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Abstract

This paper establishes three new results for multiproduct oligopolies: 1)
it presents the first explicit expression of Nash equilibria for asymmetric mul-
tiproduct oligopolies; 2) it shows that reducing a multiproduct firm’s cost in
Bertrand oligopolies will reduce its profits if the cost-reducing unit is suffi-
ciently small; and 3) it demonstrates that a multiproduct firm has no incentive
to eliminate a product whose sales are zero. Because a single-product firm
whose sales are zero is indifferent between exiting and staying, and its cost re-
ductions always increase its profits, our results are unique to the multiproduct
firm, and they suggest that extending oligopoly studies from a single product
to multi-products could be as significant as the extension of calculus from a
single variable to multi-variables.
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1 Introduction

We study multiproduct oligopolies with asymmetric costs in both price and quantity

competition. We first derive closed-form expressions for multiproduct Bertrand and
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Cournot equilibria with asymmetric linear costs. To our knowledge, such equilibrium

expressions have not been reported in the existing literature. The few available ex-

pressions were limited either to duopolies (Bulow, Geanakoplos and Klemperer [1985];

and Lal and Matutes [1989]) or to symmetric product lines (Grossmann [2003]), and

most other previous studies of multiproduct oligopolies were completed without the

general expressions.1 In the merger literature, Deneckere and Davidson ([4], 1985)

provided expressions for postmerger Bertrand equilibria with zero costs, which are

identical to a special class of multiproduct Bertrand equilibria. Because postmerger

Bertrand equilibria from an arbitrary coalition structure with asymmetric costs are

identical to a general multiproduct Bertrand equilibrium, their two-decade old as-

sessment that "it is no longer possible to write analytical expressions for equilibrium

payoffs" ([4], p. 481) was still an accurate account of today’s literature prior to this

study. The unavailability of a general expression for multiproduct equilibria was

caused perhaps by the unavailability of the involved tools or inverse matrices for solv-

ing the problem. Indeed, without using the new inverse matrices in Zhao and Howe

(2004), we would never have been able to obtain the equilibrium expressions.

Next, we evaluate the effects of technological innovation. We show that reducing a

multiproduct firm’s cost could reduce its profits in price competition, but will always

increase its profits in quantity competition. The negative relationship between cost

reduction and profit explains why some firms are unwilling to reduce cost or adopt new

technologies, even if such cost reduction and technology adoption are free. Although

previous studies have shown how small cost reductions could reduce social welfare,

this study is the first to show how small cost reductions could reduce the cost—reducing

firm’s profits.2

At first glance, the negative profit effect of cost reduction is counterintuitive, be-
1For example, Harrington (1987) studied collusion, Zhang and Zhang (1996) studied stability,

and Johnson and Myatt (2003) studied quality competition, all in multiproduct Cournot Oligopolies;
Cabral and Villas-Boas (2001) studied product externality in multiproduct Bertrand oligopolies; and
Goldberg (1995) estimated the multiproduct market of the US automobile industry.

2For recent works on the welfare effects of cost reduction, see Février and Linnemer (2004) and
Smythe and Zhao (2006). Schelling ([13], 1960) showed the possibility that an exogenous increase
in a player’s payoff function could reduce his equilibrium payoff. However, it was not known, prior
to this study, if his game example ([13], p. 158) could arise from a general economic problem.
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cause conventional theory of the firm holds that a firm should always benefit from cost

reductions and technological innovations if the cost of obtaining such improvement is

zero or low. As readers will see, the negative effect of cost reduction on a multiprod-

uct Bertrand firm’s profits is the confluence of three forces. One force is strategic

complementarity in price competition. If firms’ choices are strategic substitutes (such

as in Cournot competition), the profit effects of cost reductions will always be posi-

tive. Another force is strategic interaction between the multiproduct firm and other

firms. If there are no strategic interactions (such as in a monopoly), cost reductions

will always increase profits. The other force is output reallocation: a cost reduction

in one unit increases the production in this unit, but decreases productions in all

other units inside the firm. These forces work to raise the profit of the cost-reducing

unit but lower the profits of all other units inside the multiproduct firm. When the

cost-reducing unit is small, its profit gain is outweighed by profit losses from all other

units, leading to a reduction in the multiproduct firm’s total profits. Precisely, we

derive two closed-form critical levels for identifying the profit effects of cost reduction:

1) critical output share: a small reduction in the marginal cost of a small unit reduces

the multiproduct firm’s profits if and only if its output share in the multiproduct firm

is below the critical level; 2) critical size of cost reduction: a large reduction in the

marginal cost of a small unit reduces the multiproduct firm’s profit if and only if the

size of the cost reduction is below the critical level.

Finally, we show that a multiproduct firm has no incentive to eliminate a product

whose sales are zero. Because a single-product firm whose sales are zero is indifferent

between exiting and staying, and its cost reductions always increase its profits, our

results are unique to the multiproduct firm; they support the belief that extending

oligopoly studies from a single product to multi-products could be as significant as

the extension of calculus from a single variable to multi-variables.

The remainder of the paper is organized as follows. Section 2 describes the model

and provides the closed-form expressions for multiproduct Bertrand and Cournot

equilibria in asymmetric linear oligopolies. Section 3 studies the profit effects of a

Bertrand firm’s cost reduction and product closing, and section 4 studies the same
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issues for a Cournot firm. Section 5 concludes the paper, and the appendix provides

all proofs.

2 Calculation of Bertrand and Cournot Equilibria

A linear Bertrand oligopoly with n goods, or the Bertrand-Shubik model, is defined

by n demand and n cost functions (see Bertrand [1883], Shubik [1980]):

qi(p) = V − pi − γ(pi − p), Ci(qi) = ciqi, i ∈ N = {1, ..., n}, (1)

where V > 0 is the common intercept of demand functions, pi is the price of good

i, p = (p1, . . . , pn)> is the price vector, γ ≥ 0 is the substitutability parameter, p =
(
Pn

j=1 pj)/n is the average price, and ci is the constant marginal (or average) cost of

producing good i.

These goods are independent if γ = 0, and they become closer substitutes as

γ increases toward infinity. They can be supplied by a multiproduct monopoly,

by n single-product firms, or by k multiproduct firms (1 < k < n), which corre-

spond, respectively, to three classes of market structures (i.e., partitions of N): i) a

multiproduct monopoly, or the coarsest partition ∆m = {N}; ii) an oligopoly with
single-product firms, or the finest partition ∆0 = {1, 2, ..., n}; and iii) an oligopoly

with multiproduct firms, or a general partition ∆ = {S1, S2, ..., Sk} of N (i.e., Si 6= ∅,
Si∩Sj = ∅, all i 6= j, and ∪Sj = N), where 1 < k < n, and for each j = 1, ..., k, firm

Sj produces |Sj| = nj products (i.e.,
Pk

j=1 nj = n).

For each firm S ∈ ∆, let pS = {pi| i ∈ S} and qS = {qi| i ∈ S} denote its price
and output vectors, and p−S = {pi| i ∈ N\S} denote the vector of other firms’ prices.
Then, for each p = (pS, p−S) = (p1, . . . , pn)

>, the profit of a firm S ∈ ∆ is given by

πS(p) = πS(pS, p−S) =
X
i∈S

πi(p) =
X
i∈S

qi(p)(pi − ci), (2)

and the Bertrand equilibrium (or Nash equilibrium or strategic equilibrium) is a price
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vector p∗ = {p∗S| S ∈ ∆} = (p∗1, . . . , p∗n)> such that for each firm S ∈ ∆, p∗S is its best

response to others’ price vector p∗−S, or that each p∗S solves Max{πS(pS, p∗−S)|pS},
where πS(pS, p−S) is given in (2).

Throughout the paper we assume that a unique equilibrium always exists. Under

this assumption, the Bertrand equilibrium for ∆ = {S1, S2, ..., Sk} is the solution to
the following k sets of first-order conditions:

For each S ∈ ∆, and all i ∈ S,
∂πS(pS, p−S)

∂pi
= 0. (3)

Rearranging (3) leads to the following properties on the equilibrium markups: for
each firm j = 1, ..., k, or each Sj ∈ ∆ with |Sj| = nj,

(1 + γ) (p∗i − ci) = q∗i +
njγ(p

∗
Sj
− cSj)

n
, all i ∈ Sj, (4)

p∗Sj − cSj
q∗Sj

=
n

n(1 + γ)− njγ
, and (5)

p∗j − cj

q∗j
=

n

n(1 + γ)− γ
, for all j with nj = 1. (6)

where p∗Sj =
P

i∈Sj p
∗
i /nj, cSj =

P
i∈Sj ci/nj, and q∗Sj =

P
i∈Sj q

∗
i /nj are firm j’s

average price, average marginal cost, and average supply, respectively. By (6), all

single-product firms have the same markup/supply ratio, n/ (n(1 + γ)− γ). And by

(4) and (5), different units in a multiproduct firm may have different markup/supply

ratios, and a multiproduct firm has a larger average-markup/average-supply ratio

than does a single-product firm (i.e., n/ (n(1 + γ)− njγ) > n/ (n(1 + γ)− γ)).
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Let δ, a, b, c > 0 and d = {dS| S ∈ ∆} = (d1, . . . , dn)> be defined as

δ = n(1 + γ)− γ;

a = 2δ, b = 2γ, c = γ; and for each S ∈ ∆, (7)

dS = {di| i ∈ S}, where di = nV + δci − γΣj∈S\icj, all i ∈ S.

Then, the first-order conditions in (3) can be rearranged as

Ap = d, where A = An×n =

⎛⎜⎜⎜⎜⎜⎜⎝
A11 A12 · · · A1k

A21 A22 · · · A2k
...

...
. . .

...

Ak1 Ak2 · · · Akk

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

is an n × n matrix with k2 blocks whose entries are: 1) for j = 1, ..., k, Ajj is an

nj × nj symmetric matrix such that all its main diagonal entries are a, and all its

off-diagonal entries are −b, where nj = |Sj| is the number of goods produced by firm

Sj ∈ ∆; 2) for all i 6= j, Aij is an ni × nj matrix whose entries are all −c; and 3)Pk
j=1 nj = n.

In order to analyze how cost reductions or technological changes affect equilibrium

profits, we focus on the class of Bertrand oligopolies with a single multiproduct firm

given by ∆ = {S,m+ 1, ..., n} = {{1, ...,m},m+ 1, ..., n}. Due to the complexity of

the problem (readers could get a taste of such complexity by examining the detailed

formulae in (39)), studying the general case in (8) or its solution in (22) would deviate

from our emphasis on cost reductions.
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Given ∆ = {S,m+ 1, ..., n}, the first-order conditions in (3) become

∂
P

k∈S πk
∂pi

= 0, all i ∈ S; and
∂πj(p)

∂pj
= 0, all j ∈ N\S, (9)

which is a special case of (8).

The inverse demands of the Bertrand-Shubik demand system given in (1) are:

pi(q) = pi(q1, . . . , qn) = V − qi +
γ

1 + γ
(qi − q), (10)

where q = (
Pn

j=1 qj)/n is the industry’s average output. Now, firm i’s profit function

becomes πi(q) = (pi(q)− ci)qi. A Cournot oligopoly with k multiproduct firms is also

defined by the partition ∆ = {S1, S2, ..., Sk} with 1 ≤ k < n. For each firm S ∈ ∆,

its profit is given by πS(q) = πS(qS, q−S) =
P

i∈S πi(q) =
P

i∈S(pi(q) − ci)qi. The

Cournot equilibrium is an output vector qC∗ = {qC∗S | S ∈ ∆} = (qC∗1 , . . . , qC∗n )
> such

that for each S ∈ ∆, qC∗S is its best response to others’ output vector qC∗−S, or that each

qC∗S solvesMax{πS(qS, qC∗−S)|qS}. Under the assumption for a unique equilibrium, the

Cournot equilibrium for ∆ = {S1, S2, ..., Sk} is the solution to the following k sets of

first-order conditions:

For each S ∈ ∆, and all i ∈ S,
∂πS(qS, q−S)

∂qi
= 0. (11)

Let a, b, c > 0 and d = (d1, . . . , dn)
> be defined as

a = 2(n+ γ), b = −2γ, c = −γ, (12)

di = n(1 + γ)(V − ci), all i ∈ N.
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Then, the first-order conditions in (11) can be rearranged as

Bq = d, where B = Bn×n =

⎛⎜⎜⎜⎜⎜⎜⎝
B11 B12 · · · B1k

B21 B22 · · · B2k
...

...
. . .

...

Bk1 Bk2 · · · Bkk

⎞⎟⎟⎟⎟⎟⎟⎠ (13)

is identical to A in (8) except that the constants a, b, c, and d in (7) are replaced by

a, b, c, and d in (12).

As in the Bertrand model, we focus on Cournot oligopolies with a single multi-

product firm given by ∆ = {S,m+ 1, ..., n}, whose first-order conditions are:

∂
P

j∈S πj

∂qi
= 0, all i ∈ S; and

∂πi(q)

∂qi
= 0, all i ∈ N\S. (14)

Rearranging the above first-order conditions leads to:

(1 + γ) (pi − ci) = qi +
mγqS
n

, all i ∈ S, (15)

pS − cS
qS

=
n+mγ

n(1 + γ)
, and (16)

pi − ci
qi

=
n+ γ

n(1 + γ)
, all i ∈ N\S, (17)

so the markups in a Cournot model are analogous to those in the Bertrand model in

(4-6): single-product firms have the same markup/supply ratio, different units in the

multiproduct firm might have different markup/supply ratios, and the multiproduct

firm’s average-markup/average-supply ratio is larger.

Applying the general inverse in (39) to (13-14) leads to the following Cournot

equilibrium with multiproduct firms:
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Proposition 1 Consider the Cournot oligopoly in (10). (i) Given∆ = {S1, S2, ..., Sk},
its Cournot equilibrium is given by

qC∗ = B−1d =

⎛⎜⎜⎜⎜⎝
W11 W12 · · · W1k

W21 W22 · · · W2k

...
...

. . .
...

Wk1 Wk2 · · · Wkk

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

dS1

dS2
...

dSk

⎞⎟⎟⎟⎟⎠ , (18)

where B−1 = W is the same as that of (39), except that the constants a, b, c, and d

in (7) are replaced by a, b, c, and d in (12).

(ii) Given ∆ = {S,m + 1, ..., n}, the Cournot equilibrium in (18) becomes: for

each unit i ∈ S, and each single-product firm j ∈ N\S,

qC∗i =
n(1 + γ)(2n+ γ)V

ω1
+
(1 + γ)(4n+ (n−m+ 2) γ)mγcS

2ω1

+
n(1 + γ)(n−m)γc−S

ω1
− (1 + γ)ci

2
; and (19)

qC∗j =
n(1 + γ)(2n+mγ)V

ω1
+

n(1 + γ)mγcS
ω1

+
n (n−m) (1 + γ)(2n+mγ)γc−S

(2n+ γ)ω1
− n(1 + γ)cj

2n+ γ
, (20)

where cS =
P

k∈S ck/m, c−S =
P

k/∈S ck/(n−m), and ω1 > 0 is given by

ω1 = ω1(n,m, γ) = m(n−m+ 2)γ2 + 2n (n+m+ 1) γ + 4n2. (21)

Similarly, one can show that the Bertrand equilibrium for ∆ = {S1, S2, ..., Sk} in

(1) is given by
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p∗ = A−1d =

⎛⎜⎜⎜⎝
U11 U12 · · · U1k
U21 U22 · · · U2k
...

...
. . .

...
Uk1 Uk2 · · · Ukk

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

dS1
dS2
...

dSk

⎞⎟⎟⎟⎠ , (22)

where the inverse matrix A−1 = U in (39) is defined by parameters in (7-8). As a

special case, the Bertrand equilibrium for ∆ = {S,m + 1, ..., n} are: for each unit

i ∈ S, and each single-product firm j ∈ N\S,

p∗i =
n(2n(1 + γ)− γ)V

ω2
+
γ2m (n−m) cS

2ω2
+
γ(n(1 + γ)− γ)(n−m)c−S

ω2
+
ci
2
, (23)

p∗j =
n(2n(1 + γ)−mγ)V

ω2
+

γm (n(1 + γ)−mγ) cS
ω2

(24)

+
γ (n(1 + γ)− γ) (2n(1 + γ)−mγ) (n−m) c−S

(2n(1 + γ)− γ)ω2
+
(n(1 + γ)− γ)cj
2n(1 + γ)− γ

,

where ω2 = ω2(n,m, γ) > 0 is given by

ω2(n,m, γ) = γ2 (n−m) (m+ 2n− 2) + 2nγ (3n−m− 1) + 4n2. (25)

It is useful to note that the above closed-form expressions for Cournot and

Bertrand equilibria with multiproduct firms are identical to the corresponding post-

merger equilibria for mergers with no synergy in linear differentiated oligopolies with

single-product firms. To our knowledge, such general expressions have not been re-

ported in the existing literature.3 We hope that other scholars will find them useful

in extending previous studies in single-product oligopoly to multiproduct oligopolies.

3The only exception is the Bertrand equilibrium (23-24) for ∆ = {S,m + 1, ..., n}, which is
identical to the postmerger equilibrium reported in Zhao and Howe (2004); with cj = 0 for all
j, (23-24) are identical to the postmerger equilibrium with zero costs reported in Deneckere and
Davidson (1985, p. 475).
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In the next two sections, we will conduct the comparative statics analysis of the

above Cournot and Bertrand equilibria.

3 Cost Reductions in Price Competition

Plugging the Bertrand equilibrium in (23-24) into the demand (1) and simplifying,

one obtains the equilibrium products as below: for each i ∈ S and j ∈ N\S,

q∗i =
(2n(1 + γ)− γ) (n(1 + γ)−mγ)V

ω2
+

γ (n(1 + γ)− γ) (n(1 + γ)−mγ) (n−m)c−S
nω2

+
γ[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]mcS

2nω2
− (1 + γ)ci

2
, (26)

q∗j =
(2n(1 + γ)−mγ)(n(1 + γ)− γ)V

ω2
+

γm (n(1 + γ)−mγ) (n(1 + γ)− γ)cS
nω2

+
γ (n(1 + γ)− γ)2 (2n(1 + γ)−mγ) (n−m) c−S

n(2n(1 + γ)− γ)ω2
− (1 + γ)(n(1 + γ)− γ)cj

2n(1 + γ)− γ
,

which lead to the following equilibrium profits:

π∗S =
X
i∈S
(p∗i − ci) q

∗
i =

m (n(1 + γ)−mγ) (p∗S − cS)
2

n
+
(1 + γ)

Pm
i=1(cS − ci)

2

4
,

π∗j =
[n(1 + γ)− γ](p∗j − cj)

2

n
, for each j ∈ N\S. (27)

The multiproduct firm’s average price is equal to p∗S = (
P

i∈S p
∗
i )/m =

n(2n(1 + γ)− γ)V

ω2
+
(2n+ (m+ n− 1)γ) (n+ (n−m)γ) cS

ω2
+
γ(n(1 + γ)− γ)(n−m)c−S

ω2
,

(28)
and the equilibrium markups are: for each j ∈ N\S and each unit i ∈ S,

11



p∗j − cj =
nq∗j

n(1 + γ)− γ
, (29)

p∗i − ci =
n(2n(1 + γ)− γ)V

ω2
+

γ (n(1 + γ)− γ) (n−m)c−S
ω2

+
γ2m (n−m) cS

2ω2
− ci
2
,

p∗S − cS =
n(2n(1 + γ)− γ)V

ω2
+

γ(n(1 + γ)− γ)(n−m)c−S
ω2

− ω3cS
ω2

,

where ω2 is given in (25), q∗j is given in (26), and ω3 > 0 is given by

ω3(n,m, γ) = γ2 (n− 1) (n−m) + γn (3n−m− 1) + 2n2. (30)

Proposition 2 below reports the effects of small cost reductions in Bertrand

oligopolies, whose closed-form expressions are given in (42-46) in Appendix A.

Proposition 2 Consider the Bertrand oligopoly (1) with a single multiproduct firm
given by ∆ = {S,m+ 1, ..., n}.
(i) For each single-product firm j ∈ N\S, a small reduction in cj increases its

output and profit, and decreases all other outputs and all other firms’ profits.

(ii) For each unit i ∈ S, a small reduction in ci increases output i, decreases

all other outputs and all single-product firms’ profits; and increases the multiproduct

firm’s profits if and only if its output share is above a critical level, or precisely if and

only if tSi > btS = γ2 (n−m) /ω2, where tSi = q∗i /
Pm

j=1 q
∗
j is its output share among

the products of S and ω2 is given in (25).

An examination of the markups in (29) shows that a reduction in ci increases unit

i’s markup and decreases the markups in all other units (see (43) in the proof). Be-

cause unit i’s output increases and the outputs in all other units decrease, a reduction

in ci increases unit i’s profits, but at the same time decreases the profits of all other

units. The balance of these two opposite effects explains why a multiproduct firm

might be unwilling to reduce its cost : small cost reductions in one product will reduce
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the multiproduct firm’s profits if and only if the output share of the cost-reducing

unit is below the critical level btS.4 Call a unit an efficient unit if its marginal cost

is below the multiproduct firm’s average marginal cost (i.e., cS − ci > 0). Then, as

shown in the corollary below, cost reductions in an efficient unit will always increase

the multiproduct firm’s profits.

Corollary 1 (i) For each i ∈ S, ∂π∗S/∂ci < 0 if ci < cS.

(ii) Let m = n (i.e., S = N) and π∗S = π∗N be the monopoly profit. Then, for all

i ∈ N, ∂π∗N/∂ci < 0.

The negative profit effects of a small cost reduction also can be characterized by

critical levels of marginal costs for each cost-reducing unit, which is given below:

Corollary 2 Given ∆ = {S,m + 1, ..., n}, let π∗S be the multiproduct firm’s profits.
Then, for each i ∈ S, ∂π∗S/∂ci > 0⇔ ci > bcSi , where bcSi is the critical level of unit i’s
marginal cost given in (49) in Appendix A.

Corollary 2 can be understood geometrically as shown below. An examination of

the profits in (27) indicates that π∗S = π∗S(ci) is convex and quadratic in ci, with bcSi
as its minimum point defined by ∂π∗S/∂ci = 0. Because π

∗
S is symmetric in ci around

ci = bcSi , small reductions in ci reduce π∗S if and only if ci is on the right half of the

profit curve where π∗S is increasing in ci (i.e., ci > bcSi ).
The counterintuitive negative relationship between cost reduction in small units

and the multiproduct firm’s profits is caused by the combined strength of at least three

forces. The first force is strategic complementarity in price competition (see Appendix

B or Bulow et al. [1985] for definition). Without strategic complementarity, as in a

4Obviously, if a small reduction in unit i’s marginal cost ci decreases the firm’s profits, then a
small reduction in the marginal cost of any other unit whose marginal cost is greater than ci will
also reduce the firm’s profits.
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Cournot model in which firms’ choices are strategic substitutes, the profit effects of

cost reductions will always be positive (see next section). The second force is strategic

interaction between the multiproduct and single-product firms. Similar to Zhao and

Howe (2004), their reaction functions (in terms of average prices, pS =
P

i∈S pi/m

and p−S =
P

j /∈S pj/(n−m)) are:

pS = h(p−S) =
nV + (n+ (n−m)γ)cS + γ(n−m)p−S

2n+ (2n− 2m)γ , and (31)

p−S = g(pS) =
nV + (n+ (n− 1)γ)c−S + γmpS

2n+ (m+ n− 1)γ . (32)

By (31), the multiproduct firm’s cost reduction (i.e., a decrease in cS) directly causes

a reduction in its average price. Such a reduction in pS, by (32), leads to a decrease

in p−S, which causes a second-round reduction in pS through the reaction curve (31).

Without such strategic interactions, as in the monopoly case of Corollary 1, cost

reductions will always increase the firm’s profits.

Finally, the third force is the multiplicity of products, which allows internal reallo-

cation of resources within a firm. As inputs are transferred from efficient and large

units to the cost-reducing unit, outputs of all efficient units decrease, which causes

the firm’s overall profits to decrease.

As shown in Lemma 1 in Appendix B, small cost reductions could not reduce profit

in homogeneous Cournot oligopolies even with strong strategic complementarity. This

indicates that the above negative profit effect of small cost reductions is a unique

feature of multiproduct Bertrand oligopolies. Although the assumptions of Lemma

1 are weaker than the standard assumptions in most previous studies, some readers

still might believe that profit-reducing cost reductions could exist in homogeneous

Cournot oligopolies after removing the assumptions of Lemma 1. We encourage such
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believers to find a counterexample.5

Observe that the negative profit effects are caused by small cost reductions in

an inefficient unit. If the magnitude of cost reduction is sufficiently large, the profit

effects will be positive. Proposition 3 below provides the critical magnitude above

which large cost reductions will increase profits.

Proposition 3 Given ∆ = {S,m+ 1, ..., n} in the Bertrand oligopoly (1), let unit 1
be the most efficient unit of S (i.e., c1 = min{ci | 1 ≤ i ≤ m}). Consider each unit
i ∈ S with ci > bcSi , where bcSi is given in (49).
(i) A large reduction in ci increases the multiproduct firm’s profits if and only if

the reduction is larger than twice the difference between ci and bcSi .
(ii) The multiproduct firm’s profits will increase if ci is reduced to the most efficient

level c1.

Parts (i) and (ii) together imply that the magnitude of reducing ci to c1 is larger

than twice the difference between ci and bcSi (i.e., ci−c1 > 2(ci−bcSi )). In particular, it
implies that a technology spillover within S that reduces all units’ marginal costs to

c1 will increase the multiproduct firm’s profits. As shown in the proof, by the time

unit i becomes an efficient unit (i.e., its output share reaches 1/m, or equivalently, its

marginal cost is reduced to the firm’s average marginal cost), the multiproduct firm’s

profits would have risen above the initial level. When unit i eventually becomes the
5One should be aware of at least three hurdles before embarking on such an enquiry. First, the

existence of Cournot equilibrium with strategic complementarity is less known, because the known
existence condition is that goods are strategic substitutes (i.e., αi = p0(X) + xip

00(X) ≤ 0, see
Novshek [1985] and Shapiro [1989]). Second, as Vives (2005) pointed out, strategic complementarity
leads to equilibrium existence without the second-order conditions, which would require solving
anti-decision problems such as maximizing a convex function on an interval [0, y]. Although such
problems are relevant in game situations, it is hard to apply them in industrial organization because
a firm’s optimal choice will be either to shut down or to operate at full capacity (i.e., it can never be
interior), which will destroy much of the existing wage theory and factor pricing theory. Third, the
proof of Lemma 1 shows that ∂π∗i /∂ci < 0 holds if E < −(n+ 1) (by αi > 0 and by (57)). Hence,
∂π∗i /∂ci > 0 can possibly hold only in the tiny interval [−n− 1, −n− 1/2] among all E ∈ (−∞,∞),
where E = Xp00(X)/p0(X) is the elasticity of the slope of inverse demand.
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most efficient unit (i.e., its marginal cost reaches c1), the multiproduct firm’s profits

will rise further.

Example 1 below illustrates the above results.

Example 1: Let n = 3, V = 9, γ = 2, c1 = 5.9, c2 = 7.23, c3 = 4, and S = {1, 2}.
One gets: p∗1 ≈ 6.8459, p∗2 ≈ 7.5109, p∗3 ≈ 5.9795; q∗1 ≈ 2.0198, q∗2 ≈ 0.0248,

q∗3 ≈ 4.6189; and ω2 = 132. Consider i = 2. By Proposition 2 and tS2 =

q∗2/(q
∗
1 + q∗2) ≈ 0.0122 < btS ≈ 0.0303, or by Corollary 2 and c2 = 7.23 >bcS2 ≈ 7.1968, ∂π∗S/∂c2 > 0 holds. Indeed, one can check that ∂π∗S/∂c2 ≈

0.0371 > 0. For a small reduction in c2 from 7.23 to 7.2, the multiproduct firm’s

profits will decrease from π∗S = π∗1 + π∗2 ≈ 1.9176 to eπS ≈ 1.9170. However, a
large reduction in c2 from 7.23 to 7.15 will, by Proposition 3 and ∆c2 = 0.08

> 2(ci − bcSi ) ≈ 0.0664, increase the profits from 1.9176 to eπS ≈ 1.9182.
It is striking to see that a small increase in c2 will raise π∗S. For example, let c2

be increased from 7.23 to c∗2 = 7.2518, the profits will be raised to eπ∗∗S ≈ 1.9187 >

π∗S ≈ 1.9176, and eπ∗∗3 ≈ 9.1587 > π∗3 ≈ 9.1431, with the new equilibrium outputs as:eq∗∗1 ≈ 2.0277, eq∗∗2 ≈ 0.0000, eq∗∗3 ≈ 4.6228. It is useful to note that c2 has been raised
to its upper bound c∗2 = 7.2518, at which demand for the second product is zero.

The above analysis of a multiproduct firm’s behavior implies a long list of interest-

ing topics for future study. Below we discuss two such future topics. First, we do not

wish to jump to an explanation why some firm’s costs are high (we only explained why

some firms are unwilling to reduce costs), although our numerical example indicates

so (i.e., a firm could increase its profits by overly increasing its costs).6 However,

we believe that our analysis can be modified so that future studies can explain why

6A real firm might not want to take such cost-increasing measures (such as paying its workers a
higher wage), because the profit increase is small as compared with possible damage to its reputation,
and the firm might be prevented from paying a higher wage to its workers in the small and inefficient
unit by union contract, because workers in other (efficient) units also are entitled to a pay raise.
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some firms’ costs are high, by analyzing, for example, a two-stage cost-setting model

in which firms first choose costs and then engage in price competition.

Second, the above situation with a zero demand for an inefficient product provides

a new approach to understanding multiproduct choices such as closing the production

of an inefficient product, keeping some empty first-class seats by an airline, and

exhibiting an astronomically priced item in a showroom that no one will buy. Recall

that a single-product firm whose sales are zero is indifferent between exiting and

staying. In the above situation with eq∗∗2 = 0, is the multiproduct firm also indifferent
between keeping and closing this unit? The answer is no. Direct calculations show

that if unit 2 is removed (i.e., S becomes a single-product firm), the new profits are:

πD1 ≈ 1.4603 < eπCS ≈ 2.1533, πD3 ≈ 7.6163 < eπC3 ≈ 9.3677, so both firm S = {1, 2}

and firm 3 are worse off with the closing of the idled second unit. Proposition 4 below

shows that this property holds in a large class of multiproduct oligopolies.

Proposition 4 Consider the Bertrand-Shubik oligopoly (1) with a single two-product
firm given by ∆ = {S, 3, ..., n}, where S = {1, 2}. Suppose that c1 = c− µ and ci = c

for i = 2, ..., n. Then there exists a unique µ > 0 such that the inferior inside

firm 2 produces zero output in equilibrium. However, removing product 2 from the

two-product firm will decrease all firms’ profits.

Note that Proposition 4 shares a feature of the dominant cartel model in that

the multiproduct firm’s inefficient unit and all single-product firms have the same

marginal costs. In such oligopolies, both the multi- and single-product firms are

worse off if the high cost unit with a zero demand is closed by the multiproduct firm.

Although this conclusion is derived from a simple model, its proof is quite involved

due to the complexity of the problem. It remains to be seen if the conclusion can be

extended to more general models.
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4 Cost Reductions in Quantity Competition

This section shows that the perverse profit effect of small cost reductions does not

exist in quantity competition and that a multiproduct firm in quantity competition

also has no incentive to close an inefficient unit whose demand is zero.

Substituting the Cournot equilibrium in (19-20) into the inverse demand (10) and

simplifying, one obtains the equilibrium prices as given below: for each unit i ∈ S

and each single-product firm j ∈ N\S,

pC∗i =
(2n+ γ)(n+mγ)V

ω1
− m(n−m)γ2cS

2ω1
+
(n−m)(n+mγ)γc−S

ω1
+

ci
2
; (33)

pC∗j =
(n+ γ)qC∗j
n(1 + γ)

+ cj, (34)

which lead to the equilibrium profits as given below:

πC∗S =
mn(1 + γ)(pC∗S − cS)

2

n+mγ
+
(1 + γ)

Pm
i=1(cS − ci)

2

4
; and (35)

πC∗j =
n(1 + γ)(pC∗j − cj)

2

(n+ γ)
, all j ∈ N\S,

where the multiproduct firm’s average price is equal to pC∗S = (
P

i∈S p
C∗
i )/m =

(2n+ γ)(n+mγ)V

ω1
+
(2n2 + n(n+m+ 1)γ +mγ2)cS

ω1
+
(n−m)(n+mγ)γc−S

ω1
,

(36)
and the equilibrium markups are: for each j ∈ N\S and each unit i ∈ S,

pC∗j − cj =
(n+ γ)qC∗j
n(1 + γ)

, (37)

pC∗i − ci =
(2n+ γ)(n+mγ)V

ω1
− m(n−m)γ2cS

2ω1
+
(n−m)(n+mγ)γc−S

ω1
− ci
2
,
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where qC∗j is given in (20).

Direct calculations lead to the following effects of a firm’s small cost reduction,

whose closed-form expressions are given in (52-54) in Appendix A:

Proposition 5 Consider the Cournot oligopoly (10) with a single multiproduct firm.
(i) A small reduction in a single product firm’s marginal cost increases its product

and profit, and it reduces all other firms’ products and profits.

(ii) A small reduction in the multiproduct firm’s marginal cost ci increases its

profit and product i, and it reduces all other products and all single-product firms’

profits.

By the proposition, a Cournot firm’s profits always increase after its cost reduc-

tions. Although such effects on multiproduct firm’s profits are similar to those in

single-product Cournot models, they are not as obvious as in single-product models.

An examination of the markups in (37) indicates that (see (53) in proof) a reduction

in unit i’s marginal cost increases the markups in all of the multiproduct firm’s prod-

ucts. Because the cost reduction increases product i and decreases all other products,

unit i’s profit increases while profits in the multiproduct firm’s other units might

increase or decrease; such reasoning, therefore, leads to an ambiguous profit effects.

Proposition 5 clarifies such ambiguity and shows that the overall effects on the multi-

product firm’s profits are positive. The following numerical example illustrates such

effects.

Example 2: Let n = 3, V = 9, γ = 2, c1 = 5.9, c2 = 7.2, c3 = 4, and S = {1, 2}. One
gets: qC∗1 ≈ 1.9636, qC∗2 ≈ 0.0136, qC∗3 ≈ 4.1045; πC∗1 ≈ 2.1481, πC∗2 ≈ 0.0061,
πC∗3 ≈ 9.3596. By Proposition 5, ∂πC∗S /∂ci < 0 (i = 1, 2) holds. Indeed, one can

check that ∂πC∗S /∂c1 ≈ −2.0236 < 0 and ∂πC∗S /∂c2 ≈ −0.0736 < 0, so a small

increase in either c1 or c2 will lower πC∗S . For example, let c2 be increased to

c2 = 7.2125. The new equilibrium becomes: eqC1 ≈ 1.9687, eqC2 ≈ 0, eqC3 ≈ 4.1063;
19



and the new profits are: eπCS ≈ eπC1 ≈ 2.1533 < πC∗S = πC∗1 + πC∗2 ≈ 2.1542,eπC3 ≈ 9.3677 > πC∗3 ≈ 9.3596. Note that c2 has been increased to its upper

bound at which the demand for second product is zero.

Similar to price competition in Proposition 4, Proposition 6 below shows that a

multiproduct firm in quantity competition also has no incentive to eliminate a product

whose sales are zero.

Proposition 6 Consider the Cournot oligopoly (10) with a single two-product firm
given by ∆ = {S, 3, ..., n}, where S = {1, 2}. Suppose that c1 = c − µ and ci = c

for i = 2, ..., n. Then there exists a unique µ > 0 such that the inferior inside

firm 2 produces zero output in equilibrium. However, removing product 2 from the

two-product firm will decrease all firms’ profits.

5 Conclusion and Discussion

We have provided closed-form expressions for both Bertrand and Cournot equilibria in

multiproduct oligopolies with differentiated goods and asymmetric costs. Analyzing

these expressions allowed us to provide two new understandings about a multiproduct

firm’s behavior.

First, we have shown that reducing a multiproduct firm’s cost will reduce its

profits in price competition if the cost-reducing unit is sufficiently small. This not

only explains why firms are sometimes unwilling to reduce their cost, but also lends

support to empirical observations that multiproduct firms do not always strive to

improve the efficiency level of all units. For example, it is well documented that

different units (and plants) within an auto manufacturer can have very different levels

of efficiency, and that the variance in efficiency within a manufacturer can sometimes

be greater than that between different manufacturers. More specifically, we have
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characterized the critical level of output share below which a small reduction in the

marginal cost of a small unit reduces the multiproduct firm’s profits, as well as the

critical size of cost reduction above which a large reduction in the marginal cost of a

small unit increases the multiproduct firm’s profit.

Second, we have shown that a multiproduct firm has no incentive to eliminate an

inefficient product with zero demand in both price and quantity competition, which

also sheds lights on understanding other multiproduct choices, such as why airlines

often keep some empty first-class seats and why suppliers often exhibit astronomically

priced items in their showroom that no one will buy.

These two new results are obviously beyond the boundaries of single-product

oligopoly studies, and they indicate that much more remains to be explored in under-

standing the behavior of multiproduct oligopolies. We hope readers will be encour-

aged to apply our expressions for a general multiproduct equilibrium in extending

oligopoly studies from single- to multiproduct. Such extensions, we believe, are not

only a significant step closer to reality, but also will be as rewarding as the extension

of calculus from single to multi-variable.

Appendix A

The Inverse of A in (8) (see [19]): Let U = (uij)n×n = A−1 denote the inverse
of A given in (8). For i = 1, ..., k, define

βi =

µ
ni +

a+ (1− ni)b

c

¶−1
=

c

a+ b+ (c− b)ni
, (38)

α =
kX
i=1

βini = c
kX
i=1

ni
a+ b+ (c− b)ni

,
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θi =
1

1− α

⎛⎜⎝βini +
c

b

kX
j=1
j 6=i

βjnj

⎞⎟⎠ =
1

1− α

³
βini +

c

b
(α− βini)

´
, and

assume α 6= 1 and a+ b+ (c− b)ni 6= 0, all i. Then, A−1 = U =

1

a+ b
I +

1

c

⎛⎜⎜⎜⎜⎝
bβ1(1+θ1)
(a+b)

En1×n1
β1β2
(1−α)En1×n2 · · · β1βk

(1−α)En1×nk
β2β1
(1−α)En2×n1

bβ2(1+θ2)
(a+b)

En2×n2 · · · β2βk
(1−α)En2×nk

...
...

. . .
...

βkβ1
(1−α)Enk×n1

βkβ2
(1−α)Enk×n2 · · · bβk(1+θk)

(a+b)
Enk×nk

⎞⎟⎟⎟⎟⎠ , (39)

where Eni×nj is an ni×nj matrix of 1s. In other words, the inverse A−1, given
below, has the same block structure as A:

A−1 = U =

⎛⎜⎜⎜⎝
U11 U12 · · · U1k
U21 U22 · · · U2k
...

...
. . .

...
Uk1 Uk2 · · · Ukk

⎞⎟⎟⎟⎠ ,

where

Uii =
1

a+ b
Ini×ni +

bβi(1 + θi)

c(a+ b)
Eni×ni , i = 1, ..., k; and (40)

Uij =
βi(c+ bθj)

c(a+ b)
Eni×nj , all j 6= i.

Q.E.D.

Proof of Proposition 1: Part (i). It follows from (13) and (39).
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Part (ii). The first order conditions in (14) can be rearranged as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(n+ γ) 2γ · · · 2γ γ · · · γ
2γ 2(n+ γ) · · · 2γ γ · · · γ
...

...
. . .

...
...

...
...

2γ 2γ · · · 2(n+ γ) γ · · · γ
γ γ · · · γ 2(n+ γ) · · · γ
...

...
...

...
...

. . .
...

γ γ · · · γ γ · · · 2(n+ γ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
q2
...
qm
qm+1
...
qn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n(1 + γ)(V − c1)
n(1 + γ)(V − c2)

...
n(1 + γ)(V − cm)
n(1 + γ)(V − cm+1)

...
n(1 + γ)(V − cn)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, or Bq = d. (41)

Applying the main inverse in (39) to (41) gives the following inverse for B:

B−1 =

"
1
2n
Im 0

0 1
2n+γ

In−m

#
− γ

ω1

"
4n+(n−m+2)γ

2n
Em×m Em×(n−m)

E(n−m)×m
2n+mγ
2n+γ

E(n−m)×(n−m)

#
,

where ω1 > 0 is given by (21), Ik is the k × k identity matrix and Ek×j is the

k × j matrix of all 1s. The equilibrium is given by

qC∗ = B−1

⎛⎜⎜⎝
n(1 + γ)(V − c1)

...

n(1 + γ)(V − cn)

⎞⎟⎟⎠ = n(1 + γ)B−1

⎛⎜⎜⎝
V − c1
...

V − cn

⎞⎟⎟⎠ .

For each i = 1, ...,m (i.e., i ∈ S),

qC∗i = n(1+γ)[
V − ci
2n

− (4n+ (n−m+ 2)γ)mγ(V − cS)

2nω1
− (n−m)γ(V − c−S)

ω1
]
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=
n(1 + γ)(2n+ γ)V

ω1
+
(1 + γ)[4n+ (n−m+ 2) γ]mγcS

2ω1

+
n(1 + γ)(n−m)γc−S

ω1
− (1 + γ)ci

2
.

This gives (19). For each j = m+ 1, ..., n (i.e., j ∈ N\S),

qC∗j = n(1 + γ)[
V − cj
2n+ γ

− mγ(V − cS)

ω1
− (2n+mγ)(n−m)γ(V − c−S)

(2n+ γ)ω1
]

=
n(1 + γ)(2n+mγ)V

ω1
+

n(1 + γ)mγcS
ω1

+
n (n−m) (1 + γ)(2n+mγ)γc−S

(2n+ γ)ω1
− n(1 + γ)cj

2n+ γ
.

This gives (20). Q.E.D.

Proof of Proposition 2: Part (i) The effects of single-product firm’s cost reduc-

tions are straightforward.

Part (ii) For each i ∈ S, the effects of its cost reduction on j /∈ S are straight-

forward, so we only need to show the effects on each j ∈ S. Differentiating (26)

and (29) with respect to ci leads to

i)
∂q∗j
∂ci

=

½ 1+γ
2
− ω4

2nω2
> 0 if j 6= i,

− ω4
2nω2

< 0 if j = i,
(42)

ii)
∂(p∗j − cj)

∂ci
=

(
γ2(n−m)
2ω2

> 0 if j 6= i,
γ2(n−m)
2ω2

− 1
2
< 0 if j = i;

(43)

where ω2 is given by (25), and ω4 > 0 is given by

ω4(n,m, γ) = γ3 (n−m) [2 (n− 1)2 + n(m− 1)] + γ2n[(2n−m) (2n+m− 5)
+n (4n− 3m− 1) + 2] + 2γn2 (5n−m− 3) + 4n3. (44)
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For j 6= i, the positive sign of ∂q∗j/∂ci follows from

∂q∗j
∂ci

=
1 + γ

2
− ω4
2nω2

=
[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]γ

2nω2
> 0

and the negative sign of ∂(p∗i − ci)/∂ci follows from ∂(p∗i − ci)/∂ci =

γ2 (n−m)

2ω2
− 1
2
= −4n

2 + 2nγ (3n−m− 1) + γ2 (n−m) (2n+m− 3)
2ω2

< 0.

By (42) and (43), the effects on unit i’s and j’s output and markup satisfy the

following properties: for i 6= j ∈ S,

∂q∗i
∂ci

=
∂q∗j
∂ci
− 1 + γ

2
, and (45)

∂ (p∗i − ci)

∂ci
=

∂(p∗j − cj)

∂ci
− 1
2
.

Using (42-43) and (45), one has

∂π∗S
∂ci

=
∂
Pm

j=1 π
∗
j

∂ci
=

∂[(p∗i − ci)q
∗
i ]

∂ci
+
X
j∈S\i

∂[(p∗j − cj)q
∗
j ]

∂ci
=

−q
∗
i + (1 + γ) (p∗i − ci)

2
+

∂(p∗k − ck)

∂ci

X
j∈S

q∗j +
∂q∗k
∂ci

X
j∈S
(p∗j − cj), for any k 6= i ∈ S,

= −q
∗
i + (1 + γ) (p∗i − ci)

2
+

γ2 (n−m)
Pm

j=1 q
∗
j

2ω2

+
[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]γ

Pm
j=1(p

∗
j − cj)

2nω2
.
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Applying (4-5) with nj = m to the above expression, one has

∂π∗S
∂ci

= −2nq
∗
i +mγ(p∗S − cS)

2n
+

γ2 (n−m)
Pm

j=1 q
∗
j

2ω2

+
[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]γ

Pm
j=1 q

∗
j

2(n(1 + γ)−mγ)ω2

= −q∗i −
nγ
Pm

j=1 q
∗
j

2n(n(1 + γ)−mγ)
+

γ2 (n−m)
Pm

j=1 q
∗
j

2ω2

+
[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]γ

Pm
j=1 q

∗
j

2(n(1 + γ)−mγ)ω2

= −q∗i +
γ2 (n−m)

Pm
j=1 q

∗
j

ω2
,

which leads to
∂π∗S
∂ci

> 0⇔ tSi < btS = γ2 (n−m)

ω2
. (46)

Q.E.D.

Proof of Corollary 1: (i) By (23), (26), (28), and (29),

(p∗i − ci)− (p∗S − cS) =
γ2m (n−m) + 2ω3

2ω2
cS −

ci
2
=

cS − ci
2

,

which leads to q∗i − q∗S =

[γ2 (3n− 2) (n−m) + γn (7n− 3m− 2) + 4n2]mγcS
2nω2

−(1 + γ)ci
2

+
(n(1 + γ)−mγ)ω3cS

nω3
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= (1 + γ) (cS − ci)/2, which in turn leads to

(p∗i − ci)− (p∗S − cS) =
cS − ci
2

, and (47)

q∗i − q∗S =
(1 + γ) (cS − ci)

2
. (48)

Substituting (48) into the expression for ∂π∗S/∂ci in the proof of Proposition 2, one

has:

∂π∗S
∂ci

=
mγ2 (n−m) q∗S

ω2
− q∗S −

(1 + γ) (cS − ci)

2
=
−2ω3q∗S

ω2
− (1 + γ) (cS − ci)

2
.

By ω2 > 0 and ω3 > 0, cS − ci > 0 implies ∂π∗S/∂ci < 0, so part (i) holds.

(ii) When m = n, btS = 0. By (46), ∂π∗S/∂ci > 0 is impossible, so ∂π∗S/∂ci < 0

holds for all i. Q.E.D.

Proof of Corollary 2: By (27), π∗S = π∗S(ci) is convex and quadratic in ci, and its

minimum point bcSi , or the solution of ∂π∗S/∂ci = 0, is given by
bcSi = ω5

4(n(1 + γ)−mγ)(ω3)2 + n(m− 1)(1 + γ)(ω2)2
, (49)

where ω2 and ω3 are given in (25) and (30), and ω5 > 0 is given by

ω5(n,m, γ) = 4m(n(1 + γ)−mγ)ω3[n(2n(1 + γ)− γ)V + γ(n(1 + γ)− γ)(n−m)c−S]

+[n(1 + γ)(ω2)
2 − 4(n(1 + γ)−mγ)(ω3)

2]Σj∈S\icj.

Because π∗S is symmetric in ci around ci = bcSi , small reductions in ci reduce π∗S ⇐⇒

ci is on the right half of the profit curve where π∗S is increasing in ci. Q.E.D.

Proof of Proposition 3: (i) Let δi = ci − bcSi > 0. One has π∗S(ci − δi) = π∗S(bcSi ) =
Min { π∗S(ci) | ci ≥ 0}. By the symmetry of π∗S(ci) around bcSi , π∗S(ci − 2δi) =
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π∗S(ci). Therefore, ∆ci > 2δi implies π∗S(ci−∆ci) > π∗S(ci−2δi) = π∗S(ci), which

leads to (50). The reverse also holds obviously. Suppose the multiproduct firm’s

most efficient product is good 1 (i.e., c1 = min{ci | 1 ≤ i ≤ m}). For i ∈ S with

ci > bcSi , where bcSi is given in (49), let ∆ci > 0 be the reduction in ci. Let π∗S(ci)

denote the multiproduct firm’s profits given in (27) when firm i’s marginal cost

is ci. Then, the following two claims hold:

(i) π∗S(ci −∆ci) > π∗S(ci)⇔ ∆ci > 2(ci − bcSi ); (50)

(ii) ci − c1 > 2(ci − bcSi ).
(ii) By

γ2 (n−m)

ω2
− 1

2m+ 2
=

γ2 (n−m) (2m+ 2)− ω2
(2m+ 2)ω2

= −γ
2 (n−m) (2n−m− 4) + 2nγ (3n−m− 1) + 4n2

(2m+ 2)ω2
< 0,

the critical output share btS in (46) satisfies
btS <

1

2m+ 2
. (51)

As insider i keeps reducing its marginal cost from ci > bcSi to bcSi and eventually to
c1, its output share will increase from below btS to above btS, further to 1/m > btS,
and eventually to above 1/m, because firm 1 is the most efficient insider. When

its marginal cost falls below bcSi , the multiproduct firm’s profits will start to
increase.

By (51) and by tSi < btS,
btS − tSi <

1

2m+ 2
<

1

2m
.

However, (51) also implies

1

m
− btS >

1

m
− 1

2m+ 2
=

m+ 2

(2m+ 2)m
>

1

2m
.
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Because insiders’ outputs in (26) are linear in marginal costs, the above two in-

equalities imply that the reduction in ci equivalent to a share increase from btS to 1/m
is much larger than δi = ci−bcSi > 0, which is the reduction in ci equivalent to a share

increase from tSi to btS. Because more reductions are needed for ci to eventually reach
c1 (i.e., for its output share to increase from 1/m to firm 1s output share in S), one

must have ci − c1 > 2δi,which completes the proof of part (ii). Q.E.D.

Proof of Proposition 4: Substituting m = 2, ω2 = 2n[(n−2)γ2+3 (n− 1) γ+2n],
c1 = c − µ and ci = c for i > 1 into (26), one gets the following equilibrium

outputs:

q∗1 =
[2n(1 + γ)− γ][n(1 + γ)− 2γ](V − c)

2n[γ2(n− 2) + 3γ (n− 1) + 2n]

+
γ3(n− 2)(2n2 − 3n+ 2) + γ2n(8n2 − 17n+ 8) + 10γn2(n− 1) + 4n3

4n2[γ2(n− 2) + 3γ (n− 1) + 2n] µ,

q∗2 =
[2n(1 + γ)− γ][n(1 + γ)− 2γ](V − c)

2n[γ2(n− 2) + 3γ (n− 1) + 2n] −γ[γ
2(n− 2)(3n− 2) + γn(7n− 8) + 4n2]µ
4n2[γ2(n− 2) + 3γ (n− 1) + 2n] ,

q∗j =
[n(1 + γ)− γ]2(V − c)

n[γ2(n− 2) + 3γ (n− 1) + 2n] −
γ[n(1 + γ)− γ][n(1 + γ)− 2γ]µ
4n2[γ2(n− 2) + 3γ (n− 1) + 2n]

for j = 3, ..., n. It is straightforward to verify that q∗1 > q∗j > q∗2. Based on the

above expression for q∗2, q
∗
2 = 0 if

µ = µB ≡ 2n[2n(1 + γ)− γ][n(1 + γ)− 2γ]
γ[γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2](V − c).

Given µ = µB, the equilibrium profits become:

π∗S = (p
∗
1 − c1)q

∗
1; π

∗
j =

n

n(1 + γ)− γ
(q∗j )

2, j = 3, ..., n,
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where

q∗1 = {1 + [γ
2(2n− 1)(n− 2) + 6γn(n− 1) + 4n2][n(1 + γ)− 2γ]

γ[γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2] }

× [2n(1 + γ)− γ][n(1 + γ)− 2γ]
2n[γ2(n− 2) + 3γ (n− 1) + 2n](V − c),

p∗1 − c1 = {1 + γ3(n− 2)(2n2 − 3n+ 2) + γ2n(8n2 − 17n+ 8) + 10γn2(n− 1) + 4n3
γ[γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2] }

× [2n(1 + γ)− γ]

2[γ2(n− 2) + 3γ (n− 1) + 2n](V − c), and for j = 3, ..., n,

q∗j =
n(1 + γ)[n(1 + γ)− γ]

γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2 (V − c).

If product 2 is removed, the industry becomes a single-product oligopoly with

(n-1) firms. Evaluated at c1 = c−µB and cj = c for j > 1, the new equilibrium

profits are:

π01 =
(n− 1)(1 + γ)− γ

n− 1 (p01 − c1)
2, and

π0j =
n− 1

(n− 1)(1 + γ)− γ
(q0j )

2, j = 3, ..., n,

where p01 − c1 =

φ(n, γ)(V − c)

γ[(n− 1)(2 + γ)− γ][2(n− 1)(1 + γ)− γ][γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2] ,

q0j =
1

(n− 1)(2 + γ)− γ
(V − c){(n− 1)−

2n[(n− 1)(1 + γ)− γ][2n(1 + γ)− γ][n(1 + γ)− 2γ]
[(n− 1)(2 + γ)− γ][2(n− 1)(1 + γ)− γ][γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2]},
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φ(n, γ) = r4 (n− 2)
¡
11n+ 5n2 − 12n3 + 4n4 − 6

¢
+r3

¡
105n3 − 15n2 − 36n− 84n4 + 20n5 + 8

¢
+4r2n

¡
32n2 − 7n− 31n3 + 9n4 − 2

¢
+4rn2 (n− 1)

¡
7n2 − 12n+ 3

¢
+ 8n3 (n− 1)2 .

Applying above expressions to (π∗j − π0j) and (π
∗
S − π01), one gets: (π

∗
j − π0j) =

h(n, γ)(V − c)2

(n− 1)[(n− 1)(2 + γ)− γ]4[2(n− 1)(1 + γ)− γ]2[γ2(n− 2)(3n− 2) + γn(7n− 8) + 4n2]2 ,

π∗S − π01 =
k(n, γ)

ϕ(n, γ)
(V − c)2,

where the terms h(n, γ), k(n, γ), and ϕ(n, γ) are too long to be reported here.

A complete proof with such details is given in Appendix C, which is available

to readers upon request. These three polynomials share the feature that the

highest order term has a positive coefficient. It is straightforward, although

tedious, to show that these three terms are positive. To see h(n, γ) > 0, one first

shows h(3, γ) > 0. Then, using Maple software, one can show that none of the

real roots for n in h(n, γ) = 0 is greater than 2, which implies that h(n, γ) > 0

holds for all n > 2. Similarly, one can show k(n, γ) > 0 and ϕ(n, γ) > 0. Hence,

π∗j > π0j and π∗S > π01 hold. Q.E.D.

Derivation for (33)-(37): Using (19-20), the industry’s average output is

qC∗ =
1

n
[
X
i∈S

qC∗i +
X
i/∈S

qC∗i ]

=
(1 + γ)(2n2 +m(n−m+ 1)γ)V

ω1
− m(1 + γ)(2n+ γ)cS

ω1

− (n−m)(1 + γ)(2n+mγ)c−S
ω1

.

Applying this expression and (19) to the inverse demand equation (10) gives

(33-34). (35-37) are straightforward. Q.E.D.
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Proof of Proposition 5: Part (i) For each i /∈ S, differentiating (19-20) with re-

spect to ci leads to

∂qC∗j
∂ci

=

⎧⎪⎪⎨⎪⎪⎩
n(1+γ)γ

ω1
> 0 if j ∈ S;

n(1+γ)(2n+mγ)γ
(2n+γ)ω1

> 0 if j /∈ S, j 6= i;
−n(1+γ)[m(n+1−m)γ2+2n(n+m)γ+4n2]

(2n+γ)ω1
< 0 if j /∈ S, j = i.

The profit effects follow from (35-37) and the above product effects.

Part (ii) For each i ∈ S, the effects of its cost reduction on a single-product firm

j /∈ S are straightforward, so we only need to show the effects on each j ∈ S.

Differentiating (19) and (37) with respect to ci leads to

∂qC∗j
∂ci

=

(
γ(1+γ)(4n+(n−m+2)γ)

2ω1
> 0 if j 6= i,

γ(1+γ)(4n+(n−m+2)γ)
2ω1

− 1+γ
2

< 0 if j = i;
(52)

∂
¡
pC∗j − cj

¢
∂ci

=

(
− (n−m)γ2

2ω1
< 0 if j 6= i,

− (n−m)γ2
2ω1

− 1
2
< 0 if j = i.

(53)

The negative sign of ∂qi/∂ci follows from

∂qC∗i
∂ci

=
γ(1 + γ)(4n+ (n−m+ 2)γ)

2ω1
− 1 + γ

2

= −(1 + γ)[4n2 + 2n(n+m− 1)γ + (m− 1)(n−m+ 2)γ2]

2ω1
< 0.

Now, consider the profit effects. for any i 6= j ∈ S, (52-53) lead to

∂qC∗i
∂ci

=
∂qC∗j
∂ci
− 1 + γ

2
, and (54)

∂
¡
pC∗i − ci

¢
∂ci

=
∂
¡
pC∗j − cj

¢
∂ci

− 1
2
.
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Using (52-54), one has

∂πC∗S
∂ci

=
∂
Pm

j=1 π
C∗
j

∂ci
=

∂
Pm

j=1(p
C∗
j − cj)q

C∗
j

∂ci

=
qC∗i ∂(pC∗i − ci)

∂ci
+
(pC∗i − ci)∂q

C∗
i

∂ci
+
X
j∈S\i

[
qC∗j ∂(pC∗j − cj)

∂ci
+
(pC∗j − cj)∂q

C∗
j

∂cj
]

= −q
C∗
i + (1 + γ) (pC∗i − ci)

2

+
X
j∈S
[−

qC∗j γ2 (n−m)

2ω1
+
(pC∗j − cj)γ(1 + γ)(4n+ (n−m+ 2)γ)

2ω1
]

= −q
C∗
i + (1 + γ) (pC∗i − ci)

2
− m (n−m) γ2qC∗S

2ω1

+
mγ(1 + γ)[4n+ (n−m+ 2)γ](pC∗S − cS)

2ω1
.

Applying the relationship

(1 + γ) (pi − ci) = qi +
mγqS
n

and
pS − cS

qS
=

n+mγ

n(1 + γ)

given in (15-16), one has

∂πC∗S
∂ci

= −
qC∗i + qC∗i +

mγqC∗S
n

2
− mγ2 (n−m) qC∗S

2ω1

+
mγ(1 + γ)(4n+ (n−m+ 2)γ)

2ω1

(n+mγ) qC∗S
n(1 + γ)

= −qC∗i − [
mγ

2n
+

mγ2 (n−m)

2ω1
− mγ(4n+ (n−m+ 2)γ) (n+mγ)

2nω1
]qC∗S

= −qC∗i −
m (n−m) γ2

ω1
qC∗S < 0

Q.E.D.

33



Proof of Proposition 6: The proof is similar to that of Proposition 4. A com-

plete proof with detailed terms is given in Appendix C, which is available upon

request. Q.E.D.

Appendix B

The profit functions in a homogeneous Cournot oligopoly with liner costs are πi(x) =

(p(Σxj)− ci)xi, all i. Let X = Σxj, then firm i’s and j’s (j 6= i) choices are called

strategic substitutes if

αi = ∂2πi/∂xi∂xj = p0(X) + xip
00(X) ≤ 0,

and strategic complements if αi > 0. Let E = Xp00(X)/p0(X) be the elasticity of
the slope of inverse demand, si = xi/X be firm i’s market share. By αi > 0 ⇔
−αi/p

0(X) = −(1 + siE) > 0, strategic complementarity is equivalent to

−siE > 1. (55)

Dixit (1986) showed that the stability of the system (i.e., conditions for comparative
statistics) requires

∆ = 1 + Σ(αi/p
0(X)) = n+ 1 +E > 0, (56)

and most previous works on comparative statics have assumed a much stronger con-

dition, E > −1 (see Shapiro [1989] for survey).

Lemma 1 Consider a firm i in the above homogeneous Cournot oligopoly with non-

linear demands and linear costs. Let π∗i be its equilibrium profits, and assume: i)

αi > 0; and ii) E > −(n+ 1/2). Then, ∂π∗i /∂ci < 0 holds.

Proof of Lemma 1: Simplifying the output effects of a small cost reduction in
Smythe and Zhao (2006, p. 184) leads to:

∂xi
∂ci

=
(n+ 1 +E)p0(X)− [p0(X) + xip

00(X)]

(n+ 1 +E) (p0(X))2
,
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∂xk
∂ci

=
− (p0(X) + xkp

00(X))

(n+ 1 +E) (p0(X))2
, all k 6= i.

Using envelope theorem and the above expressions, one obtains:

∂π∗i
∂ci

= xip
0(X)Σj 6=i

∂xj
∂ci
− xi = xiΣj 6=i

p0(X) + xjp
00(X)

(n+ 1 +E) (−p0(X)) − xi (57)

= −xi
∙
Σj 6=i

1 + sjE

(n+ 1 +E)
+ 1

¸
=
−xi [2n+ (2− si)E]

(n+ 1 +E)
. (58)

With strategic substitutes (i.e., αi ≤ 0), ∂π∗i /∂ci < 0 follows immediately from
(56) and (57). With strategic complements (i.e., αi > 0), the first term or

the sum in (57) becomes positive, which suggests the possibility of ∂π∗i /∂ci >

0.7 However, such possibility is prevented by the assumptions. Substituting

(55) into [2n+ (2− si)E] in (58), one has [2n+ (2− si)E] > [2n+ 2E + 1] =

2(E + n+ 1/2). Hence, assumption ii) (which implies (56)) leads to

[2n+ (2− si)E]

(n+ 1 +E)
> 0.

By (58), ∂π∗i /∂ci < 0 holds. Q.E.D.
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