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Abstract

We consider nonlinear transformations of random walks driven by thick-tailed
innovations that may have infinite means or variances. These three nonstandard
characteristics: nonlinearity, nonstationarity, and thick tails interact to generate
a spectrum of asymptotic autocorrelation patterns consistent with long-memory
processes. Such autocorrelations may decay very slowly as the number of lags
increases or may not decay at all and remain constant at all lags. Depending
upon the type of transformation considered and how the model error is speci-
fied, the autocorrelation functions are given by random constants, deterministic
functions that decay slowly at hyperbolic rates, or mixtures of the two. Such
patterns, along with other sample characteristics of the transformed time series,
such as jumps in the sample path, excessive volatility, and leptokurtosis, suggest
the possibility that these three ingredients are involved in the data generating
processes of many actual economic and financial time series data. In addition
to time series characteristics, we explore nonlinear regression asymptotics when
the regressor is observable and an alternative regression technique when it is
unobservable. To illustrate, we examine two empirical applications: wholesale
electricity price spikes driven by capacity shortfalls and exchange rates governed
by a target zone.
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1. Introduction

With the improvement of data-collection technology and the availability of high-frequency
data, sample sizes of time series have grown tremendously. As more data become available
and at higher frequencies, it becomes increasingly difficult to ignore nonstandard time se-
ries characteristics displayed in the sample paths of these data. For example, if the spatial
distance between two observations does not decrease as the temporal distance decreases,
it becomes more evident that the sample path contains a discontinuity. For this reason,
time series models in economics and finance have featured Poisson jump processes, dis-
crete switching components, or thick-tailed distributions – all of which may replicated such
behavior. Such innovations have followed widespread interest in models featuring nonlin-
earity and/or nonstationarity, since the fields of econometrics and statistics have strained
for decades to move beyond the stationary linear paradigm characterized by simple ARMA
modeling approaches.

The aim of this paper is to tie these approaches together in a very simple and intuitive
way. Perhaps the most interesting aspect of the classes of models that we introduce is
that they may generate diverse patterns of persistency in memory. A random walk of
course generates long memory, in the sense that the asymptotic autocorrelation function
never decays as the number of lags increase. The autocorrelations of a thick-tailed random
walk behave in a qualitatively similar manner. Thus, combining nonstationarity and thick
tails creates persistency in memory in the expected way. Similarly, one can expect that
the autocorrelations of a (strongly) stationary thick-tailed series will behave much like
those of a (weakly) stationary series, and decay quickly. If we instead consider nonlinear
transformations of random walks with increments having finite variances (a special case of
the model classes we analyze), the autocorrelations become more interesting. Such models
may generate time series with long memory, depending on the type of nonlinear function
used, but may otherwise possess characteristics consistent with stationary processes. If we
combine all three of these ingredients – nonlinearity, nonstationarity, and thick tails – we get
models that generate an even wider spectrum of long-memory patterns. Such models may
generate time series with additional nonstandard characteristics, such as unusually large,
small, or random magnitudes of sample variance, skewness, kurtosis. Moreover, explicitly
incorporating thick tails in our model classes allows for excessive outliers and jump behavior.

The theory underlying our model depends crucially on the type of transformation func-
tions involved. We consider separately two types of functions for the underlying transfor-
mations: I-regular and H-regular. These are the functions classes introduced by Park and
Phillips (1999, 2001) in their studies on nonlinear transformations of integrated time series.
We formalize the concept of thick tails below by reviewing some fundamental properties
of the α-stable distribution, which plays an integral part in our models. For brevity, we
refer to the class of models employing I-regular functions of α-stable random walks as ITS

models and those that similarly utilize H-regular functions as AHTS models. ITS models
generate time series that have characteristics similar to those of stationary long-memory
processes. More precisely, the transformed processes have asymptotic autocorrelations that
decay at hyperbolic rates with the exact rate depending upon the thickness of the tails of
the innovations driving the underlying random walks. Such rates are consistent with frac-
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tionally integrated I(d) processes with memory parameter d such that 0 < d ≤ 1/4. When
model error is present, ITS models may also generate such autocorrelation patterns but
with additional or multiplicative stochastic noise, or they may generate autocorrelations
that are indistinguishable from pure Gaussian noise at all lags. In contrast, AHTS models
generate time series that have asymptotic autocorrelation functions that are constant and
do not decay beyond the first lag.

We also study the asymptotic properties of the sample variance, skewness, and kurtosis
of ITS and AHTS models. Such sample statistics are spurious in the sense that they
do not approximate the population counterparts of any distribution in a nonstationary
and nonergodic model. However, they still carry meaningful information that allows one
to distinguish between conventional stationary or integrated series and those with ITS or
AHTS data generating processes (DGP’s). This will become clear as our exposition unfolds.

The remainder of the paper is structured as follows. In Section 2, we describe the
general model and discuss some of the unusual aspects of α-stable distributions and time
series built upon them. We discuss in more detail the function classes that define ITS and
AHTS models and present our main theoretical findings in Section 3. In Section 4, we
extend the theory developed by Park and Phillips (2001) for nonlinear least squares (NLS)
estimation of nonlinear regressions with integrated processes to our models with thick-tailed
innovations, and we suggest an alternative estimation technique when (xt) is unobservable.
Finally, in Section 5, we apply our techniques to wholesale electricity prices and target zone
exchange rates. Two appendices contain useful lemmas, their proofs, and proofs of the main
theoretical results.

Throughout the paper, we suppress the indices of all summations indexed by t = 1, . . . , n
for notational ease.

2. Model and Preliminaries

Let (xt) be a time series generated by

xt = xt−1 + vt, (1)

where (vt) is a sequence of random variables, the densities of which have thick tails, as we
specify more concretely below. Let the time series of interest (yt) be generated by

yt = F (xt) + εt, (2)

where (εt) is assumed to be a martingale difference sequence (an MDS) with respect to a
filtration (Ft) to which (xt+1) is adapted, with E |εt|k < ∞ for some k ≥ 8, and F is a
nonlinear function on R.

We assume that (vt) and (εt) are independent, or equivalently that (xt) is a strictly
exogenous series. This assumption may be relaxed for many of our results but is especially
convenient for regression asymptotics. We further assume that the second, third, and fourth
conditional moments of (εt) are nonstochastic, and accordingly define the notation

σ2
ε ≡ E[ε2

t |Ft−1], τ3
ε ≡ E[ε3

t |Ft−1], and κ4
ε ≡ E[ε4

t |Ft−1]
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for those moments. Let

ε2,t ≡ ε2
t − σ2

ε , ε3,t ≡ ε3
t − τ3

ε , and ε4,t ≡ ε4
t − κ4

ε

and note that (ε2,t), (ε3,t), and (ε4,t) are also MDS’s with respect to the same filtration. All
MDS’s introduced subsequently are defined with respect to this filtration, unless otherwise
noted. As such, we may employ central limit theorems (CLT’s) and laws on large num-
bers (LLN’s) of Hall and Heyde (1980), for example, to ascertain the limiting behavior of
normalized partial sums of these sequences. We refer to such limit theory without further
reference.

We consider two plausible alternative modeling assumptions:

σ2
ε > 0 or σ2

ε = 0,

where the former amounts to including modeling error and the latter amounts to omitting it.
As such, the time series of interest may be observable only with noise or directly observable.
In either case,

E[yt|Ft−1] = F (xt),

if this conditional mean is well-defined – which may not be the case if the tails of the
innovations are too thick. In words, the time series of interest has a conditional mean given
by some function of an integrated series driven by thick-tailed innovations.

Thick-Tailed Innovations: α-Stable Distribution

To solidify the idea of thick tails, we require some technical assumptions about (vt). We
assume that the elements of (vt) are independent and identically distributed (iid) and have
regularly varying tail probabilities – i.e.,

P{|vt| > x} = x−αℓ(x) (3)

with α > 0 and where ℓ is a slowly varying function at infinity. Moreover, we assume that
the tail balancing condition

P{vt > x}
P{|vt| > x} → p, or

P{vt < −x}
P{|vt| > x} → q (4)

holds as x → ∞, for 0 ≤ p, q ≤ 1 and p + q = 1. The conditions in (3) and (4) are essential
for our subsequent theoretical developments, but the iid assumption may be relaxed at the
cost of more involved exposition.

As we show below, the standardized sum of (vt) satisfying the conditions introduced
in (3) and (4) converges to what is known as an α-stable distribution or simply stable

distribution. Formally, a random variable v is said to have a stable distribution Sα(σ, β, µ),
for 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, and µ real, if it has a characteristic function ϕ(s) given
by

log ϕ(s) = iµs − σα|s|α (1 − iβ̟(s, α)) ,
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where

̟(s, α) ≡
{

sgn(s) tan(πα/2), α 6= 1
−(2/π)sgn(s) log |s|, α = 1

and sgn(s) is the sign function taking values −1, 0, and 1 respectively for s < 0, s = 0, and
s > 0. See Samorodnitsky and Taqqu (1994, pg. 5) for the characteristic function of the
stable distribution given above.2 The parameters µ, σ and β are called the shift, scale, and
skewness parameters, respectively. The densities of stable distributions are not known in
closed form with a few exceptions, notably Gaussian (α = 2), Cauchy (α = 1 and β = 0),
and Lévy (α = 1/2 and β = 1). For 0 < α < 2, v has an infinite (or undefined) variance,
and for 0 < α ≤ 1, it has an infinite (or undefined) mean, as well.

Central Limit Theory

Partial sums of iid sequences of α-stable random variables require normalization and
centering that are different from that employed by standard central limit theory. Let 0 <
α < 2, and define numerical sequences (an) and (bn) by

bn ≡ Evt1{|vt| ≤ an}

with
nP{|vt| > anx} → x−α

as n → ∞. It follows that

a−1
n

∑

(vt − bn) →d Sα(σ, β, 0), (5)

where

σα ≡
{

Γ(1 − α) cos(πα/2), α 6= 1
π/2, α = 1

and β = 2p − 1. [See Feller (1971, Theorem 3, pg. 580), e.g.3]
It is well-known that we may set

an = n1/αℓ(n), (6)

where ℓ is slowly varying at infinity. Moreover, we may let

bn =







0, 0 < α < 1
E
(

sin
(

a−1
n vt

))

, α = 1
E (vt) , 1 < α < 2

.

Note that if α = 1 and vt has a symmetric distribution, then bn = 0 for all n. If condition
(3) holds for large x > 0 with ℓ(x) = c for some constant c > 0, then

an = c1/αn1/α (7)

2The characteristic function of stable distribution given in Borodin and Ibragimov (1995) is in error, and
has the term 1 + iβ̟(s, α) instead of 1 − iβ̟(s, α) as we have here.

3According to our definition of (an), we have C(2 − α)/α = 1 in his formula. The sign ∓ in the formula
is in error and should be corrected to ±.
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as may easily be verified.
If (5) holds with (6), the law of (vt) belongs to the domain of attraction of a stable

law. If (5) holds with (7), it belongs to the domain of normal attraction of a stable law.
Any stable law itself belongs to the domain of normal attraction of a stable law. If (vt)
is iid Sα(σ, β, µ), (3) indeed holds with ℓ(x) = c, where c > 0 is defined by Brockwell and
Davis (1987, pg. 480). The conditions introduced in (3) and (4) are therefore necessary
and sufficient in order that the underlying distribution of (vt) belongs to the domain of
attraction of a stable law.

When α = 2, the limit theorem in (5) holds under weaker conditions, with bn = E(vt)
for all n. The condition in (3) alone is sufficient to have (5) with (an) specified in (6), as
shown in Ibragimov and Linnik (1971, Theorem 2.6.2, pg. 79), e.g. Moreover, Ibragimov
and Linnik (1971, Theorem 2.6.6, pg. 92) also showed that (5) holds with (an) in (7) and
with α = 2, if and only if the elements of (vt) have finite variance. Accordingly, the law of
(vt) belongs to the domain of attraction of a normal law if (5) holds with (6). If (5) holds
with (7), then the law of (vt) belongs to the domain of normal attraction of a normal law.

From now on, we assume that the elements of (vt) are properly centered. For 1 < α ≤
2, centering simply requires demeaning or assuming zero mean. For α = 1, the proper
centering is more involved unless we assume that the underlying distribution is symmetric.
No centering is necessary for 0 < α < 1. The limiting distribution has a shift parameter of
zero – i.e., µ = 0 – if the elements of (vt) are centered. Furthermore, we let the adjustment
for scales be done beforehand so that the normalized sum of (vt) converges in distribution
to a stable distribution with unit scale parameter – i.e., σ = 1. The scale of the limit
distribution only has a trivial effect on our subsequent results, since the rescaling of (vt)
merely amounts to redefining the transformation function F by a constant multiple of its
argument. The skewness parameter β is not restricted to zero, so that a asymmetric limit
distribution of (vt) is allowed. Finally, the normalizing sequence (an) is assumed throughout
this paper to be given by (6) or (7), depending upon whether the common distribution of
(vt) belongs the domain of attraction or normal attraction of a stable law.

Invariance Principle and Local Time

The central limit theorem in (5) is not sufficient to establish limit theory for our model.
In order to effectively deal with nonstationarity, we need an invariance principle. We con-
struct a stochastic process Vn on [0, 1], defined by

Vn(r) ≡ a−1
n

∑[nr]

t=1
vt,

where [x] denotes the largest integer not exceeding x, and invoke the invariance principle
in Borodin and Ibragimov (1995, pg. 12, hereafter referred to as BI), e.g., so that

Vn →d V, (8)

where V is a standard α-stable Lévy motion on [0, 1]. That is, V0 = 0 a.s., V has independent
increments, and Vt − Vs has a Sα

(

(t − s)1/α, β, 0
)

distribution for any 0 ≤ s < t and for
some 0 < α ≤ 2 and −1 ≤ β ≤ 1. [See also Samorodnitsky and Taqqu (1994, pg. 113) for
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more details.] The processes Vn and V take values in D[0, 1], the space of cadlag functions
defined on [0, 1], and in (8) we have weak convergence of probability measures in D[0, 1].
Unlike a Brownian motion, a Lévy motion may have discontinuities in its sample path.

The nonlinearity in our models requires some additional tools. Let the sojourn time of
V in the subset A of R up to time t > 0 be given by

m(t, A) = λ{s ∈ [0, t]|V (s) ∈ A},

where λ is the usual Lebesgue measure on R. Then the local time L of V is defined by the
Radon-Nikodym derivative of the sojourn time m with respect to λ – i.e.,

L(t, x) =
dm

dλ
(t, x).

Roughly speaking, the local time L characterizes the portion of time the process V spends
at x up to time t. As shown in BI (Theorem I.4.1, pg. 18),4 standard Lévy motions with
α > 1 have local times that are continuous with respect to both parameters. The local time
does not exist if 0 < α ≤ 1.

Serial Correlation of the Innovations

We may consider a more general process (xt) driven by serially correlated rather than
iid innovations. In particular, we may set xt = xt−1 + ut, where

ut ≡
∑∞

k=0
ckvt−k with

∑∞

k=0
|ck|δ < ∞

for some δ ∈ (0, α) ∩ [0, 1]. Under the summability condition, (ut) is well-defined a.s., and
if the underlying distribution of (vt) belongs to the domain of normal attraction and (3)
holds with ℓ(x) = c, then

xαP{|ut| > x} → c
(

∑∞

k=0
|ck|α

)

as x → ∞. Therefore, condition (3) holds also for (ut). Clearly, condition (4) can easily
be satisfied with p = q = 1/2 if we assume that the underlying distribution of (vt) – and
consequently that of (ut) – is symmetric. [See Brockwell and Davis (1987, Remarks 1 and
2, pg. 481), e.g.]

All of our subsequent results hold – at least qualitatively – for (xt) generated by the
more general linear process (ut). Some apply without modification. Others just need
somewhat obvious modifications and some additional theoretical developments using the
Beveridge-Nelson decomposition studied in Phillips and Solo (1992). As this generalization
does not add new insight to our results, we assume that (xt) is generated by (1) without
the additional complication of serial correlation.

Function Classes

The time series properties of (yt) critically depend on the function F in (2). We consider
two classes of functions: I-regular and H-regular, defined as follows.

4We add the chapter number in Roman numerals to references to theorems of BI, since their enumeration
is not unique.
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Definition 2.1 (I-regular Functions). A transformation F in the class of I-regular func-
tions, is locally Riemann-integrable and satisfies

|F (x)| < c/ (1 + |x|p)

for some constants c > 0 and p > 1.

Definition 2.2 (H-Regular Functions). A transformation F in the class of H-regular
functions satisfies F (λx) = ν (λ) H (x) + R (x, λ) for large λ, where H is locally Riemann-
integrable and R is such that

(a) |R (x, λ)| ≤ a (λ) P (x), where lim supλ→∞ a(λ)/ν(λ) = 0 and P is locally Riemann-
integrable, or

(b) |R (x, λ)| ≤ b (λ) Q (λx), where lim supλ→∞ b(λ)/ν(λ) < ∞ and Q is locally Riemann-
integrable and Q (x) → 0 as x → ∞.

The asymptotic order (AO) of an H-regular function is ν (λ), and H (x) is the limit ho-

mogeneous function (LHF). Intuitively, an H-regular function exhibits an asymptotically
dominant component that is homogeneous. We assume throughout this analysis that the
LHF of any H-regular function is in fact homogeneous.5

For I-regular F , we refer to (1) and (2) with (3) and (4) as an ITS model, where ITS
denotes “integrable transformation of a stable process.” A time series (yt) generated in
such a way is an ITS process. A similarly defined model and time series with H-regular F
are similarly referred to as an AHTS model and an AHTS process, where AHTS signifies
“asymptotically homogeneous transformation of a stable process.”

H-regular functions are closely related to functions that are regular at infinity.

Definition 2.3 (Regular-at-infinity Functions). A transformation F in the class of regular-
at-infinity functions satisfies

lim
x→∞

F (x)

xκℓ(x)
= c1 and lim

x→−∞

F (x)

|x|κℓ(x)
= c2 (9)

for some number κ > −1, where c1 and c2 are constants such that |c1| + |c2| > 0, and ℓ is
slowly varying at infinity, in the sense that

lim
λ→∞

ℓκ(λx)/ℓκ(λ) = 1 (10)

for any x > 0.

A useful result allows us to tie in general results derived in the mathematics literature for
regular-at-infinity functions with the more specific H-regular functions introduced to the
econometrics literature by Park and Phillips (1999, 2001).

5This is not absolutely necessary, but substantially simplifies our subsequent theory.



8

Lemma 2.1 Let F be an H-regular function with LHF H satisfying

H(x) = |x|κH(sgn(x)) (11)

for some κ > −1. Then F is regular at infinity.

Note that the converse is not true, since regular-at-infinity functions are a broader class of
functions than H-regular functions.

Any bounded function with compact support provides an example of an I-regular func-
tion. Most probability density functions (PDF’s) belong to this class, as long as they are
bounded and decay faster than |x|−1 as |x| → ∞. Scaled and horizontally shifted variations
of such PDF’s are also I-regular. We may intuitively interpret such a transformation as
returning a strong signal when the value of the underlying random walk is near the mode
(or modes) of some PDF-like function. For example, in the empirical section of our analysis,
we use an I-regular transformation to model the relationship between wholesale electricity
prices and the excess capacity. Under our specification, we expect to observe a sudden in-
crease in the price whenever system generation nears capacity, followed by a sharp decrease
as either more capacity is brought online or as peak demand diminishes.

The most commonly employed functions that fall within the class of H-regular functions
are homogeneous, polynomial (especially linear with an intercept), and logarithmic. A
perhaps more interesting sub-class of asymptotically homogeneous functions are smooth
transition functions, which resemble rescaled and shifted cumulative distribution functions
(CDF’s). Any CDF is H-regular with ν (λ) = 1 and H (x) = 1 {x ≥ 0}, and smooth
transition functions have the same AO with an LHF given by some affine transformation
of an indicator function. For example, if the exogenous signal in a feedforward artificial
neural network with one hidden layer follows a random walk, then the model is an AHTS
model. Consider a target zone exchange rate model, in which policy actions force the
observed exchange rate to stay within a fixed band around the target rate. If the underlying
fundamental follows a random walk, then the exchange rate may be generated by an AHTS
model. We use a family of logistic functions that are parametrized appropriately to model
this relationship in the empirical section of our analysis.

3. Time Series Properties of ITS and AHTS Models

Armed with the tools outlined above, we now turn to the main theoretical analysis of the
paper. Specifically, we explore limiting distributions of the sample autocorrelation function,
variance, skewness, and kurtosis. Each of these statistics are defined in terms of deviations
from the sample mean. As a result, these statistics are asymptotically invariant with respect
to a shift by a constant, and ITS and AHTS processes may be characterized by their sample
moments only up to a constant term. A transformation comprised of a constant plus an I-
regular function is in fact H-regular, but has the same asymptotics as an I-regular function.
Our subsequent results for ITS processes therefore also apply to I-regular functions shifted
by arbitrary constants, and those for AHTS processes are valid for H-regular functions with
nonconstant LHF’s.
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3.1. Asymptotics for ITS Models

Our subsequent asymptotic results rely on the following assumption.

Assumption 3.1 Let the time series (yt) be generated by (1) and (2) with I-regular F ,
and let (vt) belong to the domain of attraction of a stable law of order 1 < α ≤ 2 with
characteristic function ϕ satisfying ϕ(s) 6= 1 for all s 6= 0.

We restrict the order of the limiting stable law of (vt) to 1 < α ≤ 2, because the asymptotics
for ITS models may be greatly simplified when the local time of the limit stable process V
exists, which it does not when α is unity or smaller. The technical condition imposed on
the characteristic function of (vt) merely excludes the possibility of a lattice distribution
with support included in the set of integral multiples of some real number, which is not
overly restrictive.

The autocorrelation function is the key to unlock the persistency of a time series. Let
the sample autocorrelation be

Rnk ≡
1

n−k

∑n
t=k+1 (yt − ȳn) (yt−k − ȳn)

1
n

∑

(yt − ȳn)2
,

where k is any nonnegative integer and ȳn ≡ n−1∑yt. Further, let D denote the common
underlying PDF of (vt) with respect to the measure µ on R, and let Dk denote the PDF of
a−1

k (v1 + · · ·+ vk) with respect to the same measure. Clearly, we have Dk = D, if (vt) is an
α-stable process.

Theorem 3.1 (Asymptotics for Rnk – ITS ). Let Assumption 3.1 hold and define

Nk ≡
∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + aky)Dk(y) dx µ(dy)

for k ≥ 1.

(a) Let σ2
ε = 0. We have

Rnk →p Nk

/
∫ ∞

−∞
F 2 (x) dx

as n → ∞.

(b) Let σ2
ε > 0. We have

Rnk = n−1/2Zk + a−1
n

[

L(1, 0)/σ2
ε

]

Nk + op(a
−1
n ) (12)

for large n, where (Zk) is a sequence of independent standard normal random variates
that are independent of L(1, 0).
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The asymptotic autocorrelation structure of (yt) is most clearly ascertained when the time
series of interest is observed without noise – i.e., when σ2

ε = 0. In this case, the asymptotic
autocorrelation function may be expressed (up to constant) by Nk, which we investigate
further in the corollary below.

When observation error is present, the asymptotic autocorrelation structure of (yt) may
not seem so straightforward. However, it follows readily from our result (12) in Theorem
3.1 that the sample autocorrelation function is given by Nk also in this case, possibly with
some random noise. Note that the leading term n−1/2Zk in the asymptotic expansion of
Rnk is pure random noise as a function of k. The autocorrelation structure of (yt) in large
samples is thus given by the second-order term a−1

n [L(1, 0)/σ2
ε ]Nk, which is nothing but a

(random) scalar multiple of Nk. Furthermore, we may well expect that

ERnk = a−1
n

[

EL(1, 0)/σ2
ε

]

Nk + o(a−1
n )

under appropriate regularity conditions, which implies that the averaged asymptotic cor-
relation function may be expressed (up to constant) by Nk, exactly as in the case of no
observation error.

As can be easily seen, we have

a−1
n = o(n−1/2)

in general. Consequently, the random noise term asymptotically dominates the term pro-
portional to Nk in (12). The actual sample autocorrelation structure may therefore appear
to be quite different from Nk even in large samples. The dominance, however, becomes
weaker as α gets close to 2. Indeed, if we have α = 2 with ℓ(n) → c 6= 0, then the two terms
become equally important asymptotically.

If the elements of (vt) have an identical stable distribution and Dk = D for all k, it
follows directly from dominated convergence that

Nk → 0

as k → ∞, since ak → ∞ and F is bounded and integrable. The asymptotic autocorrelation
of an ITS process thus decreases to zero or to noise. The following corollary extends this
result to (vt) in the domain of attraction of a stable law and only asymptotically stable,
and it gives the explicit rate of decay for Rk. We let (ϕk) be the characteristic function of
a−1

k (v1 + · · · + vk). It is well-known that if (vt) belongs to the domain of attraction of a
stable law, then ϕk(s) → ϕ(s) pointwise for all s ∈ R, where ϕ is the characteristic function
of the limiting stable distribution.

Corollary 3.2 (Rate of Decay of Rk – ITS ). Let Assumption 3.1 hold and assume that
the elements of (ϕk) are absolutely integrable, ϕk → ϕ in L1, and D is continuous at the
origin. Then we have

akNk → D(0)

(
∫ ∞

−∞
F (x) dx

)2

as k → ∞.
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The rate of decay of the asymptotic sample autocorrelation function of an ITS process is
therefore a−1

k , which is approximately hyperbolic for large k. If the members of (vt) belong
to the domain of normal attraction of a stable law, then the rate will be exactly hyperbolic.
On the other hand, if they belong only to the domain of attraction of a stable law, then the
rate will also depend on the slowly varying function ℓ(k).

It is well-known that the sample autocorrelations of stationary fractionally integrated
processes have long memory and decay at hyperbolic rates. These rates are k2d−1 where
d ∈ (0, 1/2) is defined as the degree of fractional integration or the memory parameter.
Recalling that a−1

k = k−1/α/ℓ(k) with α ∈ [1, 2), the rates of decay of the autocorrelation
of an ITS process and that of an stationary, long-memory I(d) process with d ∈ (0, 1/4] are
clearly quite similar. It would be easy to mistake an ITS process for a more well-known
stationary I(d) process, on these grounds. Such a misspecification would ignore valuable
structural information about the time series.

Next, we examine the sample variance, skewness, and kurtosis of an ITS process. We
define the observed sample variance, skewness, and kurtosis of a time series (yt) as

S2
n ≡ 1

n

∑

(yt − ȳn)2 , Q3
n ≡

1
n

∑

(yt − ȳn)3

(S2
n)3/2

, and K4
n ≡

1
n

∑

(yt − ȳn)4

(S2
n)2

,

respectively. Sample moments calculated from nonstationary and nonergodic time series are
spurious in the sense that they do not approximate the true moments of some underlying
distribution, as they would for an iid or (to a lesser extent) stationary series. However,
they convey information about the time series and may also provide additional clues to
help distinguish an ITS DGP from an alternative one.

If (yt) were in fact a stationary series with an underlying symmetric distribution with
existing fourth moment, the skewness of that distribution would naturally converge to zero.
The variance and kurtosis would converge to some finite number, depending on the rate at
which the tails of the innovations decay, roughly speaking. In contrast, the limits of these
statistics when (yt) is an ITS process are as follows.

Theorem 3.3 (Asymptotics for S2
n, Q3

n, K4
n – ITS ). Let Assumption 3.1 hold.

(a) Let σ2
ε = 0. We have

anS2
n →d L (1, 0)

∫ ∞

−∞
F 2 (x) dx,

a−1/2
n Q3

n →d

∫∞
−∞ F 3 (x) dx

√

L (1, 0)
(

∫∞
−∞ F 2 (x) dx

)3/2
, and a−1

n K4
n →d

∫∞
−∞ F 4 (x) dx

L (1, 0)
(

∫∞
−∞ F 2 (x) dx

)2

as n → ∞.

(b) Let σ2
ε > 0 and τε 6= 0. We have

S2
n →p σ2

ε , Q3
n →p τ3

ε /σ3
ε , and K4

n →p κ4
ε/σ

4
ε

as n → ∞.
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(c) Let σ2
ε > 0 and τε = 0.

i. If 1 < α < 2 or α = 2 and ℓ(n) → ∞, we have

n1/2Q3
n →d N

(

0,
Eε6

t

σ6
ε

− 6κ4
ε

σ4
ε

+ 9

)

as n → ∞.

ii. If α = 2 and ℓ(n) → c, we have

anQ3
n →d

L (1, 0)

σ3
ε

∫ ∞

−∞
F 3 (x) dx + cN

(

0,
Eε6

t

σ6
ε

− 6κ4
ε

σ4
ε

+ 9

)

as n → ∞.

ITS processes observed with asymmetric noise have observed sample statistics that are
observationally equivalent to those of stationary processes. The nonlinear term or terms of
both ITS processes and stationary processes collapse to zero at a faster rate than the error
terms. Consequently, if the true DGP of a given process is an ITS model with error, it would
be quite easy to confuse it with a stationary process based on these statistics. Again, such
a mistake would omit valuable structural information about the DGP that would otherwise
enable more accurate inference.

The skewness provides a new dimension of information if the modelling error is in fact
symmetric. Such symmetry mutes this noise, which in some cases allows a clearer reception
of the underlying signal. However, since this underlying signal – involving the local time
– is also random, and since the sequence (an) is very close to (n1/2) in this case, this
difference may not offer much practical value. In small samples, these ITS processes may
be indistinguishable from stationary processes, based on the latter three sample statistics.

3.2. Asymptotics for AHTS Models

AHTS models are perhaps more important than their I-regular counterpart, because the
literature is replete with examples of H-regular transformations. If the underlying exogenous
variable in such a model is I(1) and the limiting distribution of the innovations are α-stable
(including Gaussian), then our results apply.

We make the following assumption.

Assumption 3.2 Let the time series (yt) be generated by (1) and (2) with H-regular
F (x) with infλ>0 |ν (λ)| > 0 and (vt) belonging to the domain of attraction of a stable law.

Note that we do not impose the extra condition on the distribution of the innovation
sequence (vt) that was required for the asymptotics of ITS models. A lattice distribution
is allowed for (vt) here. Furthermore, the stable parameter for the limit process is allowed
to be 0 < α ≤ 2. The additional assumption merely ensures that the AO is not degenerate.

The following theorem gives the asymptotic result for the sample autocorrelation func-
tion.
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Theorem 3.4 (Asymptotics for Rnk – AHTS ). Let Assumption 3.2 hold, and define

H̄ (V (r)) ≡ H (V (r)) −
∫ 1

0
H (V (r)) dr.

(a) Let σ2
ε = 0. We have

Rnk →p 1 (13)

as n → ∞.

(b) Let σ2
ε > 0.

i. If |ν (λ)| → ∞ as λ → ∞, we have (13) as n → ∞.

ii. If |ν (λ)| → 1 as λ → ∞, we have

Rnk →d

∫ 1
0 H̄2 (V (r)) dr

∫ 1
0 H̄2 (V (r)) dr + σ2

ε

for k ≥ 1 as n → ∞.

Shocks in (yt) do not die out. In most cases, the asymptotic autocorrelation is simply unity
at all lags. If the asymptotic order is constant (at least in the limit), there is a one-time
decrease at k = 1, but no decay thereafter. Such behavior reflects the long-memory of the
underlying random walk. Such a result is obvious for affine functions of random walks. It
is surprising, however, that it holds for any H-regular transformation, as long as the AO is
not decreasing to zero. The persistency in this case is quite extreme, and certainly could
not be confused with any stationary process. On the contrary, these could more easily be
confused with simple random walks.

The remaining statistics provide additional clues.

Theorem 3.5 (Asymptotics for S2
n, Q3

n, K4
n – AHTS ). Let Assumption 3.2 hold, and

define

H̄ (V (r)) ≡ H (V (r)) −
∫ 1

0
H (V (r)) dr.

(a) Let σ2
ε = 0. We have

[

ν2 (an)
]−1

S2
n →d

∫ 1
0 H̄2 (V (r)) dr

Q3
n →d

(

∫ 1
0 H̄2 (V (r)) dr

)−3/2
∫ 1
0 H̄3 (V (r)) dr

K4
n →d

(

∫ 1
0 H̄2 (V (r)) dr

)−2
∫ 1
0 H̄4 (V (r)) dr

(14)

as n → ∞.

(b) Let σ2
ε > 0.
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i. If |ν (λ)| → ∞ as λ → ∞, we have (14) as n → ∞.

ii. If |ν (λ)| → 1 as λ → ∞, we have

[

ν2 (an)
]−1

S2
n →d

∫ 1
0 H̄2 (V (r)) dr + σ2

ε

Q3
n →d

(

∫ 1
0 H̄2 (V (r)) dr + σ2

ε

)−3/2 (
∫ 1
0 H̄3 (V (r)) dr + τ3

ε

)

K4
n →d

(

∫ 1
0 H̄2 (V (r)) dr + σ2

ε

)−2 (
∫ 1
0 H̄4 (V (r)) dr + 6σ2

ε

∫ 1
0 H̄2 (V (r)) dr + κ4

ε

)

as n → ∞.

The implications of the theorem are clear. The observed sample variance of a series gen-
erated by an AHTS model diverges at the rate of ν2 (an), which depends not only on the
stable parameter α but also on the asymptotic order ν of the transformation. Note that
[

ν2 (an)
]−1 ≈ 1 for large n when |ν (λ)| → 1. Dependence on the transformation is of course

a vital characteristic not shared with conventional long-memory approaches. If an observed
time series has an autocorrelation function like a random walk, but a sample variance that
explodes too fast or not fast enough for a random walk, then it could instead be an AHTS
process. Both the skewness and kurtosis are random, neither converging to zero nor explod-
ing in the limit. Their limiting distributions depend explicitly on the LHF of the H-regular
function driving the process.

4. Regressions with ITS and AHTS Models

Having established some distinguishing characteristics of time series driven by nonlinear
transformations of stable random walks, we now turn to estimation of the function F in
(2). Throughout this section, we assume that σ2

ε > 0 and parameterize (2) by

yt = F (xt, θ) + εt, (15)

where F is known up to an unknown parameter vector θ with true value θ0. We also assume
in this section that (εt) and (vt) are mutually independent. We first look at the simple case
in which the series (xt) is directly observable. In this case, we show that the parameter
vector θ can be estimated using NLS, with asymptotic distributions that are similar to
those derived in Park and Phillips (2001), but with more general rates of convergence to
allow for the possibility of thick-tailed innovations. We also consider estimation when (xt)
is unobservable. In this case, we observe only (yt). Naturally, this requires additional
assumptions, but we suggest obtaining parameter estimates by way of a nonlinear filter
such as the extended Kalman filter (EKF).

4.1. Observable Explanatory Variable

Denote by θ̂n the usual nonlinear least squares estimator of the parameter vector θ in the
model given by (1) and (15). Specifically,

θ̂n ≡ argmin
θ∈Θ

∑

(yt − F (xt, θ))2 , (16)
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where Θ is the parameter set. For notational convenience, let

Fθ(x, θ) =
∂

∂θ
F (x, θ) and Fθθ(x, θ) =

∂2

∂θ∂θ′
F (x, θ)

denote the vector of first derivatives and matrix of second derivatives with respect to θ.
For ITS models, we must modify Assumption 3.1.

Assumption 4.1 Let the time series (yt) be generated by (1) and (15) with σ2
ε > 0. Let

Assumption 2.2 of Park and Phillips hold, with Lévy motion V replacing Brownian motion
in Assumption 2.2(a), and omitting the bound on the fourth moment of (vt) in Assumption
2.2(d). Additionally, assume that

(a) Elements of (vt) belong to the domain of attraction of a stable law of order 1 < α ≤ 2
with characteristic function ϕ satisfying ϕ(s) 6= 1 for all s 6= 0,

(b) F , Fθ, and Fθθ are I-regular on Θ,

(c)
∫∞
−∞ (F (x, θ) − F (x, θ0))

2 dx > 0 for all θ 6= θ0, and

(d)
∫∞
−∞ Fθ (x, θ0) Fθ (x, θ0)

′ dx > 0.

These are essentially the assumptions for the main results of Park and Phillips (2001) for
I-regular functions, except that elements of (vt) no longer need finite variance. The Lévy
motion generalizes the Brownian motion to allow for discontinuities in the sample path that
may result from the limit of a thick-tailed random walk.

With this modest generalization, the result of their theorem holds with slight modifica-
tion.

Theorem 4.1 (Asymptotics for θ̂n – ITS ). Let Assumption 4.1 hold. The limiting dis-
tribution of (θ̂n − θ0) is given by

a−1/2
n n1/2(θ̂n − θ0) →d σε

(

L (1, 0)

∫ ∞

−∞
Fθ (x, θ0) Fθ (x, θ0)

′ dx

)−1/2

W (1) ,

where W is standard Brownian motion independent of L.

There are two differences between our result and that of Park and Phillips (2001). The
limiting distribution is defined in terms of a Lévy local time, rather than a Brownian
local time. This local time still exists, as long as α > 1. More importantly, the rate of
convergence to this distribution is different. Recalling that an = n1/αℓ(n), we obtain their
rate of convergence n1/4 as a special case when α = 2 and ℓ(n) → c. If instead α = 2 and
ℓ(n) → ∞, the NLS estimator converges to this distribution at a slightly slower rate. If
1 < α < 2, the rate of convergence slows down quite dramatically. In the extreme case of
α ≈ 1, the estimator is almost inconsistent. It cannot be inconsistent, however, because
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α > 1 and ℓ(n) is a slowly-varying function. Even if ℓ(n) → ∞, this is extremely slow and
does not offset the remaining n1/2−1/2α.6

To examine the NLS estimator of AHTS models, we replace Assumption 3.2 with the
following.

Assumption 4.2 Let the time series (yt) be generated by (1) and (15) with σ2
ε > 0. Let

Assumption 2.1 of Park and Phillips hold, with Lévy motion V replacing Brownian motion
in Assumption 2.1(a). Additionally, assume that

(a) Elements of (vt) belong to the domain of attraction of a stable law,

(b) F , Fθ, and Fθθ are H-regular on Θ, with infλ>0 |ν (λ)| > 0 and ν not a function of θ,

(c)
∫

|x|≤δ (H (x, θ) − H (x, θ0))
2 dx > 0 for all θ 6= θ0 and δ > 0,

(d)
∫

|x|≤δ Hθ (x, θ0)Hθ (x, θ0)
′ dx > 0 for all δ > 0, and

(e)
∥

∥

∥
(νθνθ)

−1 ννθθ

∥

∥

∥
< ∞.

These assumptions again mirror those of Park and Phillips (2001) with obvious modifica-
tions. They allow the following result.

Theorem 4.2 (Asymptotics for θ̂n – AHTS ). Let Assumption 4.2 hold. The limiting
distribution of (θ̂n − θ0) is given by

n1/2νθ (an)′ (θ̂n − θ0) →d σε

(
∫ 1

0
Hθ (V, θ0) Hθ (V, θ0)

′ dr

)−1 ∫ 1

0
Hθ (V, θ0) dW (r) ,

where νθ and Hθ denote respectively the AO and LHF of vector valued Fθ, and W is
standard Brownian motion independent of V .

Consistency is obtained at a potentially very fast rate, depending on α and ν.
As a result of the preceding two theorems, the asymptotics of θ̂n are mixed normal in both

cases. Standard errors, t-tests, etc. generated by a standard regression package are therefore
asymptotically valid, making inference convenient for both ITS and AHTS models. Recall
that (xt) is assumed to be strictly exogenous. This is not crucial for the mixed normality
of the ITS asymptotics. The same asymptotics hold as long as (xt) is (Ft−1)-measurable
and a joint invariance principle for (εt) and (vt) holds. However, the mixed normality for
the AHTS asymptotics holds only when the two limit stochastic processes V and W are
independent, which requires the strict exogeneity of (xt).

6See the proof of Theorem 3.1 for a more detailed explanation.
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4.2. Unobservable Explanatory Variable

When the sequence of explanatory variables (xt) is unobservable, estimation is not as
straightforward. To motivate the discussion, let (vt) and (εt) be Gaussian iid sequences. A
traditional method for dealing with linear models in which an exogenous variable is unob-
servable but assumed to follow an autoregressive process with such innovations is to use the
Kalman filter (KF) fed into a maximum likelihood (ML) routine. This technique assumes
values for the model parameters, then creates series of E(xt|Ft) and var(xt|Ft) for each
t, based on some initial values at time t = 0 and iterating linear projections. Once these
series are created, ML is used to estimate θ. The series of conditional expectations of (xt)
generated by these estimates are then smoothed in order to take into account information
through the end of the sample. It is well-known that the KF yields consistent and asymp-
totically normal estimates even in the absence of Gaussianity, as long as the underlying
models are stationary and the innovations have finite second moments.

Since we are dealing with a nonlinear function F , the KF will not work. To find an
alternative to the traditional KF, we turn to the engineering literature. The KF and its
variants are widely used in this literature for such applications as tracking satellites and
spacecraft entering Earth’s orbit. A common work-around is the extended Kalman filter
(EKF), as described in Jazwinski (1970). The EKF is intuitively appealing, since it ap-
proximates F (xt) by expanding around E(xt|Ft−1), which is “known” at time t− 1 (albeit
unobservable), using a first-order Taylor series expansion.

Implementation of the EKF

We summarize the discrete-time EKF below. Our EKF has a measurement equation
given by (15) and a transition equation of (1). For convenience of exposition, we use the
conventional notation ·t|t−1 to denote E( ·t |Ft−1). We also let Fx be the partial derivative of
F with respect to x, i.e., Fx(x, θ) ≡ (∂/∂x)F (x, θ). Using this notation, we expand F (xt, θ)
around xt|t−1 to get

F (xt, θ) ≈ F
(

xt|t−1, θ
)

+ Fx

(

xt|t−1, θ
) (

xt − xt|t−1

)

. (17)

This allows us to write
yt ≈ µF (θ) + Fx

(

xt|t−1, θ
)

xt + εt,

where µF (θ) is defined as

µF (θ) ≡ F
(

xt|t−1, θ
)

− Fx

(

xt|t−1, θ
)

xt|t−1,

which is constant at time t. Using this linear approximation, the EKF works exactly like
the linear KF. Defining

ωt|· ≡ var(xt − xt|t−1 | F ·) and σt|· ≡ var(yt − yt|t−1 | F·)

as conditional variances, we replace the usual linear prediction equations of the Kalman
filter with

xt|t−1 = xt−1|t−1 and yt|t−1 = F
(

xt|t−1, θ
)
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for conditional means and

ωt|t−1 = ωt−1|t−1 + σ2
v and σt|t−1 = ωt|t−1Fx

(

xt|t−1, θ
)2

+ σ2
ε

for conditional variances, where σ2
v is the variance of (vt). The updating equations become

xt|t = xt|t−1 +
ωt|t−1

σt|t−1
Fx

(

xt|t−1, θ
) (

yt − yt|t−1

)

and

ωt|t = ωt|t−1 −
ω2

t|t−1

σt|t−1
Fx

(

xt|t−1, θ
)2

,

similarly. By iteratively creating these series, we may estimate the parameters using ML,
and thus obtain optimal series (xt|t) and (ωt|t). The final step consists of smoothing (xt|t)
by taking into account information through the end of the sample. This starts at the end
of the sample and proceeds back to the beginning of the sample with

xt|n = xt|t +
ωt|t

ωt+1|t

(

xt+1|n − xt+1|t

)

.

See Hamilton (1994) or Kim and Nelson (1999) for a more detailed description of the KF
and Jazwinski (1970) or Zarchan and Musoff (2000) for the EKF.

Nonstationarity and Thick Tails

The EKF provides a viable alternative in the presence of nonlinearity, but our models
have two other nonstandard features: nonstationarity and thick tails. The rigorous devel-
opment of the statistical theory of the EKF for models having these features is well beyond
the scope of this paper. We can provide only intuition and conjectures on why we believe
the method should yield sensible results for such models.

Chang, Miller, and Park (2006) recently developed rigorous theory for the (linear) KF
with integrated (xt). As the (nonlinear) EKF is based on linear approximation, it may
provide a reasonable method to analyze nonlinear and nonstationary models, just as it does
for nonlinear and stationary models. Note that the expansion in (17) yields a relatively
better linear approximation for nonstationary models, since in this case xt − E(xt|Ft−1)
(which is approximated by xt−xt|t−1 in the nonlinear filter) is stationary and of a stochastic
order smaller than that of (xt). For stationary models, these series have the same order of
magnitude.

Obviously, the presence of thick tails in the innovations may affect the validity of the
EKF in a more fundamental manner. If 0 < α ≤ 1 in our model, the mean of (vt) is not
well-defined, and taking conditional expectations of (xt) becomes meaningless. We must
therefore assume α > 1. As long as this holds, the estimates (xt|t) and (xt|n) can be mean-
ingfully defined. When 1 < α < 2, however, the variance of (vt) is still infinite and the
EKF cannot be interpreted as iterated projections. In this case, we view the EKF merely as
minimizing the sums of squared errors involved in estimating the conditional expectations
of (xt). Of course, both of σ2

v and ωt|· are not properly defined, so we interpret them as
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pseudo-variance and conditional pseudo-variance of (vt). We estimate the stable, skewness,
and scale parameters of the empirical distribution of the innovation after the conditional ex-
pectations of the unobserved series are extracted using the EKF. This two-step methodology
might be improved by incorporating the stable distribution directly into the log-likelihood
function of the EKF procedure and estimating the parameters of the distribution directly.
However, such a one-step procedure would be very difficult to implement, since the stable
distribution does not have a closed form solution, except in special cases.

Applying the EKF to our model yields an estimate of the parameter vector θ, as well as
extracting conditional expectations of the unobserved (xt). The standard errors computed
by the EKF are, however, incorrect for our nonstandard models. The limiting distributions
of the parameter estimates from the EKF are not known in this situation, but they are likely
to be non-Gaussian and involve nuisance parameters. Therefore, we perform simulations to
obtain the asymptotic distributions and confidence intervals for the parameter estimates in
our empirical analysis involving the EKF. For the simulations, we set the innovations (vt) to
be the stable random variates with the stability, skewness, and scale parameters estimated
from the data, which are generated independently of the measurement equation errors (εt)
drawn from the normal distribution with zero mean and the estimated variance. Note that
the bootstrap is not a reasonable alternative here, since it generally becomes inconsistent
in the presence of thick tails [see, e.g., Hall (1990)].7

5. Empirical Applications

We examine two empirical applications of our theoretical models. In the first application,
we propose a simple ITS model to capture observed price “spikes” on wholesale electricity
markets, using excess capacity. Both series are observable, and NLS is used to estimate
the unknown parameters of the ITS model. In contrast, the second application features an
AHTS model with an unobservable exogenous series. We formulate an AHTS model loosely
based on the work of Krugman (1991) to extract the unobservable fundamental driving an
exchange rate governed by a target zone exchange rate regime.

5.1. Electricity Price Spikes

Wholesale electricity markets in many parts of the U.S. and around the world are character-
ized by price “spikes” that occur during peak periods of demand when suppliers fall short
of generation capacity, and the price dramatically (but temporarily) increases. Demand
is extremely inelastic in such markets, as prices in downstream retail markets tend to be
heavily regulated. Policymakers’ long-standing goals of equitable and reliable distribution
of power necessitate allowing generating units to price above marginal cost, in order to
induce marginal units to produce during peak periods. The price may increase significantly
in order for these marginal units to cover their fixed costs over the short period of time
in which they are necessary to maintain supply at the quantity demanded. This allows

7The difficulty in bootstrapping thick-tailed distributions can be overcome by using the subsample boot-
strap, where the size of a bootstrap resample is an order of magnitude smaller than that of the sample.
However, it was compared unfavorably by Hall and Jing (1998) to the simulation method used here.
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marginal units to exercise considerable market power during peak demand periods, particu-
larly when a negative supply shock occurs. The problem is exacerbated by the supply side,
since electricity is not storable in large amounts, so the traditional price-smoothing role
of inventories is lost. Hence, supply shocks may be more severe than in traditional mar-
kets. Price spikes were highlighted in the California electricity crisis of 2001, when some
companies passed on the price increases to consumers and others filed for bankruptcy.

Serious financial problems and bankruptcy of not only local electricity companies but
also of companies involved in wholesale trading, such as Enron, ensued in the aftermath
of the California crisis. As a result, excessive prices and the abuse of market power have
become important issues, both in the academic literature and in the mainstream media.
In this light, many recent analyses in the energy literature have focused on modeling and
forecasting wholesale prices.8

Nonlinear Nonstationary Model

Because of the peculiarities of this market, we believe one of the best predictors of price
should be excess capacity. Let (yt) represent electricity prices and (zt) represent capacity
utilization, measured as quantity divided by total system capacity on any given day. We
consider xt = 1− zt, where (xt) is a series of measures of excess capacity. Assuming for now
that capacity utilization is I(1),9 we postulate a model using (15) with (1). The function
F should have support only over [0, 1), since excess capacity utilization is measured as a
rate, and since the lack of storablility means that negative excess capacity is essentially
impossible. Moreover, F should be bounded to avoid infinite prices. Setting aside the
possibility of thick tails for the moment, an ITS model would be a reasonable candidate for
this application.

Since these price spikes tend to be sudden, sharp, and ephemeral, it makes sense to
model them with an exponential function. Specifically, we parameterize F by

F (x, θ) =

{

̟ exp (−γx) if 0 ≤ x < 1
0 otherwise

where θ = (̟, γ)′ with scale parameter ̟ and slope parameter γ. Setting the error sequence
(εt) aside for the moment, we may interpret ̟ as an empirical bound on the price of
electricity, which is attained when there is no excess capacity available in the system. (The
scale parameter is not a literal bound, unless the error term is strictly non-positive.) The
slope parameter γ indicates how quickly the predicted price increases to ̟. A large γ
(relative to unity) indicates a sharp spike, while a small γ indicates a gradual price increase
with a capacity shortfall. Because participants in the wholesale market respond quickly to
changing market conditions, and because the function should predict very cheap electricity

8See, for example, McMenamin and Monforte (2000), Knittel and Roberts (2001), and Stevenson (2002)
for a wide variety of statistical and structural techniques applied to this market.

9Strictly speaking, (xt) takes values on [0, 1) and therefore cannot be directly specified as a random walk.
It may be more reasonable to model (xt) as a nonlinear mapping of an I(1) process onto the unit interval
– e.g., an H-regular function with unit AO. As our theory suggests, such a process behaves similarly to an
I(1) process.
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Figure 5.1: Electricity prices vs. excess capacity (April 1, 2002 – December 31, 2002).

when the system has vast amounts of excess capacity (near unity), we expect γ to be no
smaller than 2 and more likely greater than 5.

Data and Empirical Results

Our empirical analysis uses maximum daily load divided by daily scheduled capacity and
maximum daily real-time locational marginal price over the period of April 1, 2002 through
December 31, 2002 from the Pennsylvania-Jersey-Maryland power pool (www.pjm.com).
Parameter estimates using NLS are summarized in the following table.

Table 5.1

Parameter Estimate Std. Error

̟ 361.0334 0.4453

γ 9.4278 0.0091

Highly significant parameter estimates support the nonlinear specification. As expected,
we estimate a large γ, driving the sharp spikes evident in the data. Fitted estimates of (yt)
using these parameters are shown in Figure 5.1.

We estimate the stable parameter of the innovations of (xt), and then test this series
for integratedness, with critical value based on that estimate. Specifically, our estimate
is α̂ = 1.5646, using the estimation procedure of McCulloch (1986). The following table
presents ADF test statistics for different lags, with the initial value subtracted from the
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Figure 5.2: Rnk of actual prices and average Rnk of simulated prices.

series.

Table 5.2

Lags ρ-test t-test

4 −44.380 −4.107

8 −31.116 −3.164

12 −9.365 −1.763

16 −14.606 −2.037

20 −5.174 −1.238

Evidently, the decision to reject is highly dependent upon the number of lags considered. As
more lags are included, the hypothesis becomes more difficult to reject. An explanation lies
in the fact that capacity utilization is extremely volatile in the short run, but has a clearly
nonstationary path over a longer period of time. Hence, stationarity cannot be assumed.
Recall that from a theoretical point of view, the pure random walk assumption may be
relaxed in light of our remarks at the end of Section 2. As a result, a series with serially
correlated increments, such as this one, is an ITS process, and all of our asymptotic results
hold.

Finally, we examine the autocorrelation function of (yt). For comparative purposes,
we average Rnk at each k across 50, 000 sets of simulations with a sample size of 1, 000.
We use the parameter estimates above as the “true” values,10 and the sets of simulations
include simulated (εt) with both actual and simulated (xt). Figure 5.3 shows these three

10In order to simulate (vt), we draw pseudo-random numbers from a stable non-Gaussian distribution
(with α, β, and σ set to the respective estimates above) using McCulloch’s simulation procedure, based on
Chambers, et al. (1976).
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autocorrelations functions, compared to 0.4k−1/α̂, an example of hyperbolic decay using the
estimated value of the stable parameter α. The striking similarity of the rates of decay lends
credence to our asymptotic results and to our choice of ITS model for electricity prices.

In order to assess the degree of persistency in the sample autocorrelations, we estimate
the memory parameter d using the technique introduced by Geweke and Porter-Hudak
(1983) and two refinements by Andrews and Guggenberger (2003). Using GPH and one
of the refinements, we obtain 0.14, while the second refinement estimates d to be 0.25. A
memory parameter of 0.14 is consistent with a stationary fractionally integrated series with
autocorrelations having a rate of decay of k−0.72, which is very close to the rate k−0.64

suggested by our model and estimate of α. If only d is estimated, it would be tempting to
rely on the a conventional long memory model, which would ignore the richer specification
of an ITS model.

5.2. Target Zone Exchange Rate Model

According to the 2006 Annual Report of the IMF, there are 67 countries with monetary
policy that de facto target an exchange rate (or a composite of exchange rates). Seven of
these have currency board arrangements, while the remaining 60 follow some sort of target
zone policy including three categories. The majority (49) follow a conventional fixed peg
policy, which allows deviations of up to ±1% from a central parity (target rate). Another
six countries follow a policy (such as the ERM II) that allows fluctuations in excess of
±1%. The remaining five follow a crawling peg. Although exchange rate targeting policies
are perhaps not as popular as they once were, such policies are still integral to a large
number of countries.11 Under the European Monetary System (EMS) of the 1980’s and
1990’s, exchange rates between participating EU countries were allowed to fluctuate within
a fixed band around a central parity, which for most participating currencies was ±2.25%
until 1990. During this period, the target rate was sometimes realigned by policymakers to
reflect underlying changes in the fundamentals of the EU economies.

Nonlinear Nonstationary Model

The most widely known of the target zone models was developed by Krugman (1991).
The Krugman model postulates that under such a regime, the series of log exchange rates
(yt) may be modeled using a nonlinear function of the log of an economic fundamental
(xt). Krugman (1991) derives an “S”-shaped function that maps this fundamental onto the
realized exchange rate. The transformation is a result of not only policy intervention, but
perhaps even more importantly of rational expectations about policy intervention. These
expectations bend the function at the edge of the band to create the “S” shape. Stronger
expectations of policy intervention correspond to a less steep function – i.e., more deviation
from the 45-degree diagonal that maps the fundamental onto the exchange rate under a free
floating exchange rate system.

The fundamental (xt) is generally treated as a regulated Brownian motion in the lit-
erature, with some authors adding a drift term. See, e.g., Svensson (1990) and de Jong

11To put this into perspective, there are 79 countries that have managed or free floats (more flexible) and
another 41 countries – e.g., in the euro area – that have no individual legal tender (less flexible).
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(1994). Alternatively, we may let (xt) follow a random walk (as the discrete-time analog of
a Brownian motion), as long as the “S”-shaped function is appropriately modified to allow
an unbounded fundamental. A random walk may be a more appropriate assumption with
a nonlinear filter, since most filters assume an autoregressive state equation with no regu-
lation. Since there seems to be widespread empirical evidence that free-floating exchange
rates may be appropriately modeled using an I(1) process, and since such exchange rates
are linear functions of the fundamental, this seems reasonable. The discrete shifts in the
domestic money supply that regulate the fundamental in Krugman’s model may be ap-
proximated by the discontinuous sample paths that are allowed by thick-tailed innovations.
Moreover, Dufour and Kurz-Kim (2003) provide evidence that free-floating exchange rates
may follow thick-tailed random walks to begin with.

The function derived by Krugman (1991) relies on a bounded fundamental and is there-
fore inappropriate when (xt) is allowed to be integrated. We instead use a smooth transition
function, which keeps the spirit of the “S” shape, while allowing (xt) to be unbounded.
Specifically, we let

F (x, θ) = µ − h/2 + h

(

1 + exp

(

µ − x

γ

))−1

, (18)

where µ is the shift parameter, γ is the slope parameter, and h is the bandwidth within
which the exchange rate is allowed to fluctuate. It is easy to verify that our target zone
model is an AHTS model with an AO of unity and an LHF given by

H (x, θ) = µ − h/2 + h × 1 (x ≥ 0) ,

which is homogeneous of degree zero for any positive transformation.

Data and Empirical Results

We use the log of daily interbank DEM/FRF exchange rates from January 12, 1987
through December 31, 1989 from OANDA (www.oanda.com). This was the longest period
in which the band was ±2.25% with no realignments of the target, and provides a sample
size of 1, 085. Figure 5.3 illustrates the sample autocorrelation function of (yt). As predicted
by our theoretical results for an AHTS model with unit AO and nondegenerate modeling
error, we see an initial steep drop after k = 0. Contrary to our results, the decay continues
beyond k = 1. Our estimates of d range from 0.5 to 0.6, suggesting that the memory of
(yt) is more persistent than that of a stationary fractionally-integrated process, but not
as persistent as that of an I(1) process. Clearly, (yt) has long memory, but an evident
small-sample bias (stemming from second-order terms involving k) causes some decay, as
we discuss further below.

Using the EKF, we first estimate θ = (µ, h, γ)′, σ2
ε , and σ2

v – the pseudo-variance of (vt)
– and then estimate the stable parameters using the estimation procedure of McCulloch
(1986). This first estimation is somewhat complicated by the nonlinear nature of both
the model and the EKF. Since x1|0 and ω1|0 are unknown, and since restricting (xt) to be
I(1) may be controversial, we first estimate an unrestricted model with x1|0, ω1|0, and the
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Figure 5.3: Rnk of actual exchange rate and average Rnk of simulated exchange rates.

autoregressive parameter ρ of (xt) as additional unrestricted parameters. We restrict these
later. In the unrestricted model, we restrict only h, γ, and the variances to be positive,
so that the model is feasible. We find that ρ and x1|0 are estimated to be close to 1
and y0, respectively, so we fix these in the restricted model. In a neighborhood of the
unrestricted estimates, there appears to be a trade-off between h and ω1|0. Fixing ω1|0

solves this identification problem, and we find that setting ω1|0 = 0.2 yields estimates of
h that translate into the announced bandwidth of ±2.25. It is also difficult to uniquely
identify σ2

v and γ with the EKF. The trade-off in this case is between a more volatile
estimated fundamental (both σ2

v and γ large) and a less volatile fundamental (both σ2
v and

γ small). Although the unrestricted model appears to generate a reasonable estimate γ̂ of
γ, subsequent simulations reveal an excessive confidence interval for γ̂. In order to better
identify γ, we restrict the pseudo-variance of (vt) to be no smaller than the pseudo-variance
of (yt − yt−1) and no larger than three times that pseudo-variance. Larger pseudo-variances
can generate unrealistically volatile simulated fundamentals, implying nearly continuous
monetary interventions to keep the exchange rate within the target zone. Smaller pseudo-
variances would imply that the target zone policy actually pushes the exchange rate away

from its target.
For notational convenience, we denote the parameter vectors estimated in the unre-

stricted and restricted models by τu and τ r, where

τ r ≡
(

σ2
ε , σ

2
v , θ

′
)′

and τu ≡
(

τ r′, ρ, x1|0, ω1|0

)′
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The table below summarizes the nonlinear transformations employed to enforce the above
restrictions.

Table 5.3

Parameter Unrestricted Restricted

σ2
ε = exp τu

1 exp τ r
1

σ2
v = exp τu

2 exp (−10.4206 + 1.0983/ (1 + exp(−τ r
2 )))

µ = τu
3 τ r

3

h = exp τu
4 exp τ r

4

γ = exp τu
5 exp τ r

5

x1|0 = τu
7 y0

ω1|0 = τu
8 0.02

ρ = τu
6 1

In order to check for robustness, we calculate a likelihood ratio statistic of 4.0654. If we
maintain the assumption that (εt) is a Gaussian iid sequence independent of (vt) (which is
not Gaussian), it seems reasonable to use a χ2

4 critical value to evaluate the test statistic.
For any reasonable test size, we cannot reject the null that the restricted model is valid, so
all of the parameter estimates and confidence intervals from simulations reported below are
derived from the restricted model.

As discussed above, the standard errors from ML estimation are not meaningful in the
context of thick tails. Instead, we present 95% confidence intervals for our estimates of all
parameters based on 50,000 simulations.12

Table 5.4

Parameter Estimate Confidence Interval

τ r
1 −11.0476 (−11.1412,−10.9435)

τ r
2 0.6240 (−8.8591, 11.5120)

τ r
3 −1.2202 (−1.2296,−1.2094)

τ r
4 −3.1123 (−3.8943,−2.3754)

τ r
5 −2.9010 (−3.7425,−1.5125)

α 1.6122 (0.7533, 2.0000)

β −0.1703 (−1.0000, 1.0000)

σ 0.0018 (0.0001, 0.0018)

All EKF intervals except that for the pseudo-variance of (vt) appear to be reasonably tight.
The fact that this pseudo variance cannot be pinned down easily leads to the inaccurate
intervals for α, β, and σ estimated in the second estimation step.

The shift parameter µ may be interpreted as the target for the transformed exchange
rate. Our estimate suggests a de facto target of

exp(−1.2202) ≈ 0.2952 DEM/FRF,

12Because of the highly nonlinear nature of both the model itself and of the estimation technique, we
omitted simulations where the algorithm failed to converge after 200 iterations.
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Figure 5.4: Original exchange rate with estimated fundamental, target, and bands.

with a de facto band of

±(exp(exp(−3.1123))1/2 − 1) ≈ ±2.2499%,

which is indeed very close to the announced bandwidth of ±2.25. Figure 5.4 illustrates the
log of the exchange rate (yt), the smoothed conditional expectations of the fundamental
(xt|n), the estimated target µ̂, and the estimated band µ̂± ĥ/2. The estimated fundamental
exhibits the expected properties. When the exchange rate approaches one of the bounds, the
unconstrained fundamental strays beyond the bound. This lends credence to the nonlinear
target zone model specification.

A remaining doubt that the DEM/FRF exchange rate might be generated by an AHTS
model is the decay of sample autocorrelation function of (yt) mentioned above. Although
this decay is inconsistent with our large sample theory, simulations of an AHTS model in
the family described by (18) provide insight into small sample performance of the sample
autocorrelation function. Specifically, we average Rnk at each k across 50, 000 simulations
with a sample size of 1, 000, using the parameter estimates above as the “true” values. This
average sample autocovariance function is also illustrated in Figure 5.3, along with that of
(yt). The similarity is striking. There is an obvious decay in the autocorrelations of the
simulated AHTS model from small sample bias. This result suggests that AHTS processes
have shorter memory in small samples than in large sample (but still quite long memory),
and that the memory of (yt) is consistent with such a DGP.

When de Jong (1994) tested the Krugman model, he concluded that it was misspecified,
and the misspecification was specifically blamed on three assumptions: 1) the fundamental
follows a random walk, 2) the random walk has Gaussian innovations, and 3) the model
does not allow for interventions within the band. We relax the latter two assumptions,
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but the first seems reasonable with our modification of Krugman’s function. Our empirical
evidence supports the use of an AHTS model for target zone exchange rates.

6. Concluding Remarks

In the economics and financial literature, there has been an increasing interest in models
that explain observed phenomena such as nonstationarity, persistency in memory, jumps in
sample paths, leptokurtosis, and many others. Conventional models may deal with some of
these characteristics, but not many conventional models are flexible enough to capture more
than a few of these characteristics. We introduce two classes of models, ITS and AHTS
models, that embrace three of these attributes – nonlinearity, nonstationarity, and thick
tails – and demonstrate that this triad may generate many of these and other observed
phenomena. Our particular focus on persistency in memory leads us to conclude that such
models may generate a variety of patterns of decay of asymptotic autocorrelations. Due to
the time series properties of data generated by our models, it would be easy for a researcher
to mistakenly use a more conventional approach – a stationary fractionally integrated model,
e.g. – to make inferences. Doing so would ignore the richer specification that ITS and AHTS
models have to offer.

References

Andrews, D.W.K. and P. Guggenberger (2003). “A Bias-Reduced Log-Periodogram Re-
gression Estimator for the Long-Memory Parameter.” Econometrica, 71, 675-712.

Beran, J. (1994). Statistics for Long-Memory Processes. New York: Chapman & Hall.

Box, G.E.P. and G.M. Jenkins (1970). Time Series Analysis, Forecasting and Control.
San Francisco: Holden Data.

Brockwell, P.J. and R.A. Davis (1987). Time Series: Theory and Methods. New York:
Springer-Verlag.

Borodin, A.N. and I.A. Ibragimov (1995). Limit Theorems for Functionals of Random

Walks. Providence: American Mathematical Society.

Chambers, J.M., C.L. Mallows, and B.W. Stuck (1976). “A Method for Simulating Stable
Random Parameters,” Journal of the American Statistical Association, 71, 340-4.

Chang, Y., J.I. Miller, and J.Y. Park (2006). “Extracting a Common Stochastic Trend:
Theory with Some Applications,” Journal of Econometrics, forthcoming.

Chang, Y. and J.Y. Park (2004). “Endogeneity in Nonlinear Regressions with Integrated
Time Series,” mimeograph, Department of Economics, Rice University.

de Jong, F. (1994). “A Univariate Analysis of EMS Exchange Rates Using a Target Zone
Model,” Journal of Applied Econometrics, 9, 31-45.



29

Dufour, J.-M. and J.R. Kurz-Kim (2003). “Exact Tests and Confidence Sets for the
Tail Coefficient of α-Stable Distributions,” Deutsche Bundesbank Discussion Paper,
16/2003.

Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Vol. II. New
York: John Wiley & Sons.

Geweke, J. and S. Porter-Hudak (1983). “The Estimation and Application of Long Memory
Time Series Models,” Journal of Time Series Analysis, 4, 221-38.

Granger, C.W.J. (1980). “Long Memory Relationships and the Aggregation of Dynamic
Models,” Journal of Econometrics, 14, 227-38.

Granger, C.W.J. and R. Joyeux (1980). “An Introduction to Long-Memory Time Series
Models and Fractional Differencing,” Journal of Time Series Analysis, 1, 15-29.

Hall, P. (1990). “Asymptotic Properties of the Bootstrap for Heavy-tailed Distributions,”
Annals of Probability, 18, 1342-60.

Hall, P. and C.C. Heyde (1980). Martingale Limit Theory and Its Application. New York:
Academic Press.

Hall, P. and B.-Y. Jing (1998). “Comparison of Bootstrap and Asymptotic Approximations
to the Distribution of a Heavy-tailed Mean,” Statistica Sinica, 8, 887-906.

Hamilton, J.D. (1994). Time Series Analysis. Princeton: Princeton University Press.

Ibragimov, I.A. and Yu.V. Linnik (1971). Independent and Stationary Sequences of Ran-

dom Variables. Groningen: Wolters-Noordhof.

Jazwinski, A.H. (1970). Stochastic Processes and Filtering Theory. New York: Academic
Press.

Kim, C.-J. and C.R. Nelson (1999). State-Space Models with Regime Switching. Cam-
bridge: MIT Press.

Knittel, C.R. and M.R. Roberts (2001). “An Empirical Examination of Deregulated Elec-
tricity Prices,” POWER working paper, 87.

Krugman, P.R. (1991). “Target Zones and Exchange Rate Dynamics,” The Quarterly

Journal of Economics, 106, 669-82.

Mark, N.C. (2001). International Macroeconomics and Finance: Theory and Econometric

Methods. Malden, MA: Blackwell Publishers.

McCulloch, J.H. (1986). “Simple Consistent Estimators of Stable Distribution Parame-
ters,” Communications in Statistics: Simulation and Computation, 15, 1109-36.

McCulloch, J.H. (1994), “Numerical Approximation of the Symmetric Stable Distributions
and Densities,” mimeograph, Department of Economics, Ohio State University.



30

McMenamin, J.S. and F.A. Monforte (2000). “Statistical Approaches to Electricity Price
Forecasting,” in Pricing in Competitive Electricity Markets (A. Faruqui and K. Eakin,
eds.). Boston: Kluwer Academic Publishers, 249-63.

Park, J.Y. (2002). “Nonlinear Nonstationary Heteroskedasticity,” Journal of Economet-

rics, 110, 383-415.

Park, J.Y. (2006). “Nonstationary Nonlinearity: An Outlook for New Opportunities,” in
Econometric Theory and Practice: Frontiers of Analysis and Applied Research (A.
Corbae, S.A. Durlauf, and B.E. Hansen, eds.). New York: Cambridge University
Press, 178-211.

Park, J.Y. and P.C.B. Phillips (1999). “Asymptotics for Nonlinear Transformation of
Integrated Time Series,” Econometric Theory, 15, 269-98.

Park, J.Y. and P.C.B. Phillips (2001). “Nonlinear Regressions with Integrated Time Se-
ries,” Econometrica, 69, 117-61.

Phillips, P.C.B. and V. Solo (1992). “Asymptotics for Linear Processes,” The Annals of

Statistics, 20, 971-1001.

Rachev, S.T., and S. Mittnik (2000). Stable Paretian Models in Finance. New York: John
Wiley & Sons.

Samorodnitsky, G. and M.S. Taqqu (1994). Stable Non-Gaussian Random Processes. New
York: Chapman & Hall.

Stevenson, M. (2002). “Filtering and Forecasting Spot Electricity Prices in the Increasingly
Deregulated Australian Electricity Market,” presented at the Tenth Annual Sympo-
sium of The Society for Nonlinear Dynamics and Econometrics, Atlanta.

Svensson, L.E.O. (1991). “The Term Structure of Interest Rate Differentials in a Target
Zone: Theory and Swedish Data,” Journal of Monetary Economics, 28, 87-116.

Zarchan, P. and H. Musoff (2000). Fundamentals of Kalman Filtering: A Practical Ap-

proach. Reston, VA: American Institute of Aeronautics and Astronautics.

Appendix A: Ancillary Lemmas with Proofs

Lemma A1 Let Assumption 3.1 hold, and define

Mn ≡ ann−1
∑

F (xt).

We have
supn≥1 ‖Mn‖2

2 < ∞,

and therefore, in particular, (Mn) is uniformly integrable and stochastically bounded.
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Proof of Lemma A1 Our approach is to show that (Nn) is uniformly integrable, where

Nn ≡ ann−1
∑

G(xt)

for some appropriately chosen integrable function G, and then to show that such a function
may be constructed close enough to F that (Mn) is also uniformly integrable.

Let Gn (x) ≡ ann−1G (anx) and Ĝn(λ) ≡ ann−1Ĝ (λ). Since ann−1 = O (1) (see the
proof of Theorem 3.1), Gn ∈ L1 and the function Ĝn that coincides with its Fourier trans-
form is also well-defined. Specifically,

Gn (x) =
1

2π

∫ ∞

−∞
e−iλxĜn(λ)dλ, (19)

and it follows that

Ĝ (λ) =

∫ ∞

−∞
eiλxG (anx) dx

using the inverse Fourier transform and the above definitions. We may choose G such that
Ĝ has compact support. Since Ĝ has compact support,

Ĝn(λ) vanishes outside of the interval [−can, can] (20)

for some constant c > 0. Now, let

I (G) ≡
∫ ∞

−∞
G(x)dx,

and note that
∫ ∞

−∞
|I (G)|2 /

(

1 + |λ|2
)

dλ < ∞ (21)

by the Cauchy-Schwarz inequality and integrability of G. Using a change of variables, we
have

nĜn (λ) =

∫ ∞

−∞
eiλa−1

n xG (x) dx,

so that

∫ ∞

−∞

∣

∣

∣
nĜn(λ) − I (G)

∣

∣

∣

2

1 + |λ|2 dλ =

∫ ∞

−∞

∣

∣

∣

∫∞
−∞(eiλa−1

n x − 1)G(x)d (x)
∣

∣

∣

2

1 + |λ|2 dλ → 0 (22)

as n → ∞, by dominated convergence, since |G (x)| is bounded.
Now, Nn may be rewritten as

Nn = n

∫ 1

0
Gn (Vn (r)) dr

= n

∫ 1

0

1

2π

∫ ∞

−∞
e−iλVn(r)Ĝn(λ)dλdr

=
1

2π

∫ ∞

−∞
anĜ (λ)

∫ 1

0
e−iλVn(r)drdλ
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using the above definitions, the definition of Vn (r), and (19). The conditions for Theorem
III.2.1 of BI (pg. 85) are satisfied by equations (20), (21), and (22). Following the proof of
Theorem 2.1 of BI (pp. 87-88), it is now straightforward to deduce that

‖Nn‖2
2 ≤ c

(

∫ ∞

−∞

|I (G)|2
1 + |λ|α dλ

)1/2

for some constant c > 0. See Equation (2.14) of BI (pg. 88).
Finally, for any F satisfying our assumptions, it is possible to create a function G as

described above, such that

∫ ∞

−∞
|F (x) − G (x)| dx ≤ ε and |F (x) − G (x)| ≤ ε

for ε > 0. This is shown in the proof of Theorem IV.2.1 of BI (pg. 143). It follows from
the triangle inequality that

|Nn − Mn| ≤ an

∫ 1

0
|G (anVn (r)) − F (anVn (r))| dr

and that

an

∫ 1

0
|G (anVn (r)) − F (anVn (r))| dr = an

∫ ∞

−∞
L (1, x) |G (anx) − F (anx)| dx

= L (1, 0)

∫ ∞

−∞
|G (x) − F (x)| dx

by the occupation time formula (see BI, pg. 19, e.g.), a change of variables, and dominated
convergence. Since L (1, 0) is bounded in L2 (see Lemma I.4.2 of BI, e.g.),

‖Nn − Mn‖2 ≤ cε

for some constant c. Finally, the inverse triangle inequality implies that

|‖Nn‖2 − ‖Mn‖2| ≤ ‖Nn − Mn‖2 ≤ cε

which yields that stated result. �

Lemma A2 (Asymptotics for Some Sample Moments – ITS ). Let Assumption 3.1 hold.
We have

(a) ann−1
∑

F 2 (xt) →d L (1, 0)
∫∞
−∞ F 2 (x) dx

(b) a
1/2
n n−1/2

∑

F (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 2 (x) dx

)

(c) ann−1
∑n

t=k+1 F (xt) F (xt−k) →d L(1, 0)
∫∞
−∞

∫∞
−∞ F (x)F (x + aky)Dk(y) dxµ(dy)

(d) ann−1
∑

F 3 (xt) →d L (1, 0)
∫∞
−∞ F 3 (x) dx
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(e) ann−1
∑

F 4 (xt) →d L (1, 0)
∫∞
−∞ F 4 (x) dx

(f) a
1/2
n n−1/2

∑

F 2 (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 4 (x) dx

)

(g) a
1/2
n n−1/2

∑

F 3 (xt) εt →d MN

(

0, σ2
εL (1, 0)

∫∞
−∞ F 6 (x) dx

)

(h) ann−1
∑

F (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F (x) dx

(i) ann−1
∑

F 2 (xt) ε2
t →d σ2

εL (1, 0)
∫∞
−∞ F 2 (x) dx

(j) ann−1
∑

F (xt) ε3
t →d τ3

ε L (1, 0)
∫∞
−∞ F (x) dx

as n → ∞.

Proof of Lemma A2 (Asymptotics for Some Sample Moments – ITS ). We present four
proofs from which the proofs of the remaining six parts easily follow. For the proof of mean
asymptotics, we need only note that F 2, F 3, F 4 are I-regular. Results in parts (a), (d), and
(e) then follow directly from Theorem IV.2.1 of BI (pg. 143).

The proof of part (b) follows along the similar lines as that of Theorem 6.3 in Park and
Phillips (1999) and Theorem 3.2 of Park and Phillips (2001), except that Vn (r) converges
to a more general Lévy rather than to a Brownian motion, so that we allow different rates of
convergence. We present a sketch of the proof. The reader is referred to Park and Phillips
(1999, 2001) for more details. There exist a Brownian motion U (r) with long-run variance
σ2

ε and an increasing sequence of stopping times (τnj) such that

1√
n

j
∑

t=1

εt =d U
(τnj

n

)

(23)

as n → ∞. [See Park and Phillips (1999, 2001) or Hall and Heyde (1980).] Define the
continuous martingale

Mn(r) = a1/2
n n−1/2

j−1
∑

t=1

F

(

anVn

(

t − 1

n

))

(

U
(τnt

n

)

− U
(τn,t−1

n

))

+ a1/2
n n−1/2F

(

anVn

(

j − 1

n

))

(

U(r) − U
(τn,j−1

n

))

,

where τn,j−1/n < r ≤ τnj/n. Note that

a1/2
n n−1

∑

F (xt) εt =d Mn

(τnn

n

)

,
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and it follows that

[Mn] (1) = ann−1
j−1
∑

t=1

F

(

anVn

(

t − 1

n

))2
(τnt

n
− τn,t−1

n

)

+ ann−1F

(

anVn

(

j − 1

n

))2
(

r − τn,j−1

n

)

= σ2
εan

∫ r

0
F (anVn (s))2 ds (1 + op (1))

→d σ2
εL(r, 0)

∫ ∞

−∞
F 2(x) dx,

uniformly in r ∈ [0, 1]. Due to the independence of U and Vn, Mn becomes asymptotically
independent of V . We thus obtain the stated result in part (b), and the proofs of parts (f)
and (g) clearly follow from along the same lines.

For the proof of part (c), we first let k = 1 and a1 = 1. Write

n
∑

t=2

F (xt)F (xt−1) =
n
∑

t=2

(GF )(xt−1) +
n
∑

t=2

F (xt−1)ut, (24)

where

G(x) ≡
∫ ∞

−∞
F (x + y)D1(y)µ(dy)

and
ut = F (xt) − G(xt−1)

for t ≥ 1. Obviously, G is well-defined for all x ∈ R, since F and D1 are integrable. Note
that

E (F (xt)|Ft−1) =

∫ ∞

−∞
F (x + y)D1(y | x)µ(dy)

where (Ft) is a filtration such that Ft is defined by the σ-field generated by (xs)
t
s=1 for each

t ≥ 1. Since the sequence (vt) is iid, this is equal to G(xt−1). Consequently, (ut,Ft) is an
MDS.

It is easy to see that G is bounded. Therefore, since F is integrable, so is GF . Further-
more, we have

∫ ∞

−∞
(GF )(x) dx =

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D1(y)dxµ(dy)

due to the Fubini’s theorem. It therefore follows from Theorem IV.2.1 of BI (pg. 143) that

ann−1
n
∑

t=2

(GF )(xt−1) →d L(1, 0)

∫ ∞

−∞

∫ ∞

−∞
F (x)F (x + y)D1(y)dxµ(dy). (25)

Now, if we can show

ann−1
n
∑

t=2

F (xt−1)ut = op(1), (26)
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then the stated result follows immediately from (24) and (25).
To establish (26), it is sufficient to show that

E

(

ann−1
n
∑

t=2

F (xt−1)ut

)2

→ 0. (27)

as n → ∞. Using the fact that (F (xt−1)ut,Ft) is an MDS and applying the law of iterated
expectations, we may deduce that the LHS of (27) is equal to

ann−1E

(

ann−1
n
∑

t=2

F 2(xt−1)u
2
t

)

= ann−1E

(

ann−1
n
∑

t=2

F 2(xt−1)E
(

u2
t |Ft−1

)

)

. (28)

Defining

H(x) ≡
∫ ∞

−∞
F 2(x + y)D1(y)µ(dy).

allows
E
(

u2
t |Ft−1

)

= H(xt−1) − G2(xt−1),

since G (xt−1) is Ft−1-measurable. Similarly to G, H is well-defined and bounded.
Finally, we define

Mn ≡ ann−1
n
∑

t=2

F 2(xt−1)E
(

u2
t |Ft−1

)

= ann−1
n
∑

t=2

(HF 2 − G2F 2)(xt−1),

and, again due to Theorem IV.2.1 of BI (pg. 143), we have

Mn →d L(1, 0)

∫ ∞

−∞
(HF 2 − G2F 2)(x)dx,

since HF 2 − G2F 2 is integrable. We may therefore deduce that

EMn → E

[

L(1, 0)

∫ ∞

−∞
(HF 2 − G2F 2)(x)dx

]

,

since (Mn) is uniformly integrable as shown in Lemma A1. Note that
∫ ∞

−∞
(HF 2 − G2F 2)(x)dx

is nonstochastic and finite. Moreover, since the expectation of the local time L(1, 0) is finite
by Lemma I.4.2 of BI, (27) follows from (28), which completes the proof for k = 1.

More generally, let k ≥ 1. Recall that Dk is defined as the PDF of a−1
k (v1 + · · · + vk).

In this case,

G (x) ≡
∫ ∞

−∞
F (x + aky)Dk(y) dy

and boundedness again follows from the integrability of F and Dk. The result thus follows
in the same way as for k = 1.
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The subsequent proof of part (h) extends to part (i) and (j) in an obvious way. Rewrite
the sample moment in part (h) as

∑

F (xt) ε2
t = σ2

ε

∑

F (xt) +
∑

F (xt) ε2,t,

and recall that (ε2,t) is an MDS independent of (vt) with bounded second moment, since we
assume that E |εt|4 < ∞. The limiting distribution of the first term follows from Theorem

IV.2.1 of BI (pg. 143). The second term is Op(a
−1/2
n n1/2) due to part (b) of this lemma, and

is therefore, op(a
−1
n n) since α > 1 (see the proof of Theorem 3.1). The result immediately

follows.
We may easily obtain the joint convergence of (a) – (j). Indeed, the joint mean asymp-

totics of (a), (c), (d), (e), (h), (i) and (j) and the joint covariance asymptotics of (b), (f)
and (g) follow respectively in a straightforward manner from the usual Cramér-Wold device.
Now, we embed the stochastic process U introduced in (23) into an extended probability
space, where the distributionally equivalent copies of Vn and V in (8) (which we continue
to denote by Vn and V respectively to avoid introducing unnecessary additional notations)
are defined and Vn →a.s V . This is clearly possible due to the well-known Skorokhod rep-
resentation and independence of Vn and V from U . The joint convergence to the mean and
covariance asymptotics then follows readily as in Park and Phillips (2001). The reader is
referred to Park and Phillips (2001) for more details. �

Lemma A3 (Asymptotics for Some Sample Moments – AHTS ). Let Assumption 3.2 hold.
We have

(a)
[

nν2 (an)
]−1∑

F 2 (xt) →d

∫ 1
0 H2 (V (r)) dr

(b)
[

n1/2ν (an)
]−1∑

F (xt) εt →d

∫ 1
0 H (V (r)) dU (r)

(c)
[

nν2 (an)
]−1∑n

t=k+1 F (xt)F (xt−k) →d

∫ 1
0 H2 (V (r)) dr

(d)
[

nν3 (an)
]−1∑

F 3 (xt) →d

∫ 1
0 H3 (V (r)) dr

(e)
[

nν4 (an)
]−1∑

F 4 (xt) →d

∫ 1
0 H4 (V (r)) dr

(f)
[

n1/2ν2 (an)
]−1∑

F 2 (xt) εt →d

∫ 1
0 H2 (V (r)) dU (r)

(g)
[

n1/2ν3 (an)
]−1∑

F 3 (xt) εt →d

∫ 1
0 H3 (V (r)) dU (r)

(h) [nν (an)]−1∑F (xt) ε2
t →d σ2

ε

∫ 1
0 H (V (r)) dr

(i)
[

nν2 (an)
]−1∑

F 2 (xt) ε2
t →d σ2

ε

∫ 1
0 H2 (V (r)) dr

(j) [nν (an)]−1∑F (xt) ε3
t →d τ3

ε

∫ 1
0 H (V (r)) dr

jointly as n → ∞.
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Proof of Lemma A3 (Asymptotics for Some Sample Moments – AHTS ).
As with the previous lemma, there are essentially four proofs. For the mean asymptotics,

note that F 2, F 3, and F 4 are H-regular with AO’s ν2, ν3, and ν4 and LHF’s H2, H3, and
H4, respectively. These functions are therefore regular at infinity due to Lemma 2.1, and
the stated results in parts (a), (d), and (e) follow directly from Theorem IV.1.6 of BI (pg.
138).

For the proof of part (b), we may write

[

n1/2ν(an)
]−1∑

F (xt)εt =d

∫ 1

0
H(Vn(r))dU + op(1),

along the same lines as part (b) of the previous lemma. The stated result then follows in
the same way. The proofs of part (f) and (g) are completely analogous.

To prove part (c), it suffices to show that

[

nν2(an)
]−1

n
∑

t=k+1

F (xt)F (xt−k) =
1

n

n
∑

t=k+1

H

(

xt

an

)

H

(

xt−k

an

)

+ op(1)

=
1

n

n
∑

t=k+1

H2

(

xt

an

)

+ op(1)

=

∫ 1

0
H2(Vn(r))dr + op (1) ,

from which the stated result follows immediately. We may easily deduce the first equality
from the asymptotic homogeneity of F . The second equality is somewhat harder to prove.
For a smooth H-regular function, note that

H

(

xt

an

)

= H

(

xt−k

an
+

vt + · · · + vt−k+1

an

)

≈ H

(

xt−k

an

)

for any finite k. This approximation holds without differentiability of the H-regular function.
A rigorous proof of the second equality is essentially identical to the lengthy and tedious
proof of Lemma 3.2 in Chang and Park (2004), and is therefore omitted.

The proofs of parts (h), (i) and (j) are completely analogous to the proofs of the corre-
sponding parts of Lemma A2, with substitutions for the appropriate rates of convergence,
and are therefore omitted. Finally, the joint convergence of (a) – (j) follows as in the proof
of Lemma A2. �

Appendix B: Proofs of the Main Results

Proof of Lemma 2.1 We focus on the case x > 0. The proof for x < 0 is entirely
analogous. If we define

ℓκ(x) ≡ (1/c1)x
−κF (x),

it follows immediately that

lim
x→∞

F (x)

xκℓκ(x)
= c1,
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so it suffices to show that ℓκ is slowly varying at infinity – i.e., that (10) holds – in order to
show that F (x) is regular at infinity – i.e., that (9) holds with some constant c1. However,
(10) readily follows from the asymptotic homogeneity of F and (11), since

F (λx) = ν(λ) (H(x) + o(1)) and F (λ) = ν(λ) (H(1) + o(1))

for large λ > 0, and therefore
ℓκ(λx)

ℓκ(λ)
→ H(x)

xκH(1)
= 1

as λ → ∞. �

Proof of Theorem 3.1 (Asymptotics for Rnk – ITS ). First, let σ2
ε > 0. Expanding the

numerator of ((n − k) /n) Rnk yields

1

n

n
∑

t=k+1

ytyt−k +

(

1 − k

n

)

ȳ2
n − ȳn

(

1

n

n
∑

t=k+1

(yt−k + yt)

)

, (29)

the first term of which is

1

n

n
∑

t=k+1

F (xt)F (xt−k) +
1

n

n
∑

t=k+1

F (xt−k)εt +
1

n

n
∑

t=k+1

F (xt)εt−k +
1

n

n
∑

t=k+1

εtεt−k. (30)

Now, the first term of (30) is Op(a
−1
n ) with a limiting distribution given by Lemma A2(c),

and the second two terms are Op(a
−1/2
n n−1/2) for all k ≥ 0 by Lemma A2(b).13 Note that

1

n

∑

ε2
t →p σ2

ε , and
1√
n

n
∑

t=k+1

εtεt−k →d N
(

0, σ4
ε

)

for k = 0 and all k ≥ 1, respectively, by a law of large numbers and central limit theorem
for the MDS (εt). [See Hall and Heyde (1980), e.g.] Consequently, the asymptotic order of
the final term of (30) is Op(1) for k = 0 and Op(n

−1/2) for k ≥ 1. Note that by Lemma A1
and the assumption that (εt) is an MDS,

ȳn =
1

n

∑

F (xt) +
1

n

∑

εt = Op(a
−1
n ) + Op(n

−1/2), (31)

so that the remaining terms of (29) are

Op(a
−2
n ) + Op(a

−1
n n−1/2) + Op(n

−1) = op(a
−1
n ) + op(a

−1/2
n n−1/2) + op(n

−1/2)

since an → ∞, and thus asymptotically negligible. Letting k = 0 gives the asymptotics for
the denominator of Rnk. Again since an → ∞, the dominant term of (30) is clearly the
final term, so that the denominator of Rnk converges in probability to σ2

ε .

13By construction, the test statistic is unity when k = 0, but we allow k = 0 in the numerator in order to
get the asymptotics for the denominator.
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When k ≥ 1, the final term of (30) is Op(n
−1/2), which still dominates the middle terms.

Note that
n−δ < ℓ(n) < nδ (32)

for any δ > 0 and for all n sufficiently large. This is well-known [see for example Feller
(1971, Lemma 2, pg. 277)]. Together with our assumption that α > 1, (32) implies that

a−1/2
n n−1/2 = n−(1/2α+1/2)ℓ(n)−1/2 = o

(

n−1/αℓ(n)−1
)

= o
(

a−1
n

)

,

so that the first term of (30) also dominates the middle terms. Consequently, and since
(n − k) /n → 1 as n → ∞, (12) is obtained. The limiting distributions of the respective
terms come from Lemma A2(c) and an MDS central limit theorem.

Finally, note that

1√
n

n
∑

t=p+1

εtεt−p and
1√
n

n
∑

t=q+1

εtεt−q

are asymptotically independent for any p, q > 0 such that p 6= q.
Letting σ2

ε = 0 means that all but the first term of (30) drop out. The limiting dis-
tributions of numerator and denominator of Rnk are thus given by Lemma A1(c) and (a),
respectively. �

Proof of Corollary 3.2 (Rate of Decay of Rk – ITS ). Since we assume that the ele-
ments of (ϕk) are absolutely integrable, and since the characteristic function ϕ of a stable
distribution is absolutely integrable, we may write

Dk(x) =
1

2π

∫ ∞

−∞
e−isxϕk(s) ds and D(x) =

1

2π

∫ ∞

−∞
e−isxϕ(s) ds,

due to the Fourier inversion formula. It can be deduced from these equations that

sup
x∈R

|Dk(x) − D(x)| ≤ 1

2π

∫ ∞

−∞
|ϕk(s) − ϕ(s)| ds → 0

as k → ∞, since ϕk → ϕ in L1. The sequence of PDF’s (Dk) thus converges uniformly.
Note that absolute integrability of (ϕk) implies that the distribution of (vt) is absolutely

continuous with respect to the Lebesgue measure, so we use the notation dy in place of µ(dy).
We have

∫ ∞

−∞
F (x + aky)Dk(y) dy = a−1

k

∫ ∞

−∞
F (x + y)Dk(a

−1
k y) dy

due to a change of variables,

a−1
k

∫ ∞

−∞
F (x + y)Dk(a

−1
k y) dy = a−1

k

∫ ∞

−∞
F (x + y)D(a−1

k y) dy + o(a−1
k )

for large k, due to uniform convergence of Dk to D. Finally,

a−1
k

∫ ∞

−∞
F (x + y)D(a−1

k y) dy + o(a−1
k ) = a−1

k D(0)

∫ ∞

−∞
F (x + y) dy + o(a−1

k )

due to dominated convergence and continuity of D at the origin. The stated result imme-
diately follows. �
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Proof of Theorem 3.3 (Asymptotics for S2
n, Q3

n, K4
n – ITS ). The distributions for S2

n

and the denominators of the other two sample statistics follow directly from the asymptotics
of the denominator in Theorem 3.1.

Letting σ2
ε > 0, we now turn to the numerator of Q3

n. This may be rewritten as

1

n

∑

(yt − ȳn)3 =
1

n

∑

y3
t − ȳn

3

n

∑

y2
t + 2ȳ3

n, (33)

and, using (31) and the proof for S2
n, the final term of (33) is strictly dominated by the

second term. The first two terms of (33) may be expanded and grouped as

1

n

∑

F 3 (xt) +
1

n

∑

(

ε3t − 3εt

(

1

n

∑

ε2t + σ2
ε

))

+ τ3
ε (34)

+
3

n

∑

F 2 (xt) (εt − ȳn) +
3

n

∑

F (xt)

(

ε2t −
1

n

∑

ε2t

)

− 6ȳn
1

n

∑

F (xt) εt

where (ε2,t) and (ε3,t) are defined above. The first term of (34) is Op

(

a−1
n

)

with limiting
distribution given by Lemma A2(d). Note that the second term may be rewritten as

1

n

∑

(

ε3t − 3σ2
εεt

)

− 3
1

n

∑

εt
1

n

∑

ε2t. (35)

Since
(

ε3t − 3σ2
εεt

)

, (ε2,t), and (ε3,t) are MDS’s, each summation in (35) is Op

(

n−1/2
)

using

a CLT, and the whole term is therefore Op

(

n−1/2
)

since the second term in (35) is Op

(

n−1
)

by the continuous mapping theorem. Moreover,

lim
n→∞

var
(

n−1/2
∑

(

ε3t − 3σ2
εεt

)

)

= Eε6
t − τ6

ε − 6σ2
εκ

4
ε + 9σ6

ε ,

yields the limiting variance for the CLT applied to the dominant term of (35). The third
term of (34) is O (1). The fourth term of (34) is

Op(a
−1/2
n n−1/2) + Op(a

−1
n )Op

(

max(a−1
n , n−1/2)

)

by Lemma A2(f), by Lemma A2(a) and a CLT, and by Lemma A2(a) and (31), respectively.
The fifth term is

Op((a
−1/2
n n−1/2) + Op(a

−1
n )op

(

n−1/2
)

by an ancillary result in the proof of Lemma A2(h), and by Lemma A1 and a CLT. The
final term of (34) is

Op

(

max(a−1
n , n−1/2)a−1/2

n n−1/2
)

by (31) and Lemma A2(b). It is clear that the last three terms of (34) are op

(

max
(

a−1
n , n−1/2

))

,
so we may focus on the first three terms. The dominant term among these is τ3

ε , unless τ3
ε

happens to be zero. If so, then we must compare an with n1/2, as we did in the proof of
Theorem 3.1. Dominance of either the first or second term of (34) depends on α and the
limit of ℓ(n).
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The asymptotics for Q3
n when σ2

ε = 0 are essentially a special case, except that terms
with (εt) are omitted. In this case, the asymptotics of the numerator follow directly from
Lemma A2(d).

The asymptotics for K4
n when σ2

ε > 0 are more straightforward than for Q3
n, since κ4

ε > 0.
Expanding the numerator yields

1

n

∑

(yt − ȳn)4 =
1

n

∑

y4
t + 6ȳ2

n

1

n

∑

y2
t − 4ȳn

1

n

∑

y3
t − 3ȳ4

n, (36)

and the first term is dominated by κ4
ε just as the first term of (33) is dominated by τ3

ε when
τ3
ε > 0, as may easily be verified using Lemma A2(e), (g), (i), (j), and an LLN. We only

need to show that the remaining terms are op (1). It is clear from (31) that ȳn = op (1), so
that positive powers of ȳn are also op (1). Moreover, we have

1

n

∑

y2
t ,

1

n

∑

y3
t = Op (1)

from the proofs corresponding to S2
n and Q3

n. As a result, the second, third, and fourth
terms of (33) are op (1).

The case of σ2
ε = 0 is again straightforward, with the limiting distribution coming from

Lemma A2(e). �

Proof of Theorem 3.4 (Asymptotics for Rnk – AHTS ). Let σ2
ε > 0. First, note that

ȳn =
1

n

∑

F (xt) +
1

n

∑

εt = Op (ν (an)) + Op(n
−1/2) = Op (ν (an)) (37)

from Lemma 3.1 in conjunction with Theorem 1.6 of BI (pg. 138), from a CLT since (εt) is
an MDS, and since infλ>0 |ν (λ)| > 0. Second, note that

1

n − k

n
∑

t=k+1

yt = ȳn +

(

k

n

)

1

n − k

n
∑

t=k+1

yt −
1

n

k
∑

t=1

yt = ȳn + op (ν (an))

since the latter two terms are Op

(

n−1ν (an)
)

and op (1) for k = o (n). And, third, note that

1

n − k

n
∑

t=k+1

yt−k = ȳn +

(

k

n

)

1

n − k

n−k
∑

t=1

yt −
1

n

k
∑

t=1

yn−t+1 = ȳn + op (ν (an))

using similar arguments. Now, the numerator of Rnk may be written simply as

1

n − k

n
∑

t=k+1

ytyt−k − ȳ2
n + op

(

ν2 (an)
)

(38)

using the above expressions. Expanding the first term of (38) and premultiplying by
(n − k) /n yields (30), as in the proof of Theorem 3.1. Now, the first term of (30) is
Op

(

ν2 (an)
)

with distributions given by Lemma A3(a) for k = 0 and (c) for k ≥ 1, the
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middle terms are both Op

(

n−1/2ν (an)
)

by Lemma A3(b), and the final term is Op (1) for

k = 0 or Op

(

n−1/2
)

for k ≥ 1, similarly to the proof of Theorem 3.2. In the H-regular case,
the first term of (30) dominates the remaining terms when either k ≥ 1 or when k = 0 if
|ν (λ)| → ∞. If |ν (λ)| = O (1), final term of (30) has the same asymptotic order as the first
when k = 0. The asymptotic distribution of the second term of (38) follows from Lemma
3.1 in conjunction with Theorem 1.6 of BI (pg. 138). Finally, note from the proof of Lemma
A3(c) that the first term of (30) for any k differs from itself for k = 0 only by an op (1)
term. Together with the fact that (n − k) /n → 1, this means that (38) may be rewritten
as

1

n

∑

(

F (xt) − F̄ (xt)
)2

+
1

n − k

n
∑

t=k+1

εtεt−k + op (1) ,

where F̄ (xt) ≡ n−1∑F (xt). The second term is negligible when either k ≥ 1 or when
|ν (λ)| → ∞. In these cases, the whole statistic may be written simply as 1 + op (1).
Otherwise, the stated distribution is given by applying the continuous mapping theorem.�

Proof of Theorem 3.5 (Asymptotics for S2
n, Q3

n, K4
n – AHTS ). The proof for S2

n follows
directly from the asymptotics in denominator in Theorem 3.5. As in the case of Theorem
3.5, and contrary to the ITS case, the mean adjustment may not be ignored in the AHTS
case.

The numerator of Q3
n may be rewritten as

1

n

∑

(

F (xt) − F̄ (xt)
)3

+
3

n

∑

(

F (xt) − F̄ (xt)
)

ε2
t +

1

n

∑

ε3
t + op

(

ν2 (an)
)

using algebraic manipulations, (37), Lemma A3(b) and (f), and the assumption that (εq
t )

for q = 1, . . . , 4 is an MDS. Note that the second term may be written as

3

n

∑

(

F (xt) − F̄ (xt)
)

σ2
ε +

3

n

∑

(

F (xt) − F̄ (xt)
)

ε2,t,

the first term of which is simply zero, and the second term of which is op (ν (an)). The
limiting distribution of this expression then follows from (37), Lemma A3(d), (h), and
again the assumption that (εq

t ) is an MDS.
Similarly, the numerator of K4

n may be rewritten as

1

n

∑

(

F (xt) − F̄ (xt)
)4

+
1

n

∑

ε4
t +

4

n

∑

(

F (xt) − F̄ (xt)
)

ε3
t

+
6

n

∑

(

F (xt) − F̄ (xt)
)2

ε2
t + op

(

ν3 (an)
)

using algebraic manipulations, (37), Lemma A3(a), (b), (d), (f), (g), (h), and the assumption
that (εq

t ) is an MDS. As with Q3
n, the term involving the sum of F (xt)− F̄ (xt) is zero plus

op (ν (an)). The limiting distribution of this expression then follows from (37), Lemma
A3(e), (i), (j), and again the assumption that (εq

t ) is an MDS. �
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Proof of Theorem 4.1 (Asymptotics for θ̂n – ITS ). Under our assumptions, and simi-
larly to Park and Phillips (2001), the NLS estimator in (16) may be rewritten as

̟′
n

(

θ̂n − θ0

)

= −
(

̟−1
n

∑

Fθ (xt, θ0) Fθ (xt, θ0)
′ ̟−1′

n

)−1
̟−1

n

∑

Fθ (xt, θ0) εt + op (1)

(39)
where (̟n) is a matrix of appropriately-chosen normalization sequences. For the case
considered here, in which all element of Fθ (xt, θ0) are I-regular, we may choose ̟n to be

equal to an identity matrix times a
−1/2
n n1/2. According to Lemma A1 of Park and Phillips,

the class of I-regular functions is closed under multiplication, so each element of the matrix
FθF

′
θ is also I-regular. The limiting distribution of (39) thus follows along the same lines

as Theorems 3.2 and 5.1 in Park and Phillips (2001), with the substitution of our Lemma
A2(a), (b) for Theorem 5.1 of Park and Phillips (1999) used in Theorem 3.2 of Park and
Phillips (2001). In particular, the rates of convergence n−1/2 for mean asymptotics and

n−1/4 for covariance asymptotics are replaced by our more general ann−1 and a
1/2
n n−1/2,

respectively. �

Proof of Theorem 4.2 (Asymptotics for θ̂n – AHTS ). Similarly to Park and Phillips
(2001) and the proof of Theorem 4.1, we may approximate (16) with (39) under our assump-
tions. Choosing (̟n) in this case is not as simple, because although we assume that the
elements of F (θ) are H-regular, they need not have the same asymptotic orders. Again, FθF

′
θ

is also H-regular by Lemma A1 of Park and Phillips (2001), with the AO of the ijth element
given by the AO of the ith element of Fθ times the AO of the jth element of Fθ, which is
straightforward from the definition. The limiting distribution follows along the same lines
as Theorems 3.3 and 5.2 in Park and Phillips (2001), using our Lemma A3(a) and (b). In
this case, the rates of convergence [nν2(

√
n)]−1 for mean asymptotics and [n1/2ν(

√
n)]−1 for

covariance asymptotics are replaced by our more general [nν2 (an)]−1 and [n1/2ν (an)]−1,
respectively. �


