
x∗ζ′
}
, it is always possible to choose an

infinite subsequence
{
x∗η
}
η=1,2,...

which is either nondecreasing or nonincreasing. Suppose{
x∗η
}

is nondecreasing (the argument for a nonincreasing subsequence is parallel). Denote

the corresponding subsequence of auctions by {Aη}.
Suppose, contrary to the theorem, that the sequence {Aζ} aggregates information. Then

the subsequence {Aη} also aggregates information. For the auction Aη, let Zη be the price-

setting signal and P η the auction price. So P η = b∗η (Zη).

Define τ (v, s) implicitly by 1− F
(
τ (v, s) | v

)
= s, that is, τ (v, s) is the signal such that

a single bidder has a probability s of getting a higher signal, given v. Thus,

lim
η→∞

E
[
Zη|V = v, niη , kiη

]
= τ (v, si) , i = L,U.

Note that x0 = τ (vL, sL) = τ (vU , sU) by theorem assumption. The order-statistics version

of the law of large numbers (see, e.g., David, 1981, or the similar usage for s = 0 in Wilson,

1977, pg. 515) states that for any θ > 0,

{v < v < v} ⇒ lim
η→∞

Pr
[
|Zη − τ (v, si) | ≤ θ

∣∣V = v, niη , kiη
]

= 1, i = L,U, (28)

that is, the distribution of the order statistic collapses to its limit expectation.

Two cases need to be treated, according to whether the nondecreasing sequence
{
x∗η
}

crosses x0.

Case 1: Suppose there exists η0 such that x∗η0 > x0 (and thus, x∗η > x0 for all η > η0).

For this case, fix λ =
(
x∗η0 − x0

)
/2 > 0. Set

ε = min

{
κ (x0 + λ, sU)− vU

2
,
vU − κ (x0 − λ, sU)

2
, ε0

}
;
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by SMLRP, ε > 0. As g is everywhere positive, δU = Pr [|V − vu| ≤ ε] > 0.

For {Aη} to aggregate information implies

lim
η→∞

Pr
[
|P η − vU | < ε

∣∣ |V − vU | ≤ ε
]

= 1.

By construction of
{
x∗η
}
, it follows that

lim
η→∞

Pr
[
Zη < x∗η

∣∣ |V − vU | ≤ ε
]

= 0.

Thus, if {Aη} aggregates information, then for any δ > 0 there exists ηδ so that

{η > ηδ} ⇒ Pr
[{
Zη < x∗η

}
∩ {|V − vU | ≤ ε}

]
< δ. (29)

Using (28), there exists ηλ ≥ η0 such that

{η > ηλ} ⇒ Pr
[
|Zη − τ (vU , sU) | ≤ λ

∣∣|V − vU | ≤ ε, nUη , kUη

]
>

1

2
. (30)

Combining, from (30), and noting that x0 = τ(vU , sU),

{η > ηλ} ⇒ Pr
[{
Zη < x∗η

}
∩ {|V − vU | ≤ ε}

]
>

1

2
πUδU ,

contradicting (29).

Case 2: Suppose x∗η ≤ x0 for all η. By continuity of κ(x, s) in x there exists x′ > x0,

such that κ(x′, sL)−vL < ε0. For this case, fix λ = (x′−x0)/2 > 0 and denote v′L = κ(x′, sL).

Set

ε = min

{
κ (x′ + λ, sL)− v′L

2
,
v′L − κ (x′ − λ, sL)

2
, ε0 + vL − v′L

}
> 0.

As before, δL = Pr [|V − v′L| ≤ ε] > 0.

The development of a contradiction parallels case 1: for {Aη} to aggregate information,

for any δ > 0 there exists ηδ so that

{η > ηδ} ⇒ Pr
[{
Zη > x∗η

}
∩ {|V − v′L| ≤ ε}

]
< δ;

there exists ηλ such that

{η > ηλ} ⇒ Pr
[
|Zη − τ (v′L, sL) | ≤ λ

∣∣|V − v′L| ≤ ε, nLη , kLη

]
>

1

2
;

so

{η > ηλ} ⇒ Pr
[{
Zη > x∗η

}
∩ {|V − v′L| ≤ ε}

]
>

1

2
πLδL,

a contradiction that completes the proof.
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9 Appendix C: A Technical Lemma

The following lemma plays a role in the proof of Lemma 4.1 and Theorem 7.4.

Lemma 9.1 Let I be an interval of reals and let y(x) and y(x), 0 ≤ y(x) < y(x) ≤ 1

be continuous on I. Let Υ(x, y) be a real-valued function defined on {(x, y)|x ∈ I, y(x) ≤
y ≤ y(x), 0 < y < 1} such that ∂2Υ(x, y)/∂y2 exists and is continuous, and such that∫ y(x)
y(x)

|Υ(x, y)|dy exists for every x ∈ I. Let ε > 0. Then there exists a continuous function

C(·) on I such that∣∣∣∣∣
∫ y(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ (x, ynk)

∣∣∣∣∣ ≤ 1

n
C(x) (31)

for any x ∈ I and any n, k such that 2ε < k/n < 1− 2ε.

Proof. Consider the case y(x) > 0, y(x) = 1.31 (Note that βT (·) in (31) depends upon

y(x), y(x) and thereby is a function of x.) Define ε1(x) = 1
8
min

(
ε, 1− y(x)

)
. Note that

ε1(x) is positive and continuous in x. Rewrite the left-hand side of (31) as∣∣∣∣∣
∫ 1

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(EβT )

∣∣∣∣∣ (32)

=

∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy +

∫ 1

1−ε1(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣
≤
∣∣∣∣∫ 1

1−ε1(x)

Υ(x, y)βT (y;n− k, k)dy

∣∣∣∣+
∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣ .
We will show that both of the terms in (32) are of the order V arβT , which in turn is

less than 1/n. The last step is to show that substituting ynk for EβT preserves the order

1/n. Consider the first term of (32): Since k/n > 2ε, EβT < 1 − 4ε1(x). By Chebyshev’s

inequality, ∫ 1

1−2ε1(x)

βT (y;n− k, k)dy ≤
V arβT

4ε2
1(x)

.

Let A1(x) = βT (1−ε1(x);n−k, k). Note that βT (y;n−k, k) is decreasing in y for 1−2ε1(x) <

y < 1.32 Then

V arβT

4ε2
1(x)

≥
∫ 1

1−2ε1(x)

βT (y;n− k, k)dy

>

∫ 1−ε1(x)

1−2ε1(x)

βT (y;n− k, k)dy > A1(x)

∫ 1−ε1(x)

1−2ε1(x)

dy = A1(x)ε1(x).

31The cases y(x) = 0 and/or y(x) ≤ 1 are similar.
32Note that the mode of βT (·) is less than 1− 2ε1(x).
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Therefore,

A1(x) <
V arβT

4ε3
1(x)

.

Denote

A2(x) =

∫ 1

1−ε1(x)

|Υ(x, y)|dy.

Thus, noting that A1(x) > βT (y;n− k, k) for 1− ε1(x) < y < 1,∣∣∣∣∫ 1

1−ε1(x)

Υ(x, y)βT (y;n− k, k)dy

∣∣∣∣ < A1(x)

∫ 1

1−ε1(x)

|Υ(x, y)|dy < A2(x)
V arβT

4ε3
1(x)

. (33)

Now consider the second term in (32). By Taylor’s expansion Υ(x, y) = Υ(x,EβT ) +
∂Υ(x,E

βT )

∂y
(y − EβT ) + 1

2
∂2Υ(x,y∗)

∂y
(y − EβT )2, where y∗ is between y and EβT . (Note that y∗

depends upon y.)∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣ (34)

=
∣∣∣ ∫ 1−ε1(x)

y(x)

(
Υ(x,EβT ) +

∂Υ(x,EβT )

∂y
(y − EβT ) +

1

2

∂2Υ(x, y∗)

∂y
(y − EβT )2

)
βT (y;n− k, k)dy

−Υ(x,EβT )
∣∣∣

≤

∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x,EβT )βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1−ε1(x)

y(x)

∂Υ(x,EβT )

∂y
(y − EβT )βT (y;n− k, k)dy

∣∣∣∣∣
+

∣∣∣∣∣
∫ 1−ε1(x)

y(x)

1

2

∂2Υ(x, y∗)

∂y2
(y − EβT )2βT (y;n− k, k)dy

∣∣∣∣∣ .
By definition of EβT ,

∫ 1

y(x)

∂Υ(x,E
βT )

∂y
(y − EβT )βT (y, n− k, k)dy = 0, and therefore

∫ 1−ε1(x)

y(x)

∂Υ(x,EβT )

∂y
(y−EβT )βT (y;n−k, k)dy = −

∫ 1

1−ε1(x)

∂Υ(x,EβT )

∂y
(y−EβT )βT (y;n−k, k)dy.

Similarly,∫ 1−ε1(x)

y(x)

Υ(x,EβT )βT (y;n− k, k)dy −Υ(x,EβT ) = −
∫ 1

1−ε1(x)

Υ(x,EβT )βT (y;n− k, k)dy.

30



Then, substituting these inside the absolute values of (34) yields∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣
≤

∣∣∣∣∫ 1

1−ε1(x)

Υ(x,EβT )βT (y;n− k, k)dy

∣∣∣∣+ ∣∣∣∣∫ 1

1−ε1(x)

∂Υ(x,EβT )

∂y
(y − EβT )βT (y;n− k, k)dy

∣∣∣∣
+

∣∣∣∣∣
∫ 1−ε1(x)

y(x)

1

2

∂2Υ(x, y∗)

∂y2
(y − EβT )2βT (y;n− k, k)dy

∣∣∣∣∣ .
Recall that EβT < 1 − 4ε1(x), and both Υ(x, y) and ∂Υ(x,y)

∂y
are bounded for y(x) ≤ y ≤

1− ε1(x). Therefore, there exists A3(x), continuous in x, such that

|Υ(x,EβT )|+
∣∣∣∣∂Υ(x,EβT )

∂y
(1− EβT )

∣∣∣∣ < A3(x).

Then by Chebyshev’s inequality∣∣∣∣∫ 1

1−ε1(x)

Υ(x,EβT )βT (y;n−k, k)dy
∣∣∣∣+∣∣∣∣∫ 1

1−ε1(x)

∂Υ(x,EβT )

∂y
(y − EβT )βT (y;n−k, k)dy

∣∣∣∣ < A3(x)
V arβT

ε2
1(x)

.

Finally, denote

A4(x) = maxt∈[y(x),1−ε1(x)]

∣∣∣∣∂2Υ(x, t)

∂y2

∣∣∣∣ .
Note that A4(x) is also continuous in x. Then∣∣∣∣∣

∫ 1−ε1(x)

y(x)

1

2

∂2Υ(x, y∗)

∂y2
(y − EβT )2βT (y;n− k, k)dy

∣∣∣∣∣ < A4(x)V arβT .

Combining these developments provides a bound on (34):∣∣∣∣∣
∫ 1−ε1(x)

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣ ≤ A3(x)
V arβT

ε2
1(x)

+ A4(x)V arβT . (35)

Substituting (33) and (35) into (32), recalling that V arβT < 1
n
, and denoting C1(x) =

A3(x)

ε21(x)
+ A2(x)

4ε31(x)
+ A4(x) yield∣∣∣∣∣

∫ 1

y(x)

Υ(x, y)βT (y;n− k, k)dy −Υ(x,EβT )

∣∣∣∣∣ < C1(x)/n.

It remains to substitute ynk for EβT . Recall that for a truncated beta distribution there

exists θ such that |EβT − ynk| < θ/n, where ynk is given by (19). Denote by C2(x) =

maxt∈[y(x),1−ε]

∣∣∣∂Υ(x,t)
∂y

∣∣∣. By first-order Taylor expansion

|Υ(x,EβT )−Υ(x, ynk)| < C2(x)|EβT − ynk| < C2(x)θ/n.

Denoting C(x) = C1(x) + C2(x)θ completes the proof.

31



10 Appendix D: Asymptotic Extraction Proofs

10.1 Proof of Corollary 7.3.

Substituting f(x|v) = h(x− v), F (x|v) = H(x− v) and diffuse prior g(v) into (2) yields

bniki
(x) =

∫ v
v
vh2(x− v)Hni−ki−1(x− v)

(
1−H(x− v)

)ki−1
dv∫ v

v
h2(x− v)Hni−ki−1(x− v)

(
1−H(x− v)

)ki−1
dv

.

Introducing the change of variables t = x− v yields

bniki
(x) =

∫∞
−∞(x− t)h2(t)Hni−ki−1(t)

(
1−H(t)

)ki−1
dt∫∞

−∞ h2(t)Hni−ki−1(t)
(
1−H(t)

)ki−1
dt

= x−
∫∞
−∞ th2(t)Hni−ki−1(t)

(
1−H(t)

)ki−1
dt∫∞

−∞ h2(t)Hni−ki−1(t)
(
1−H(t)

)ki−1
dt
. (36)

Next, denote

αi =
(ni − 1)!

(ki − 1)!(ni − ki − 1)!

∫ ∞

−∞
tHni−ki−1(t)(1−H(t))ki−1h2(t)dt,

ψi =
(ni − 1)!

(ki − 1)!(ni − ki − 1)!

∫ ∞

−∞
Hni−ki−1(t)(1−H(t))ki−1h2(t)dt. (37)

Note that wi(x) in (3) can be expressed via ψi in (37) as wi(x) = πiniψi∑M
j=1 πjnjψj

, which does not

depend on x due to location invariance. Substituting into (36) yields bniki
(x) = x − αi/ψi,

and substituting this formula, αi, and ψi into (4) gives

b∗(x) =
M∑
i=1

πiniψi∑M
j=1 πjnjψj

bniki
(x) =

∑M
i=1 πiniψi

(
x− αi

ψi

)
∑M

j=1 πjnjψj
= x−

∑M
i=1 πiniαi∑M
j=1 πjnjψj

.

10.2 Proof of Theorem 7.4.

In preparation of the proof, two lemmas that relate to the counterfactual sequence33 {Ar} of

auctions (in which the number of bidders is revealed prior to bid submission) are introduced

first. Total expected profit in these auctions is

SR(Ωkr) =
M∑
i=1

πikirE[V − PR
ir ],

33Defined in the proof of Theorem 4.2.
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where PR
ir denotes the corresponding auction price (conditional on the realization of the ith

element of Ωkr), i.e., if bids were submitted after the number of bidders became known.

Lemma 10.1 relates the profits when bids are submitted before and after the number of

bidders becomes known. Lemma 10.2 shows that the latter profit, SR(Ωkr), is bounded. The

proof of the theorem then combines these two lemmas.

Lemma 10.1 Let Assumptions 7.1 and 7.2 hold for a sequence of auctions {Aζ}ζ=1,2,... and

a corresponding counterfactual sequence of auctions {Ar} with {r = ζ} ⇒ {Ωkr = Ωkζ
,

πir = πiζ , hr(·) = hζ(·)}, and with numbers of bidders revealed. There exists a function D:

<M+ → <+ such that

S(Ωkζ
)− SR(Ωkζ

) =

(
M∑
i=1

πisiζniζ

)(
D(s1ζ

, . . . , sMζ
) +O(

1

n1ζ

)

)
, (38)

where D(s1, . . . , sM) = 0 if si = si′ ∀i, i′, and D(s1, . . . , sM) > 0 otherwise.

Proof. In Aζ , let Jζi denote the price-setting signal given the ith component of Ωkζ
; this

is the
(
kiζ + 1

)st
-highest of niζ signals. Since this is the same object in Ar, we will use Jri

interchangeably with Jζi .

Given Assumptions 7.1 and 7.2, by Corollary 7.3, the price simplifies to

P ζ
i = b∗ζ(J

ζ
i ) = Jζi −

∑Mζ

i=1ζ
πiniαi∑Mζ

i=1ζ
πiniψi

. (39)

So total expected profit (eq. (6)) becomes

S(Ωkζ
) =

Mζ∑
i=1ζ

πikiE[V − b∗ζ(J
ζ
i )] =

Mζ∑
i=1ζ

πikiE[V − Jζi ] +

∑Mζ

i=1ζ
πiniαi∑Mζ

i=1ζ
πiniψi

Mζ∑
i=1ζ

πiki.

With revealed numbers of bidders, the bid function is not b∗, but bniki
, since the (ni, ki)

pair is revealed before bids are submitted. So PR
i = bniki

(Ji) = x− αi/ψi and

SR(Ωkr) =
Mr∑
i=1r

πikiE[V − bi(J
ζ
i )] =

Mr∑
i=1r

πikiE[V − Jζi ] +
Mr∑
i=1r

πiki
αi
ψi
. (40)

For ζ = r, the difference S(Ωkζ
)−SR(Ωkr) (how much seller would benefit could the numbers

of bidders be revealed before bids were submitted):

S(Ωkζ
)− SR(Ωkr) =

Mζ∑
i=1ζ

πikiE[bniki
(Jζi )− b∗ζ(J

ζ
i )] =

Mζ∑
i=1ζ

πiki

(∑Mζ

j=1ζ
πjnjαj∑Mζ

j=1ζ
πjnjψj

− αi
ψi

)
. (41)
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Introducing a change of variables y = H (t), so t = H−1(y), the terms (37) can be

rewritten as

αi =

∫ 1

0

H−1(y)h(H−1(y))β(y;ni − ki, ki)dy,

ψi =

∫ 1

0

h(H−1(y))β(y;ni − ki, ki)dy, (42)

where β(y;ni− ki, ki) is a pdf of beta-distribution. Applying Lemma 9.1 to αi and ψi in (42)

yields

αi = h

(
H−1

(
ni − ki
ni

))
H−1

(
ni − ki
ni

)
+O

(
1

ni

)
,

ψi = h

(
H−1

(
ni − ki
ni

))
+O

(
1

ni

)
. (43)

Denoting

ρ(t) = H−1(1− t),

ψ0(t) = h(H−1(1− t)),

and using (43),

αi
ψi

= H−1 (1− si) +O

(
1

ni

)
= ρ(s) +O

(
1

ni

)
, (44)

ψi = h
(
H−1 (1− si)

)
+O

(
1

ni

)
= ψ0(s) +O

(
1

ni

)
.

In this notation, (41) becomes34

S(Ωkζ
)− SR(Ωkr) =

Mζ∑
i=1ζ

πinisi

(∑Mζ

j=1ζ
πjnjψ

0(sj)ρ(sj)∑Mζ

j=1ζ
πjnjψ0(sj)

− ρ(si) +O(
1

n1

)

)

=

 Mζ∑
i=1ζ

πinisi

(∑Mζ

j=1ζ
πjnjψ

0(sj)ρ(sj)∑Mζ

j=1ζ
πjnjψ0(sj)

−
∑Mζ

j=1ζ
πjnjsjρ(sj)∑Mζ

j=1ζ
πjnjsj

+O(
1

n1ζ

)

)
. (45)

Define

λ1
i = πiniψ

0(si) > 0, λ2
i = πinisi > 0,

and set

D(s1, . . . , sM) =

∑M
i=1 λ

1
i ρ(si)∑M

i=1 λ
1
i

−
∑M

i=1 λ
2
i ρ(si)∑M

i=1 λ
2
i

. (46)

34The first equality follows from the fact that
∑
πjnjψ

0(sj) in the denominator is positive. See also the
last sentence of Footnote 26.
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It follows from (45) that D satisfies (38). It remains to show that any si 6= sj implies

D(s1, . . . , sM) > 0, and that D(s1, . . . , sM) = 0 implies si = sj ∀i, j.
Note that D(s1, . . . , sM) is the difference of two weighted averages of ρ(si). Furthermore,

{ρ(si) > ρ(sj)} ⇔ {si < sj} ⇔
{
λ1
i

λ2
i

>
λ1
j

λ2
j

}
⇔
{
λ1
i

λ1
j

>
λ2
i

λ2
j

}
(47)

because ρ is decreasing by definition and because the ratio
λ1

i

λ2
i

= ψ0(si)
si

is a decreasing function.

To show the latter, introduce a change of variables t = H−1(1 − s), so that s = 1 − H(t).

Then
ψ0(s)

s
=
h(H−1(1− s))

s
=

h(t)

1−H(t)
.

As Klemperer (1999) shows, an implication of SMLRP (eq. (1)) is that ∀v, x such that

f(x|v) > 0:
∂

∂v

(
f(x|v)

1− F (x|v)

)
< 0.

Therefore, since f(x|v) = h(x− v) satisfies SMLRP, then for all t such that h(t) > 0 :

d

dt

(
h(t)

1−H(t)

)
> 0,

and ψ0(s)/s is decreasing in s.

From (47) it follows that the weight distribution with weights λ1
i /
∑n

j=1 λ
1
j places larger

weights to larger ρ(si) than the weight distribution with weights λ2
i /
∑n

j=1 λ
2
j does. Since all

ρ(si) > 0, si 6= sj implies D(s1, . . . , sM) > 0, and thus D(s1, . . . , sM) = 0 implies si = sj ∀i, j.

Lemma 10.2 Let Assumptions 7.1 and 7.2 hold for a counterfactual sequence of auctions

{Ar}ζ=1,2,.... Then

SR(Ωkr) =

(
Mr∑
i=1r

πisirnir

)
O

(
1

n1r

)
. (48)

Proof. Throughout the proof the subscript r is omitted, wherever no confusion is possible.

Recall Ji is the price-setting signal given the ith component of Ωk. Location invariance

implies that E [V − Ji|V = v] = E [V − Ji], i.e., does not depend on v:

E[V − Ji] =
ni!

ki!(ni − ki − 1)!

∫ ∞

−∞
(v − x)Hni−ki(x− v)

(
1−H(x− v)

)kih(x− v)dx.

Introducing the change of variables t = x− v yields

E[V − Ji] = − ni!

ki!(ni − ki − 1)!

∫ ∞

−∞
tHni−ki(t)

(
1−H(t)

)kih(t)dt.
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Introducing a change of variables y = H (t), so t = H−1(y), yields

E[V − Ji] = −
∫ 1

0

H−1(y)β(ni − ki, ki + 1, y)dy.

Applying Lemma 9.1 yields

E[V − Ji] = −H−1

(
ni − ki
ni + 1

)
+O

(
1

ni

)
= −H−1

(
ni − ki
ni

)
+O

(
1

ni

)
, (49)

where the second equality holds since (ni − ki) / (ni + 1) = [(ni − ki) /ni] +O (1/ni).

Reordering equation (40) yields

SR(Ωkr) =
Mr∑
i=1r

πiki
αi
ψi

+
Mr∑
i=1r

πikiE[V − Jζi ]

=
Mr∑
i=1r

πiki

(
H−1

(
ni − ki
ni

)
−H−1

(
ni − ki
ni

)
+O(

1

ni
)

)

=

(
Mr∑
i=1r

πinisi

)
O(

1

n1r

),

where the substitution for E[V − Jζi ] comes from (49), and for αi/ψi from (44).

Proof of Theorem 7.4.

Combining (38) and (48),

S(Ωkζ
) =

 Mζ∑
i=1ζ

πisini

(D(s1ζ
, . . . , sMζ

) +O(
1

n1ζ

)

)
. (50)

since ζ = r and O(1/n1ζ
) + O(1/n1r) = O(1/n1ζ

). To show [i], note that |(siζ − s0)n1ζ
| <

ω ∀i, ζ implies siζ = s0 + O( 1
n1ζ

) ∀i. Also note and that D(s1, . . . , sM) has a second-order

Taylor expansion around (s0, ..., s0) since h (and thus H, H−1, and D) is continuously twice

differentiable by model assumption. Thus,

D(s1ζ
, . . . , sMζ

) = D(s0, . . . , s0) +
M∑
i=1

∂

∂si
D(s0, . . . , s0)(siζ − s0) + o(siζ − s0)

= 0 +
M∑
i=1

∂

∂si
D(s0, . . . , s0)O(

1

n1ζ

) + o(
1

n1ζ

)

= O(
1

n1ζ

).
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Thus, recalling that by assumption in [i], niζ/n1ζ
≤ nMζ

/n1ζ
≤ µ,

S(Ωkζ
) =

 Mζ∑
i=1ζ

πisini

(O(
1

n1ζ

)

)
≤

 Mζ∑
i=1ζ

πisi

µ O(1),

and, in particular, (7) holds.

To show [ii], first note that it suffices to prove lim supζ′ S(Ωkζ′
) = ∞, i.e., without

loss of generality we may assume {Aζ′} = {Aζ}. Since sL 6= sU then, by Lemma 10.1,

D(s1, . . . , sM) > 0. Then there exists ζ0 such that

{ζ > ζ1} ⇒ S(Ωkζ
) >

 Mζ∑
i=1ζ

πisini

 (D(s1, . . . , sM)/2) .

Thus, since niζ →∞, (8) holds.
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