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1. Introduction

The fully modified least squares (FM-OLS) and canonical cointegrating regression (CCR)
techniques (Phillips and Hansen, 1990, and Park, 1992, respectively) use covariance esti-
mators to estimate the cointegrating vector of a prototypical cointegrating regression. As
covariance-based techniques, these estimators explicitly rely on covariance stationary errors.
Very common data irregularities, such as measurement error or imputation error resulting
from handling missing observations or mixed frequencies, may explicitly violate covariance
stationarity. Intuitively, we may expect that mildly nonstationary errors will not substan-
tially affect the superconsistency of the least squares estimator. However, the effect on the
limiting (mixed) normality of multi-step covariance-based estimators (which rely on least
squares in the first step) is not readily apparent. The asymptotic approximations that
guide us to statistical inference about such models may be invalid. Our aim is to show that
prototypical covariance-based techniques such as these are robust to mildly nonstationary
error sequences. In particular, we rigorously show that least squares estimation of a canon-
ical cointegrating regression is consistent and asymptotically mixed normal (CAMN) for a
prototypical single-equation cointegrating regression. Our results are suggestive for other
covariance-based techniques, such as FM-OLS.

In order to avoid the assumption of covariance stationary errors for covariance-based
estimators, we make extensive use of near-epoch dependence, a concept that was defined and
refined by inter alia Ibragimov (1962), Billingsley (1968), and McLeish (1975). Key results
for near-epoch dependent processes developed by inter alia Davidson (1994), Davidson and
de Jong (1997), and de Jong and Davidson (2000) provide a useful alternative paradigm
to covariance stationarity. Allowing mild nonstationarity in the error term changes the
asymptotic tools from those of Park (1992), but we show that the estimation technique, its
consistency, and its limiting (mixed) normality are the same. The theoretical contribution
of this paper adds to recent literature that seeks current and new econometric techniques
that are robust to violations of classical covariance stationarity assumptions and generalizes
the concept of I(0).2

The statistics and econometrics literatures abound with explicit techniques for handling
certain types of messy time series, such as those with missing or mixed-frequency obser-
vations. For example, some early regression-based techniques were proposed by Friedman
(1962) and Chow and Lin (1971, 1976). Recent approaches under the MIDAS moniker
(Ghysels et al., 2004) have proposed spectral methods to estimate mixed-frequency models
with stationary series. A number of authors (Harvey and Pierse, 1984; Kohn and Ansley,
1986; Gomez and Maravall, 1994; Harvey et al., 1998; Mariano and Murasawa, 2003; Seong
et al., 2007; inter alia) have used the Kalman filter with mixed-frequency data.

Although we motivate our concerns about nonstationarity with a particular imputation
technique in a particular (mixed-frequency) setting, the theoretical contribution of this
research is not associated with any particular imputation technique – rather, a wide variety

2For example, Müller and Watson (2008a) discuss tests for persistence alternatively to classical unit root
tests. Müller and Watson (2008b) favor robust cointegration testing motivated by Wright’s (2000) variance-
ratio tests. Kurozumia and Hayakawa (2009) explore estimation of cointegrating regressions similar to those
considered here, but with local to unity errors.
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of imputation techniques may generate imputation error satisfying our sufficient conditions.
Moreover, if the econometrician obtains data to which some such technique has already
been applied, imputation error is instead measurement error. In fact, nonstationary error
of the type allowed in our analysis could stem from sources well beyond either of these.
GARCH(1,1) models, for example, contain mildly nonstationary error (Hansen, 1991). For
the sake of generality, we refer to all noise beyond the usual stationary modeling error as
messy-data noise. Letting (x∗t ) denote the messy analog of an integrated series (xt) series,
we let (z∗t ), defined by

z∗t ≡ x∗t − xt, (1)

denote the messy-data noise.
As a non-technical motivating example, we consider simple linear interpolation (lerp) in

a mixed-frequency setting. Even this simplistic technique generates mild nonstationarity,
and conventional wisdom suggests that linear interpolation is inferior to estimating a model
at the lowest frequency (omitting data observed at higher frequencies). Simulations support
the conventional wisdom for a stationary regression. In a cointegrating regression, however,
the conventional wisdom does not hold, and simulations suggest that lerp may outperform

omission. These results are suggestive for more sophisticated imputation techniques.
In the following section, we briefly discuss the example in order to motivate the general

econometric concerns arising from messy data. In Section 3, we describe our econometric
model in detail. We outline general sufficient conditions for the messy-data noise. In
Sections 4 and 5, we present our main theoretical results. Specifically, we focus on consistent
parameter estimation in Section 4, and we show that CCR is CAMN in Section 5. In
Section 6, we briefly revisit the example of Section 2, verifying our theoretical sufficient
conditions and presenting some small-sample results specific to the example. The final
section concludes. Two technical appendices contain ancillary lemmas and their proofs,
along with proofs of the main results.

Unless otherwise noted, summations are indexed by t = 1, . . . , n and integrals are eval-
uated over s ∈ [0, 1]. We use || · ||p to denote the Lp-norms (

∑

i

∑

jE|aij |p)1/p, (
∑

iE|ai|p)1/p,

and (E|a|p)1/p of matrices, vectors, and scalars, respectively.

2. Example: Lerping Mixed-Frequency Data

In order to further motivate the concept of messy data, we consider a very specific example:
using linear interpolation (lerp) to impute a low-frequency series at a higher frequency. We
consider lerp only as an illustrative example, but do not generally advocate lerp over other
techniques in dealing with mixed-frequency data.

Consider two time-series of interest (yt) and (xt). We observe (yt) at each t = 1, . . . , n,
but (xt) is observed only over a subset of this index set. Let the observed subseries of (xt)
be denoted by (xτp) with p = 1, . . . , l, and let each unobserved subseries be denoted by
(xτp+j) with j = 1, . . . ,m. There are thus l unobserved subseries of finite length m. For
example, if interpolating 20 years of a quarterly data to a monthly frequency, then n = 240,
l = 80, and m = 2.
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We make the conventions that x0 is observed, τ0 = 0, and τp + (m+ 1) = τp+1, so that
τl = l (m+ 1) = n. The messy-data noise (in this case, interpolation error) is

z∗t =
j

m+ 1

∑m+1

i=1
4xτp−1+i −

∑j

i=1
4xτp−1+i (2)

for t = τp−1 + j, p = 1, . . . , l, and j = 1, . . . ,m + 1. By construction, there is no noise
when j = m+ 1 (or, alternatively, when j = 0) – i.e., when (xt) is observed. The noise (z∗t )
explicitly depends on the time index j within each interval of missing data. Even under
the most optimistic assumptions about (4xt), (z∗t ) is not covariance stationary. In spite of
nonstationarity, as long as m is finite, (z∗t ) is only mildly nonstationary, in the sense of its
asymptotic order. We will exploit the asymptotic dominance of (xt) over (z∗t ).

3. Cointegrating Regression With Messy Regressors

Consider a cointegrating regression given by

yt = α′wt + β′xt + vt, (3)

where (xt) is an r-dimensional I(1) series, (wt) is a p-dimensional stationary series, (vt) is a
one-dimensional series of unobservable stationary disturbances with mean zero, and α and
β are conformable vectors of unknown parameters such that β does not cointegrate (xt).
Under these assumptions, (yt, x

′
t)
′ is cointegrated with cointegrating vector (1,−β′)′.

Allowing for the possibility of cointegrated regressors, we may define (xt) in terms of its
stochastic trends. Specifically, we let

xt = µ+ Γqt + ut, (4)

where (qt) is a g-dimensional I(1) series of linearly independent stochastic trends with
1 ≤ g ≤ r, (ut) is an r-dimensional stationary series of unobservable disturbances, and µ
and Γ are an r × 1 vector and an r × g matrix of unknown parameters. Specifically, (xt)
has r − g cointegrating vectors and g common stochastic trends, and (yt, x

′
t)
′ has r − g + 1

cointegrating vectors and g common stochastic trends.
We define bt ≡ (vt, w

′
t, u

′
t,4q′t)′ such that (bt) is an R-dimensional series, where R ≡

1 + p+ r + g. We assume throughout the paper that

[A1] (bt) is a mean-zero series that is stationary and α-mixing of size −a with a > 1 and
finite moments up to 4a/ (a− 1), and
[A2] Either q0 = 0 or q0 = Op (1) and independent of (ut), (vt), and (wt).

If the initial value is stochastic, independence from the stationary series avoids additional
nuisance parameters that add unnecessary complications to the model.

In light of the integratedness of (qt) and partial sums of the other stationary series in the
model, we define a stochastic process Bn (s) ≡ n−1/2∑[ns]

t=1bt, where [ns] denotes the greatest
integer not exceeding ns. We assume an invariance principle (IP) for Bn (s), so that

[A3] Bn (s) →d B (s) ≡ (V (s),W (s)′, U(s)′, Q(s)′)′ and
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[A4] Ωbb > 0,

for vector Brownian motion B (s) with finite variance Ωbb. Using Σbb to denote the contem-
poraneous variance of (bt), the one-sided long-run variance ∆bb is the sum of the covariances
running from 0 to ∞, which is implicitly defined by Ωbb = ∆bb + ∆′

bb − Σbb.
We also assume that

[A5] Evtw
′
t−k = 0 for all k,

to allow
√
n-consistent estimation of α.

3.1 Messy Regressors

The heart of the analysis is messy integrated regressors. We define the messy-data noise by
(1), where (xt) contains r regressors observed with noise as (x∗t ). Using (1), feasible analogs
of (3) and (4) are thus

yt = α′wt + β′x∗t + v∗t (5)

and
x∗t = µ+ Γqt + u∗t , (6)

respectively, where u∗t ≡ ut + z∗t and v∗t ≡ vt − β′z∗t . The feasible regressors (x∗t ) in (5) are
explicitly correlated with the new error term (v∗t ). Herein lies potential for asymptotically
biased estimation, if not properly addressed.

Definition. A sequence (zt) is near-epoch dependent in Lp-norm (Lp-NED) of size −λ on

a stochastic sequence (ηt) if ||zt − E(zt|F t+K
t−K )||p ≤ dtνK , where νK → 0 as K → ∞ such

that νK = O
(

K−λ−ε
)

for ε > 0, (dt) is a sequence of positive constants, and F t+K
t−K is the

σ-field generated by ηt−K , . . . , ηt+K .

We primarily deal with L2-NED sequences in this paper, which are simply described as
near-epoch dependent (NED). The reader is referred to Davidson (1994), e.g., for more
details.

The NED framework allows the generality required to deal with messy-data noise gen-
erated by techniques as simple as lerp or much more complicated, as long as the rates at
which the appropriate sample moments diverge are properly taken into account. Mildly
nonstationary dependence and heterogeneity are allowed, as long as the nonstationarity of
(z∗t ) does not dominate the nonstationarity of (xt).

Letting (z∗it), with i = 1, . . . , r, be an element of (z∗t ), we assume that the following hold:

[NED1] For all i, (z∗it) is L2-NED of size −1 on (bt) w.r.t. a bounded sequence (dz
it) of

constants, and
[NED2] Ez∗t = 0 for all t.

We define (possibly time-dependent) covariance matrices Σt
∗∗ ≡ Ez∗t z

∗′
t and Σt

∗b ≡ Ez∗t b
′
t

that satisfy

[NED3.a] Σt
∗∗ <∞ for all t, Σ∗∗ ≡ n−1

∑

Σt
∗∗ <∞, and

[NED3.b] Σt
∗b <∞ for all t, Σ∗b ≡ n−1

∑

Σt
∗b <∞,
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so that even though the sample moments may converge to time-dependent spatial averages,
the average of each across time is finite and independent of time. With the additional
assumption that

[NED4] supt ||z∗it||4a/(a−1) <∞ for all i,

we may employ limit theory of Davidson (1994), Davidson and de Jong (1997), and de Jong
and Davidson (2000) to partial sums of (z∗t ) and (bt) and their products.

Without messy data, asymptotics involving integrated (qt) are straightforward from an
IP and other limiting distributions implied by [A1]-[A5]. Assuming that an IP holds for
Z∗

n (s) ≡ n−1/2∑[ns]
t=1z

∗
t is not as innocuous as in the case of stationary (bt), so we assume

more primitive conditions to obtain the IP. Specifically, we assume that variances satisfy

[NED5.a] EZ∗
nZ

∗′
n (s) = Ω∗∗(s) with Ω∗∗(s) <∞, and

[NED5.b] EZ∗
nQ

′
n (s) = Ω∗q(s) with Ω∗q(s) <∞.

Under these assumptions, ((Z∗′
n (s), Q′

n(s))′ →d (Z∗′(s), Q′(s))′, where Z∗(s) is a vector
Brownian motion with variance Ω∗∗ (s).

Finally, we define a stochastic process (with an abuse of notation) Z∗Wn,j (s) ≡ n−1/2∑[ns]
t=1z

∗
twjt,

for j = 1, . . . , p, and assume

[NED6.a] Ez∗tw
′
t−k = 0 for all t, k,

[NED6.b] EZ∗Wn,j(Z
∗Wn,j)

′(s) = Ω∗wj∗wj
with Ω∗wj∗wj

<∞.

Analogously to [A5], the prohibition of correlation between the stationary regressors and
the messy-data noise is necessary to obtain

√
n-consistent estimation of α.

The limit theory made accessible by assumptions [NED1]-[NED6] is collected in Lemma
A.2 in an appendix. In some cases (see Section 6, for example), it may be more straightfor-
ward to verify the five results of Lemma A.2 directly, rather than verify sufficient conditions
[NED2], [NED3.a], [NED3.b], [NED5.a], [NED5.b], [NED6.a], and [NED6.b] which are used only
to prove Lemma A.2. If these results are verified directly, then [NED1] and

[NED4’] supt ||z∗it||2a/(a−1) <∞ for all i,

should also be verified. Note that [NED4’] relaxes [NED4] and is easier to verify. For the
reader’s convenience, alternative subsets of these assumptions are given for each result.

3.2 Cointegrated Regressors

Setting aside messy data, this model differs from the that of the standard CCR and FM-
OLS approaches, in that we allow cointegrated regressors.3 The limiting moment matrix to
be inverted in the least squares estimator of β is not invertible (unless g = r), since it will
be an r× r matrix of rank g. This collinearity may be remedied by choosing a g× r matrix
C that does not contain any cointegrating vectors of (xt). We may use Cxt (a vector of g
linearly independent regressors) in place of xt (a vector of r linearly dependent regressors)

3Park (1992) considered cointegrated regressors in an early section in which he outlined the model to
be estimated, but did not allow for this in estimation. Phillips (1995) expanded FM-OLS to estimate
cointegrated VAR’s.
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and estimate a g × 1 vector ψ in place of β. We may then make inferences about β′ using
ψ′C.

Since the only requirements for C are dimension and lack of cointegrating vectors of (xt),
a natural choice is the Moore-Penrose generalized inverse C = (Γ′Γ)−1Γ′, so that CΓ = I
and ψ may be interpreted as the vector of marginal effects of the trends themselves. The
marginal effects of the original regressors thus reflect their respective dependence on the
underlying stochastic trends (qt). Note that this matrix contains no cointegrating vectors
of (xt), since, by construction, Γ does not cointegrate (qt).

In general, we must estimate C, and we assume the estimator Ĉ satisfies

[A6] (Ĉ − C) = Op

(

n−1
)

.

Since C may be chosen arbitrarily, we just need to ensure that Ĉ converges to some matrix
of appropriate rank that does not contain any cointegrating vectors.

Although not central to our main results, we briefly discuss alternative methods for
choosing or estimating Ĉ to satisfy assumption [A6].

[1] If the regressors are not cointegrated, choose Ĉ = C = I.

[2] If either common stochastic trend(s) or proxies are observed, choose Ĉ = (Γ̂′Γ̂)−1Γ̂′.
As long as (Γ̂ − Γ) = Op

(

n−1
)

, which we show below for least squares, [A6] holds.4

[3] If there is only one common stochastic trend, but no observable proxy, choose Ĉ = C
to be a binary vector with a single unit element and zeros elsewhere.

[4] If none of the above apply, we suggest using a standard trend estimation technique,
such as the common factor approach of Gonzalo and Granger (1995) or the Kalman
filter approach of Chang et al. (2009). If a “clean” subseries of the regressor series
is available, such as lower frequency data in the example of mixed-frequency data,
these techniques consistently estimate Γ at the appropriate rate, as long as the lower
frequency sample size is a constant fraction of n. If no clean subseries is available,
these techniques may still be consistent, just as least squares is still consistent with
messy data (as we show below).

[5] An arbitrary g×r matrix Ĉ = C may be chosen, but this method is the least desirable.
A near-cointegrating vector in C could change the rate of convergence of ψ̂ to ψ. In
the extreme case that a perfect cointegrating vector is chosen (which with probability
1 cannot happen if chosen randomly from a continuous distribution), the rate is slowed
to

√
n and the messiness may more fundamentally contaminate the estimator.

4Examples of observable proxies for single common stochastic trends are common in practice. They
include, for example, the national cost of living index for a vector of metropolitan cost of living indices with
missing data analyzed by Chang and Rhee (2005) and national stock market index for individual stock price
data with missing data analyzed by Goetzmann et al. (2001).
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3.3 Testing for Cointegration

In cases where cointegration between (yt) and (xt) is not obvious or expected,5 testing
is desirable. The variance ratio test and multivariate trace statistic proposed by Phillips
and Ouliaris (1990) rely on the estimation of the long-run variance of a different residual
series. Specifically, (yt, x

′
t)
′ is regressed on one lag of itself, and the long-run variance of the

residual series from that regression is estimated. This series is I(0) under the null, so we can
expect that adding (z∗t ) – i.e., using (yt, x

∗′
t )′ – would have a similar effect to adding (z∗t ) to

the residual series below. Specifically, it would inflate the variance of both the numerator
and denominator of these statistics, so that the limits would be preserved. Approaches
using more robust variance ratio tests (Wright, 2000; Müller and Watson, 2008) hold more
promise still.

3.4 Further Generalizations

Messy Regressand. A messy regressand requires only a straightforward extension. If
e∗t ≡ y∗t − yt for observed regressand (y∗t ), then v∗t ≡ vt − β′z∗t + e∗t replaces the above
definition, and we simply need the assumptions about (z∗t ) to hold jointly for (e∗t , z

∗′
t )′.

Messy Stationary Regressors. Least squares no longer estimates α consistently, which
is a key for variance estimation. Instead, (wt) may be dropped from the regression, so that
v∗t ≡ vt − β′z∗t + α′wt. Our asymptotic results hold, but with a larger variance.

Deterministic Trends. If the deterministic trends dominate the stochastic trends in (3)
and (4), the asymptotics would be fundamentally different. We focus on asymptotically
dominant I(1) stochastic trends in this analysis.

4. Consistent Estimation

We turn to consistent estimation of the parameters described by the feasible system given
by (5) and (6), with the substitution of ψ′Ĉ for β′.

4.1 Consistent Estimation of ψ

Least squares estimation of (5) provides a consistent (but neither asymptotically normal
nor unbiased) estimator of ψ. The least squares estimator is (ψ̂LS −ψ) = (ĈN∗

nĈ
′)−1ĈM∗

n

with M∗
n ≡ ∑

x∗t v
∗
t −

∑

x∗tw
′
t (
∑

wtw
′
t)
−1∑wtv

∗
t and N∗

n ≡ ∑

x∗tx
∗′
t −∑

x∗tw
′
t (
∑

wtw
′
t)
−1∑wtx

∗′
t .

5An example of an obvious case is one in which the regressor(s) are lagged values of (yt). Examples of
cases in which cointegration may be expected include models with clear common stochastic trends, such as
the cost of living index and the stock price index examples mentioned above.
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Theorem 4.1 Let [A1]-[A6] hold. Further, assume that either [NED1]-[NED6] or the results
of Lemma A.2[a]-[c], [e], and [f] hold. Define N ≡ Γ

∫

QQ′Γ′ and

M∗ ≡ Γ

∫

Qd(V (s) − Z∗ (s)′ C ′ψ) + Γ(δ′vq − ∆′
∗qC

′ψ)

+ (σuv − Σu∗C
′ψ) + (σ∗v − Σ∗∗C

′ψ).

The least squares estimator ψ̂LS has a distribution given by n(ψ̂LS −ψ) →d (CNC ′)−1CM∗

as n→ ∞.

Due to the superconsistent rate of convergence of the estimator to its asymptotic distribu-
tion, ψ̂LS is consistent in spite of numerous nuisance parameters.6

4.2 Consistent Estimation of Γ, α, and µ

The asymptotic distribution above critically depends on Γ, so that constructing a feasible
CCR requires a consistent estimator of Γ. The least squares estimator, (Γ̂LS−Γ) =

∑

u∗t (qt−
q̄n)′(

∑

qt(qt − q̄n)′)−1 with q̄n ≡ (1/n)
∑

qt, is superconsistent.

Lemma 4.2 Let [A1]-[A4] hold. Further, assume that either [NED1]-[NED2], [NED4’], and
[NED5.a]-[NED5.b] or the results of Lemma A.2[d] and [f] hold. We have (Γ̂LS−Γ) = Op(1/n)
as n→ ∞.

In addition to Γ, we also need consistent estimators of α and µ for consistent covariance
estimation. In practice, these are estimated simultaneously with ψ and Γ. Since we have
already shown that ψ̂LS and Γ̂LS are consistent, we may simply consider

α̂LS = (
∑

wtw
′
t)
−1
∑

wt(yt − ψ̂′
LSĈx

∗
t ) (7)

for α and
µ̂LS = (1/n)

∑

(x∗t − Γ̂LSqt) (8)

for µ.

Lemma 4.3 Let [A1]-[A6] hold. Further, assume that either [NED1]-[NED6] or the results
of Lemma A.2 hold. We have
[a] (α̂LS − α) = Op(n

−1/2), and
[b] (µ̂LS − µ) = Op(n

−1/2)
as n→ ∞.

Theorem 4.1 and Lemma 4.3[a] jointly establish consistency with appropriate rates of con-
vergence for least squares estimation of (5), while Lemma 4.2 and Lemma 4.3[b] accomplish
the same for (6).7 All further references to estimators of α, ψ, µ, and Γ pertain to the least
squares estimators, unless otherwise specified, and we drop the LS subscript henceforth.

6Consistency holds under much more general assumptions, such as relaxing [A5] and [NED6], but with
additional nuisance parameters.

7In practice, a problem may arise for some imputation techniques.We may need to impute data before



9

4.3 Consistent Covariance Estimation

To estimate long-run variances and covariances consistently, let b∗t ≡ bt +Dz∗t , where D is
an R × r matrix defined by D ≡ (−C ′ψ, 0, I, 0)′. The first submatrix of zeros is r × p, the
second is r × g, and the identity submatrix is r × r. The long-run variance of (bt) cannot
be identified, but that of (b∗t ) is all that is required.

We first verify consistent covariance estimation when (b∗t ) is observable. In this case,
the long-run variance estimator is

Ω̃b∗b∗ =
1

n

∑∑n

s=1
b∗t b

∗′
s π((t− s)/`n) (9)

for some kernel function π with lag truncation parameter `n. In the absence of messy data,
a vast literature on covariance estimation is available. Newey and West (1987), Andrews
(1991), Hansen (1992), inter alia, have addressed this problem under stationarity or mixing
assumptions.

Consider the class of kernel functions K defined by de Jong and Davidson (2000),

K =







π (z) : R → [−1, 1]

∣

∣

∣

∣

∣

∣

π (0) = 1, π (z) = π (−z) for all z ∈ R,
∫∞
−∞ |π (z)| dz <∞,

∫∞
−∞ |$ (ξ)| dξ <∞, and

π (z) is continuous at 0 and almost everywhere else,

where $ (ξ) is the Fourier transform of π (z). For covariance estimation using (9) and
throughout the paper, we assume that the kernel function and lag truncation parameter
satisfy

[K1] limn→∞ (1/`n + `n/n) = 0,
[K2] π ∈ K , and
[K3] n−1/2∑n

k=0π(k/`n) = o (1).

The first condition imposes `n = o (n) on the lag truncation parameter. The second limits
the class of admissible kernel functions, but still includes many well-known kernels, such as
Bartlett, Parzen, quadratic spectral, and Tukey-Hanning kernels. The reader is referred to
de Jong and Davidson (2000) for more details. We employ the third assumption for feasible
estimators of the variances in the model. This may impose additional restrictions on `n,
depending on the kernel function. For example, the Bartlett and Tukey-Hanning kernels
require `n = o(n1/2) to satisfy [K3].

Under these additional assumptions, we have the following result.

Lemma 4.4 Let [A1], [NED1], [NED4’], [K1], and [K2] hold. We have
[a] Σ̃b∗b∗ →p Σb∗b∗ ,
[b] ∆̃b∗b∗ →p ∆b∗b∗ , and
[c] Ω̃b∗b∗ →p Ωb∗b∗

running least squares on (6), but estimate Γ in order to conduct the imputation, if the technique employs
the trends (qt), such as Friedman’s (1962) approach does. In order to circumvent this difficulty, it may
be necessary to use a preliminary (but not necessarily consistent) estimator of Γ. As long as the resulting
imputation error satisfies our conditions above, then Γ may then be re-estimated consistently.
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as n → ∞, where Σb∗b∗ ≡ Σbb + Σb∗D + DΣ∗b + DΣ∗∗D with ∆b∗b∗ and Ωb∗b∗ defined
accordingly.

Consequently, the long-run variance estimator is consistent if the I(0) series driving the
model, the messy-data noise, and the model parameters are observed and known.

Of course, all of the parameters must be estimated, and the unknown sequences (v∗t )
and (u∗t ) that comprise (Dz∗t ) must be estimated. Simple feasible estimators of (v∗t ) and
(u∗t ) are given by

v̂∗t = yt − α̂′wt − ψ̂′Ĉx∗t and û∗t = x∗t − µ̂− Γ̂qt, (10)

or simply by v̂∗t = v̂t − ψ̂′Ĉz∗t and û∗t = ût + z∗t , where

v̂t ≡ vt + (α− α̂)′wt + (ψ′C − ψ̂′Ĉ)xt and ût ≡ ut + (µ− µ̂) + (Γ − Γ̂)qt. (11)

The series (b̂∗t ) may thus be defined by

b̂∗t ≡ b̂t + D̂z∗t (12)

where naturally ŵt ≡ wt, 4q̂t ≡ 4qt, and D̂ is defined by replacing ψ and C in D with ψ̂
and Ĉ. The feasible long-run variance estimator

Ω̂b∗b∗ ≡ 1

n

∑∑n

s=1
b̂∗t b̂

∗′
s π ((t− s)/`n) (13)

may replace the infeasible estimator in (9). Using a change of indices, symmetry of the
kernel function, and π (0) = 1, we may also write this as Ω̂b∗b∗ = ∆̂b∗b∗ + ∆̂′

b∗b∗ − Σ̂b∗b∗ ,
where

∆̂b∗b∗ ≡ 1

n

∑n

k=0
π (k/`n)

∑n

t=k+1
b̂∗t b̂

∗′
t−k and Σ̂b∗b∗ ≡ 1

n

∑

b̂∗t b̂
∗′
t (14)

are feasible estimators used to estimate the one-sided long-run and contemporaneous vari-
ances, respectively.

Lemma 4.5 Let [A1]-[A6], [NED1], [NED4’], and [K1]-[K3] hold. Further, assume that either
[NED2]-[NED6] or the results of Lemma A.2 hold, and consider the least squares estimators
α̂, ψ̂, µ̂, and Γ̂. We have
[a] Σ̂b∗b∗ →p Σb∗b∗ ,
[b] ∆̂b∗b∗ →p ∆b∗b∗ , and
[c] Ω̂b∗b∗ →p Ωb∗b∗

as n→ ∞.

The natural feasible estimators described by (13) and (14) are consequently consistent.

5. CAMN Estimation of β Using a CCR

A properly constructed CCR may achieve CAMN estimation with messy regressors – even
with mildly nonstationary messy-data noise. We first show how to construct the CCR under
ideal (infeasible) conditions, since this model differs somewhat from that considered by Park
(1992). Once we have an ideal estimator, the path to feasible estimation is clear.
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5.1 An Infeasible CCR

Let ∆bq ≡ (δ′vq,∆
′
wq,∆

′
uq,∆

′
qq)

′ be the R× g matrix formed by the columns corresponding
to (4qt) (the last g columns) in the one-sided long-run variance of (bt). This matrix may
be interpreted as the one-sided long-run covariance between (bt) and (4qt). Similarly, let
Σub ≡ (σuv,Σuw,Σuu,Σuq) be the r×Rmatrix representing the contemporaneous covariance
between (ut) and (bt). Define κ to be an R×1 vector given by κ ≡ (1, 0, 0,−ωvqΩ

−1
qq )′, where

the first and second zeros are 1 × p and 1 × r vectors of zeros, respectively. Now let

x∗∗t ≡ xt − (Γ∆′
bq + Σub)Σ

−1
bb bt

and
y∗∗t ≡ yt − ψ′C(Γ∆′

bq + Σub)Σ
−1
bb bt − ωvqΩ

−1
qq 4qt,

so that we estimate y∗∗t = α′wt + ψ′Ĉx∗∗t + v∗∗t in place of (3), where v∗∗t ≡ b′tκ.
Since we already have a consistent estimator of α, we may simply run least squares on

y∗∗t − α̂′wt = ψ′Ĉx∗∗t + v∗∗t (15)

for CAMN estimation of ψ.

5.2 A Feasible CCR

A feasible estimation procedure must overcome not only the usual obstacles of unknown
nuisance parameters and unobserved error sequences. We face the additional obstacle of
messy data, and the variance estimators described above are contaminated by this messiness,
as is clear from the limits of Lemmas 4.4 and 4.5. All of the variance estimators below
are defined as submatrices, vectors, or individual elements of Σ̂b∗b∗ , ∆̂b∗b∗ , and Ω̂b∗b∗ . For
notational simplicity, we drop the ∗ superscripts in the subscripts of the variance estimators
throughout the rest of the paper. For example, Σ̂bb denotes Σ̂b∗b∗ and ω̂vq denotes ω̂v∗q.
(Note that the probability limit of these feasible estimators are not Σbb and ωvq. Rather
the limiting variances are Σb∗b∗ and ωvq − ψ′CΩ∗q.)

Replacing all of the parameters in (x∗∗t ) and (y∗∗t ) with feasible consistent estimators
and using the messy series (x∗t ) necessitates redefining (x∗∗t ) and (y∗∗t ) as

x∗∗t ≡ x∗t − (Γ̂∆̂′
bq + Σ̂ub)Σ̂

−1
bb b̂

∗
t (16)

and
y∗∗t ≡ yt − ψ̂′Ĉ(Γ̂∆̂′

bq + Σ̂ub)Σ̂
−1
bb b̂

∗
t − ω̂vqΩ̂

−1
qq 4qt, (17)

where all variances and covariances are estimated simultaneously using a single nonpara-
metric procedure as discussed above. The error term in (15) is now

v∗∗t = b∗′t κ̂, (18)

and (ψ̂CCR −ψ) = (Ĉ
∑

x∗∗t x
∗∗′
t Ĉ ′)−1Ĉ

∑

x∗∗t (v∗∗t + (α− α̂)′wt) is the least squares estimator
of this feasible CCR.
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Define Brownian motion V ∗
⊥Q (s) ≡ (V (s)−ψ′CZ∗(s))− (ωvq −ψ′CΩ∗q)Ω

−1
qq Q(s), which

may be interpreted as the projection of V (s)−ψ′CZ∗(s) onto the space orthogonal to Q (s).
Such Brownian motion has variance

var(V ∗
⊥Q(1)) = (ωvv − ωvqΩ

−1
qq ωqv) + ψ′C(Ω∗∗ − Ω∗qΩ

−1
qq Ωq∗)C

′ψ

− ψ′C(ω∗v − Ω∗qΩ
−1
qq ωqv) − (ωv∗ − ωvqΩ

−1
qq Ωq∗)C

′ψ,

where the first term is the long-run variance in the standard CCR model.

Theorem 5.1 Let [A1]-[A6], [NED1], [NED4’], and [K1]-[K3] hold. Further, assume that
either [NED2]-[NED6] or the results of Lemma A.2 hold, and consider estimators α̂, ψ̂,
µ̂, and Γ̂ defined by the least squares estimators above. We have n(ψ̂CCR − ψ) →d

(CNC ′)−1CΓ
∫

QdV ∗
⊥Q(s) as n→ ∞.

Since the variance of this distribution conditional onQ is var(V ∗
⊥Q(1))CNC ′, the asymptotic

distribution may be rewritten as var(V ∗
⊥Q(1))1/2(CNC ′)−1/2′N(0, Ig), where (CNC ′)−1/2 is

the inverse of the Cholesky decomposition of CNC ′. This distribution is simply a g×1 vector
of mixed normal variates. Note that this variance has the standard least squares form, so
that standard errors and test statistics from standard software packages are asymptotically
valid.

Since Ĉ →p C, we may recover the asymptotic distribution of β̂CCR = Ĉ ′ψ̂CCR, which is
var(V ∗

⊥Q(1))1/2(C ′(CNC ′)−1C)1/2N(0, Ir), an r× 1 vector of mixed normal variates. Esti-
mates and standard errors from software packages must be transformed accordingly. If C is
chosen to be C = (Γ′Γ)−1Γ′, this distribution is var(V ∗

⊥Q(1))1/2(C ′(
∫

QQ′)−1C)1/2N(0, Ir),
so that the standard errors are proportional to the contributions of each element of (xt) to
the stochastic trend(s) of (xt).

6. Lerp Revisited: Large- and Small-Sample Results

At least two concerns remain for the econometrician. Of primary concern, the sufficient
conditions of either [NED2]-[NED6] or the results of Lemma A.2, [NED1], and [NED4’] should
be verified for a particular messy-data generating process, in order for the results to hold
in large samples. Secondarily, although the bias from messiness (indeed, even the bias from
serial correlation without the added complication of messiness) is overcome in large samples,
we should question to what extent the asymptotic approximation is valid in small samples.
We briefly address these two concerns for the specific example of linear interpolation in a
mixed-frequency setting.

Using the feasible system given by (5) and (6), we may write the univariate messy-data
noise from linear interpolation in (2) as

z∗t = (uτp−1 − uτp−1+j) +
j

m+ 1
(uτp − uτp−1)

− Γ

(

∑j

i=1
4qτp−1+i −

j

m+ 1

∑m+1

i=1
4qτp−1+i

)

(19)

Sufficient conditions are verified in the proof of the following proposition.
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Figure 1: Relative average RMSE using cointegrated series: max (RMSEomit/RMSElerp, 1)
(left panel) and max (RMSElerp/RMSEomit, 1) (right panel).

Proposition 6.1 Let [A1]-[A4] hold. Define (z∗t ) by (19) and assume that the sequence
(wt) is contemporaneously and serially uncorrelated with (ut) and (qt). Then the results of
Lemma A.2, [NED1], and [NED4’] hold.

This proposition (in conjunction with assumptions [A5] and [A6]) validates CCR with lin-
early interpolated series, and is suggestive for other covariance-based techniques and for
more sophisticated imputation techniques.

In addressing small-sample concerns in a mixed-frequency setting, we compare a messy-
data generating imputation technique (lerp, in particular) with estimation at the lower
frequency (data omission). Adding small amounts of bias and inefficiency through imputa-
tion may be preferable to the larger inefficiency resulting from data omission. Using root
mean-squared error (RMSE), simulations illustrate this bias/variance trade-off.

For a sample size of 480, we simulate 6×11 = 66 models 5, 000 times each, differentiated
by r = 1, . . . , 6 and m = 1, . . . , 11 (holding the number of regressors observed at the lower
frequency to 1).8 Variances and covariances are estimated using a Bartlett kernel.

The left panels of Figures 1 and 2 show max (RMSEomit/RMSElerp, 1), while the right
panels show max (RMSElerp/RMSEomit, 1). Regions over which lerp is preferable to omis-
sion (lerp has a lower RMSE) appear on the left, while regions over which lerp is not
preferable to omission (lerp has a higher RMSE) appear on the right.

Figure 1 suggests that linear interpolation is preferable to high-frequency omission when
m is relatively small. At around m = 6 (every 7th observation is non-missing), we are
indifferent between these two simple methods. For m > 6 omission is preferable. If the
higher frequency is monthly, these results suggest that linearly interpolating quarterly data

8We generate regressors with serially dependent but contemporaneously independent increments. Specif-
ically, (vt,4x′

t)
′ is a VAR(1) with an (r + 1) × (r + 1) diagonal autoregressive matrix with 1/2 along the

diagonals and Σ = I . We set β to be an r × 1 vector of ones.
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Figure 2: Relative average RMSE using stationary series: max (RMSEomit/RMSElerp, 1) (left
panel) and max (RMSElerp/RMSEomit, 1) (right panel).

(m = 2) is more appropriate than estimating the whole model at the quarterly frequency.
However, linearly interpolating annual data (m = 11) is inferior to estimation at the annual
frequency. Again, these results are suggestive for more sophisticated imputation techniques.

In order to emphasize the specificity of this result to cointegrated series, we repeat
a similar exercise with stationary series using least squares.9 In stark contrast, Figure 2
confirms conventional wisdom: interpolation is almost never preferable to data omission for
stationary models, although the RMSE’s are close when m is only 1 or 2.

7. Concluding Remarks

We have shown that covariance-based methods for estimating cointegrating regressions
(CCR, in particular) may be valid even when the error term is not covariance station-
ary. Although consistency of least squares may be intuitive in this context, asymptotic
normality and unbiasedness of multi-step covariance-based estimators is not obvious. We
have rigorously shown that in fact these properties hold under general conditions about the
rates of convergence of the error terms, even in cases where these errors have time-varying
variances. The well-known covariance-based techniques are robust.

The importance of these results is underscored by the prevalence of data irregularities,
such as missingness, mixed frequency, and measurement error, which create additional noise
that may violate covariance stationarity assumptions on the model error. Our theoretical
results may hold for a wide variety of techniques for handling data irregularities.

9We let (vt) ∼ iidN (0, I) with (xt) a VAR(1) with 1/2 along the diagonals, independent of (vt).



15

Appendix A: Useful Lemmas and Their Proofs

Throughout the proofs, the notation ei is employed for a conformable vector that has a one
in the ith row and zeros elsewhere – i.e., the ith column of an identity matrix of appropriate
dimension. Also, we let ζt ≡ (b′t, z

∗′
t )′ be an (R+ r) × 1 vector.

Lemma A.1 For sequences (bt) satisfying [A1] and (z∗t ) satisfying [NED1] and [NED4’],
[a] (z∗t z

∗′
t ) is a matrix of sequences that are L1-NED on (bt),

[b] (z∗t b
′
t) is a matrix of sequences that are L1-NED on (bt), and

[c] (ζt) is a vector of sequences that are L2-NED on (bt),
all of which have a size of −1 and are defined w.r.t. bounded sequences of constants.

Proof of Lemma A.1 Under [NED1], each element (z∗it) of (z∗t ) is L2-NED on (bt), which
implies that an arbitrary element (z∗itz

∗
jt) of (z∗t z

∗′
t ) is L1-NED (with the same size) w.r.t.

constants defined by max(||z∗jt||2dz
jt, ‖z∗it‖2 d

z
it, d

z
itd

z
jt) from the proof of Theorem 17.9 of

Davidson (1994), where (dz
it) and (dz

jt) are the sequences of constants from the definition of
near-epoch dependence for (z∗it) and (z∗jt), respectively. Since this sequence is bounded by
[NED1] and [NED4’], the proof of part [a] is complete. Part [b] of the lemma follows in the
same way by noting that (bt) is L2-NED on itself w.r.t. constants that are bounded by the
covariance stationarity of (bt).

10 The filtration in the definition is simply defined to be the
natural filtration, and the rest of the proof follows that of part [a]. The proof of part [c] is
trivial and therefore omitted. �

Lemma A.2 Let [NED1] hold. Then
[a] n−1∑z∗t = op (1) under [NED2], [NED4’],
[b] n−1∑ (z∗t z

∗′
t − Σ∗∗) = op (1) under [NED3.a], [NED4],

[c] n−1∑ (z∗t b
′
t − Σ∗b) = op (1) under [A1], [NED3.b], [NED4],

[d] n−1/2∑z∗t = Op (1) under [NED2], [NED4’], [NED5.a],
[e] n−1/2∑z∗tw

′
t = Op (1) under [NED4], [NED6.a], [NED6.b], and

[f ] n−1∑qtz
∗′
t →d

∫

QdZ∗ (s)′ + ∆′
∗q under [A1]-[A4], [NED2], [NED4’], [NED5.a]-[NED5.b]

as n→ ∞.

Proof of Lemma A.2 To prove parts [a]-[c], we verify the conditions for a law of large
numbers proven by Davidson and de Jong (1997). For parts [d] and [e], we take a similar
approach using a central limit theorem of de Jong (1997). Subsequently, we use a theorem
from Davidson (1994) based on a functional central limit theorem to prove part [f]. For
parts [d]-[f], all stochastic arrays are created by dividing the underlying stochastic sequences
by

√
n.

[a] Consider an arbitrary element (z∗it) of (z∗t ). Letting (dz
it) denote the sequence of constants

in the definition, clearly we have dz
it = O

(

‖z∗it‖2

)

as n → ∞, since both sides are bounded
under [NED1] and [NED4’]. A sufficient condition for Theorem 3.3 of Davidson and de Jong
(1997), in order to obtain the rate of convergence in our stated result, is that t−1 ‖z∗it‖2 =

10The reader is referred to Example 17.3 in Davidson (1994).
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O(t−5/6−ε) for some ε > 0,11 since (z∗t ) has mean zero by [NED2]. Under [NED4’], this
condition holds for any ε ≤ 1/6. The result trivially extends to the entire vector (z∗t ).
[b] Consider an arbitrary element (z∗itz

∗
jt) of (z∗t z

∗′
t ), which is L1-NED of size −1 on (bt)

w.r.t. a bounded sequence of constants by Lemma A.1[a]. Note that ||z∗i,tz∗jt − e′iΣ∗∗ej ||2 ≤
||z∗it||4||z∗jt||4 + e′iΣ∗∗ej by the Minkowski and Cauchy-Schwarz inequalities. Since ‖z∗t ‖4 is
bounded by [NED4], and e′iΣ∗∗ej is bounded by [NED3.a], we may employ Theorem 3.3 of
Davidson and de Jong (1997). Again, the result trivially extends to the whole matrix.
[c] The proof for part [c] is identical to that for part [b], with the replacement of Lemma
A.1[a] with A.1[b], [NED3.a] with [NED3.b], and the addition of [A1] to ensure that A.1[b]

holds and that the fourth moment of (bt) is finite.
[d] If Ω∗∗ (s) = 0, then (z∗t ) must have a degenerate variance and degenerate autocovari-
ances, so the result trivially holds. More generally, let Ω∗∗ (s) > 0. Consider a random

vector n−1/2Ω
−1/2
∗∗ z∗t constructed from (z∗t ) and the Cholesky decomposition of the inverse

of Ω∗∗. The ith element of this random vector is n−1/2e′iΩ
−1/2
∗∗ z∗t . If the L2-norm of this

element is unity, the conditions for Corollary 1 of de Jong (1997) are satisfied for constants
cnt ≡ n−1/2 and under [NED1], [NED2], and [NED4’] . For verification, note that

E
∣

∣

∣

∑

n−1/2e′iΩ
−1/2
∗∗ z∗t

∣

∣

∣

2
= e′iΩ

−1/2
∗∗

(

EZ∗Z∗ (1)′
)

Ω
−1/2′
∗∗ ei

which under [NED5.a] is in fact unity for each i.

[e] The proof proceeds as in part [d], by looking the random vector n−1/2Ω
−1/2
∗wj∗wj

z∗tw
′
tej ,

which corresponds to the jth column of z∗tw
′
t. To consider the ith element of this vector, we

look at n−1/2e′iΩ
−1/2
∗wj∗wj

z∗tw
′
tej , which has an L2-norm of

E
∣

∣

∣

∑

n−1/2e′iΩ
−1/2
∗wj∗wj

z∗tw
′
tej

∣

∣

∣

2
= e′iΩ

−1/2
∗wj∗wj

(

EZ∗Wn,j (Z∗Wn,j)
′ (1)

)

Ω
−1/2′
∗wj∗wj

ei

which again is unity under [NED6.b]. We only need to show that supt ‖z∗tw′
t/d

zw
t ‖2a/(a−1) <

∞, where (dzw
t ) is the bounded sequence of constants defined implicitly in Lemma A.2[b].

A sufficient condition is that element of both (z∗t ) and (wt) have finite moments up to
4a/ (a− 1), which we assume in [NED4] and [A1].
[f ] We employ Theorem 30.14 of Davidson (1994). We may write

1

n

∑

qtz
∗′
t = (0, 0, 0, I, 0)

1

n

∑∑t

i=1
ζiζ

′
t (0, 0, 0, 0, I)′ ,

where the (0, 0, 0, I, 0) is a g × (R+ r) matrix with g × g identity submatrix after column
R−g and (0, 0, 0, 0, I) is a g× (R+ r) matrix with r×r identity submatrix after column R,
and show that the sufficient conditions for Theorem 29.6 and Corollary 29.14 of Davidson
(1994) hold for e′jζt with j = 1, . . . , R+ r. Condition [a] of Theorem 29.6 is jointly satisfied
by [A1] and [NED2]. Condition [b] requires that supt ‖z∗t /dz

t ‖2a/(a−1) <∞, which is satisfied
by [NED4’], since constants (dz

t ) may be chosen to be nonzero w.l.o.g. Conditions [c] and [e]

11The number −5/6 comes from applying the formula in Davidson and de Jong (1997) with q = 2, b = 1,
and a > 1, which is appropriate for either L2 or L1-NED sequences of size −1 defined on mixing sequences
with size −a where a > 1.
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of Theorem 29.6 follow directly from Lemma A.1[c]. Condition [d] of this theorem is also
satisfied by the boundedness of (dz

t ) in [NED1]. Conditions [A1]-[A3], [NED5.a] and [NED5.b]

jointly satisfy condition [f’] of Corollary 29.14 (and condition [b] of Theorem 29.18), because
in order for E(Qn (s)′ , Z∗

n (s)′)′(Qn (s)′ , Z∗
n (s)′) to have a well-defined limit, EQnQ

′
n (s),

EZ∗
nQ

′
n (s), and EZ∗

nZ
∗′
n (s) must have finite limits. �

Lemma A.3 Let [A1]-[A3] hold. Further, assume that either [NED1]-[NED5] or the results
of Lemma A.2[a]-[c] and [f] hold. We have
[a] n−1∑x∗t v

∗
t →d M

∗,
[b] n−1∑x∗tw

′
t →d Γ

(∫

QdW (s)′ + ∆′
wq

)

+ Σuw + Σ∗w,
[c] n−1∑wtv

∗
t →p σwv − Σw∗C

′ψ, and
[d] n−2∑x∗tx

∗′
t →d N

as n→ ∞.

Proof of Lemma A.3 Since [NED1]-[NED5] are sufficient for Lemma A.2[a]-[c] and [f], we
prove the lemma using the latter.
[a] We may rewrite the summation in terms of (xt), (vt), and (z∗t ) using (1) and our definition
of (v∗t ). Expanding the product yields

∑

x∗t v
∗
t =

∑

xtvt −
∑

xtz
∗′
t C

′ψ +
∑

z∗t vt −
∑

z∗t z
∗′
t C

′ψ, (20)

and to find the limiting distribution of the first term of (20), we may further expand this
term using the data generating process of (xt) given by (4). We obtain

1

n

∑

(µ+ Γqt + ut) vt →d Γ

(∫

QdV (s) + δ′vq

)

+ σuv

as n → ∞. (Note that if q0 = Op (1) but not independent of (vt), we would have to
contend with an additional nuisance parameter.) Similarly, the second term of (20) has a
distribution given by

− 1

n

∑

(µ+ Γqt + ut) z
∗′
t C

′ψ →d −Γ

(∫

QdZ∗ (s)′ + ∆′
∗q

)

C ′ψ − Σu∗C
′ψ

using Lemma A.2[a], [f], and [c], respectively. The third and fourth terms of (20) are similarly
governed by Lemma A.2[c] and [b], respectively, so that the stated result is obtained.
[b] As in the proof of part [a], we use (1) to write

∑

x∗tw
′
t =

∑

xtw
′
t +

∑

z∗tw
′
t, and the stated

result follows along similar lines.
[c] Expanding the summation in part [c] yields

∑

wtv
∗
t =

∑

wtvt − ∑

wtz
∗′
t C

′ψ, and, again,
the stated result immediately follows.
[d] Finally, expanding the summation in part [d] reveals a structure similar to part [a].
Specifically,

∑

x∗tx
∗
t =

∑

xtx
′
t +
∑

z∗t z
∗′
t +

∑

xtz
∗′
t +

∑

z∗t x
′
t,

where the first term has an asymptotic distribution of n−2∑xtx
′
t →d Γ

∫

QQ′Γ′, which
dominates under our conditions. �
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Lemma A.4 Let [A1]-[A6], [NED1], [NED4’], and [K1]-[K3] hold. Further, assume that
either [NED2]-[NED6] or the results of Lemma A.2 hold, and consider estimators α̂, ψ̂, µ̂,
and Γ̂ defined by the least squares estimators above. We have
[a] n−1∑x∗∗t v

∗∗
t →d Γ

∫

QdV ∗
⊥Q (s)

[b] n−1∑x∗∗t w
′
t →d Γ

∫

QdW (s)′, and
[c] n−2∑x∗∗t x

∗∗′
t →d Γ

∫

QQ′Γ′

as n→ ∞.

Proof of Lemma A.4 Again, we use Lemma A.2 rather than [NED1]-[NED6] for the
proofs.
[a] The summation may be expanded using (16) and (18) as

∑

x∗t v
∗
t −

∑

x∗t4q′tΩ̂−1
qq ω̂qv − (Γ̂∆̂′

bq + Σ̂ub)Σ̂
−1
bb

∑

b̂∗t b
∗′
t κ̂ (21)

using feasible estimators of all parameters. The distribution of the first term of (21) follows
from Lemma A.3[a]. The second term of (21) may be written as

−
(

∑

xt4q′t +
∑

z∗t 4q′t
)

Ω̂−1
qq ω̂qv, (22)

where the variance estimators have a limiting distribution of Ω̂−1
qq ω̂qv →p Ω−1

qq (ωqv − Ωq∗C
′ψ)

by Lemma 4.5. When normalized by 1/n, the first summation in (22) has an asymptotic
distribution given by Γ(

∫

QdQ (s)′ + ∆′
qq) + Σuq, and the probability limit of the second

summation in (22) is Σ∗q when similarly normalized. To determine the limit of the final

term of (21), we need to deal with the limit of
∑

b̂∗t b
∗′
t . Expanding this as

∑

b̂tb
′
t + D̂

∑

z∗t b
′
t +
∑

b̂tz
∗′
t D

′ + D̂
∑

z∗t z
∗′
t D

′,

it is clear using (11) that this consistently estimates Σb∗b∗ , as does Σ̂bb. We may thus write
this term as −(Γ̂δ̂′vq + Σ̂uv) + (Γ̂∆̂′

qq + Σ̂uq)Ω̂
−1
qq ω̂qv + op (1), where

(Γ̂δ̂′vq + Σ̂uv) →p Γ
(

δ′vq − ∆′
∗qC

′ψ
)

+ (σuv − Σu∗C
′ψ) + (σ∗v − Σ∗∗C

′ψ)

and (Γ̂∆̂′
qq + Σ̂uq) →p Γ∆′

qq + Σuq + Σ∗q as n → ∞. Combining all of these terms (after
appropriate cancellations) yields the stated result.
[b] Using (16), the summation is equal to

∑

x∗tw
′
t−(Γ̂∆̂′

bq +Σ̂ub)Σ̂
−1
bb
∑

b̂∗t b̂
∗′
t (0, I, 0, 0)′, where

(0, I, 0, 0) is a p×R matrix with p× p identity submatrix after the first column, and where
the distribution of the first term comes from Lemma A.3[b]. The second term is also Op (n)
by Lemma 4.5, with a probability limit given by −

(

Γ∆′
wq + Σuw + Σ∗w

)

.
[c] Expanding the summation yields

∑

x∗tx
∗′
t + (Γ̂∆̂′

bq + Σ̂ub)Σ̂
−1
bb

∑

b̂∗t b̂
∗′
t Σ̂−1(Γ̂∆̂′

bq + Σ̂ub)
′ (23)

−
∑

x∗t b̂
∗′
t Σ̂−1

bb (Γ̂∆̂′
bq + Σ̂ub)

′ − (Γ̂∆̂′
bq + Σ̂ub)Σ̂

−1
bb

∑

b̂∗tx
∗′
t
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where the asymptotics of the first term are derived in Lemma A.3[d]. It remains to show
that the other terms are op

(

n2
)

. This is clearly true for the second term, which is Op (n)

as a direct result of Lemma 4.5. The summation
∑

x∗t b̂
∗′
t in the third and fourth terms of

(23) may be partitioned as

∑

(

x∗t v̂
∗
t , x

∗
tw

′
t, x

∗
t û

∗′
t , x

∗
t4q′t

)

, (24)

and we examine each partition separately. The first partition may be expanded as

∑

x∗t v
∗
t +

∑

x∗tw
′
t (α− α̂) +

∑

x∗tx
∗′
t (ψ′C − ψ̂′Ĉ)

These are clearly no more than Op (n) from Lemma A.3[a], [b], [d], and the fact that (ψ′C−
ψ̂′Ĉ) = Op (1/n) (see the proof of Lemma 4.3 below). The second partition is obviously
Op (n) as a special case of the first. The third partition in (24) admits the expansion

∑

xtu
′
t +
∑

z∗t u
′
t +
∑

xt (µ− µ̂)′ +
∑

z∗t (µ− µ̂)′

+
∑

xtq
′
t(Γ − Γ̂)′ +

∑

z∗t q
′
t(Γ − Γ̂)′ +

∑

xtz
∗′
t +

∑

z∗t z
∗′
t

using (1) and (11). All of these are op

(

n2
)

under our assumptions. The last partition in
(24) is Op (n) for the same reasons as the second partition. Finally, returning to the third
and fourth terms of (23), since Σ̂−1(Γ̂∆̂′

bq + Σ̂ub)
′ = Op (1), the proof is complete. �

Lemma A.5 Let [A1]-[A3] hold and define Σbb (k) = Ebtb
′
t−k to be the kth autocovariance

of (bt). For any i, j,12 we have liml→∞ cov(B
(j)
l (s) , B

(j−i)
l (s)) = sΩ

(i)
bb as l → ∞, where

B
(j)
l (s) ≡ l−1/2

∑[ls]
p=1 bτp−1+j and Ω

(i)
bb ≡∑∞

k=−∞ Σbb (k (m+ 1) + i) are a stochastic process
and limiting variance, respectively.

Proof of Lemma A.5 The covariance is equal to

1

l
E

(

∑[ls]

p=1
bτp+j

∑[ls]

p=1
b′τp+j−i

)

=
∑[ls]

k=−[ls]

(

[ls]

l
− |k|

l

)

Σbb (k (m+ 1) + i)

by the stationarity of (bt). The result follows from the Kronecker lemma and the summa-
bility of the autocovariances implied by [A1]. �

Lemma A.6 Let [A1]-[A3] hold. Define a Brownian motion

Z∗ (s) = (m+ 1)1/2 U (0) (s) − U (s) +
Γ

(m+ 1)1/2

∑m+1

j=1

∑m+1

i=j+1
Q(i) (s) − m

2
ΓQ (s)

and the stochastic processes Z∗
n (s) as above and with (z∗t ) defined by (19). We have

12The result holds for any i, j, although we generally restrict j ∈ [1, m + 1], due to construction of the
messy data error.
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[a] B
(j)
l (s) →d B

(j) (s), a Brownian motion with variance Ω
(0)
bb ,

[b]
∑m+1

j=1 B
(0)
l (s) →d (m+ 1)B(0) (s),

[c]
∑m+1

j=1 B
(j)
l (s) →d (m+ 1)1/2B (s), and

[d] Z∗
n (s) →d Z

∗ (s)
as n→ ∞.

Proof of Lemma A.6 The stochastic process B
(j)
l (s) is closely related to Bn (s), in that

increments of the former form a subset of the set of increments of the latter. Together

with our assumption that Bn (s) →d B (s), this implies that B
(j)
l (s) also converges to a

Brownian motion. We only need to show that the limiting variance of the stochastic process
is well-defined, which provides the variance of the Brownian motion to which it converges.
This is accomplished by setting i = 0 in the Lemma A.5, which completes the proof of part
[a].

Part [b] follows directly from part [a], by setting j = 0 and noting that the summation
over the same Brownian motion reduces to multiplication by m+ 1.

For the proof of part [c], note that n = l (m+ 1). We may write

m+1
∑

j=1

B
(j)
l (s) =

(

m+ 1

n

)1/2




m+1
∑

j=1

[ls]
∑

p=1

bτp−1+j +

m̄s
∑

j=1

bτ[ls]+j



− l1/2
m̄s
∑

j=1

bτ[ls]+j

= (m+ 1)1/2Bn (s) − l1/2
∑m̄s

j=1
bτ[ls]+j

with m̄s ≡ [ns] − [ls] (m+ 1). If [ls] is an integer, then [ns] − [ls] (m+ 1) = 0. Otherwise,

[ns] − [ls] (m+ 1) = [l (m+ 1) s] − [ls] (m+ 1) ≤ (l (m+ 1) s− 1) − (ls− 1) (m+ 1) = m

so that the final term is op (1). The stated result immediately follows from [A3].
To prove part [d], first note that

n−1/2
∑[ns]

t=1
z∗t = n−1/2

∑m+1

j=1

∑[ls]

p=1
z∗τp−1+j + n−1/2

∑m̄s

j=1
z∗τ[ls]+j

with m̄ defined as in part [c]. Similarly, the second term is op (1). The dominant term may
be expanded as

n−1/2
∑m+1

j=1

∑[ls]

p=1
z∗τp+j = n−1/2

∑m+1

j=1

(

1 − j

m+ 1

)

∑[ls]

p=1
uτp−1 (25)

+ n−1/2
∑m+1

j=1

j

m+ 1

∑[ls]

p=1
uτp − n−1/2

∑m+1

j=1

∑[ls]

p=1
uτp−1+j

+
Γ

n1/2

∑m+1

j=1

(

j

m+ 1
− 1

)

∑m+1

i=1

∑[ls]

p=1
4qτp−1+i

+
Γ

n1/2

∑m+1

j=1

∑m+1

i=j+1

∑[ls]

p=1
4qτp−1+i
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where the first two terms of (25) may be rewritten as

n−1/2
∑m+1

j=1

∑[ls]

p=1
uτp−1 + op (1) = (m+ 1)−1/2

∑m+1

j=1
U

(0)
l (s) + op (1)

for large l. This has a limiting distribution given by (m+ 1)1/2 U (0) (s) as a direct result

of part [b]. The third term is (m+ 1)−1/2∑m+1
j=1 U

(j)
l (s), which has a limiting distribution

of U (s) according to part [c]. Similarly, using part [c], the limiting distribution of the
fourth term of (25) is −(m/2)ΓQ (s). Finally, the distribution of the last term of (25) is

Γ (m+ 1)−1/2∑m+1
j=1

∑m+1
i=j+1Q

(i) (s) using part [a] of the lemma. �

Appendix B: Proofs of the Main Results

Proof of Theorem 4.1 Under our assumptions, all four results of Lemma A.3 hold.
Moreover, since we assume that [A5] and either [NED6] or the result of Lemma A.2[e] hold,
we have σwv − Σw∗C

′ψ = 0 in Lemma A.3[b]. Consequently, using Lemma A.3, [A6],
and the continuous mapping theorem, n−1M∗

n →d M∗ as n → ∞. Similarly, n−2N∗
n =

1
n2

∑

x∗tx
∗′
t + op (1) →d N , so that the stated result is obtained. The choice of C ensures

that CNC ′ is invertible, even though N is not. �

Proof of Lemma 4.2 Since [NED1]-[NED2], [NED4’], and [NED5.a]-[NED5.b] are sufficient
for Lemma A.2[d] and [f], we prove the lemma using the latter. Using the definition of u∗t ,
we may rewrite the first summation as

∑

utq
′
t −

∑

utq̄
′
n +

∑

z∗t q
′
t −

∑

z∗t q̄
′
n. The first term is

Op (n) under [A1]-[A3], using standard asymptotics for integrated series. The second term is
also Op (n), since n−1/2q̄n →d

∫

Q and since our assumption that Eut = 0 allows a central
limit theorem for n−1/2∑ut. The third and fourth terms are Op (n) by Lemma A.2[f] and
[d], respectively. It remains to show that the second summation in the estimator is Op

(

n2
)

.

This is straightforward, since n−2∑qtq
′
t−n−3/2∑qtn

−3/2∑q′t →d

∫

QQ′−
∫

Q
∫

Q′ as n→ ∞.
This is invertible since the trends (qt) are distinct. �

Proof of Lemma 4.3 Since [NED1]-[NED6] are sufficient for Lemma A.2, we prove the
lemma using the latter.
[a] The estimator (α̂LS − α) may be rewritten as (

∑

wtw
′
t)
−1∑wt((ψ

′C − ψ̂′
LSĈ)xt + (vt −

ψ̂′
LSĈz

∗
t ))′ by substituting (1) and our definition of (v∗t ) into (7). Under our assump-

tions,
∑

wtw
′
t = Op (n) and invertible. Under [A5] and Lemma A.2[e], we have

∑

wt(vt −
z∗′t Ĉ

′ψ̂LS) = Op(n
1/2). Note that (ψ′C − ψ̂′

LSĈ) = (ψ − ψ̂LS)′C + (ψ̂LS − ψ)′(C −
Ĉ) + ψ′(C − Ĉ), each term of which is at most Op (1/n) under our assumptions. Thus,
∑

wtx
′
t(C

′ψ − Ĉ ′ψ̂LS) = Op (1), and whole estimator is Op

(

n−1/2
)

.

[b] Similarly, the estimator (µ̂LS − µ) is equal to (Γ − Γ̂LS) 1
n
∑

qt + 1
n
∑

ut + 1
n
∑

z∗t , using

(8) and (6). The first term is (Γ̂LS − Γ)Op(n
1/2), which is Op(n

−1/2) by Lemma 4.2. The
second term is Op(n

−1/2) using a CLT, as is the third term by Lemma A.2[d]. �
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Proof of Lemma 4.4 The estimator (9) may be written as

Ω̃b∗b∗ = (I,D)

{

1

n

∑∑n

s=1
ζtζ

′
sπ

(

t− s

`n

)}

(I,D)′ , (26)

with R×R identity submatrix and known D. The expression inside the curly brackets is an
estimator of the long-run variance of (ζt), which is a vector of NED sequences by Lemma
A.1[c]. We need only show that this estimator is consistent for the result to hold. Note that

for the (R+ r)-dimensional random vector ζt − E
(

ζt|F t+K
t−K

)

,

∑

i
E
∣

∣

∣ζit − E
(

ζit|F t+K
t−K

)∣

∣

∣

2
≤ (R+ r) supi E

∣

∣

∣ζit − E
(

ζit|F t+K
t−K

)∣

∣

∣

2

for i = 1, . . . , R+ r so that
∥

∥

∥ζt − E
(

ζt|F t+K
t−K

)∥

∥

∥

2
≤ (R+ r)1/2 supi

∥

∥

∥ζit − E
(

ζit|F t+K
t−K

)∥

∥

∥

2
,

where the norm on the LHS is an L2-norm for vectors, whereas that on the RHS is an
L2-norm for scalars. The latter is NED with sequences (db,z

t ) and (νb,z
K ) defined in terms of

the respective sequences (dt) and (νK) implicitly defined in Lemma A.1[c]. Specifically, let

db,z
t ≡ (R+ r)1/2 maxi dit and νb,z

K ≡ maxi νiK , and since the sequences (dit) are bounded

and there are a finite number of regressors in (3), (db,z
t ) is also bounded. Along similar lines,

supt ‖ζt‖2a/(a−1) ≤ (R+ r)1/2 supi,t ‖ζit‖2a/(a−1), which is finite by [NED4’]. Conditions
[NED1], [A1], [K1] and [K2] are jointly sufficient with the above inequality for Theorem 2.1
of de Jong and Davidson (2000), so that the estimator inside the curly brackets in (26) is
consistent. �

Proof of Lemma 4.5 The proof is inspired by the proof of Lemma 4.3 of Park (1992),
with the main complication being the sequence (z∗t ) of nonstationary messy-data noise.
Consider ∆̂b∗b∗ . If we can show that ∆̂b∗b∗ = ∆̃b∗b∗ + op (1), then we may apply Lemma
3.4[b] to obtain the stated result for part [b]. (Part [a] is a special case, and part [c] is a
trivial extension.) The absolute value of the difference between the two estimators of ∆b∗b∗

is
∣

∣

∣
∆̂b∗b∗ − ∆̃b∗b∗

∣

∣

∣
≤ 1√

n

n
∑

k=0

∣

∣

∣

∣

π

(

k

`n

)∣

∣

∣

∣





1√
n

∑n
t=k+1

∣

∣

∣
b̂∗t (b̂

∗
t−k − b∗t−k)

′
∣

∣

∣

+ 1√
n

∑n
t=k+1

∣

∣

∣(b̂∗t − b∗t )b
∗′
t−k

∣

∣

∣



 (27)

by the triangle inequality. We will show that each element of this matrix is op (1). Since
the sum over k of the kernel function evaluated at k/`n is o

(

n1/2
)

by [K3], the result holds

if we can show that the remaining sums in the majorant of (27) are both Op

(

n1/2
)

.
Consider the second summation in the majorant of (27). The ijth element is

1√
n

n
∑

t=k+1

∣

∣

∣
e′ib̂

∗
t (b̂

∗
t−k − b∗t−k)

′ej

∣

∣

∣
≤
(

1

n

∑

∣

∣

∣
e′ib̂

∗
t b̂

∗′
t ei

∣

∣

∣

)1/2

×
(

∑

∣

∣

∣e′j(b̂
∗
t − b∗t )(b̂

∗
t − b∗t )

′ej

∣

∣

∣

)1/2
(28)
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using the Cauchy-Schwarz inequality and the non-negativity of k. We may expand the first
summation in the majorant of (28) (up to premultiplication by e′i and postmultiplication
by ei) as

1

n

∑

b̂tb̂
′
t +

1

n

∑

D̂z∗t z
∗′
t D̂

′ +
1

n

∑

b̂tz
∗′
t D̂

′ +
1

n

∑

D̂z∗t b̂
′
t (29)

using (12). The stochastic boundedness of 1
n

∑

b̂tb̂
′
t follows by the same reasoning as that

employed by Park (1992, Lemma 4.3), since (wt) and (4qt) are stationary, and (v̂t) and
(ût) consistently estimate stationary series (vt) and (ut) by way of (11) and the rates of
convergence of ψ̂ − ψ, etc. already established under our assumptions. The second term
of (29) is Op (1) as a direct result of Lemma A.2[b] and the consistency of the estimator
D̂. The third and fourth terms of (29) are slightly more complicated. They involve sums
of both outer products of (wt) and (4qt) with (z∗t ), and of (v̂t) and (ût) with (z∗t ). The
former sums are Op (n) by Lemma A.2[c], posing no problem. The latter sums are

∑

vtz
∗′
t +

(α− α̂)′
∑

wtz
∗′
t + (ψ′C − ψ̂′Ĉ)

∑

xtz
∗′
t and

∑

utz
∗′
t + (µ− µ̂)

∑

z∗′t + (Γ − Γ̂)
∑

qtz
∗′
t , which are

Op (n) by [A5], Lemma A.2[a], [c], and [f], Theorem 3.1, and Lemmas 3.2 and 3.3. The last
two terms of (29) are therefore Op (1).

An expansion of the second summation in the majorant of (28) (up to premultiplication
by e′j and postmultiplication by ej) yields

∑

(b̂t − bt)(b̂t − bt) + (D̂ −D)
∑

z∗t z
∗′
t (D̂ −D)′ (30)

+
∑

(b̂t − bt)z
∗′
t (D̂ −D)′ + (D̂ −D)

∑

z∗t (b̂t − bt)
′,

the first term of which is Op (1) – again, as a straightforward extension of the proof in
Park’s proof (1992, Lemma 4.3). The summation

∑

z∗t z
∗′
t is Op (n), by Lemma A.2[b].

Elements of the matrix (D̂ − D) are either identically 0 or Op (1/n) by construction and

superconsistency of ψ̂ and Ĉ. Consequently, the second term of (30) is also Op (1). Turning

to the third and fourth terms of (30), the vector (b̂t − bt) contains zeros for observable
series (wt) and (4qt). For the subseries (v̂t) and (ût) of estimates, we must contend with
summations (α − α̂)′

∑

wtz
∗′
t (D̂ − D)′ + (ψ′C − ψ̂′Ĉ)

∑

xtz
∗′
t (D̂ − D) and (µ − µ̂)

∑

z∗′t (D̂ −
D)′ + (Γ − Γ̂)

∑

qtz
∗′
t (D̂ −D)′, which are both Op (1) under our assumptions. Again, since

elements of the matrix (D̂ −D) are either identically 0 or Op (1/n), the third term of (30)
is Op (1). Consequently, the second summation in the majorant of (28) is Op (1), so that
the entire majorant is Op (1).

Finally, we must show that the third summation in the majorant of (27) is stochastically
bounded. This follows in exactly the same way as the second summation, except that i and
j are exchanged in the majorant of (28). This completes the proof for ∆̂b∗b∗ . �

Proof of Theorem 5.1 The estimator may be written as (ψ̂CCR−ψ) = (C
∑

x∗∗t x
∗∗′
t C ′)−1

(C
∑

x∗∗t w
′
t(α− α̂)+C

∑

x∗∗t v
∗∗
t )+ op (1) since Ĉ →p C. Now, since (α− α̂) = op (1), Lemma

A.4[b] implies that
∑

x∗∗t w
′
t (α− α̂) = op (n). The resulting distribution follows directly from

Lemma A.4[a] and [c]. �
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Proof of Proposition 6.1 The proof proceeds by verifying the conditions for Lemma
A.2 in addition to [NED1] and [NED4’].
Verification of Lemma A.2[a] First, note that we may write

1

n

∑

z∗t =
1

m+ 1

m+1
∑

j=1

(

1 − j

m+ 1

)

1

l

l
∑

p=1

uτp−1 +
1

(m+ 1)2

m+1
∑

j=1

j
1

l

l
∑

p=1

uτp (31)

− 1

m+ 1

m+1
∑

j=1

1

l

l
∑

p=1

uτp−1+j −
1

m+ 1
Γ

m+1
∑

j=1

j
∑

i=1

1

l

l
∑

p=1

4qτp−1+i

+
1

(m+ 1)2
Γ

m+1
∑

j=1

j

m+1
∑

i=1

1

l

l
∑

p=1

4qτp−1+i

since z∗t = 0 for t = τp with p = 1, . . . , l and n/l = m+1. We can apply an LLN to the final
summation in each of these terms. The second summations in each of the first two terms
of (31) obey LLN’s (with mean zero), so that both terms are simply op (1)m/2 (m+ 1) =
op (1). Even though uτp−1+j in the third term of (31) depends on j, an LLN similarly applies
to the second summation in this term. Again, the whole term is op (1) since m < ∞. The
fourth and fifth terms of (31) would be trickier to deal with if m were increasing with the
sample size. Since that is not the case, we may again apply an LLN to the last summations
in each term to see that both terms are O (m) op (1) = op (1).
Verification of Lemma A.2[b] We must show that the probability limit of 1

n
∑

z∗t z
∗′
t is

finite and independent of t. An expansion of this matrix using (19) reveals 25 terms: 5
symmetric matrices, 10 cross-products, and 10 transposes. We examine in detail only the
most complicated of these 25, which is the cross product of the last two terms of (19). The
transpose of this cross-product has the same asymptotics, and the remaining 23 terms may
be analyzed along similar lines. Summing across t, dividing by n, and using (19) and the
fact that n/l = m+ 1, this representative term is

1

(m+ 1)2

m
∑

j=1

j

j
∑

k=1

m+1
∑

i=1

1

l

l
∑

p=1

4qτp−1+k4q′τp−1+i →p
1

(m+ 1)2

m
∑

j=1

j

j
∑

k=1

m+1
∑

i=1

Σqq (k − i)

which does not depend on time (only on m) due to the stationarity of (4qt) and the
summation over the index j. It remains to show that this term is finite.

1

(m+ 1)2

m
∑

j=1

j

j
∑

k=1

m+1
∑

i=1

|Σqq (k − i)| ≤ 1

m+ 1

m
∑

j=1

j2Σqq =
1

6
m (2m+ 1) Σqq = O

(

m2
)

which is finite by construction. The remaining 23 terms of the expansion of 1
n
∑

z∗t z
∗′
t reveal

similar asymptotics.
Verification of Lemma A.2[c] The proof parallels that of part [b] and is therefore omitted.
Verification of Lemma A.2[d] Set s = l/n in Lemma A.6[d] to obtain the stated result.
Verification of Lemma A.2[e] The proof parallels that of part [d], due to the contempo-
raneous and serial uncorrelatedness of (wt) with (ut) and (qt), and is therefore omitted.
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Verification of Lemma A.2[f ] The sample moment 1
n
∑

qtz
∗′
t whose distribution we must

verify may be expanded as

− 1

n

∑

qtu
′
t +

1

n

m+1
∑

j=1

l
∑

p=1

qτp−1+ju
′
τp−1

− 1

n

m+1
∑

j=1

m+1
∑

i=1

l
∑

p=1

4qτp−1+j+iu
′
τp

+ op (1) (32)

+
1

n

m+1
∑

j=1

(

j

m+ 1
− 1

)m+1
∑

i=1

l
∑

p=1

qτp−1+j4q′τp−1+iΓ
′ +

1

n

m+1
∑

j=1

m+1
∑

i=j+1

l
∑

p=1

qτp−1+j4q′τp−1+iΓ
′

since
∑l

p=1 qτp−1+ju
′
τp

=
∑l

p=1 qτp+ju
′
τp

−∑l
p=1

∑m+1
i=1 4qτp−1+j+iu

′
τp

and
∑l

p=1 qτp+ju
′
τp

=
∑l

p=1 qτp−1+ju
′
τp−1

− qju
′
0 + qτl+ju

′
τl
. The first term of (32) has a limiting distribution

of
∫

QdU (s)′ + ∆′
uq using standard asymptotic theory. The second term is only slightly

more complicated. The asymptotics are similar, with the primary difference being that the
series (uτp−1) contains m + 1 multiples of l members, with a total of n members. Conse-
quently, it is still on the same clock as (qτp−1+j). The limiting distribution of this term is

n−1/2
∑m+1

j=1

∑[ls]
p=1 u

′
τp−1

→d (m+ 1)1/2 U (0) (s) using Lemma A.6[b]. The limiting distribu-

tion of the second term of (32) is therefore (m+ 1)1/2 ∫ QdU (0) (s)′ + ∆′
uq +

∑j
i=1 Σ′

uq (−i)
along similar lines as the first. The limiting distribution of the third term of (32) is simply

1

m+ 1

m+1
∑

j=1

m+1
∑

i=1

E4qτp−1+j+iu
′
τp

=
1

m+ 1

m+1
∑

j=1

m+1
∑

i=1

Σ′
uq (m+ 1 − (j + i))

using an LLN. The summation over i in the fourth term of (32) may be expanded as

1

n

∑m+1

j=1

(

j

m+ 1
− 1

)

∑

qt4q′tΓ′ (33)

+
1

n

∑m+1

j=1

(

j

m+ 1
− 1

)

∑l

p=1

∑j−1

i=1

∑j

k=i+1
4qτp−1+k4q′τp−1+iΓ

′

− 1

n

∑m+1

j=1

(

j

m+ 1
− 1

)

∑l

p=1

∑m+1

i=j+1

∑i

k=j+1
4qτp−1+k4q′τp−1+iΓ

′

The limiting distribution of the first term of (33) −(m/2)(
∫

QdQ (s)′ + ∆′
qq)Γ

′follows from
standard asymptotic theory. The limits of the third and fourth terms are clearly

m+1
∑

j=1

(

j

m+ 1
− 1

)





j−1
∑

i=1

j
∑

k=i+1

Σ′
qq (i− k) +

m+1
∑

i=j+1

i
∑

k=j+1

Σ′
qq (i− k)



Γ′

using an LLN. The fifth term of (32) has more complicated indices. The limit may be
deduced by focusing on the summation with l summands, since this is the only one with
infinite summands in the limit. The difficulty lies in the fact that the sequence (qτp−1+j) may
have up to n – not l – members. Hence (qτp−1+j) and (4qτp−1+i) reside in a finer partition
of the state space. In order to use standard asymptotics to obtain the limit, we may rewrite
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these as stochastic processes with the same time clock as the summation. Specifically, we
may rewrite

1

l

l
∑

p=1

qτp−1+j4q′τp−1+i =
l
∑

p=1

(

m+1
∑

k=1

Q
(k)
l

(

p− l

l

)

+

j
∑

k=1

4qτp−1+k

l1/2

)

(

Q
(i)
l

(p

l

)

−Q
(i)
l

(

p− l

l

))′
.

Note that

l
∑

p=1

m+1
∑

k=1

Q
(k)
l

(

p− l

l

)(

Q
(i)
l

(p

l

)

−Q
(i)
l

(

p− l

l

))

→d (m+ 1)1/2
∫

QdQ(i) (s)′+
m+1
∑

k=1

∆(k−i)′
qq

by standard limit theory and Lemma A.6[c], where ∆
(k−i)
qq ≡ ∑∞

r=1 Σqq (r (m+ 1) + k − i)

comes from the covariance of increments of Q
(k)
l and Q

(i)
l . Thus,

1

n

m+1
∑

j=1

m+1
∑

i=j+1

l
∑

p=1

qτp−1+j4q′τp−1+iΓ
′ →d (m+ 1)−1/2

m+1
∑

j=1

m+1
∑

i=j+1

(

∫

QdQ(i) (s)′ +
m+1
∑

k=1

∆(k−i)′
qq

)

Γ′.

Moreover,

1

n

m+1
∑

j=1

m+1
∑

i=j+1

l
∑

p=1

m̄
∑

k=1

4qτp−1+k4q′τp−1+iΓ
′ →p

1

m+ 1

m+1
∑

j=1

m+1
∑

i=j+1

j
∑

k=1

Σqq (k − i) Γ′

using an LLN, since the increments are stationary and mixing by [A1]. Collecting terms
provides a distribution of

∫

QdZ∗ (s)′ + ∆q∗ with Z∗ (s) defined as in Lemma A.6 and ∆q∗
defined implicitly by the remaining (nonstochastic) limits, which are not time-dependent,
even though they generally depend on the length m of each missing interval.
Verification of [NED1] Since (ut) and (4qt) are stationary, they have Wold represen-
tations, which we generically denote by

∑∞
l=0 ϕlεt−l + ct, where (εt) is a generic sequence

of white noise, (ct) is a generic predictable sequence, and (ϕk) is a generic sequence of
absolutely summable coefficients. Similarly to Davidson (1994, Example 17.3), we have

∥

∥

∥
uτp−1+j − E

(

uτp−1+j|Fτp−1+j+K
τp−1+j−K

)∥

∥

∥

2
=

∥

∥

∥

∥

∥

∞
∑

k=K+1

ϕk

(

ετp−1+j−k − E
(

ετp−1+j−k|Fτp−1+j+K
τp−1+j−K

))

∥

∥

∥

∥

∥

2

≤ sup
s≤τp−1+j

‖εs‖2

∞
∑

k=K+1

|ϕk|

since the difference is zero for k ≤ K. Analogously, for (uτp−1) and (uτp), we have

∥

∥

∥
uτp−1 − E

(

uτp−1 |F
τp−1+j+K
τp−1+j−K

)∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∞
∑

k=K+1−j

ϕk

(

ετp−1−k − E
(

ετp−1−k|Fτp−1+j+K
τp−1+j−K

))

∥

∥

∥

∥

∥

∥

2

≤ sup
s≤τp−1

‖εs‖2

∞
∑

k=K+1−(m+1)

|ϕk|
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since the difference is zero for k ≤ K − j and since j ≤ m+ 1, and

∥

∥

∥uτp − E
(

uτp |F
τp−1+j+K
τp−1+j−K

)∥

∥

∥

2
=

∥

∥

∥

∥

∥

∥

∞
∑

k=K+1−j+(m+1)

ϕk

(

ετp−k − E
(

ετp−k|Fτp−1+j+K
τp−1+j−K

))

∥

∥

∥

∥

∥

∥

2

≤ sup
s≤τp

‖εs‖2

∞
∑

k=K+1

|ϕk|

since the difference is zero for k ≤ K − j + (m+ 1) and again since j ≤ m + 1. Clearly,
sups≤t ‖εs‖2 < ∞ for any t by the covariance stationarity of (ut), and the summations of
coefficient above are finite and go to zero as K increases. Multiplying any of these terms
by j/ (m+ 1) does not fundamentally alter these results, since j/ (m+ 1) ≤ 1. Note that
the summability of (ϕk) implies near-epoch dependence of size −∞ (which is also size −1).
Consequently, [NED1] is verified for the terms of (19) involving (ut).

Similarly, since the series (4qt) is stationary, we may write the norm of the difference
between this term and its conditional expectation as

∥

∥

∥

∥

∥

∥

∞
∑

k=(K+1)−j+i

ϕk

(

ετp−1+i−k − E
(

ετp−1+i−k|Fτp−1+j+K
τp−1+j−K

))

∥

∥

∥

∥

∥

∥

2

≤ sup
s≤τp−1+i

‖εs‖2

∞
∑

k=(K+1)−(m+1)

|ϕi|

since the difference is zero for k ≤ K − j + i and since j − i ≤ m + 1. Since the terms
involving (4qt) are simply linear combinations of (4qτp−1+i), and since the properties of
NED processes are preserved under such transformations, these terms are also NED, which
means the entire messy-data noise given by (19) is NED with the required properties.
Verification of [NED4’] The Minkowski inequality allows

sup
p≤l,j≤m

∥

∥

∥z∗τp−1+j

∥

∥

∥

2a/(a−1)
≤ sup

p≤l,j≤m

∥

∥uτp−1+j

∥

∥

2a/(a−1)
+ sup

p≤l

∥

∥uτp−1

∥

∥

2a/(a−1)

+ sup
p≤l

∥

∥uτp

∥

∥

2a/(a−1)

+ 2Γ (m+ 1) sup
p≤l,j≤m

∥

∥4qτp−1+j

∥

∥

2a/(a−1)

since j ≤ m+ 1. The stated result immediately follows from [A1]. �
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