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ABSTRACT

We have developed a web server for the life sciences
community to use to search for short repeats of DNA
sequence of length between 3 and 10 000 bases within
multiple species. This search employs a unique
and fast hash function approach. Our system also
applies information retrieval algorithms to discover
knowledge of cross-species conservation of repeat
sequences. Furthermore, we have incorporated a
part of the Gene Ontology database into our informa-
tion retrieval algorithms to broaden the coverage of
the search. Our web server and tutorial can be found at
http://acmes.rnet.missouri.edu.

INTRODUCTION

Important nucleotide sequences are often reused throughout
nature. For instance, whole genomic array analysis in yeast has
revealed 22 PHO-regulated genes. The promoter regions of all
but one of these contain at least one of the two core Pho4dp
binding sites, CACGTG and CACGTT (1). Once binding sites
such as these have been determined experimentally, an inves-
tigator may wish to search for new, previously unknown genes
that may be under the control of the same factors. Also, in
bacterial pathogens, it is proposed that microsatellites regulate
expression of some virulence factors (2). Another example is a
region of an exon that codes for a specific motif within a
protein. An investigator studying a protein with an interesting
feature may wish to find other genes for proteins that share the
same feature. Searching genomic sequences for a subsequence
the size of a binding site (or shorter) is becoming increasingly
important. However, these types of search can easily produce
thousands of hits, especially with shorter queries. Several
algorithms have been developed recently to search genomic
sequences looking for short repeated patterns (3—12). All of

these algorithms require the query to be greater than a certain
minimum length, and there is an inverse relationship between
this minimum length and the size of the data structure pro-
duced. Therefore, searching for short queries can lead to com-
puter main memory deficits as more sequences are added to the
structures. Unfortunately, adding more sequences is often the
next logical step because multiple-species searches can help
lead to discoveries about evolutionarily conserved sequences.

Another concern to address for these searches to produce
meaningful results is how to reduce the number of reported
hits, which can be in the thousands. To help with this goal,
incorporating a sequence’s annotation data into the search
appears to be a promising approach. In this paper, we present
our Advanced Content Matching Engine for Sequences
(ACMES). Our engine is able to find exact matches to
query sequences of any length, although we currently limit
this length to between 3 and 10 000 bases. Also, our engine can
quickly and efficiently search multiple species without the
main memory constraints present with other systems, as dis-
cussed in the next section.

DESCRIPTION AND APPLICATION

Our search engine employs a novel hash function to preprocess
each sequence. This hash function first converts short
sequences of DNA (termed ‘words’) into integers and then
sorts them. The information from these sorted integers is
recorded into an index file and a corresponding data file
which are written to a hard drive for permanent storage. Dur-
ing retrieval, a user’s query is converted into an integer which
serves as a key into the index file. Owing to page limit for this
web server special issue, the detailed algorithms for this hash
function can be viewed from the ACMES website.

Our hash map data structures are preprocessed and stored on
the hard drive. During retrieval, we read only pages containing
the appropriate hash bin. This allows our main memory usage
to remain low even when processing multiple species, because
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Figure 1. ACMES system diagram. The chromosome index file is searched based on the user’s query. This index provides the location within the chromosome data
file where a list of protein IDs can be found. Protein IDs must be present at least ‘repeat frequency’ times to be displayed in the results table. Also, protein IDs allow
retrieval of annotation data, which is compared with the user’s annotation terms. The results table contains all genes that map closest to the query sequence and contain
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Figure 2. Screen capture from the ACMES web site. All species were searched for ‘ttaggctacctt’ and its reverse complement. The protein ID, frequency, species,
chromosome, beginning and ending locations and annotation are displayed. The protein ID contains a link to NCBI, the ending location contains a link to the gene

sequence, and the annotation contains a link to re-search the database with the given terms plus closely related terms from Gene Ontology.
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Figure 3. All species were searched for ‘ttaggct’ and its reverse complement. A total of 12461 hits were retrieved. The database was re-searched by clicking on the
annotation data ‘sodium symporter-related’” from one of the hits. The results shown are all genes that contain the original sequence and either ‘sodium’ or ‘symporter-
related’ in their annotation data. The results are ranked according to the relevance of the annotation data.

earlier pages can be swapped for later pages after we finish
using them. This approach also helps our IO costs to remain
low, which allows our algorithm to perform quickly. For
instance, our database presently consists of five different
species: Arabidopsis thaliana, Haemophilus influenzae,
Helicobacter pylori 26695, Helicobacter pylori J99 and
Saccharomyces cerevisiae. We extracted 10000 random
sequences from A. thaliana chromosome 5 for each of 9
different lengths ranging from 4 to 1024 bases. For each
query sequence, we searched each species in the database
and recorded the retrieval times and the number of
hits. Length 4 queries took 2.78 s and retrieved 751536
hits on average. Length 8 queries took 0.072 s and retrieved
4993 hits on average. The query lengths continued to double
up to 1024 bases. For length 1024 queries, the average retrieval
time was 1.291 s and the average number of hits was 1.01.
These tests were conducted on a dedicated server featuring
dual Xeon IV 2.4 GHz processors, 2 GB RAM and a 120 GB
EIDE 7200 r.p.m. hard disk running RedHat 9.0 RA.

Figure 1 shows the flow chart of the ACMES search engine.
Current users of the site can find exact matches of query
sequences as either disperse or tandem repeats. Disperse
repeats are identical repeats separated by one or more
bases, whereas tandem repeats are contiguous identical

repeats. In addition, users can specify a minimum repeat fre-
quency, which is the minimum number of times that a query
must map to a gene in order to be displayed in the results table.
This option can help reduce the number of reported hits for
copious queries. Another, more focused approach to reduce the
number of reported hits is also available. Users can enter one
or several terms to describe the gene(s) that they are expecting
in the results. After all of the hits have been retrieved from the
database, the annotation data for each retrieved gene is
searched for matching terms. Then, the user is presented
with only those genes that contain both the query and at
least one of the added terms. From the results tables, as
shown in Figures 2 and 3, users can access additional genetic
information at the National Center for Biotechnology Infor-
mation (NCBI) at http://www.ncbi.nlm.nih.gov/. They can
also view the genetic sequence, as shown in Figure 4, and/
or re-search the database with new annotation terms.

Before each search for users’ annotation terms, we add
additional terms from the Gene Ontology (GO) database,
http://www.geneontology.org. Each term is expanded with
the most closely related terms available from GO. This is
an attempt to include additional results that might otherwise
have been missed. For instance, if a user entered ‘programmed
cell death’, we would include the term ‘apoptosis’ in the
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Figure 4. Screen capture of the sequence of the gene with protein ID 6226538 from the Saccharomyces cerevisiae mitochondria. The gene is divided into three
regions: promoter, open reading frome prior to splicing and 3’-untranslated. The original query sequence ATG is highlighted on the web page and the numbers of

disperse and tandem repeats are also displayed.

search. Also, during subsequent searches (begun by clicking
on the annotation terms of an initial search result) retrieved
results are ranked according to the product of term frequency
and inverse document frequency of their annotation terms
(13). Thus, results with less common terms are displayed
first, while results with more common terms, such as ‘putative
protein’, are displayed later.

CONTINUING WORK AND CONCLUSION

We continue to develop new algorithms concerning gene con-
trol and gene function. We are also in the process of adding the
human genome to the database and will later add the mouse
genome. As more sequences are added and as gene annotation
for these sequences also improves, we anticipate richer, more

meaningful searches for the life sciences community. We con-
tinue to incorporate more content from the Gene Ontology
database into our algorithms. Therefore, the relevance of
our retrievals will improve as this ontology continues to
improve.
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