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SURVIVABLE VIRTUAL TOPOLOGY DESIGN
IN OPTICAL WDM NETWORKS
USING NATURE-INSPIRED ALGORITHMS

SUMMARY

Today, computer networking has become an integral part ofdaily life. The
steady increase in user demands of high speed and high kithdvatworks causes
researchers to seek out new methods and algorithms to messt ttemands. The
transmission speed in the network is directly affected leyttansmission medium. The
most effective medium to transmit data is the fiber. Optiedorks are designed for
the best usage of the superior properties of the fiber, egip $peed, high bandwidth,
low bit error rate, low attenuation, physical strength, aghreess, etc. The world’s
communication network infrastructure, from backbone meks to access networks,
is consistently turning into optical networks.

One of the most important properties of the optical netwaskbe data transmission
rate (up to 50 Tb/s on a single fiber). Today, with the help & tavelength
division multiplexing (WDM) technology, hundreds of chats can be built on a
single fiber. WDM is a technology in which the optical transsin is split into
a number of non-overlapping wavelength bands, with eacteleagth supporting a
single communication channel operating at the desired r&iace multiple WDM
channels, also called lightpaths, can coexist on a singe fibe huge fiber bandwidth
can be utilized.

Any damage to a physical link (fiber) on the network causethalllightpaths routed
through this link to be broken. Since huge data transmisglonGh/s) over each of
these lightpaths is possible, such a damage results in @sesimount of data loss.
Two different approaches can be used in order to avoid thiatson: 1. Survivability
on the physical layer, 2. Survivability on the virtual layd@re first approach is the
problem of designing a backup link/path for each link/patthhe optical layer. The
second approach is the problem of designing the opticak lsyeh that the optical
layer remains connected in the event of a single or multiplefailure. While the first
approach provides faster protection for time-critical laggtions (such as, IP phone,
telemedicine) by reserving more resources, the seconadagipyri.e. the survivable
virtual topology design, which has attracted a lot of aitantn recent years, aims to
protect connections using less resources. The problemwiiidbe studied in this
project is to develop methods for survivable virtual togpladesign, that enables
effective usage of the resources.

Survivable virtual topology design consists of four sulipeons: determining a set
of lightpaths (forming the virtual topology), routing tleeightpaths on the physical
topology (routing and wavelength assignment (RWA) problesm that any single fiber
cut does not disconnect the virtual topology (survivabigual topology mapping),

assigning wavelengths, and routing the packet traffic. Ed¢hese subproblems can
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be solved separately. However, they are not independebtgmns and solving them
one by one may degrade the quality of the final result consibgr Furthermore,

the survivable virtual topology design is known to be NP-ptete. Because of its
complexity, it is not possible to solve the problem optimati an acceptable amount
of time using classical optimization techniques, for réalsized networks. In this

thesis, we solve the survivable virtual topology desigrbfgm as a whole, where the
physical topology and the packet traffic intensities betweades are given.

In the first phase, we propose two different nature inspiredrigtics to find a
survivable mapping of a given virtual topology with minimurasource usage.
Evolutionary algorithms and ant colony optimization aijons are applied to the
problem. To assess the performance of the proposed algwitive compare the
experimental results with those obtained through integesar programming. The
results show that both of our algorithms can solve the proldgen for large-scale
network topologies for which a feasible solution cannotden using integer linear
programming. Moreover, the CPU time and the memory used éy#ture inspired
heuristics is much lower.

In the second phase, we propose four different hyper-heuaigproaches to solve the
survivable virtual topology design problem as a whole. Bagber-heuristic approach
is based on a different category of nature inspired heasisgévolutionary algorithms,

ant colony optimization, simulated annealing, and adaptterated constructive

search. Experimental results show that, all proposed Hyperistic approaches are
successful in designing survivable virtual topologies.rtik@ermore, the ant colony
optimization based hyper-heuristic outperforms the aher

To balance the traffic flow over lightpaths, we adapt a flowtalésn method to the ant
colony optimization based hyper-heuristic approach. Waar the performance of
our hyper-heuristic approach for both single and doulsikfailures. The proposed
approach can be applied to the multiple-link failure prablénstances by only
changing the survivability control routine. The experir@mesults show that our
approach can solve the problem for both single-link and telibk failures in a
reasonable amount of time. To evaluate the quality of the Hpt@ach solutions, we
compare these results with the results obtained using &drgls approach. The results
show that HH approach outperforms tabu search approachrbstiution quality and
CPU time.
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DOGA ESINL | ALGOR ITMALAR KULLANARAK
OPTIK WDM A GLARDA
HATAYA BA GISIK SANAL TOPOLOJ | TASARLAMA

OZET

GunUumuzde bilgisayar ggari hayatimizin 6nemli bir parcasi ve ihtiya¢c haline
gelmistir. Istedgimiz veriye, istedjimiz anda, daha hizli, daha giivenli ve kesintisiz
olarak erisme ist@@miz aslinda g altyapisinin nasil tasarlan@gal belirlemektedir.
Kullanicilarin istekleri surekli artarken, teknolojik Iggmelerle birlikte yeni yontem
ve algoritmalarla bu istekleri karsilamanin yollari areaktadir. Aydaki aktarim hizi,
aktarim ortamindan dpudan etkilenmektedir; bugiin uzak mesafelere en yiksek
kapasiteli ve hizli aktarimin yapilabilggieortam ise fiberdir. Fiber optik tdar,
fiberin Ustin ozelliklerini (hiz, dusik bit hata orani, leglemanyetik ortamlardan
etkilenmeme, dusuk isaret zayiflamasi, fiziksel dayarkklucuzluk, guvenlilik,
vs.) en iyi kullanacak sekilde tasarlanagladir. Gunumuzde dinyadaki iletisim
ag altyapisi, omurga ardan erisim @larina kadar, hizla fiber optik géara
donusmektedir.

Optik aglarin en 6énemli 6zelliklerinden biri veri aktarim hizidiek bir fiberden
teorik olarak 50 Th/s veri aktarimi yapilabilégehesaplanmaktadir.  Bugin,
lider iletisim firmalari 100 Gb/s ya da 1 Tb/s hizda veri akta yapacak
kanalllardan bahsedebiliyorsa, bu, fiziksel altyapi ogiik omurgadan olusfju
icindir. Dalgaboyu bdlmeli ¢cgullama (WDM) teknolojisi sayesinde bir fiber Gzerinde
ayni anda kurulabilecek kanal sayisi, ginimuiz teknoydgisytzler mertebesine
cikabilmektedir. Dalgaboyu bélmeli gallama teknolojisi ile, optik aktarim birbiriyle
cakismayan dalgaboyu bantlarina bolinir ve her bir dalgakstenen hizda ¢alisan,
Isikyolu olarak adlandirilan, bir iletisim kanalini delder. Boylece, yakin gelecek icin
ongorilen cok yuksek hizlara ¢ikmadan bile, bir fiberdebindoirkag on Gb/s hizda
calisan yuz dolayinda isikyolu gecebilmektedir.

Bu kadar yuksek hizlarda veri aktarimi, 6zellikle her biefinde ¢ok sayida kanalin
tasindg1 omurga glarda bir konuya biylk 6nem kazandirmaktadir: Hataygasbklik.

En sik rastlanan hata olan, bir fiberin, herhangi bir nedé&ekimesi (cgunlukla
insaat makineleri tarafindan, ya dagadb afetlerce), fiber tamir edilene kadar, her
saniyede birkac terabitlik veri kaybi anlamina gelecektiOrnek olarak 10 km
uzunlukta bir fiberin kopma sildi 11 yilda birdir. Omurga@arda yizlerce, bazen
binlerce, kilometrelik fiberler désengligézoniine alindnnda, béyle bir hata durumu
icin tedbir alinmamasi dusinilemez.

Optik ag Uzerindeki herhangi bir fibere zarar gelmesi demek bu fitmaritiden
yonlendirilmig olan tim i1sikyollarinin kopmasi demektHer bir 1sikyolu tzerinden
yiuksek miktarda (40 Gb/s) veri aktarimi yapgdidan, boyle bir zarar ciddi veri
kayiplarina neden olabilir. Temel olarak fiber kopmasinagkaelistirilen iki
yaklasim vardir. Birinci yaklasimda fiber Gzerinden geger bir b@lantinin, yani
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Isikyolunun, yedek yollarla korunmasidkinci yaklasim ise, 0zellikle birgok internet
uygulamasina da uygun ve yeterli olacak sekilde, isikywmlin olusturdgu sanal
topolojinin bajh kalmasinin sglanmasidir. Bu ikinci yaklasimda herbir i1sikyoluna
ayri ayri yedek koruma yollarinin atanmasi yerine, sanmaltginin korunmasi dikkate
alinarak, ust katmanlarin (paket katmanlar) koruma miekaaarinin devreye
girebilmesi igin gereken minimum kosullaringdanmasi amaglanmaktadir.

Birinci yaklasim belirli dizeylerde garantili bir korunssglarken ytksek miktarda
ag kaynd@inin atil durmasina neden olmakta, dolayisiyla bu kadadiizey koruma
gerektirmeyen uygulamalar i¢in pahall bir c6zim sunmakt&bn yillarda 6zellikle
dikkat ¢eken ikinci yaklagim ise, daha ekonomik bir yonieitetisimin kopmamasi
garantisini vermekte, ancak daha yavas bir duzeltntgaszaktadir. Gunimizde
bircok uygulama bglanti kopmadii sirece paket katmaninin, yeni yol bulma
gibi hata diuzeltme mekanizmalarinin devreye girmesi ig@nefgli olan, dakikalar
mertebesindeki gecikmelere toleranshdir (web dolagtimsya aktarimi, mesajlasma,
uzaktan erisim gibi). Bu yaklasim ilkine gore daha @zkaynainin atil kalmasina
neden olarak kullaniclya daha ekonomik hizmet verilmesigjlayacaktir. Bu
calismada uzerinde durgumuz hataya liasik sanal topoloji tasarimi problemi de
bu ikinci yaklasimi benimsemektedir.

Hataya bgisik sanal topoloji tasarimi problemi kendi icinde dolt probleme
ayrilmaktadir: 1sikyollarinin belirlenmesi (sanal tégyi olusturma), bu i1sikyol-
larinin herhangi bir fiber kopmasi durumunda bile sanal ltgjpon bagh kalmasini
salayacak sekilde fiziksel topoloji tizerinde yodnlendirisnedalgaboyu atanmasi,
ve paket trafyinin yonlendiriimesi. Bu alt problemler ayri ayr ¢oziigb Ancak,
bunlar b@imsiz problemler dgldir ve bunlari tek tek ¢cézmek elde edilen ¢ozimun
kalitesinin ¢cok disik olmasina neden olabilir. Bununkidikie, hataya bgisik sanal
topoloji tasarimi problemi NP-karmasiktir. Karmagiklnedeniyle bu problemin,
gercek boyutlu glar icin, klasik optimizasyon teknikleriyle kabul ediiébzamanda
¢o6zulmesi mumkin dgldir. Bu calismada, fiziksel topolojinin ve gamler arasi
paket trafgi yogunlugunun bilindgi durumlar icin, hataya lpsik sanal topoloji
tasarimi problemi bitin halinde ele alinmaktadir.

Tezin ilk asamasinda, hatayadsik sanal topoloji tasarimi probleminin alt problemi
olan hataya b@sik sanal topoloji yonlendirmesi problemi ele alintms Verilen
bir sanal topoloji i¢in en az kaynak kullanarak hatay@ibe yonlendirme yapmak
icin iki farkli doga-esinli algoritma 6nerilmektedir: evrimsel algorit@ale karinca
kolonisi optimizasyonu. Oncelikle 6nerilen algoritmatarproblem igin uygun
parametre kimesi belirlenmig, daha sonra, algoritmralbagarimini 6lgmek igin,
deneysel sonuclar tamsayi gfasal programlama (ILP) ile elde edilen sonuclarla
karsilastinimisir. Sonuclar gostermektedir ki; @higmiz iki algoritma da, tamsayi
dogrusal programlama ile uygun bir ¢c6zim bulunamayan blyddil aglar icin dahi,
problemi ¢6zebilmektedir. Bunun yanindagaeesinli algoritmalar ¢cok daha az CPU
zamani ve hafiza kullanmaktadir. Elde edilen ¢6zim kakegozum igin kullanilan
CPU zamaninin kabul edilebilir diizeyde olmasi, her ikjae@sinli algoritmanin da
gercek boyutlu glar icin kullanilabilecgini dogrulamaktadir.

Ikinci asamada, hataya ®eik sanal topoloji tasarimi problemini bir bitiin
halinde ¢6zmek icin dort farkli Ust-sezgisel yontem omeektedir.  Onerilen
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Ust-sezgisel yontemler alt seviyedeki sezgiselleri se@samasinda dort farkli
yontem kullanmaktadir: evrimsel algoritmalar, benzetitatlama, karinca kolonisi
optimizasyonu ve uyarlamal yinelenen yapici arama. Dsglegonuclar tim
ust-sezgisel yontemlerin hatayagosik sanal topoloji tasarimi problemini ¢ézmede
basarili oldgunu goéstermektedir. Ancak, karinca kolonisi optimizasydabanli
ust-sezgisel djerlerine gore daha Ustiin sonuglar vermektedir. Isikyolizerindeki
trafik akisini dengelemek igin, karinca kolonisi optinsiganu tabanl tst-sezgisele
akis deviasyonu yontemi de eklenmisgtir.

Literatlrde hataya lgasik sanal topoloji tasarimi problemini ele alan tim graklar
cift fiber kopmasi durumunu gozardi etmektedir. Bu caldajatnerdjimiz
Ust-sezgisel yontemin basarimini hem tek hem de cift fibmpmas) durumlari
icin dejerlendirdik. Onerdjimiz yontem coklu fiber kopmasi durumlari igin cok
kolay sekilde adapte edilebilmektedir. Tek yapiimasiegen hataya lasiklik
kontrolini yapan yordamin {estiriimesidir. Deneysel sonuclar gostermistir ki,
dnerdgimiz karinca kolonisi optimizasyonu tabanli Ust-seZgisgaya bgisik sanal
topoloji tasarimi problemini hem tek hem de cift fiber kopmdwgrumlar icin kabul
edilebilir bir surede ¢ozebilmektedir. Ust-sezgisel ygimterin hataya kiasik sanal
topoloji tasarimi cozmedeki basarimingeelendirebilmek amaciyla, karinca kolonisi
optimizasyonu tabanl tst-sezgiselle elde edilen sonulgiaratiirde bu problem igin
Onerilmis baska bir yontemle kargilastiriimigtirorfaglar tst-sezgisel yontemlerin,
cok daha az CPU zamani kullanarak, problem i¢in daha katitellimler verdgini
gostermektedir.

XXi



XXil



1. INTRODUCTION

Intoday’s world, the steady increase in user demands of$pgkd and high bandwidth
networks causes researchers to seek out new methods amidhahgoto meet these
demands. The most effective medium to transmit data is tke fidptical networks [1]
are designed for the best utilization of the superior privperof the fiber, e.g.
high speed, high bandwidth, low bit error rate, low attermmtphysical strength,
cheapness, etc. Today, with the help of the wavelengthidivisiultiplexing (WDM)
technology, hundreds of channels can be set up on a singte\ithaM is a technology
in which the optical transmission is split into a number ofraverlapping wavelength
bands, with each wavelength supporting a single optical nsonication channel
operating at the desired rate. The upper layers (IP, Ethezie) can transmit data

using these optical channels.

A wavelength-routed WDM network provides end-to-end agtichannels between
two nodes in the network that are not necessarily connedredtly by a fiber in
the physical layer. These optical channels are calledpaghts. Two nodes become
virtually neighbors when a lightpath is set up between thiglore than one lightpath,
each operating on different wavelengths, can be routed ersdéime fiber. All the
lightpaths set up on the network form the virtual topology{VGiven the physical
parameters of the network (physical topology, optical dmivers on the nodes,
number of wavelengths that can be carried on the fibers, attd) the mean traffic
intensities between the nodes, the problem of determimadightpaths to be set up

on the physical topology is known as the VT design problem.

In a WDM network, failure of a physical link (fiber) may resintthe failure of several

lightpaths routed through this link. Since huge amount addd0 Gb/s, 100 Gb/s,
or more) can be transmitted over each of these lightpathbga diamage may result
in a serious amount of data loss. Two different approachedeaused to avoid data

loss [1]:



1. Survivable design of the physical layer

2. Survivable design of the virtual layer

The first approach is the problem of designing a backup latk/or each link/path
of the virtual layer. The second approach is the problem sigieng the virtual layer
such that the virtual layer remains connected in the eveatsifigle or multiple-link

failure. While the first approach provides faster recoventime-critical applications
(such as, IP telephony, telemedicine) by reserving moreuress; the second
approach, i.e., the survivable VT design, aims to providermtiouous connectivity,
using less resources. The continuous connectivity is edduwy designing the VT such

that the VT remains connected in the event of a single or plaHink failure.

(a) (b)

Figure 1.1 a.Physical Topology, b.Virtual Topology, c.Survivable apping,
d.Unsurvivable Mapping.

To illustrate the survivable VT design problem, assumeuilegttave a physical network
topology as in Figure 1.1.a and the virtual network topolaegybe routed on this
physical topology is designed as in Figure 1.1.b. To obtasumivable design of
this VT, the mapping may be as in Figure 1.1.c. In this sublizanapping, a single
failure on any physical link does not disconnect the VT. Hesveif the routing of
only one lightpath is changed, e.g., as in Figure 1.1.d, vdeugrwith an unsurvivable
mapping. In this case, if a failure occurs on the physicd between nodes 4 and 5,
the nodes connected with lightpathandg will not be able to communicate and node

5 will be disconnected from the rest of the network.

Survivable VT design consists of four subproblems:

1. Determining a set of lightpaths (forming the VT)



2. Routing these lightpaths on the physical topology (rautand wavelength
assignment (RWA)), so that any single fiber cut does not disect the VT

(survivable VT mapping problem)
3. Assigning wavelengths to the lightpaths

4. Routing the packet traffic on the VT

Each of these subproblems can be solved separately. Haqwthey are not
independent problems and solving them one by one may degfnadguality of the
final result considerably. Any solution to these subprolsafiects the solution of
other subproblems, therefore, the result obtained by sglthe subproblems one by

one and iteratively, may not be the optimum.

The survivable VT mapping subproblem is known to be NP-catep|2], thus, the
survivable VT design problem is also NP-complete [3]. Thenes in order to move to
a harder problem, in the first phase of this thesis, we solgesdtond subproblem.
Because of its complexity, it is not possible to solve thevsable VT mapping
subproblem optimally in an acceptable amount of time usiagsical optimization

techniques, for real-life sized networks. Therefore, l#igrapproaches are used.

Nature inspired computing is an umbrella term that covemmmding techniques
which are inspired from nature, or are modeled on naturalge®es, or are constructed
by using biological materials. Some of these techniquessdaévely new, while some
are quite old and have been extensively researched intliteraToday, most of them
have become state-of-the-art techniques for many hardive seal-world problems.
Evolutionary algorithms (EA) [4], ant colony optimizatiadgorithms (ACO) [5],
particle swarm intelligence techniques [6], artificial imne systems [7], neural
networks [8], quantum computing [9] and DNA computing [10F asome of the
approaches in the literature that fall into this categotede techniques are commonly

referred to as nature inspired heuristics (NIH).

In the first phase of this thesis, we solve the survivable Vppineg problem, i.e.,
the second subproblem of the survivable VT design problemceSthis problem is

NP-complete, we propose to use NIHs, and compare their ppeaface. We choose



EAs due to their successful applications on NP-completélpros and ACO due to
its successful performance on constrained combinatop@hization problems. For
both the EA and the ACO algorithms, we first perform a seriepasmeter tuning
tests. Then, for the performance comparison experimergsyse the best settings
we determined. Also, we compare their performance to thalteesf the basic ILP
formulation and to an ILP relaxation proposed in [2]. As aufesf the experiments,
we show that, for the cases studied, both ACO and EA can sbé/survivable VT

mapping problem with 100% success and in a reasonable arobtimte.

After solving an NP-complete subproblem of the survivabledésign problem using
nature inspired algorithms, we propose methods to solvedésggn problem as a
whole. In the second phase of this thesis, we solve the sablaWT design problem
in optical WDM networks as a whole, where the physical toggland the packet
traffic intensities between nodes are given. We determiret afdightpaths (forming
the VT), route these lightpaths on the physical topologythad any fiber failure
does not disconnect the VT, assign wavelengths, and roet@dbket traffic. We
assume that the number of wavelengths and transceiversoderare limited. Both
the single-link and double-link failure scenarios are edeed. We use different

hyper-heuristic (HH) [11] approaches to solve the problem.

A HH is a method used to manage low-level heuristics (LLH) athestep of an
optimization process. This way, the best features of aifiesimple greedy heuristics

can be combined.

We propose four HH approaches to design a survivable VT foivangphysical
topology, while minimizing resource usage. The proposed dse different methods
for heuristic selection: EA, simulated annealing (SA) [12CO, and adaptive iterated

constructive search (AICS) [12].

From these methods, SA and EA are perturbative search nethdgile AICS and
ACO belong to the group of constructive search algorithmartHérmore, SA and
AICS are single point search methods, whereas, EA and ACQ® wom@ population
of solution candidates. The experiments show that the AG&et# HH approach

solves the survivable VT design problem for large size netwavith a 100% success



rate. To balance the traffic flow on lightpaths, i.e., imprtve scale-up, we adapt a

flow-deviation method to the ACO-based HH approach.

Since optical networks span a huge geographical area, ibssilple to have link
failures on different parts of the network at the same irtstaim this study, we
explore the performance of our HH approach for both singtedouble-link failures.
For double-link failures, we design the VT considering théuie of each pair of
links through the network. We should stress that, the pregpagproach can be
applied to the multiple-link failure problem instanceshaitit any modifications. The
only change is the survivability control routine which has@mplexity of O(n?)
for double-link failure cases, whereas it@n) for cases with single-link failures.
However, since the search algorithm is not changed, runstiwik not be affected
considerably. The experimental results show that our gmbrean solve the problem
for both single-link and double-link failures in a reasoleabmount of time, i.e., 20

minutes for single-link failures and 30 minutes for doulie-failures, respectively.

1.1 Contribution

As the first contribution of this thesis, we propose usinguretinspired
heuristics (NIH) for the survivable VT mapping problem andntbnstrate their
efficiency. Evolutionary algorithms (EA) and ant colony iopkzation (ACO)
algorithms are applied to the problem after a set of paraneteéng tests. To assess
the performance of the proposed algorithms, we compare xperienental results
with those obtained through integer linear programmingPjiLi.e., the basic ILP
formulation and an ILP relaxation proposed in [2]. The resahow that both of our
algorithms can solve the problem even for large-scale nitvapologies for which a
feasible solution cannot be found using ILP. Moreover, tR&JGime and the memory
used by the NIHs is much lower. The solution quality and th& @khe usage results

prove that both of our NIHs can easily be applied to real-diagplications.

The second contribution is solving the survivable VT degigyblem as a whole. Most
studies in the literature consider only the survivable VTppiag subproblem. The
ILP solution [3] of the design problem constrains the prabte small-sized networks.

The tabu search based approach considering the VT desigtepr¢13] as a whole
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constrains the nodal degrees of the VT. In this thesis, teedble survivable VT design
problem as a whole for large-sized networks, we proposeddfarent HH methods
based on EA, ACO, AICS, and SA. The experimental results ghaity for the cases
we studied, all the HH approaches can find a feasible solddiothe problem with
a 100% success rate. To evaluate the performance of the Hidagbpsolutions, we
compare these results with the results obtained using thegearch approach. The
results show that HH approach outperforms the tabu seagoagh both in solution

quality (i.e., the resource usage of the solutions) and G tisage.

The third contribution is that, this is the first study comsidg double-link failure
situations for the survivable VT design problem. The expental results show that
for double-link failure situations, our approach can bedusedesign survivable virtual

topologies in a reasonable amount of time without any chamtfee algorithm.

1.2 Outline of the Thesis

The rest of the thesis is organized as follows. The definitibthe problem is given
in Chapter 2, including the related literature. In Chaptad®is are explained briefly,
and, in Chapter 4, the details of the application of the Nlblshe survivable VT
mapping problem are given. The experimental study for thmeigable VT mapping
problem is discussed thoroughly in Chapter 5. Next, hygerristics are explained in
Chapter 6.1 and the details of the HH designs for the surleveld design problem
are given in Chapter 6. Then, in Chapter 7 the experimensaltefor the survivable
VT design problem are given and these results are discubsedughly. Finally, a

conclusion followed by the future work can be found in the teapter.

1.3 Academic Publications

As a result of the PhD research reported in this thesis, therimg publications have
been produced:

Journal publications

e Fatma Corut Ergin, Elif Kaldirim, Aysegul Yayimli, A. SarlUyar, “Ensuring Re-
silience in Optical WDM Networks With Nature-Inspired Hatics”, IEEE/OSA
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Journal of Optical Communications and Networking, Vol. gus 8, pp.642-652,
2010. (SCI-E)

International conference publications

e Fatma Corut Ergin, Aysegul Yayimli, A. Sima Uyar, “Surable Cross-layer
Virtual Topology Design using a Hyper-heuristic ApproachCTON 2011,
Stockholm, Sweden, Jun. 26-30, 2011, (Invited Paper).

e Fatma Corut Ergin, A. $Sima Uyar, Aysegul Yayimh, “Invigttion of
Hyper-heuristics for Designing Survivable Virtual Topgies in Optical WDM
Networks”, EvoStar - EvoWorkshops 2011, Torino, Italy, Agi7-29, 2011.

e Fatma Corut Ergin, Elif Kaldirnm, Aysegul Yayimli, A. SarlUyar, “Performance
Analysis of Nature Inspired Heuristics for Survivable \at Topology Mapping”,
IEEE GLOBECOM 2009, Hawaii, USA, Nov. 30-Dec.4, 2009.

e Elif Kaldinm, Fatma Corut Ergin, A. Sima Uyar, Aysegil yfanli, “Ant
Colony Optimization for Survivable Virtual Topology Mapyg in Optical WDM
Networks”, ISCIS 2009, Turkish Republic of Northern Cypr8gpt. 14-16, 2009.

e Fatma Corut Ergin, A. Sima Uyar, Aysegil Yayimli, “An Eutibnary Algorithm
for Survivable Virtual Topology Mapping in Optical WDM Netwks” EvoStar -
EvoWorkshops 2009, Tibingen, Germany, April 15-17, 2009.






2. PROBLEM DEFINITION AND RELATED LITERATURE

2.1 Optical WDM Networks

Today the most effective medium to transmit data is the fdoea, optical networks [1]
are designed for the best usage of the superior propertibe diber (high speed, low

signal degradation, high bandwidth, physical strengteapimess, reliability, etc.).

In optical networking terminology, the graph consistin@ttthe nodes in the network
and the fiber links connecting these nodes is called the ghlysipology. The fiber
links are also called the physical links. These physicatdimre assumed to be
bidirectional and they may be associated with a weight whi¢he length of the fiber
link.

WDM is a technology in which the optical transmission is spiito a number
of non-overlapping wavelength bands, with each wavelersgibporting a single
communication channel operating at the desired rate. With lelp of WDM
technology, it is possible to build hundreds of optical alele on a single fiber. These

optical communication channels built on the fiber are cdigutpaths.

A lightpath may span multiple physical links, and if theragswavelength converter in
the network, the lightpath is required to have the same \eagth throughout its path
(the wavelength-continuity constraint). The intermeeliabdes the lightpath traverses,
are equipped with optical cross connects (OXC). These OX&blenswitching the
incoming wavelength to the outgoing wavelength. A typical@with n input

and n output fibres, andn wavelengths is given in Figure 2.1. An OXC with
input andn output fibers capable of handling wavelengths can be thought of
as m independentixn optical switches. These optical switches are preceded by a
wavelength demultiplexer and followed by a wavelength iplgker to implement an
OXC.



nxn

Wavelength . Wavelength
Demultiplexer Optical Multiplexer
P Switch P
—p
1 A 1
2 2
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| | |
| | |
| | |
n }"m n
>

Figure 2.1 An Optical Cross Connect (OXC) withinput andn output fibres, andn
wavelengths.

Establishing a lightpath between two nodes in the physicglolbgy makes
them optically neighbors, even if they are not physicallyghbors, providing a
circuit-switched interconnection between these noddgshAlightpaths established on
the physical topology form the virtual topology (VT) (or logl topology). The nodes
in the VT usually correspond to the nodes in the physical ltmpo In Figure 2.2,
a physical network is given, in which lightpaths are set ugltow communication
between the nodes which are not physically connected by a floehe figure, the

lightpaths are indicated with dotted lines.

Figure 2.2 An optical WDM network. The dotted lines show lightpaths.
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In an optical WDM network, each node is equipped with a setrafidmitters and
receivers (transceivers). The transmitter at a node seatdgal the other nodes in the
network and the receiver receives data from the other nad#éseinetwork. If each
node in an n-node network has n-1 transceivers, and eachcphiisk has enough
number of wavelengths, then a lightpath can be establisbedlen each node of the
network, leading to a problem-free network. However, thiem@sceivers are expensive
equipments, and in a large-sized network, only a few of thembe used at each node.
Similarly, the number of wavelengths on each physical Iswkmited. As a result, the

number of lightpaths that can be established on a netwonkited.

Once the lightpaths forming the VT are determined, eachpigth should be routed
in the network and a wavelength should be assigned to it. g@ifoislem is known as
routing and wavelength assignment (RWA) problem. RWA peabls also referred to
as VT mapping problem. After mapping the VT onto the physiopblogy, the next

problem to solve is to route the packet traffic on the VT.

As a result, while designing a VT for a given physical topgland packet traffic
demands between the nodes of this physical topology, tHalgars to be solved can

be summarized as:

e Determining a proper VT, i.e., a good set of lightpaths, abering the mean packet

traffic rates between nodes,

¢ Routing the lightpaths of the VT over the links in the physitpology (RWA

problem),
e Assigning wavelengths optimally to the lightpaths,

e Routing packet traffic over the VT

These subproblems can be solved separately. However, dantjosoto each of
these subproblems affects the others. Therefore, solhegtseparately may
lead to sub-optimal solutions. The whole problem is refitrte as VT design
problem [14-16].

In optical networks, any damage to a physical link (fiber) loa hetwork causes all

the lightpaths routed through this link to be broken. Sinegehamounts of data (e.g.
11



40 Gb/s) can be transmitted over each of these lightpathsgadamage may result in
a serious amount of data loss. Therefore, survivabilitynigv@ortant issue in optical
WDM networks. Survivable VT design problem deals with dasig a VT on a given
physical topology, such that in case of any single or mudtgghysical link failure the

VT remains connected.

2.2 Virtual Topology Mapping (Routing and Wavelength Assigiment (RWA))

Problem

While designing a VT for a given physical topology and packeffic demands
between nodes of this physical topology, the first subpraolite solve is determining
the lightpaths for a proper VT. Once the lightpaths formihg VT are determined,
each lightpath should be routed in the network and a wavéiestgould be assigned
toit. The VT mapping problem, also known as the RWA problesalgfined as follows:

Given:

e Physical topology, i.e., the nodes and the physical links ¢bnnect the nodes,
¢ Virtual topology, i.e., the lightpaths established betw#e nodes,

e Number of wavelengths per physical link,

Find:

e A route for each lightpath over the physical topology,

e A proper wavelength for each lightpath.

Objectives:

e Minimize the number of physical links used in the whole phgstopology.

e Minimize the total number of wavelength-links used in theokgphysical topology,

i.e., the sum of wavelengths used on each physical link.

12



2.2.1 Related literature

RWA problem is proved to be NP-complete problem that caneatdived exactly in
polynomial time [17, 18]. There are a number of studies d=vdd the RWA problem

proposing both exact and heuristic approaches [19, 20].

The RWA problem can be partitioned into two subproblems: djting and 2)
wavelength assignment. In the literature three basic @ugmes are proposed for
the routing subproblem: 1) fixed routing, 2) fixed-alternatating, and 3) adaptive
routing [21-24]. Fixed routing is the simplest approachjleviadaptive routing is
proved to offer the best performance. Fixed-alternatamguiffers a trade-off between

complexity and performance.

Several heuristics have been proposed for the wavelersgilgranent subprob-
lem, [25—31]. These heuristics are random wavelength asegt, first fit, least used,
most used, min product, least loaded, max sum, relativectigpass, wavelength

reservation, and protecting threshold, distributed nedatapacity loss. Among these

algorithms, distributed relative capacity loss is proveglield the best performance.

An MILP (Mixed Integer Linear Programming) formulation tbet RWA problem is
given in [32]. In this formulation, given a set of connecti@guests and fixed number

of wavelengths, the objective is to maximize the number tfl#shed connections.

In [33], advanced Boolean satisfiability techniques areppsed to solve the RWA
problem. They show how to formulate the RWA problem as a SAStaince and
evaluate several advanced SAT techniques in solving thelgmo They experiment

with different network topologies.

Ant colony optimization (ACO) is quite successful in solgiuting problem in packet
and circuit switched networks [34, 35]. It is applied boththe static [36] and the
dynamic [37, 38] RWA problem. Particle swarm optimizatigrapplied to the RWA
problem in only [39]. There are a few studies on VT mapping44Qusing EAs. Tabu

search is also used to solve the RWA problem [42].

In the first study that applies ACO to this problem [36], thatist RWA problem is
considered. In this work, the objective is to minimize thenier of wavelengths

used in the given network. The authors use a simple greedystiedor wavelength
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assignment. According to this approach, ants select theies according to the weight
of attraction of each physical link. Ants use a tabu list ahpously visited nodes in
order to avoid loops and backtracking. Various methods ested for pheromone

updating.

The next studies that use ant colony optimization approaciile the dynamic RWA
problem [37,38], where Garlick et al. [37] is the first grobptused ACO on dynamic
RWA problem. In this approach, whenever a new connectionasigarrives, some
of the ants are launched from source to destination. Whiteddeg which path to
use, ants use the length of the path and the number of awaialelengths along
the path. After an ant reaches its destination, global pher® updating takes place.
The best path is decided when all paths complete their expilon tasks. It is shown
that, this algorithm results in less connection rejectitamtan exhaustive search over
all available wavelengths for the shortest path [43]. In @&aptive routing in optical

WDM networks is studied.

Ngo et al. propose an approach for the dynamic survivable Rvaéllem [38]. First,

they design a new routing table structure to solve this gmbl They use ants to
observe the state changes in the network and to update thales regularly. The
results show that this algorithm outperforms the otherrmdteve methods in terms of

blocking probability.

The work that use particle swarm optimization for RWA prablan WDM networks
uses a hybrid algorithm inspired from the ant system [39{hiswork, for the routing
part of the problem, particles are used to determine the tmagbther with the ant
system. For the wavelength assignment part, they use figgbrithm. In [44], the

bee colony optimization heuristic is applied to solve theAp¥oblem.

2.3 Survivable Virtual Topology Mapping Problem

Survivable mapping of VT is an NP-complete problem [2] anfirdgkl as the problem
of finding a route for each lightpath, such that in case of glsiphysical link failure,

the VT remains connected.
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Consider a physical topology, which is composed of a set désN = 1..n and a set
of edges, where(i, j) is in E if there is a link between nodeésnd j. Each link has a
capacity ofW wavelengths. The VT, on the other hand, has a set of virtudésis, ,
which is a subset d¥l, and virtual edges (lightpathE) , where an edgés,t) exists in

E, if both nodes and nodd are inN_ and there is a lightpath between them.

An Integer Linear Programming (ILP) formulation of survbka lightpath routing of a
VT on top of a given physical topology is given in [2]. Basedtbis formulation, a
number of different objective functions can be considecedfe problem of survivable
mapping. The simplest objective is to minimize the numbeplofsical links used.
Another objective is to minimize the total number of waveimlinks used in the
whole physical topology. A wavelength-link is defined as avelangth used on a

physical link.

The aim of lightpath routing is to find a set of physical link&t connect the nodes
of the lightpaths. Len‘fj?t = 1 if virtual link (s,t) is routed on physical linKi, j) and
0, otherwise. Since our objective is to minimize the totahiver of wavelength-links

used in the whole physical topology, we can formulate thedbje as in2.1):

M nimze > fist (2.2)
(i,j)eE
(s,t)eEL

As we mentioned above, there are a number of constraintsrinvable lightpath

routing problem. These constraints are given in the follmyequations.

a)Connectivity constraint: for each pas;t) in E;:

1, if s=i
fSt =0 1 if t=i VieN 2.2
Z ij Z ji = , = EN. (2.2
)eE

jst.(T,j)eE jst.(Thi)e 0, otherw se

The connectivity constraints are also called flow cons@watonstraints for routing
one unit of traffic from nodes to nodet. (2.2 requires that equal amounts of flow

due to lightpath(s,t) enter and leave each node that is not the source or destirzdtio

(s,1).
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b)Survivability constraint:

V(i j)eE

VSCN_ fij + i <[CISNL-9) | (2.3

(st)eCTENL—9)

The survivability constraint states that for all properscof the VT, the number of
cut-set links flowing on any given physical link is less thae size of the cut-set.
This means that all the lightpaths of a cut-set cannot bedusing the same physical
link. A cut is a partition of the set of nodéé$ into two partsSandN — S. Each cut
defines a set of edges consisting of edgeE with one endpoint irS and the other
endpoint inN —S. TheCS S N_—9) in the equation means the set of edges as the
cut-set associated with the ol N_. — S), and| C§ S N. — S) | means the number of

edges in the cut-set.

Consider the VT in Figure 1.1.b. In this VT, the lightpathsrnla forms one of the
cut-sets, that is, they divide the VT into two parts. If thégktpaths are routed on the
same physical link as in Figure 1.1.d, we end up with an umgaiole mapping. Thus,
the aim of survivability constraint is to prevent routingadifthe lightpaths in a cut-set

of the VT on the same physical link.

c)Wavelength capacity constraint:

v(i,j)eE, Y ff<w. (2.4
(st)eEL
The third constraint ensures that the number of wavelengthe physical link is no

more than its capacity.

d)Integer flow constraintsf.i?ts {0,1}.

2.3.1 Related literature

The survivable VT mapping problem is first addressed as DeRigtection [45, 46]
in the literature. Crochat et al. use tabu search to find th&@mum number of
source-destination pairs that become disconnected in et ef a physical link
failure. In their first study [45], no wavelength capacityc@nsidered in the solution

approach, while in the second study [46], they add the wagghecapacity constraint.
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In other heuristic approaches to survivable VT mapping, deite et al. propose a
local search based algorithm, FastSurv [47, 48]. The abga their study is to
minimize the number of unsurvivable nodes. To find the unsable nodes, they
remove the physical links from the physical topology one Ime @nd search for
alternative routes for the lightpaths routed on the coomedmg link. If there is no

alternative path, these physical and virtual links are ictred as unsurvivable.

Kurant and Thiran [49-51] use a heuristic that divides theigable mapping problem
into subproblems. In [49], they propose a new algorithm (MM that divides
the survivable VT mapping problem into subproblems. Themilgm in their next
study [50] considers more than one link failure and in [Sheyt aim to solve the
problem for larger networks and add heuristics to SMART athm. In their study,

they use mesh topologies for both the physical and the Vildyaers.

Simulated annealing is another heuristic used to solve tinévable VT mapping
problem [52]. In [53], ACO is used considering back-up pathghe physical layer.
In this study, Ngo et al. handle the survivable RWA problenttanphysical layer, and

use ACO to solve this problem.

Modiano and Narula-Tam use ILP to solve the VT mapping probl2]. They add
the survivability constraint in the problem formulatiomich that, no physical link is
shared by all virtual links belonging to a cut-set of the VRghn. However, they
do not consider the capacity constraint. Their objectiveisinimize the number
of wavelengths used. For the cases when ILP cannot find amoptisolution in
a reasonable amount of time due to the problem size, Modiaah epropose two
relaxations to ILP, which consider only small-sized cuss&hese relaxations reduce

the problem size; however, they may lead to suboptimal mwisit

In order to overcome the long execution time problem in ILBfolation, Todimala
and Ramamurthy propose a new ILP formulation and they sallledproblem for
networks of up to 24 nodes [54]. In their work, besides thesptal network and the
virtual network topologies, the shared risk link groupswdddoe known in advance.
Similarly, because of the time-complexity of the problerfiedent heuristics are tried
in [55, 56].
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2.4 Virtual Topology Design Problem

All the lightpaths set up on the network form the VT. Given gig/sical parameters
of the network (physical topology, optical transceivers toe nodes, number of
wavelengths that can be carried on the fibers, etc.) and the maffic rates between
nodes, the problem of designing the lightpaths to be set uh@physical topology
is known as the VT design problem. The objective of the VT giegiroblem may
be minimizing the network resources, minimizing the netkmatde average packet
delay (corresponding to a solution for present traffic dessgrmaximizing the packet
traffic, or balancing the lightpath loads on the fibers, etee problem can be divided

into four different subproblems [57], given in Section 2.1.

The VT design problem is defined as follows:

Given:

¢ Physical topology, i.e., the nodes and the physical links tbnnect the nodes,

Average traffic rates between each node pair,

Maximum number of lightpaths that can be established on &,nas, the number

of transceivers per node,

Number of wavelengths per physical link,

Lightpath bandwidth capacity

Find:

e A collection of lightpaths to be established as a VT
e A route for each lightpath over the physical topology,
e A proper wavelength for each lightpath.

e A suitable routing of the packet traffic over the VT

Objectives:
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e Minimize the resource usage of the network, i.e., the totamiper of

wavelength-links used in the whole physical topology.

2.4.1 Related literature

There are only a few studies proposing solutions to the Vigdgsoblem as a whole.
The MILP formulation of the VT design problem is given in [B8-60]. In [14]

and [59], the number of wavelengths on fibers is not consttasea constraint and
the wavelength assignment subproblem is omitted. Unliks¢hMILP formulations,
in [58] and [60], number of wavelengths is introduced as astraint to the problem.
Different objectives are addressed in these formulatiorisjmize the network-wide
average message delay [14, 58], minimize the network ctiogg$9], minimize the

maximum offered load on any link (congestion) in the netw/éxX.

an integer linear program (ILP) formulation for designing @ptimal, stable virtual

topology for time-varying demands.

The MILP formulation of the VT design problem grows quicklytvthe increase
in the network size. This problem and also some of its subdpnod are proved to
be NP-complete. Therefore, heuristics are used to solverbl@dem for large-scale

networks. However, the studies usually address only the BWiproblem.

Saha et al. [16] use genetic algorithms (GA) to solve the V3igleproblem. They
aim to find the best possible VT over a given wavelength-mat&optical physical
topology for wide area coverage. Their objective is to mazethe throughput as well
as to minimize the delay for a given physical topology antfitranatrix. As in the VT
design problem, they divide the problem into four categorie) determine good VT
2) route lightpaths over physical topology 3) wavelengtsigtiment 4) route packet
traffic on VT. For each of the sub-problems they use a diffehsuristic, and as a
result of these four algorithms, a feasible VT is generateat. the initial population
of the GA phase, a predefined number of VTs are created. Afiydng these VTs
to the defined string, genetic operators are applied to tmebeiduals in the initial
population. In the experimentation phase, queuing dell@payation delay, average

hop distance scalability with increase in throughput andisd.
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2.5 Survivable Virtual Topology Design Problem

The survivability [61] is an important issue because of thighhspeed data
transmission, especially for the backbone networks thay cveral optical channels
(lightpaths) on each fiber. In a WDM network, failure of a fiderg. a fiber cut
because of construction machines or natural disasters)rest in the failure of
several optical channels and this leads to several teraftata loss for every second
until the problem is solved. For example, a fiber of 10 kiloengtong is cut once every
11 years. Since there are hundreds, or sometimes thousdrilemeters of fiber in

a backbone network, it becomes a necessity to take preodotithis situation.

Different protection mechanisms have been proposed initkeature for the fiber
and/or other network equipment failures [62]. Basicalhere are two approaches

for the fiber failure:

1. Survivability on the physical layer [63—65]

2. Survivability on the virtual layer [2, 3,13, 15, 36—-40,45,49,53, 54, 66]

In the first approach, each connection passing through tlee file., the lightpath,
is protected by assigning backup lightpaths that are dijoirouted from the
connection’s first lightpath. On the other hand, the sec@miaach ensures the VT to
be connected even in the failure of any single physical [irtie first approach provides
survivability by providing extra routes for each lightpaththe VT, however, with a
cost of a high number of unemployed network resources. Tihaers an expensive
solution for applications which may not need a high level aftection. The second
approach, which has attracted attention especially inntegears, is a cost effective
solution. Today, most applications are tolerant to latesioff several minutes of repair
time needed by the packet layer (web search, file transfessaging, etc.), as long as
the network connection is not terminated. This approack less network resources
than the first one, thus, it enables service providers ta afi@ore economic service

to their users.
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In this study, our main aim is to design an efficient algoritiorfind a survivable design
of a given physical topology and mean traffic rates for thpotogy. The constraints

for the problem are:

1. The transceiver capacity constraint.
2. The survivability constraint (given in inequali®yd).
3. The wavelength capacity constraint (given in inequalid).

4. The bandwidth capacity constraint.
The survivable virtual topology design problem is definedbdlsws [3]: Given:

e Physical topology, wherBy, is the number of physical links between nodesn).

e Number of nodes in physical and virtual topologi®s,and M, the number of
wavelengths in fiberg/, capacity of a lightpatlt, and load facton of a lightpath

for maximum allowed loading.
e Traffic matrixAsq Which denotes the average traffic flow between nddgs).

e Set of node$\, in the virtual topology.
Find:

e Virtual topology connectivityj; which equals to 1 if there is a lightpath between
nodes(i, j).

e Survivable routing of the lightpaths over the physical togy wherepinjm equals to

1if lightpath(i, j) is routed through fiber linkm, n).

¢ Routing of the packet traffic over the virtual topologﬁ)d which equals to 1 if traffic
(s,d) is routed through lightpatfi, j).

Two different objective functions can be considered.
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e First objective is minimizing the total number of lightpatim the virtual topology
Vi, (2.9

ivje L
which equals to minimizing total number of transceiversduseN_ C N set of

nodes.

e Second objective is minimizing the total number of wavetbAmks used in

physical topology,

2 n (2.6
i,jeNLmneN

The detailed ILP formulation for the survivable VT desigrolplem can be found
in [3]. Based on this formulation, the objective is to minemthe resource usage of the
network, i.e., the total number of wavelength-links usedhim physical topology. A
wavelength-link is defined as a wavelength used on a phykidal For example,
in Figure 1.1.c, 2 wavelength-links are used on the link leetwnodes 1 and 2,
1 wavelength-link is used on the link between nodes 1 and.,.3and a total of 9

wavelength-links are used in the physical topology.

2.5.1 Related literature

Solving the survivable VT design problem as a whole is NPgete [3]. Therefore,
most of the previous studies on this problem consider ordystirvivable VT mapping
subproblem [15, 40, 45-47, 49]. There are only a few studigke literature which
try to solve all the subproblems together: a tabu searchidteufl13, 67], an ILP

formulation [3], and an MILP formulation [68].

In [13,67], Nucci et al. propose an approach that first usegedy heuristic to route
the lightpaths on the physical topology. Then, for the mogitof packet traffic on the
VT, they use a tabu search mechanism. The routes for theohtid are designed
to establish a survivable VT. The constraints in their stuggtude transmitter and
receiver constraints as well as wavelength capacity caings: In their study, they
address only three of the subproblems of VT mapping, the s$usproblem, i.e.,
designing a proper VT is not handled. The lightpaths of ramgiagenerated VTs

are survivably routed, wavelengths are assigned and tlem giacket traffic is routed
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on this random VT. The subproblems of the survivable VT degigblem are solved

sequentially.

An ILP formulation for the survivable VT design problem ioposed in [3]. Given
the physical topology, the average packet traffic demandcénretwork, and the
wavelength capacities, the formulation is designed to fredaptimum survivable VT
and the optimum routings on this VT. This ILP method can sekey small problem
instances of up to 4 node physical topologies, optimallyabse of the problem

complexity.

In a recent work [68], Thulasiraman et al. propose solutimnthe problem with
capacities on physical links and demands on virtual linksheyT present MILP
formulations and heuristics to generate a survivable mgutihat maximizes the VT

capacity and minimizes spare capacity requirements.

There are some other studies in the area of survivable Vhdesinsidering the node
failures. The studies in [69] and [70] focuses on singleentadlure. They propose
algorithms satisfying that the VT remains connected afteffailure of any node in the

physical topology.
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3. NATURE INSPIRED HEURISTICS

Nature inspired heuristics (NIH) are inspired from some na@isms and processes in
nature. Many optimization problems have become incredsoognplex, so that, NIHs
are gaining popularity in recent years. Various NIHs argopsed and many of them

produce high quality solutions to complex real-world peohb.

The most popular NIHs used in the literature can be collectader two main

categories:

1. Search techniques starting from a single point

2. Search techniques starting from several points

Among the most common methods in the first group are simulaietealing
(SA) [12], tabu search (TS) [71], and greedy randomized tnapsearch
procedure (GRASP) [72] algorithms. The second group iresuévolutionary
algorithms (EA) (genetic algorithms (GA), genetic programg (GP), evolutionary
strategies (ES), etc.) [4], swarm intelligence algoritl{Bis(ant colony optimization
(ACO) [5], particle swarm optimization (PSO) [73], etc.)ndaartificial immune
system (AIS) techniques [7].

In combinatorial optimization problems, a solution cotsisf a discrete set of
subparts, which are called solution components. One metboglassify search
methods [12], relies on the underlying mechanism used tergém candidate solutions

for a problem from the solution components:

1. A solution candidate can be transformed into another oneltering one or
more of the components. A search algorithm which uses tipsoagh is called
a perturbative search algorithm. EA, PSO and SA are amongvéileknown

perturbative search methods.
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2. On the other hand, it is also possible to construct a cam@elution candidate
by iteratively adding solution components to the partiduBon candidates. A
search algorithm which uses this approach is called a agriste search algorithm.
GRASP and ACO algorithms fall within the category of conestite search

methods.

Among these NIHSs, in this thesis, to solve the survivable V@pping problem, we
chose EA due to its successful applications on NP-completielgms and ACO due
to its successful performance on constrained combin&toptamization problems.
Therefore, only these nature inspired algorithms are e@xpiain the following

sections.

3.1 Evolutionary Algorithms

EAs are population-based stochastic search methods that bhaen applied
successfully in many search, optimization, and machineieg problems [4]. EAs
iteratively operate on a population of individuals (or almasomes) that encode the
possible solutions. EAs can be used to search for an indivigalding the optimum
(i.e., minimum or maximum) numerical value of an evaluatfonction, called the
fitness function. There are many variations of EAs in theditere, and the EA term

provides a common basis for all of its variants.

There are two commonly used population dynamics in EAs: geiomal EAs and

steady-state EAs. In steady-state EAs, the initial popuras generated randomly
or through some heuristics. Then, in each iteration a neuvitheal is created and
inserted into the population until the termination cridedre met. Commonly three
genetic operators are used to generate new individualsctsa, recombination and

mutation, based on modeling the natural evolution.

Individuals are selected as parents to produce offspriaggdb on their fithess values.
The selection mechanism is usually probabilistic, wheghtgquality solutions are
more likely to become parents than low quality ones. Thezerarious methods [4] for
selecting the parents, such as, roulette-wheel seleciodhastic universal sampling,

and tournament selection.
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The recombination operator, is applied on the selectediishaials with a predefined
crossover probability. This operator takes two individuahd exchanges some genes
between them to generate the offspring. The main idea irsowes is to combine good
partial solutions of parents to form new solutions. Thereraany forms of crossover
operators, such as, 1l-point crossover, n-point crossavemiorm crossover [4].
Crossover occurs between two individuals with a predefimetability. This is called

the crossover probability, which is usually a high valueselto 1.

After the crossover, offspring are mutated with a certainbpbility, called the
mutation probability. Mutation operator is responsiblerestoring diversity that may
be lost from the repeated application of selection and onass This operator makes a
small change in the solution, such as changing a bit from Jiri@®it string. Mutation

probability is a small value close to 0.

Finally, the offspring is inserted into the population @phg one of the existing
individuals based on some criteria, such as replacing thstyweplacing the oldest,
replacing the most similar, etc. This cycle is performedluhe termination criteria
are reached, which may be defined as achieving a solutionanstifficient quality,
reaching a predefined maximum number of generations or $imeguations, reaching

convergence, etc.

The general view of an EA in pseudecode is given in Algorithm 1

Algorithm 1 Steady-state Evolutionary Algorithm
1: generate initial population randomly
evaluate initial population
. while not termination criteria metlo
select parents to mate
recombine parents
mutate the created offspring
evaluate the created offspring
end while

© N ahwN

3.2 Ant Colony Optimization Algorithms

ACO [5] is one of the most commonly used swarm intelligenaghbéques and is

inspired from the behavior of real ants. ACO has been apglimtessfully to many
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combinatorial optimization problems such as routing peais, assignment problems,

scheduling and sequencing problems and subset problems [5]

One of the first successful implementations of ACO is the Argt&n (AS). AS has
been the basis for many ACO variants which have become the-atahe-art for
many applications. These variants include elitist AS (EA8hk-based AS (RAS),
MAX-MIN AS (MMAS), ant colony system (ACS), best-worst AS BAS), the
approximate nondeterministic tree search (ANTS), and ymehcube framework.
AS, ACS, EAS, RAS, MMAS and BWAS can be considered as direcamgs of AS
since they all use the basic AS framework. The main diffeesricetween AS and
these variants are the pheromone update procedures andadditienal details in the

management of the pheromone trails.

The algorithmic flow of the basic ACO algorithm [5] is given Algorithm 2. An

iteration consists of the solution construction and phenoenupdate stages.

Algorithm 2 Basic Ant Colony Optimization Algorithm
1. set ACO parameters
2: initialize pheromone levels
3: while stopping criterianot metdo
4.  for each ank do
5 select random initial node
6 repeat
7 select next node based on decision policy
8
9

until complete solution achieved
end for
10:  update pheromone levels
11: end while

In each iteration, each ant in the colony constructs a camgelution. Ants start
from random solution components and continue by adding é&x¢ component. For
each component, the next component to be added is determhmreadjh a stochastic
local decision policy based on the current pheromone lamsheuristic information
between the current component and the others. Ak datermines its next component

with a probabilityp}‘j as calculated in E@.1,

Ti‘]-’ . nﬁ
K - o B
P =14 Dk
0 otherwise
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where 1j; and nj; are the pheromone level and heuristic information between
components and | respectively,a and 3 are parameters used to determine the
effect of the pheromone level and heuristic informatiomessively,NK is the allowed

neighborhood of arit when it is at node.

Pheromone levels are modified when all ants have constractanmplete solution.

First, the pheromone values are lowered (evaporated) bynstaat factor between
all component pairs. Then, pheromone values are increaseeén the components
which the ants have used during their solution constructlimeromone evaporation
and pheromone update by the ants are implemented as givemm BiZand Eq.3.3

respectively,

Tij — (1—p)Tjj (3.2
m

Tij < Tij + Z ATil} (3.3
k=1

where,mis the number of ants,Q p <1 is the pheromone evaporation rate mﬁ IS

the amount of pheromone akteposits between the solution components it has used.
Ari'j is defined as given in EQ@.4, whereCy is the cost of the solutiofi, built by the

k-th ant.

k| 1/Cc if edgéi, ) € Ty
Atij = { 0 otherwise (3-4)
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4. SURVIVABLE VT MAPPING USING NATURE INSPIRED HEURISTICS

In this thesis, to solve the survivable VT mapping problene, etnose evolutionary
algorithms (EAs) due to their successful applications onddfplete problems and
ant colony optimization (ACO) due to their successful perfance on constrained

combinatorial optimization problems.

Designing a solution representation that is well-suitetheoproblem is crucial in EA
and ACO performance. The survivable virtual topology (VT@pping problem can be
seen as a search for the best routing of lightpaths throughigadd links. Therefore,
we use a solution encoding inspired from [40] for both heioss For this encoding,
first, thek-shortest paths for each lightpath are determined. Thesipyéien candidate
is represented as an integer string of lenigtivherel is the number of lightpaths in
the VT. Each location on the solution string gives the indéthe shortest path for
the corresponding lightpath, which can take on values etk k|, wherek is the
predefined number of shortest paths for each lightpath. ¥@nple, assume thkt= 3
and there are 5 lightpath¥) (n the VT, a sample solution can be [2 1 1 3 1]. This
means that, the first lightpath is routed using [t$ €hortest path, the second lightpath

is routed using its % shortest path, etc.

Our objective is to minimize the total cost of resources.,(M&avelength-links) used

throughout the network. This resource cost is evaluatedadifferent ways:
e by considering the actual lengths of the physical linkskfdoost)
e by counting the number of physical links used (hop-count)

There are survivability and capacity constraints (seei@e@.3) to be considered
in the survivable VT mapping problem. Constraint violasoare considered as
penalties in the fitness evaluation stage of the EAs. In A@Dstraints are taken into

consideration during solution construction, i.e., no ¢ast violations are possible.
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4.1 Proposed Evolutionary Algorithms

We designed a steady-state EA with duplicate eliminatidmene a new individual is
generated and inserted into the population at each iteratikfter a random initial
population generation, the EA operators are applied to dh&tien candidates until
a predefined number of fitness evaluations are executed. Séhelpcode for the EA

used in this thesis is given in Algorithm 3.

Algorithm 3 Pseudocode for the Proposed Evolutionary Algorithm
1: generate initial population randomly
2: evaluate initial population
3: while not predefined number of fithess evaluations are dtme
4:  select parents through binary tournament selection
5. recombine selected parents uniformly
6: mutate the created offspring according to the selectedtioatype
7
8
9

if offspring is not duplicatéhen
evaluate the created offspring according to selected fiteesluation type
if fitness of offspring better than fithess of wadrs&n

10: offspring replaces worst in population
11: end if

12: else

13: discard offspring

14.  endif

15: end while

Mating pairs are selected through binary tournament selectBinary tournament
selection considers randomly chosen two individuals; ther fof the two is selected as
a parent. After selecting two parents, these selectedithdils undergo reproduction.
Reproduction consists of uniform crossover and problensipenutation operators.
In uniform crossover, the offspring takes the genes frorheeiparent with equal

probability.

We define two different mutation operators. The first one igngpke random-reset
mutation, called gene mutatioggng. In this type of mutation, the value of a gene is
randomly reset to another value within the allowed range ietween 1 anki where

k is the number of shortest paths.

The second is a problem-specific mutation operator, cadlastIsimilar path mutation
(Is_pm. This mutation operator considers the physical link samiies between the

shortest paths of each lightpath, where similarity is defiag the number of common
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physical links. Inls_pm if mutation occurs on a gene, its current value is replaced
by the index of the least similar shortest path for the cqwesling lightpath. The

pseudecode fds_pmis given in Algorithm 4.

Algorithm 4 Pseudocode fds_pm
1: for i =1 to number of geneso
2:  if mutation takes place for this getigen
; find the index with the smallest similarity value

3

4 if there are more than one with same smallest similahgn
5: randomly select one of them

6: end if

7 change the value of the gene as the selected index

8: endif

9: end for

Violations of the constraints for the problem, i.e., thevatability and the capacity
constraints, are included as penalties in the fitness fomctin order to determine if
the solution is survivable or not, each physical link is tedrom the physical network
one by one. If the VT becomes disconnected in the event of kebrphysical link,

the solution is taken as unsurvivable. The connectivityst@mt is ensured within the
algorithm, therefore, no explicit verification is needetiepenalty for an unsurvivable

solution is determined in three different ways:

1. The total number of physical links, whose failure resuhsthe network

unsurvivability ().

2. The sum of the total number of lightpaths that become disected in the event of

each physical link failure [45,471&).

3. The maximum of the total number of lightpaths that becomeahnected in the

event of each physical link failure [45]i%s).

Each of the fithess evaluation methods we defifig, f;, and f3, use the penalty
calculation methodsys;, us, anduss, respectively. In the first fithess evaluation
method 1), the connectivity of the graph is checked for the failureeath physical
link, which needs an algorithmic complexity Gf(e.n®). On the other hand, for the

second and the third fitness evaluation methdgaid f3), a shortest path algorithm is
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applied for the failure of each physical link, which me&fs$.(e+n).logn) algorithmic
complexity. Heregis the number of physical links, is the number of nodes, atds

the number of lightpaths.

A capacity constraint violation adds a penalty value whgprioportional to the total
number of physical links which are assigned more lightp#ths the predetermined
wavelength capacity (wavelength capacity violation). IBgenalties, i.e. the
survivability and the capacity penalty, are multiplied wienalty factors and added

to the fitness of the solution.

As aresult, if we use the link cost evaluation method for dteltcost of resources used

throughout the network, the three fitness values are caézlies in the following:

1. f; = total length of the physical links used throughout the mekw+ penalty

factor*wavelength capacity violation + penalty factary()

2. f, = total length of the physical links used throughout the mekw+ penalty

factor*wavelength capacity violation + penalty factar¥f)

3. f3 = total length of the physical links used throughout the mekw+ penalty

factor*wavelength capacity violation + penalty factarsf)

Similarly, if the hop count evaluation method is used for tb&l cost of resources

used throughout the network, the fithess values are cadtliéet in the following:

1. f; = total number of wavelength-links used throughout the oétw+ penalty

factor*wavelength capacity violation + penalty factary()

2. f, = total number of wavelength-links used throughout the petw+ penalty

factor*wavelength capacity violation + penalty factar¥f)

3. f3 = total number of wavelength-links used throughout the oetw+ penalty

factor*wavelength capacity violation + penalty factarsf)

At the final stage of the EA loop, the fitness value of the offgpis calculated and

compared to the worst individual in the current populatibthe offspring is different
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than this worst individual and has a better fitness, it regdaihe worst individual,

otherwise it is discarded.

4.2 Proposed Ant Colony Optimization Algorithms

ACO can be applied to the survivable VT mapping problem irraightforward way.
As the algorithm may lead to different solutions, ants rabtelightpaths in a random
order. For example, an ant may route the fifth lightpath aed the second lightpath
and so on. The flexibility of selecting lightpaths in a randorder may increase the
number of feasible solutions because for a survivable isolut a lightpath can only
be routed using a few shortest paths, routing this lightpattier may result in better

solutions.

The physical topology is used as a construction graph oniwhitds travel and
construct their solutions. Ants try to route lightpaths ba graph one-by-one. Each
ant starts to route a random lightpath. The shortest patiasebe the end points of the
lightpaths are provided to ants at the very beginning of therdghm. Ants determine
one of the shortest paths of the selected lightpath whilenggthe nodes of the shortest
paths on the construction graph and checking if the chosertestt path violates the
constraints (i.e. the capacity and the survivability coaists) or not. If the solution
becomes infeasible for a shortest path selected for thigkdgim, another shortest path is
examined. If none of the shortest paths leads to a feasihlé@q this ant is removed

from the colony.

Ants decide their move on the construction graph based ondtieland pheromone
information. Two pheromone matrices are implemented:igtgpath and the shortest
path pheromone matrix. According to the lightpath pheroenaratrix value,ri'j,
lightpath j is chosen directly after lightpaihfor mapping. The lightpath pheromone
matrix has lightpaths in its columns and rows and gives tfegmmation which lightpath
Is more valuable to choose after the current lightpath. Tioetest path pheromone
matrix value,risj , on the other hand, refer to the desirability of seleciffighortest path
of lightpathi. Thus, the rows of the shortest path pheromone matrix hgipiaths
and the columns have corresponding shortest paths and thwesformation about

which shortest path leads to better results when selecteéddaurrent lightpath.
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The pheromone matrices are initialized in the beginningefigorithm with the same
value for each possible choice of the ant. The differenceaated by the heuristic
informationn;j that is inversely proportional to the length of tff8 shortest path of
lightpathi, i.e. nijj = 1/dij. The next lightpath to route is decided according to the
lightpath pheromone matrix. To decide the proper shortst gf the chosen lightpath,
the heuristic information is used together with the shopiath pheromone matrix. For
the heuristic information, a combined pheromone matrixedathe total pheromone
matrix is used, which is computed q$ . nff. After the solution construction of each
ant, the pheromone matrices are updated. The amount of atai@th pheromone is

proportional to the quality of the solutions used to updagegheromone levels.

In a collaborative study [74, 75], 6 direct variants of Ants&m (AS) (AS, elitist
AS (EAS), rank-based AS, ant colony system (ACS), max-minl#St-worst AS) for
survivable VT mapping problem are designed. In the expeartaistudy, we ended up
with the result that, ACS and AS are the worst and EAS is theédfes!. Since EAS
outperforms the others for the survivable VT mapping problm this thesis, we use
EAS as the AS variant, and solution approach using EAS isaaxgdl in this section.

For the implementation details of other AS variants, youreder to [74].

Algorithm 5 EAS Pheromone Update
1: for each antlo
Global Pheromone Update
end for
. for best-so-far ando
Weighted Global Pheromone Update
end for

The main differences between AS and its variants are theoptmre update
procedures and some additional details in the managemeaheqgiheromone trails.
There are three different pheromone update proceducesil pheromone update
global pheromone updandweighted global pheromone updata EAS pheromone
update procedure (see Algorithm 5), the global pheromomkatep(see Algorithm 6)

and the weighted global pheromone update (see Algorithme/Qised.
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Algorithm 6 Global Pheromone Update
1: for each ank do
for each lightpatti chosen;jt" shortest patllo
S+ 1 > T8
1] resource usage 1]
end for

3
4
5. for each lightpath chosen before lightpathdo
6
7
8

[ 1 s 7l
T+ resource usage > Tit

end for
: end for

Algorithm 7 Weighted Global Pheromone Update
1: for each ank do

2: for each IlghtEath chosenjth shortest patldo

3: 7S+ —_weignt t > 1S
1] resource usage 1]

4. end for

5. for each Ilghtpath chosen before lightpathdo
| weight |

6 Tit* Tesource usage ~ it

7. end for

8: end for

In global pheromone update, after each ant constructs lisi@o, both shortest path
and lightpath pheromone matrices are updated on the edgeantk visited. The
pheromone levels are updated according to the solutiontgudleach ant. In this

: 1
theSIS’resour

FESOUICE USagAS accumulated on pheromones whexgource usagis the number

of wavelength-links used by the corresponding ant.

The weighted global pheromone update differs from the dlapdate in the amount

that is added to pheromones. The pheromone levels are sscterith the amount

weight
resource usage

pheromone. In EAS, global pheromone update is used onlyh®rant with the

where weight is used to allow the selected ants to deposié mofess

best performance at that instant (best-so-far ant). Thghtés determined with the

parametee.

The algorithm flow of pheromone update is shown in AlgorithmEach ant, after
constructing a solution, first evaporates pheromone l@retbe visited edges and then
calls the pheromone update procedure. In the end, the vafubs total pheromone

are updated ag] . nff :
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Algorithm 8 Pheromone Trail Update
1: evaporate pheromones
2: call pheromone update procedure
3: compute total pheromone q$ . nﬁ

While constructing a solution, each ant is initially placada randomly chosen start
lightpath and one of its shortest paths is selected randomtyeach step, the ant
iteratively adds an unvisited lightpath to its partial $mno and determines the shortest
path to route the selected lightpath. The solution constmderminates once all

lightpaths have been routed.

Algorithm 9 Solution Construction
1: for each antlo
2:  place ant on randomly selected lightpath
3: choose random shortest path for the selected lightpath
4: end for

5. while step<n—1do

6

7

8

9

step ++
for each antlo
move to next step
. end for

10: end while
11: for each antlo
12:  Pheromone Trail Update
13: end for

Solutions are constructed by applying the following simgastructive procedure to
each ant:

(1) choose a start lightpath and one of its shortest paths,

(2) use lightpath pheromone information to select the ngktpath to route,

(3) use shortest path pheromone information together wighheuristic values to
probabilistically determine the path between the nodeb®tbrresponding lightpath,
until all lightpaths have been visited. If the ant cannoésth shortest path that makes

the solution feasible, this ant is removed from the currration.
The algorithm flow of solution construction is shown in Algbm 9.

Selecting the next lightpath to route is implemented usihg pseudo-random

proportional action choice rule. According to this rulecledightpath is assigned a
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probability proportional to the corresponding value inligatpath pheromone matrix.
A cumulative probability is calculated and a random poisekected in this probability
array. The corresponding lightpath is selected. The sibpath for the selected
lightpath is chosen using the same way but total pheromonexigused instead of
the lightpath pheromone matrix. Algorithm 10 shows the psetandom proportional

action choice rule.

Algorithm 10 Pseudo-random proportional action choice rule
1: sum_prob=0
2: for each lightpath do
if visitedthen
prop_ptr[i]=0
else
prop_ptr[i]= lightpath_pheromone[current lightpath]][i
sum_prob += prop_ptr][i]
end if
select randomly a point in sum_prob
10:  calculate the associated lightpath
11: end for
12: sum_prob =0
13: for each shortest path®f lightpathl do
14: if not feasiblghen
15: prop_ptr[i]=0

w

© N g

16: else

17: prop_ptr[i]= total_pheromon#[i]

18: sum_prob += prop_ptr][i]

19: endif

20: if sum_prob = Qhen

21: remove ant from colony

22: else

23: select randomly a point in sum_prob
24: calculate the associated shortest path
25.  endif

26: end for

4.3 An lllustrative Example

Consider the physical and virtual topologies given in Fegdrl.a and b. The first 4
shortest paths calculated based on hop counts and link carstise seen in Table 4.1.
Here, the first column shows the lightpaths as source-dggimnode pairs. Four
shortest paths found using hop counts are given in the nextfdumns, and 4 shortest

paths found using link costs are given in the last four colsimn
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Figure 4.1 a.Physical Topology, b.Virtual Topology, c.lllustraticof mapping for
individual [112311 2].

Table 4.1 Four different shortest paths for the lightpaths of theneple VT given in
Figure 4.1.b.

‘ H hop count ‘ link cost ‘

lightpath SpL S Sps S SpL S Sps S
1-2 (a) 1-2 1-3-2 | 1-3-4-2| 1-3-5-4-2|| 1-3-2 1-2 1-3-4-2 | 1-3-5-4-2
1-4 (c) 1-2-4| 1-3-4 | 1-3-2-4| 1-3-5-4 || 1-3-4| 1-3-5-4| 1-3-2-4 1-2-4
1-5 (b) 1-3-5| 1-2-4-5| 1-2-3-5| 1-3-4-5 || 1-3-5| 1-3-4-5| 1-3-2-4-5| 1-2-4-5
2-3 (d) 2-3 2-1-3 2-4-3 2-4-5-3 2-3 2-4-3 2-1-3 2-4-5-3
2-4 (e) 2-4 2-3-4 | 2-1-3-4| 2-3-54 2-4 2-3-4 2-3-5-4 | 2-1-3-4
3-4 (f) 3-4 3-2-4 | 3-5-4 | 3-1-2-4 3-4 3-5-4 3-2-4 3-1-2-4
4-5(g) 4-5 4-3-5 | 4-2-3-5| 4-2-1-3-5|| 4-5 4-3-5 | 4-2-3-5 | 4-2-1-3-5

Assume we have a solution encoded as[1 1 2 31 1 2], for whichltisical topology,
the VT, and the mappings are shown in Figure 4.1. Accordingheohop count
evaluation method, this encoding means that the first lmthtpises the i shortest
path (1-2), the second one uses tReshortest path (1-2-4), and the third one uss 2
shortest path (1-2-4-5), etc. If we sum up the number of veagth-links used in this
solution, we have a total of 12 wavelength-links for hop dawaluation. On the other
hand, if the link cost evaluation method is used for the saohatisn encoding, the
15t shortest path of the first lightpath is (1-3-2), which hastaltoost of 250, the &
shortest path of the second lightpath is (1-3-4), with a 06800, and the ® shortest
path of the third lightpath is (1-3-4-5), with a cost of 406;.6Summing up the cost of

paths used for each lightpath gives a total cost of 2250 itk cost evaluation.
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For this sample solution, if EA is used, considerifig if a failure occurs on the
physical links connecting nodes 1-2, 2-4, or 3-4, the VT loee® disconnected. In
the EA, assume that, a penalty is applied to this solutioedas the sum of the
total number of lightpaths that become disconnected invbateof each physical link
failure. If 1-2 link is broken, 3 lightpaths (a,b, and c) redton this link will get

disconnected, if 2-4 link is broken, 4 lightpaths (b,c,dd @) will be disconnected,
and if 3-4 link is broken, 2 lightpaths (d and f) would not find alternative path
to communicate. As a result, a penalty of @ is added to the fitness, whepes the

penalty factor. On the other hand, since ACO checks the cnt during the solution

construction, such a solution would not be generated.

Six different fithess values for EA, calculated using thriéecent evaluation functions
and two different cost metrics are given in Table 4.2. Whdautating the fitness, the
link costs given in Figure 1.1.a are normalized dividing 01 On the other hand,
since ACO checks the constraints during solution constrmgcsuch a solution would

not be generated.

Table 4.2 Fitness values for individual [1 1 2 3 1 1 2] calculated udimge different
evaluation functions and two different cost metrics. pgniactor=100.

hop count link cost

f1 | 12+100*3=312 | 22.5+100*2=222.5
f, | 12+100*9=912 | 22.5+100*5=522.5
f3 | 12+100*4=412 | 22.5+100*3=322.5

In the EA, if the crossover operator is applied to two indinats with the encodings
[1123112]and[224132 4], an offspring with encoding [2 1 2 2 3] would
be created, if the second, third, and the last genes are takarthe first parent, and
the other genes from the second parent. For the mutatioratmpesf EA, assume a
Is_pmmutation occurs on the second gene of this sample indivifiudl 2 3 1 1 2]),
the new individual becomes [1223112]or[142 311 2]with dquabability,
if shortest paths are calculated according to hop countedime first shortest path of
the second lightpath has no common link with the second amtbtirth shortest paths
(least similar paths). However, if link costs are used iadig¢he individual becomes

exactly [1 4 2 3 11 2], since this time the first shortest patthefsecond gene has one
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common link with the second and the third shortest paths,reme with the fourth
shortest path.
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5. EXPERIMENTAL STUDY FOR SURVIVABLE VT MAPPING

To evaluate the performance of our newly designed solutippraaches for the
survivable virtual topology (VT) mapping problem, threéelient physical topologies

are used throughout the thesis:

e The 14-node 21-link NSF-network (NSFNET) (see Figure 5.1)
e A 24-node 43-link network (see Figure 5.2)

e A 48-node 89-link network (A combination of two of the samedtogies in

Figure 5.2 joined at the nodes 1, 9 and 24) (see Figure 5.3)

Figure 5.1 14-node 21-link NSF-network topology.

For the experimental study of the survivable VT mapping feol) we used VTs of
different average connectivity degrees: 3, 4, and 5. Fdn eaanectivity degree, we

created random VTs.

The experimental study in this thesis has proceeded in foasgs:

e Design an efficient evolutionary algorithm (EA) for the swable VT mapping
problem

e Fine-tune the parameters used in the EA for the survivablendpping problem

e Evaluate the EA performance for different sized physicavoeks
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e Compare the EA and ACO performance designed for the suri@wdb mapping

problem and an ILP solution of the problem

Figure 5.3 48-node 89-link physical topology.

The experimental results for each phase are given in theWolg sections.

5.1 Designing an Efficient Evolutionary Algorithm for the Survivable Virtual

Topology Mapping Problem

To find the most efficient EA design for the survivable VT maggpiproblem,
we proposed two different mutation operators and threedifft fithess evaluation
methods given in Chapter 4.1. To determine a good operatbeealuation method
combination, we performed a series of experiments on oulyneéesigned mutation
operators and fitness evaluation methods. In these exp#simee used three metrics

for performance comparisons, namely success rate (sr}, hirsime (fht), and
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correlation length. Success rate is defined as the peraofggogram runs in which
a survivable mapping that does not violate the capacitytcains is found. First hit

time is the first iteration during which the best solutionne@untered.

Ruggedness [76] is commonly used to analyze the structuithess landscapes and
algorithm behavior. The autocorrelation function (ACF)oise of the simplest and
the most commonly used techniques for analyzing the rugegsdof a landscape.
The ACF looks at the amount of fitness correlation betweerpthets in the search
space and takes on values betwéen, 1]. Values close to 1 denote a high positive
correlation and values close to 0 show low correlation. Th& Aalueps is calculated
asin Eq.G.1).
_ S o (fi— f_)(ft_+s— f)
Sa(fi—)2

where,sis the step siz€T is the total number of sample points,is the fithess of the

Ps (5.1)

t. solution, andf is the average fitness of all the points.

To compare the ruggedness of different landscapes, udhallyorrelation length}
as defined in Eq.5.2) is used. A high correlation length means a smoother lapésca

while a low correlation length shows a more rugged landscape

1
A= “TiaT (5.2

A high correlation length means a smoother landscape, \@Hie correlation length

shows a more rugged landscape.
A brief explanation of fithess landscape analysis is givefsgpendix A.

For the experiments, we used two different physical topekigthe 14-node 21-link
NSF network (see Figure 5.1) and a 24-node 43-link netwaoek (Egure 5.2). For
each physical topology we created 10 random VTs with avetageectivity degrees

of 3, 4, and 5. We assumed 10 wavelengths per physical link.

In the EA performance tests, we considered a maximum fitnessiaion count of
5000, mutation probability of A, wherel is the number of lightpaths, crossover
probability of 1.0, and population size of 100, and we ranghagram 20 times for

each parameter sefThese parameters values are determined according tortiraco

10n average a feasible solution is obtained for this probletess than half a minute.
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values of the corresponding parameter used in the litexratorthe landscape analysis

tests, we used a random walk consisting of 1000 steps andS0 ru

We propose two different ways to evaluate the objective,méimizing the total cost

of resources used throughout the network:

e considering the actual lengths of the physical links (liokt}

e counting the number of physical links used (hop count)

Since these two fitness evaluation methods result in diffeseders of fithess values,
we apply different penalty factors. A penalty factor of 26@ised in the tests using hop
count for shortest path calculation, and 300 in the testsgugnk cost. These values

are determined experimentally.

The detailed test suitis given in Table 5.1 for the EA perfance tests, and in Table 5.2

for the landscape analysis tests.

Table 5.1 Test suit for EA performance.

Number of physical topologies 2 (NSFNET and 24-node 43-link topology)
10 (3 connected)
Number of virtual topologies | 10 (4 connected)
10 (5 connected)

Fitness function types 3 (f1, f2, andfs in Chapter 4.1)

Mutation types 2 (geneandls_pmin Chapter 4.1)

Link evaluation methods 2 (hop count and link cost)

Shortest path numberk)( 3(2,3,4 for NSFNET; 5,10,15 for 24-node 43-link topology)
Number of runs 20

Total | 2:30+3+2+2*3*20 = 43200 runs |

5.1.1 Experimental results

All EA component combinations we tested were able to solegtioblem for the NSF
network for all 30 VTs, i.e., they were able to find survivadtéutions of equal quality
for all VTs. Since, the NSF network is a fairly simple and sgagraph, the results do
not show meaningful differences between the tested cortibitea Therefore, in this

thesis we only report the results for the topology in Figu 5
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Table 5.2 Test suit for landscape analysis.

Number of physical topologies 2 (NSFNET and 24-node 43-link topology)

10 * 3 connected

Number of virtual topologies | 10 * 4 connected

10 * 5 connected

Fitness function types 3 (fy, f2, andfs in Chapter 4.1)

Neighborhood types 2 (geneandls_pmin Chapter 4.1)

Link evaluation methods 2 (hop count and link cost)

Shortest path numberk)( 3(2,3,4 for NSFNET; 5,10,15 for 24-node 43-link topology)
Number of runs 50

Total | 2+30+3+2*2*3*50 = 108000 runs |

The results of the experiments are given in Tables 5.3, bid 585. Table 5.3 shows
the success rates, Table 5.4 shows the correlation lengtiasTable 5.5 shows the
first hit times. In all the tablesf; denotes the corresponding results for ifiditness

evaluation method. In the top half of the tables, the resalitained using thgene

mutation are given, whereas in the bottom half, lfhi@mresults are given. Also, the
results for three connectivity degrees, 3, 4, and 5, can &e sethe tables. For the
correlation length and the EA first hit time results, we alsovged the standard errors

of the meanssd) in the tables.

From the tables, we can see that there is a difference in alctimbinations for
smaller shortest path counts and low connectivity degrBiesse are relatively difficult
problems because the probability of finding potential magpincreases with the node

degrees and the number of alternative shortest paths.

As can be seen in Table 5.3 the performance of the third fiteealation method
(f3) is the worst of all. This is confirmed by Table 5.4, whégehas lower correlation

lengths tharf, and f,, showing a more rugged landscape.

A difference betweeri; and f, can be seen for the 3 connected virtual topology tests.
We can sayf, performs better than the others on relatively difficult peos. In
order to confirm this result, we created 100 different virtopologies of connectivity
degree 3 and ran the program 100 times for each of these @gips|dor 5 shortest
paths,genemutation, and hop count. We applied a 2 sample 2-tailedttviéh a

significance level of 0.05 and saw a statistically signifiadifference between these
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two fitness evaluation methods. However, if the algoritheomplexity of fitness
evaluation methods, as explained in Chapter 4.1, are ceresldwe can say thdp
is better. Thereforef, should be preferred for virtual topologies having largegrées

of connectivity.

A difference can be seen between hop count and link costtseful f1 and f;

in Table 5.3. However, as a result of a t-test applied sifyilas in the previous
paragraph, we cannot say that there is a statistically feggnt difference between
them. Similarly, there is no difference in their landscagggiven in Table 5.4. If we

consider the first hit counts, we can prefer hop count to lwdt.c

A difference betweegenemutation ands_pm can be seen in Table 5.3. However,
again as a result of the same type of t-test as in the previatesgmphs, we cannot
say that there is a statistically significant differencensstn them. However, if we
look at Table 5.5, we can see that the first hit timedsofom is lower thangene
mutation. In Table 5.4, it can be seen that the correlatiogtles forls_pmis less
than thegenemutation. This is an expected result, since the neighbatledinition

for Is_pmmeans the most faraway results.

As a summary of the experiments, usitsgpm, hop count,f, (f; in sparse virtual
topologies) can be recommended as components for an eff&oA for the survivable

VT mapping problem.
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Table 5.3 Success rates for 24-node network.

5 shortest paths 10 shortest paths 15 shortest paths
hop count link cost hop count link cost hop count link cost
f1 fa f3 f1 fa f3 f1 f f3 f1 fa f3 f1 fa f3 f1 fa f3
3 89 62 195( 71 57 18.5(| 89.5 95 51.5| 89 94 52.5 92 95.5 51 | 935 935 545
gene | 4 90 90 88 90 90 78.5|| 100 100 97 | 100 100 92.5|| 98.5 99 95.5| 99.5 100 935
5| 100 100 100| 100 100 100|| 100 100 100| 100 995 100|| 100 100 100| 100 100 100
3 89 625 29| 73 595 23 93 95 61 | 915 91 65.5( 95 955 635 92 935 64
Is_pm | 4 90 90 90 | 90 89.5 885( 100 100 100| 99.5 100 96.5|| 985 99.5 100| 99 100 96.5
5 100 100 100| 100 99.5 99 100 100 100 | 99.5 100 100 || 100 100 100 | 100 100 100
Table 5.4 @/erage and standard error of correlation lengths.
©
5 shortest paths 10 shortest paths 15 shortest paths
hop count link cost hop count link cost hop count link cost
f]_ f2 f3 fl f2 f3 fl f2 f3 f]_ f2 f3 f]_ f2 f3 fl f2 f3
A 15.3 16.21 9.37| 1549 16.52 11.44|| 15.22 16.53 10.11] 15.47 16.8 11.54|| 14.77 16.41 10.24 14.74 16.41 11.22
e 0.14 0.14 0.11| 0.14 0.15 0.13 0.14 0.15 0.12| 0.14 0.16 0.14 0.13 0.16 0.11| 0.14 0.15 0.13
gene A 18.31 20.47 12.45 18.66 20.42 13.54{| 17.16 20.41 11.93 17.85 20.45 12.35| 16.7 19.68 11.36| 17.1 20.69 12.3
e 0.2 0.22 0.16 0.2 0.22 0.17 0.19 0.23 0.14 0.2 0.22 0.14 0.17 0.21 0.11| 0.19 0.23 0.14
A 16.97 2282 13.86 18.74 23.82 14.83]| 16.38 22.81 13.31 17.08 23.23 14.25| 1549 2242 12.34 1596 22.19 13.32
e 0.2 0.27 0.16 | 0.22 0.29 0.18 0.2 0.27 0.15| 0.2 0.28 0.16 || 0.18 0.28 0.13| 0.19 0.27 0.15
A 10.81 11.09 6.59| 10.55 10.78 7.02|| 10.44 10.83 6.73| 10.2 10.56 7.13|| 10.51 11.18 6.91| 10.18 10.84 7.12
e 0.09 0.09 0.06| 0.1 0.09 0.07 || 0.08 0.08 0.06 | 0.08 0.08 0.08 || 0.08 0.09 0.07| 0.08 0.1 0.07
Is_pm A 12.86 13.43 7.98| 12.02 12.72 8.58( 11.79 1241 7.85| 11.73 12.5 7941 11.68 13.02 7.91| 11.97 12.48 7.96
- e 0.14 0.13 0.07| 0.11 0.11 0.08 0.11 0.11 0.08 0.1 0.12 0.07 0.1 0.12 0.08 | 0.12 0.11 0.07
A 12.09 14.76 9.53| 12.41 15.26 9.77|| 11.77 14.27 9.15| 11.96 14.26 9.37|| 11.96 14.2 9.36| 11.88 13.53 9.21
e 0.13 0.14 0.09| 0.13 0.16 0.09|| 0.13 0.15 0.08| 0.13 0.15 0.08|| 0.14 0.14 0.09| 0.13 0.14 0.09
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Table 5.5 Average and standard error of EA first hit times.

5 shortest paths

10 shortest paths

15 shortest paths

hop count link cost hop count link cost hop count link cost
f1 fa f1 f, f1 f, f1 f, f1 fa f1 fa
fht || 2735 2715| 4012 3530| 4176 4256| 4815 4834| 4670 4666| 4901 4895
e || 53.56 72.75| 42.58 84.23|| 38.55 34.4| 1456 13.08/| 20.71 18.69 9.97 8.17
gene fht || 2721 2889| 4436 4176| 4343 4464| 4900 4897| 4751 4765| 4922 4912
e || 4815 55 | 3185 6108|3339 279| 7.35 88 | 13.94 1353 547 8.29
fht || 3250 3382| 4828 4573| 4691 4764| 4916 4921 4850 4871| 4940 4923
e 47.1 50.04| 14.04 53.59|| 19.32 14.77| 5.76 6.56 9.1 8.62 | 524 16.92
fht || 2722 2875| 3653 3334| 3912 3993| 4499 4624| 4322 4442| 4750 4814
e || 56.44 71.42| 51.19 74.09|| 46.68 45.81 31.44 28.04| 39.27 33.44| 22.85 16.04
s pm fht || 2621 2945| 3964 3861| 3849 4003| 4731 4758| 4469 4492| 4867 4884
e || 55.42 59.4| 45.1 62.98| 45.65 45.03| 19.75 20.03|| 30.44 25.22| 9.37 8.72
fht || 2937 3146| 4516 4367| 4321 4415| 4881 4878| 4738 4768| 4892 4915
e || 48.31 49.07| 29.35 53.73| 34.82 31 | 10.35 10.76|| 16.15 15.61] 7.87 6.71
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5.2 Evolutionary Algorithms Parameter Setting

In the first set of experiments given in Chapter 5.1, we fourat the problem can
be solved using EAs. In order to fine-tune the EA algorithm,used the 24-node
43-link network topology in Figure 5.2, and 50 randomly ¢eeb5 connected virtual

topologies for this network.

The hop count evaluation method is used for shortest patiuledilon because, unlike
the link-cost method, it gives the exact number of used maydinks, so when we
compare two solutions based on hop count we can easily aséchbw much better
one solution is than the other. However, in the link-costimad{ one solution may give

a much higher resource usage value by using only one morécahiysk.

As the fitness evaluation method, we uségd i.e., the unsurvivability penalty
calculated as the sum of the total number of lightpaths teabime disconnected in
the event of each physical link failure is added to the res®usage. To determine the

penalty factor, we experimented with different values asid aesult, we selected 200.

The number of shortest paths are selected as 15, which digdargest search space
in the experiments. The largest search space is selectadideethe maximum time
allowed to the programs should be determined accordinge@tbblem that requires
the longest time. The program is run 20 times for each set Hnpeters, and the

results are the averages of these 20 runs.

Since Is_pm performs better thamgene mutation according to the results in
Chapter 5.1.1, we experimented with a variationofpm based on the physical link
costs. In this third mutation typens _pm), the current value of thgeneis replaced
by the index of the most similar shortest path for the cowesing lightpath. In the
parameter setting tests, we include three mutation typasety, gene Is_pm, and

ms pm

We performed a series of tests to fine-tune the parameteassiding the crossover

probability, the mutation probability, the populationesizand the number of fitness
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evaluations. In these experiments, we used three metripeformance comparisons,

namely success rate (sr), best fitness (bf), and first hit ¢l

In Table 5.6, the commonly used range of values [4], the rahgalues we tested, and
the range of values that can be selected are listed for th& B experimental results

for the parameter setting tests are given in Tables 5.75%&nd in Figure 5.4.

Table 5.6 The Default and Tested Range of Values(RoV) for EA Pararadte be

Fine-tuned.

PARAMETER DEFAULT RoV TESTED RoV ELIGIBLE RoV
crossover probability [0.5,1.0] 0.7,0.8,0.9,1.0 1.0
mutation probability 1/1 0.5/1, 1/1, 2/I 0.5/1, 1/1

population size NA 5, 10, 20, 50, 100, 200 10, 20, 50

5.2.1 Experimental results

To find the most appropriate crossover probability, we ugé@4 mutation probability,
wherel is the number of lightpaths in the VT, 100 as population sa®& 5000 as
the maximum number of fitness evaluations allowed. The t@stsperformed for
each mutation type we designed (see Chapter 4.1) and wd tesgliéferent crossover
probabilities, i.e., 0.7, 0.8, 0.9, and 1.0. The resultggaren in Table 5.7. In the table
mt means mutation type. From the table, we can see that thehwagsa(except the
case of success rate fgenemutation) an increase in performance for each mutation
type in terms of all three criteria, namely, first hit timesbétness, and success rate,
with the increase in crossover probability. As a resultcsithe best performance
is achieved when the crossover probability is 1.0. we cantlsaty the most proper

selection for crossover probability is 1.0.

For the next parameter, i.e., the mutation probability, estdd 3 different mutation
probabilities, 05/, 1/1, and 21, wherel is the number of lightpaths in the VT. The
results, given in Table 5.8 show that, the most proper narigirobability is V1.

The third parameter that we fine-tuned is the population sixe tested 6 different
population sizes, namely, 5, 10, 20, 50, 100, and 200. Thaltsesor this
experimentation can be seen in Table 5.9. The results shainlie first hit time

increases with the increase in population size, which wdeddl to a result that
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selecting a small size for the population, i.e., 5, is a gdadae. On the other hand, the
success rate increases with the increase in populationvgizeh may be interpreted
as 200 would be the best choice as the population size. If wsider the resource
usages, we can see that the performance increases witlctease of the population

size up until itis 50. As a result, selecting the populatize s 50 is a good choice.

The last test for parameter setting is testing when to stofvig, i.e., the maximum
number of fitness calculations allowed until stopping the EAe program is run for
5 minutes, during which the best so far fitness value is resmbavery 5 seconds. The
change in the quality of the best solution can be seen in Eifur. From this figure,
we can see that there is not much change in solution qualdy afminutes, which

corresponds to approximately 5000 fitness evaluationdfsmietwork.

As a result of parameter setting tests, we decided on a crespoobability of 1.0, a
mutation probability of ¥I, wherel is the number of lightpaths, a population size of

50, and a maximum fitness evaluation count of 5000, for the &#opmance tests.
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Figure 5.4 Change of best fithess over time (crossover probability=hutation
probability=1/1, population size=50).
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Table 5.7 Effect of crossover probability on first hit time, best fisseand success rate for three mutation types.

first hit time best fitness success rate
07 08 09 1.0 0.7 0.8 0.9 1.0 || 07 08 09 10
gene | 4884 4879 4870 4861 199.5 197.25 19578 193.4 99 99 100 99
mutation type| Is pm | 4815 4803 4787 4738 202.55 200.79 199.29 197.97100 100 100 100Q
ms pm | 4078 4014 3949 387] 236.9 232.03 226.71 2209684 91 95 97

Table 5.8 Effect of mutation probability on first hit time, best fitree@and success rate for three mutation types.

first hit time best fitness success rate

O.Qfl 1/ 2/l 0.5/ 1/ 2/ 0.5/ 1/1 2/l

gene 4861 4861 4854 193.86 1938 198.83 99 99 100
mutation type| Is_pm | 4682 4733 4804| 198.45 197.97 200.81 100 100 100
ms pm | 3664 3877 4452| 220.5 220.96 223.22 96 97 97

Table 5.9 Effect of population size on first hit time, resource usage success rate for three mutation types.

first hit time resource usage success rate
5 10 20 50 100 200|| 5 10 20 50 100 200|f 5 10 20 50 100 204
gene | 2290 2863 3704 4624 4861 487p 185 185 185 187 194 212/ 93 96 97 99 99 104
mutation type| Is_pm | 1477 1992 2779 4163 4733 4859 202 201 199 198 198 211 97 97 99 100 100 10(
ms pm| 646 966 1430 2496 3877 4869259.5 256 250.5 236.7 221 21666 17 41 82 97 100
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5.3 Evolutionary Algorithms Performance Tests

The third set of tests include evaluating the performancéAtsing different sized
physical topologies. For these tests, we use the paranegtergsdetermined based on

the test results given in Chapter 5.2.1.

Two different networks are used to evaluate the EA perfomearsince scalability is
an importantissue in network problems, we use a 24-node3wtwork (Figure 5.2)
and a 48-node 89-link network in the tests. To generate ao¢i@-89-link network, we
combined two of the same 24-node 43-link topologies in Fegu@ at the nodes 1, 9

and 24 (see Figure 5.3). The test results are given in thetwexdections.

5.3.1 Evolutionary algorithms performance tests with the 2 node network

We performed tests for two different population sizes, ngrd8 and 100. We ran the
program 20 times for each parameter set. A penalty factof6fi2 used in the tests.
The detailed test suitis given in Table 5.10 for EA perforoetests. We eliminatefd

andms_pnsince they performed very poorly for the problem as seen ep@Gr 5.2.1.

In the first part of the performance tests, we used the samerietopology given in
Figure 5.2, that is used in parameter setting tests, and dftifomly created 3, 4, 5

connected virtual topologies. The wavelength capacitgliscted as 10.

Table 5.1Q Test suit for EA performance tests with 24 node network.

100 (3 connected)
Number of virtual topologies 100 (4 connected)
100 (5 connected)
Fitness function types 2 (fy and f, in Chapter 4.1)
Mutation types 2 (genels_pmin Chapter 4.1)
Population sizes 2 (50 and 100)
Shortest path numberk)( 3 (5, 10, 15)
Number of runs 20
Total 300*2*2*2*3*20 = 144000 runs|
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5.3.1.1 Experimental results

The results of the experiments are given in Tables 5.11-.5Tables 5.11 and 5.12

show the success rates, Tables 5.15 and 5.16 show the aoétags fitnesses found,

and Tables 5.13 and 5.14 show the average of first hit timeal tine tablesf; denotes

the corresponding results for tif8 fitness evaluation method. In the first part of the

tables, the results obtained using tenemutation are given, whereas in the second

part, thels_pmresults are given. Also, the results for three connectivggrees, 3,4,

and 5, can be seen in the tables.

Table 5.11 Success rates for the 24-node network - population size=50

92

5 shortest pathg 10 shortest pathg 15 shortest path
f1 f2 f1 fa f1 f2
3| 97 49 98 49 97 48
gene | 4| 99 92 100 94 100 94
5| 100 99 100 99 99 99
3| 96 53 96 55 95 54
Is_pm| 4 || 100 95 100 96 100 96
5| 100 99 100 99 100 99

Table 5.12 Success rates for 24-node network - population size=100.

92

5 shortest pathg 10 shortest pathg 15 shortest path
f1 f2 f1 fa f1 f2
3| 98 59 99 61 99 60
gene | 4 || 100 97 100 98 100 98
5| 100 100 100 100 100 100
3| 98 65 98 67 98 68
Is_pm| 4 || 100 98 100 98 100 99
5| 100 100 100 100 100 100

Comparing Tables 5.11 and 5.12, we can see that, using 10@gsopulation size

results in an increase in success rates. Both tables showhehprobability to find a

feasible solution increases with the increase in connéctiegree of the VT. Although

there is not much difference betweganeandls_pmtype mutations, we can say that
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if we use f,, Is_pmperforms better for 3 and 4 connected VTs. On the other hand,
f1 performs well with always a success rate greater than 95€&dich test set. If we
considerfy, genemutation performs better thas pm Also, genemutation should be
preferred since it is much less complex thanpm in which a similarity comparison

is needed every time mutation occurs.

Table 5.13 Average of EA first hit times - population size=50.

5 shortest pathg 10 shortest pathg 15 shortest paths
f1 f, f1 f, f1 f,
3| 1855 1670 || 3049 2803 || 3856 3606
gene | 4 || 1945 1944 || 3428 3419 || 4187 4209
51 2358 2401 || 4067 4110 || 4612 4646
3|/ 1890 1632 || 2790 2511 | 3302 3044
Is_pm| 4| 1886 1902 || 2905 2894 || 3511 3527
5] 2195 2236 || 3376 3424 || 4088 4120

Table 5.14 Average of EA first hit times - population size=100.

5 shortest pathg 10 shortest pathg 15 shortest paths
f1 f2 f1 f2 f1 f2
3| 2750 2385 || 4119 3838 || 4635 4457
gene | 4| 2718 2772 | 4362 4375 || 4737 4749
5| 3262 3339 || 4707 4729 || 4856 4869
3| 2749 2386 | 3851 3555 || 4315 4102
Is_pm| 4 || 2638 2649 || 3910 3929 || 4400 4423
5| 3017 3124 | 4322 4373 || 4705 4732

Tables 5.13 and 5.14 show that, first hit times increase withihcrease in the
connectivity degree of VT. This is an expected result, sitheesearch space is larger
for larger connected VTs. We can see from both of the tablest, Hit times for f,
are almost always smaller thamfor 4 and 5 connected VTs. If we compayeneand
Is_pm we can say that first hit times & pmare better. The comparison of two tables,
i.e., the effect of population size, suggests that if theutetjpon size is smaller, the first

hit time will be earlier. This may be a result of getting staaka local minimum.
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Table 5.15 Average of EA resource usages - population size=50.

5 shortest pathg 10 shortest pathg 15 shortest path
f1 f2 f1 fa f1 f2

[72)

3] 111 111 112 112 113 112
gene | 4 || 144 144 145 145 146 146
5| 182 182 183 183 186 186
3 114 112 118 117 121 118
Is_pm| 4| 148 147 153 153 156 155
5 || 186 186 193 194 196 197

Table 5.18 Average of EA resource usages - population size=100.

5 shortest pathg 10 shortest pathg 15 shortest path
f1 f2 f1 fa f1 f2

92

3 111 110 112 111 114 113
gene | 4 || 144 144 145 145 148 149
5| 182 182 185 185 192 193
3| 112 111 116 115 119 117
Is_pm| 4| 146 146 151 151 154 154
5| 184 184 191 191 196 197

The resource usages given in Tables 5.15 and 5.16, confirprév@us conclusion,
that is the smaller population size gets stuck at a localmumnn. If we look at the
tables, we can say thafenemutation always gives the best performance. The resource
usage increases if we increase the number of shortest pegllSar the tests. This is
because of the increase in probability of getting stuck atcallminimum while the
search space gets larger. From this table, we can say thad wetcheed to use more
than 5 shortest paths in order to find a good solution. If wegamathe performance of
fithess evaluation methods, we can say thatnd f, almost always perform similarly.
For 3 connected VT, is slightly better tharf;. However,f; is recommended, since

its success rate is better.
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As a result of the experiments with 24-node 43-link topolagsing genemutation
and f; can be recommended as components for an effective EA foutiverable VT

mapping problem.

5.3.2 Evolutionary algorithms performance tests with the 8 node network

In order to see the performance of our EA design in largedsnegworks, we formed
a new topology by merging two previously used 24-node 4B-topologies. We
combined two of this same topology from the nodes 1, 9 and 24.aAesult we
obtained a 48-node 89-link topology 5.3. Again, we createtual topologies of
different average connectivity degree. The time neededdate 100 different VTs
for 48 nodes was very long, and was increasing with the iser@athe connectivity
degree, so that, we could create 100 different VTs for onlyn@ 4 connectivity

degrees, and 50 different VTs for the 5 connectivity degree.

In the tests, we considered a maximum fitness evaluationta@us000, mutation
probability of 1/I, wherel is the number of lightpaths, and crossover probability of
1.0 for the EA performance tests. We performed tests onhafpopulation size of
50, since the size of this problem is much more larger and tsiehit time results in
Chapter 5.3.1 show that the increase in population sizetseases the first hit time,
with an acceptable amount of decrease in success rates.nileerarogram 20 times

for each parameter set. A penalty factor of 200 is used indsis t

Since we decided that the most effective fithesgiis explained in the previous

section, we used; in the tests. Again, we tested both mutation operators.

For this larger network, we increased the wavelength capatm order to find the

suitable wavelength capacity, we tested 16 and 32 wavéieragiacities. In the first
set of tests that we used 16 as the wavelength capacity, veelldsand 15 shortest
paths. As a result of these tests, given in Table 5.17, we bawthe wavelength
capacity of 16 is not enough for this size of network. Fromttdige, we can see that
the success rates are decreasing with the increase in ¢mityetegree, which should
be just the opposite according to our previous experienths.results show that the

capacity constraints are almost always violated for 5 cotaeVTs.
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Table 5.17 Success rates for EA in 48-node topology - 16 wavelength@aap

10 shortest paths 15 shortest paths
3 52 66
gene | 4 32 34
5 2 2
3 54 72
Is_pm| 4 26 28
5 2 2

As we realized that the wavelength capacity of 16 is not ehdog this network,
we increased the capacity to 32. This time, we tested 10, rid 28 shortest paths.
The detailed test suit is given in Table 5.18 for EA perforgetests for the 48-node

network with a wavelength capacity of 32.

Table 5.18 Test suit for EA performance tests with 48 node network.

100 (3 connected)
Number of virtual topologies 100 (4 connected)
50 (5 connected)

Mutation types 2 (genels_pmin Chapter 4.1
Shortest path numberk)( 3 (10, 15, 20)

Number of runs 20

Total 250*2*3*20 = 30000 runs

5.3.2.1 Experimental results

In Tables 5.19, 5.20, and 5.21, the success rate, the avesagarce usage, and
the average first hit time results for the 48-node 89-linkmoek topology with 32

wavelength capacity are given, respectively.

From Table 5.19, we can see that with each mutation type aodest path pair a
success rate of 100% is achieved for 5 connected VTs. For 3lamhnected VTs
the success rates increase with the increase in the numbbkodést paths. However,

as can be seen from Table 5.20, the resource usage alsosieergdh the number of
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Table 5.19 Success rates for EA in 48-node topology - 32 wavelengthaap

Uy

10 shortest paths 15 shortest paths 20 shortest path
3 52 67 78
gene | 4 82 86 89
5 100 100 100
3 55 71 81
Is_pm| 4 70 74 89
5 100 100 100

shortest paths. This is because of the search space gettiygy &nd the probability of

getting stuck at a local minimum is increasing.

Table 5.2Q Average resource usages for EA in 48-node topology - 32 lsagth

)

capacity.
10 shortest paths 15 shortest paths 20 shortest path
3 311 314 317
gene | 4 416 419 424
5 519 525 532
3 330 337 342
Is_pm| 4 439 446 453
5 547 557 565

If we compare two mutation types, we can say that ugegemutation results in

better quality solutions, and on the other hand ussngmresults in higher number of

feasible solutions for the VTs with connectivity degree wéver, for 4 connected

VTs, genemutation performs better both in means of success rate aodnee usage.

The first hit time results in Table 5.21 justifies the previoutcome, that is thks_pm

gets stuck at a local minimum.

5.4 Performance Comparison of Evolutionary Algorithms, Art Colony Optimiza-

tionand ILP

To evaluate the efficiency of the EA, we designed another NbHiten to the

survivable VT mapping problem. We chose ACO due to its sigfaéperformance on
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Table 5.21 Average first hit times for EA in 48-node topology - 32 wavejéh

capacity.
10 shortest paths 15 shortest paths 20 shortest paths
3 5295 6562 7207
gene | 4 5889 7088 7523
5 6628 7461 7694
3 4457 5557 6172
Is_pm| 4 4717 5811 6360
5 5013 6081 6737

constrained combinatorial optimization problems [5]. Tetails of our ACO design

can be found in Chapter 4.2.

To determine the best ACO variant, we experimented with éatlivariants of the AS
algorithm listed in [74]. For each connectivity degree ad T, success rates of each
variant are mostly greater than 90% when more than 5 shquégiss are provided to
the algorithms. Since the algorithms have relatively eqaaformances, we applied
ANOVA tests to the results. We ended up with the result th&SAand AS are the

worst and EAS is the best of all.

The first parameter setting test is to investigate the etfé¢the maximum allowed
time on resource usage. For this test, the ACO algorithmngou60 seconds and the
best-so-far solution is recorded every 5 seconds. Thetsesiubw that the algorithm
needs to run at most 15 seconds, because only very smalibedian is provided after

around the 1% second.

To determine the number of ants used in ACO, we tested sierdifit values, i.e., 1, 5,
10, 20, 50, and 100. According to the results, increasingntimber of ants increases
resource usage after 5 ants. Until a maximum number of solsitare generated,
ants use pheromone matrices to construct solutions. Plos®matrices are updated
according to the solution quality after each ant constritstsolution. When the

number of ants decrease, the use of pheromone increases.ressllg we set the

number of ants as 1@y is the parameter used while updating pheromone values. This

parameter is determined after experimenting yiivalues of 0, 0.1, 0.2, 0.3, 0.4, 0.5,
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0.6,0.7,0.8,0.9,and 1.0. As aresult, we seleptgak 0.1, where the best solutions are
retrieved. The parametessandf3 represent the weights of the pheromone level and
the heuristic information, respectively. We tested all bamations of four different
values ofa: 0, 1, 2, and 3, and five different values Bf 0, 1, 2, 3, and 4. The
contribution of both parameters on resource usage aregigglifor values greater
than 2.a does not seem to have much effect on resource usage. Thegtara@are set
asa = 3 andf = 4, when the best solutions are retrieved the weight of pheromone
deposited for the best-so-far solution in EAS algorithmr the fine-tuning ofe, we
tested withevalues of 1, 2, 3, 4, 5, 10, 20, 50, and 100. According to theltgshere

is not much difference in resource usage whenselected between 1 and 4. We chose

eas 3, since itis a mid value.

The ILP formulation for the survivable VT mapping problengigen in Chapter 2.3.
Due to the large number of constraints, solving the ILP fogdéanetworks can be
very difficult. Hence, Modiano et al. [2] proposed two possitelaxations of the ILP
formulation that yield survivable routings with reducedrgaexity. The first relaxation
proposed is a simple relaxation that applies the surviiglmbnstraints only to cuts
that include a single node, which prevents a single node ffetting disconnected in
the event of a fiber cut. With this relaxation, the number a¥s@ability constraint
equations is reduced to number of nodes. We implementedatsie And the relaxed
ILP using the CPLEX suite [77].

It is reported in [2] that relaxations also perform well fbist problem with a much
more smaller run time. Since our problem size is much lar@drnode 43-link
physical topology) than the one used in [2] (14-node 21-phksical topology), we
decided first to compare our results with their first relaxati Different from [2] we

also included the capacity constraint in the ILP formulatio

We implemented this ILP relaxation using the CPLEX softwaaekage. CPLEX uses
branch and bound techniques for solving ILPs and is capdbiawing ILPs consisting

of up to one million variables and constraints [77]. The hessobtained are given in
Tables 5.22 and 5.23.
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Table 5.22 Number of feasible solutions obtained using EA, ACO, IL8dXation,

and Basic ILP.
EA | ACO | ILP-Relaxation| Basic ILP
3 connected 100| 100 52 58
4 connected 100 | 100 88 0
5 connected 100| 100 100 0

5.4.1 Experimental results

For the comparison of basic and relaxed ILP solutions andNibis, the best EA
combination, i.e., the gene mutation wifl, and elitist AS for ACO with the most

proper parameter set, are used. The results obtained am®igifable 5.22.

It is reported in [2] that relaxations also perform well férig problem with much
smaller run times. For each VT, we also solved the problemg.tiis ILP-Relaxation.

Different from [2] we also included the capacity constramthe ILP formulation.

From the tables we can see that, both of our NIHs perform wellfe survivable VT
mapping problem. From Table 5.22 we can see that, they botbrpebetter than this

ILP relaxation for all problem sets, especially for the casth 3 connected VTs.

For 3-connected VTs, we could solve the problem using theebbaR for only 58%
of the VTs. For the remaining 42%, we were out of memory altfiothe physical
memory of the machine was 3 Gb. Furthermore, if we increasedhnectivity degree
of the VT, solving the problem using the basic ILP was implolesi The time needed
to create the CPLEX input file for the basic ILP solution wakeast 2 hours and went
up to more than 15 hours on a Pentium IV 1.6 GHz. Besides th fimne to create
the CPLEX input file, ILOG CPLEX solves the problem in at I€ashinutes, and this
solution time goes up to more than 15 minutes. Moreover,dta size of the CPLEX

input files for these 100 3-connected VTs is more than 30 Gb.

If we compare EA and ACO best solutions to these 58 basic Il&tisas, i.e., the
optimum, 56 of the EA and 57 of the ACO solutions are the optim8ince the basic
ILP can not find a solution with less resource usage than thgaton used here, we

can say that the lower bound for the resource usage is theoama fwith the ILP
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Table 5.23 Number of solutions (out of 100) having a resource usagelemguthe
feasible ILP-Relaxation solutions.

EA | ACO
4 connected 97 98
5 connected 100| 100

relaxation. Since we do not have any basic ILP solutions afdt&connected VTs,
we compare EA and ACO solution qualities with the feasiblB Helaxation results.
From Table 5.23 we can see that EA and ACO find the optimumisalédr almost all

test cases, with ACO performing slightly better.

The time needed to create the CPLEX input file for the basicddBtion was 2 hours
and for some cases it went up to more than 15 hours on a Pentidné IGHz. ILOG

CPLEX solved the problem in 5 minutes, and this solution twmeat up to more than
15 minutes for some cases. Moreover, the total size of CPIpMtifiles for the 100,
3 connected VTs is more than 30 Gbs. On the other hand, fod#t&gset, EA does
not need more than a minute to solve the problem and ACO cag gah 10 seconds,
on average. As a result, EA and ACO can find the optimum salstior 3 connected

VTs within 120 and 720 times less running times, respegtivel

Table 5.24 Running Time Averages (in seconds) of EA and ACO for 24-nadd
48-node Physical Topologies and VTs Having 3 Different Gantivity
Degrees (3,4,5)

24-node network| 48-node network]
EA ACO EA ACO

3| 30 15 300 350
41 50 15 400 350
5| 60 15 480 350

The running times of EA and ACO for different sizes of netwsodnd different sizes
of connectivity degrees are given in Table 5.24. The runtimgs in the table are the
averages of all runs for all the VTs with corresponding catingy degree. Since the
termination condition for ACO is a predefined time, ACO has shme running time

for all test cases of the same physical topology. From thie t@lcan be seen that the

65



increase in running time with the increase in network sizeisas much as it is for the

CPLEX.

As a conclusion, the results show that both heuristics ammsing for the survivable
VT mapping problem. Since the time needed to find a feasilllgiso is at most 8
minutes (for the routing of 5 connected VTs on the 48-noddird®topology using

EA), these heuristics can easily be applied to real worldiegjons.
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6. SURVIVABLE VT DESIGN USING HYPER-HEURISTICS

6.1 Overview in Hyper-Heuristics

The term hyper-heuristic (HH) [78, 79] was first used in 200@¢&scribe “heuristics
to choose heuristics” in the combinatorial optimizatiomiext. HHs do not operate
directly on the solutions, rather they operate on heugdtiat operate on candidate

solutions.

Classical optimization techniques are impractical in s@vcomplex real-world
problems, whereas meta-heuristics [80] provide bettemseg intelligently seeking
optimal solutions within a search space [81]. To use metaiiEcs one needs to have
expert level knowledge and experience on the problem. Eurtbre, fine-tuning [80]
in meta-heuristics is a time-consuming task which may somnest require more time
than the development time. However, HHs are general seaethaats that can be
applied easily to a very wide range of complex real-worldgbems, where a solution

is required in an acceptable amount of time [78].

For a problem in hand, many different simple greedy hewsstan be defined.
However, each of these heuristics has its own weaknessesti@mdths. The main
purpose of HHs is to combine the best features of these hiearitn HHs terminology,

these heuristics are referred to as low-level heuristit$il.and a high-level heuristic
is used to select between these LLHs at each step of an optiotnizprocess [80]. This
way, the best features of different simple greedy heusgsiibich are used as LLHSs,

can be combined.

A HH is a high-level heuristic which receives as input theljeon to be solved and a
set of LLHs defined for the problem. At each step of the sotugioocess, one of the
LLHs is selected and applied to the problem, until a stoppimdition has been met.

The general framework of HHs is illustrated in Figure 6.1.
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Input problem

Input |ow level heuristics Select a low-level heuristic
AND
Apply the low-level heuristic

Output solution(s)

Figure 6.1 The general framework of a HH.

Unlike the metaheuristics, which are problem-specific oé#h the HHs have no
knowledge on the problem domain. The HHs only know whetheothjective function
is to be maximized or minimized. The main motivation behinddHis to design
problem-independent algorithms. To solve a problem, HHsroanicate with the
problem-specific LLHs. Thus, a HH can be applied to a wide eapigproblems by
changing only the LLHSs.

There are different classifications of hyper-heuristiche Tirst classification was (1)
with learning, and (2) without learning [82]. The hyper-histics with learning include
learning mechanisms based on the historical performanteedfLHs and change the
preference of each LLH. On the other hand, hyper-heuristittsout learning select

the LLHSs to call according to a predetermined sequence.

In 2005, Bai [83] classified HHs into two groups: construetitHs and local search
HHs. Constructive HHs start from an empty solution and bitidadually by selecting
a LLH at each step of the construction process. On the othed,hacal search
HHSs start from a complete initial solution and iterativeglext LLHs to improve the
solution quality. Based on the classification of Bai, in [1Bilirke et al. used the terms

constructive and perturbative to refer to these classspentively.

In [84], hyper-heuristics are classified into four categsraccording to the selection

mechanism of LLHs: (1) random choice hyper-heuristics, @edy and peckish
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hyper-heuristics, (3) meta-heuristics based hyper-bgcs| and (4) hyper-heuristics

employing learning mechanisms.

In hyper-heuristics with learning mechanism, the selectb heuristics can be in
different ways: random gradient [78], random permutatisadgnt [78], choice
function [78], reinforcement learning [85], and reinfomoent learning with tabu
search [86]. If no learning mechanism is applied in the Wprristic, the heuristic
selection methods are simple random [78], random pernout§fi8], greedy [78], and
peckish [87].

HHs have been applied to many combinatorial optimizatioobj@ms, such as,
timetabling [88—90], bin packing [91], scheduling [92, 98tock cutting [94], con-
straint satisfaction [95], vehicle routing [85], channss@nment [96], planning [97],

and space allocation [98].

6.2 The Proposed Hyper-Heuristics Approach

To solve the survivable VT design problem, we use four HH apphes, each of
which is based on a different type of nature inspired heari@ilH), used as the
heuristic selection method. These NIHs are: evolutionlygrithms (EA), ant colony
optimization (ACO), adaptive iterated constructive sbafAICS), and simulated

annealing (SA). Each method belongs to a different categbsgarch approaches:

1. EA: population based, perturbative search
2. ACO: population based, constructive search
3. SA: single point perturbative search

4. AICS: single point, constructive search

Given the traffic matrix, the first step is tdetermine a suitable V/TFor this
subproblem, we selected five commonly used VT design hasias LLHs. These

LLHs are:

1. Choose the nodes which have the maximum single diregtadfictdemand between
them MAX_SNG).
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2. Choose the nodes which have the minimum single direatadfic demand between
them MIN_SNG).

3. Choose the nodes which have the maximum bidirectional toaffic demand

between themNIAX_TOT ).

4. Choose the nodes which have the minimum bidirectional toaffic demand

between themMIN_TOT ).

5. Choose a random node pdRND).

At each step of the solution construction, a LLH is used taosleahe next set of node
pairs to establish a lightpath in between. The lightpatkseatablished, such that, the
in and out degrees of the nodes do not exceed the maximum mwidbb@nsceivers on

each node.

TheVT routing and wavelength assignment (mapping) subproldawlved as the first
step in this thesis (see Chapter 5), with ACO which providesnising solutions in a

relatively small amount of time. Therefore, we choose ACGdlve this subproblem.

The traffic routing is applied in a straightforward way. The shortest path rauti

method is used for routing the packet traffic.

In HHs, the quality of the solutions is determined throught@eBs function. In this
study, the fitness of a solution is measured as the total nuofbgavelength-links
used throughout the network, which is referred to as resousage. The objective of
the survivable VT design problem is to minimize this resewrsage while considering
the survivability and the capacity constraints. Resousaga is calculated by counting
the number of physical links that are used by the lightpaiimsnfeasible solution can
either be penalized by adding a value to the fitness functiooan be discarded. In
our HH algorithms, if a solution is found to be infeasible idgrthe phases of creating
a VT and routing the lightpaths, it is discarded. In the néags, if the traffic cannot
be routed over the VT, a penalty value proportional to thewamhof traffic that cannot

be routed, is added to the fitness of the solution.

A solution candidate is represented as an array of integkresashowing the

order of LLHs to select lightpaths for the VT to be establhe Since there
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are 5 different LLHs, the integers can have values betweemdlZa When a
lightpath between two selected nodes is established, giwpkth is assumed to be
bidirectional. Therefore, a transceiver at both ends islus&he length of the
solution array is equal to the maximum number of lightpalia tan be established,
i.e., number of transceivers on each nodeumber of node®. For example, in a
network with 6 nodes and 3 transceivers per node, each golcgindidate is of length
6*3/2=9. If a solution candidate is represented with anyaofgd2 1 1 35 3 4 2 2], this
means that, first a lightpath will be selected using the sgtdriH, then the next two
using the first, continuing with the third, fifth, ... LLHs. Wi adding the lightpaths,
the transceiver capacity constraint is handled. If thetpgth added according to the
corresponding LLH results in using more than the existingnber of transceivers in
one or both ends, this lightpath is not added to the VT andlgwiéhm continues with
the next LLH in the solution array. The lightpath capacityassumed to be 40 Gb/s.
After adding each lightpath to the VT, the traffic demand le=w the nodes of the
corresponding lightpath is assumed to be met, and the tdgfitand between these
nodes is deleted from the traffic matrix. The algorithm comis to establish lightpaths
until either the end of the solution array is reached or umdiltraffic remains in the

traffic matrix.

For each solution candidate produced by the HH, the correBpg VT is determined
using the method explained above. Then, if the generated s/Tot at least
2-connected (at least 2 link-disjoint paths for packefficadxist between each node
pair), new lightpaths are added subject to the transceapadaty until the VT becomes
2-connected. For the nodes that have a degree lower thaa tvawy lightpath is added
between this node and the node with the highest traffic denmabetween. Next, the
best mapping for the VT is found using ACO [75]. Then, the gadkaffic is routed
through the shortest paths starting from the node pair wmighldrgest traffic demand.
Finally, the fitness is calculated as the total amount ofuss®usage, i.e., the number
of wavelength-links used throughout the network. The garflaw of the algorithm is
given in Algorithm 11.
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Algorithm 11 General flow for the survivable VT design algorithm

1: function DesignVT()

2: use HHs to generate a VT

3 use ACO to find a survivable mapping of lightpaths on the pdalgsopology
4:  use shortest path heuristic to route traffic on the virtupbtogy
5
6:

calculate fitness of the solution candidate
end function

In the following section, we summarize each of the HH appneaave propose in this

study, to solve the survivable VT design problem.

6.3 Evolutionary Algorithms as a Hyper-Heuristic

We use a steady-state EA (see Chapter 3) with duplicateredinon. After generating
an initial set of random solution candidates, the EA opesatoe., tournament
selection, uniform crossover, and gene mutation [4], agieg and new solution
candidates are generated. Gene mutation is defined as ogangLH in the selected
point of the string with another randomly determined LLHitiad population of

solution candidates (individuals) is generated rando#tier the fithness evaluation of
each individual in the initial population, genetic operatare applied. The pseudocode

for the whole process is given in Algorithm 12.

Algorithm 12 Pseudocode for the EA-based HH
FUNCTION EA()
generate random initial population
for each individual in the populaticso
DesignVT()
end for
while not predefined # of individuals are creatl
select parents to mate
recombine selected parents
apply mutation to the offspring
DesignVT()
if offspring better than worst
offspring replaces worst in population
elsediscard offspring
end while
END FUNCTION
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6.4 Ant Colony Optimization and Adaptive Iterated Constructive Search as

Hyper-Heuristics

ACO and AICS are very similar in the way they solve the probléife can say that
AICS is a form of ACO which uses only one ant. We use the ehingtsystem (EAS) as
the ACO variation, based on the results of our previous sftislly which show that this
variation performs better than the others on the surviveilanapping subproblem.
However, there is only one ant in AICS, hence, the ant sysseapplied as the ACO

variation.

Algorithm 13 Pseudocode for the ACO-based and AICS-based HHs
FUNCTION ACO()
for each ank do
repeat
select a random LLH
until a complete solution is generated
DesignVT()
end for
initialize pheromone levels
while not predefined # of individuals are creatial
for each ank do
repeat
select a LLH based on decision policy
until a complete solution is generated
DesignVT()
end for
evaporate pheromone levels
deposit new pheromones on the arcs the ants visited
deposit pheromone on the arc the best-so-far ant visited\G®-based HH)
end while
END FUNCTION

Initially, each ant iteratively adds a random LLH to its parsolution. The solution
construction terminates when a solution array with a lerggihal to the maximum
number of lightpaths is generated. No constraint is appitethe solution in the
construction phase. Since there is no heuristic informatioe solution construction
only depends on the pheromone trail. The pheromone trailse use in this paper
refer to the desirability of using thE" LLH to add theit" lightpath. Pheromone trails

are initialized using the initial random solutions of thésanThen, they are modified
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each time that all ants have constructed a solution. Thedopsede for the whole

process is given in Algorithm 13.

6.5 Simulated Annealing as a Hyper-Heuristic

Simulated annealing algorithm emulates the physical m®oewhich the metal cools
and freezes into a minimum energy crystalline structure @hnealing process). A
random search is applied in the algorithm, if the problem nisimimization problem,
the neighbor solutions with a lower fitness value are alwagepted, and the neighbor
solutions with a higher fithess value are accepted with sonobgbility. This

probability is defined as in the following formula:

p-e 21 6.9

In the formula,Af is the increase in fitness value and T is a control parametechw

is known as the current system temperature.

Algorithm 14 Pseudocode for the SA-based HH
FUNCTION SA()
initialize temperature
generate a random initial solution
DesignVT()
while not predefined # of individuals are creatiul
repeat
select a neighbor solution using mutation
DesignVT()
if neighbor solution quality is better than current solutioen
go to the neighbor solution
else
go to the neighbor solution with some probability (&9)
end if
until 5 solutions are generated
decrease temperature by a constant factor
decrease mutation probability by a constant factor
end while
END FUNCTION

In SA, the main elements of the algorithm are, the solutigoregentation, the
neighborhood operator, the fitness function, and the amgeachedule (initial

temperature and rules for lowering it as the search progsgss
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In this thesis, we use a non-standard SA where the neighbdrbyerator is modified
over time. The neighborhood operator is defined similar erttutation operator in
the EA-based HH, where with a given mutation probabilityandomly chosen LLH
on the solution candidate is replaced by another LLH. Thiewdihce is that, we define
a larger mutation probability in the beginning of the SA. Thatation probability is
decreased by a predefined factor each time after 5 solutimhdates are generated.
This allows us to have a high exploration rate in the begigrihthe search while
focusing on exploitation towards the end. The general floshefalgorithm is given
in Algorithm 14. In our study, we use the formula given in [29]calculate the initial

temperature.
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7. EXPERIMENTAL STUDY FOR SURVIVABLE VT DESIGN

To evaluate the performance of our newly designed solutippraaches for the
survivable virtual topology (VT) design problem, a 24-nodfglink network (see

Figure 5.2) and 20 different randomly generated traffic roesrare used.

The experimental study in this thesis has proceeded in fiirases:

e Design an efficient hyper-heuristic (HH) for the survivakle design problem
¢ Evaluate the HH performance for double-link failures

e Compare the HH performance to another solution approachhénliterature

proposed for survivable VT design problem (tabu searchgweg in [13])

The experimental results for each phase are given in thewolp sections.

7.1 Performance Evaluation of Hyper-Heuristics for Survivable Virtual Topology

Design Problem

We present the experimental results for a 24-node 43-lifdoteetwork given in
Figure 5.2, which is a fairly large-sized network for thisplem. For the experiments,
we use 20 different traffic matrices, randomly generatedmicg to a frequently-used
traffic generation method [1], where, 70% of the traffic isfarmly distributed over
the range [0, 0.5 Gb/s] and 30% of the traffic is uniformly dsited over the range
[0, 5 Gb/s]. The lightpath channel capacity is chosen as 48,®¥hich is typical in

real-world networks.

We use five well-known VT design heuristics as LLH:

1. Choose the nodes which have the maximum single directaffictdemand between

them MAX_SNG.
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2. Choose the nodes which have the minimum single direatadfic demand between

them MIN_SNQ.

3. Choose the nodes which have the maximum bidirectional toaffic demand

between themNIAX_TOT).

4. Choose the nodes which have the minimum bidirectional toaffic demand

between themNJIN_TOT).

5. Choose a random node pdRND).

First, we performed tests to see the performance of each Léphrately on the
problem. For this test, only one LLH is used to generate tmeptete solution. Thus,

there is no stochasticity and tests are run once for each lddHraffic matrix pair.

To see the performance of LLHs with traffic demands showiffgmint intensities, we

generated 20 more traffic matrices for this test, giving altot 40 different randomly

generated traffic matrices. These 20 new traffic matriceg 25%b less intensive
traffic. Table 7.1 shows the number of traffic matrices for akhihe corresponding
LLH obtains the best result. The results show that differeniristics are successful
on different traffic matrices, while, the first and third histics perform better than the
others. However, there are some cases in which these hesidannot find a feasible
solution while another heuristic can. For two traffic maggdwo heuristics found the

same best solution, therefore, in the table the total numobilie best results are 42.

Table 7.1 The number of problem instances that each single low-l&elristic
outperforms others.

| single LLH | LLHyax snc | LLHwin_sne | LLHwax tor | LLHuin_Tot | LLHRND |

# of best results
(out of 40) 21 6 11 3 1

For the rest of experimental study, we use the 20 traffic Bitematrices. We run the

program 20 times for each approach and for each parameter set

Next, for the second group of experiments, we perform teststl a good parameter

set forEA, using 5 LLHs. The population sizes of 5, 10, 15, 25, 50 andatmrt
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probabilities of 05/l, 1/l, and 21 , wherel is the solution array length, are
compared. The resource usages obtained using differentgiagm sizes and mutation
probabilities are given in Table 7.2. From the results intdide, we can say that the
EA-based HH performs similarly for each parameter value. &foee, we applied a
two-way ANOVA and a Tukey HSD post hoc test at a confidencel le8.95. The

results show that there is no significant difference betwdifarent parameters. As
a result, we selected 10 as the population size aha4 the mutation probability. A
typical value of 0.8 is selected as the crossover probgbilihe tests show that no
significant improvement is obtained after a total of 100 vidiials are created in the

EA. Therefore, each run is terminated after creating 100 iddals.

Table 7.2 Effect of population size and mutation probability on nesi® usage.

population size mutation probability
5 10 15 25 50| 05/1 1/I 2/l
resource usage 172 171 172 173 17§ 172 172 170

After the parameter tuning &A, tests to explore the performance of single LLHs are
conducted. In this set of experiments, we includRaamdomheuristic as a baseline for
the performance comparisons. Randomheuristic, 100 random solution strings are
generated, which are composed of randomly selected LLHse&ath traffic matrix,
the solution candidate with the best fithess is selectedessdlution. The tests are run

20 times for each traffic matrix. The results of the experite@ne given in Table 7.3.

Table 7.3 Performance comparison of single LLHSA, andRandornusing 5 LLHs.

| | LLHMAX_SNG| LLHMIN_SNG| LLHmax TOT | LLHMmIN TOT | LLHRrND | EA | Random |

RU 171 190 175 225 222 171 176
SR 0.7 0.3 0.7 0.05 1.0 1.0 1.0

In Table 7.3, the performances®BA andRandomusing all the 5 LLHs, are compared
with the single LLHSs, for the survivable VT design problemm the table, the RU
and SR stand for resource usage and success rate, redyeclive resource usage
values are the average of the successful runs obtained fiff@fent traffic matrices.

Success rate is the percentage of feasible solutions fouthdthvese heuristics. The
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table shows that the success rates for the random WIHH&ND), EA, andRandom

are 100%, while, thé=A achieves the best resource usage equal to that of the best

LLH (LLHmAX sNG).

In Table 7.3, we see that the performances.ldfiyn sneandLLHwiN ToT are not
as good as the other LLHs, considering both resource usapsiexcess rate. To see
the performance change after omitting these LLHs, we canaset of experiments
with EAandRandomusing the remaining 3 LLHSs, i.ell Huax sne LLHwAX ToOT,
andLLHRrnpD. The success rate for both approaches are 100%, as itisle 7&b The
average resource usage values are given in Table 7.4. Feotalile, we see that the
performances of both approaches increase when we use 3 Olbidsefore, the LLHS
LLHwIN_sneandLLHwiN Tor are extracted from LLHs in the remaining experimental

study.

Table 7.4 Performance comparison BA andRandomusing 5 LLHs and 3 LLHSs.

EAsn | EAsLLn | Randomg | RandongH
resource usage 171 163 176 167

Next, we perform tests to find good parameter settings forother nature inspired
approaches, i.eACO, AICS andSA used as heuristic selection methods in the HHSs.

We run the program 20 times for each parameter set.

In SA parameter setting tests, the initial temperature is cafedl by using the

following formula [100]:

—Af

_ M +mp-er”

7.1
M + My (7.9

In the formula,y is the acceptance ratio, which is selected as h§5s the number
of moves when the fithess cost is decreased,and the number of moves when the
cost increased relative to the previous stap.is the average increase for, moves.
After a full Markov chain of 1000 solutions is completed, thigial temperaturely is

calculated using Equatiohl

As aresult of the tests, we use an initial temperature of T8&.termination condition

is again the same, i.e., 100 solution generations. Thergpddite is selected as 0.85,
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since this rate decreases the temperature to 5% of thd teitigerature in 100 steps.
The initial mutation probability is selected as/80wherel is the solution array length,
and is decreased with a factor of 0.85 in every 5 steps ofisolgeneration. The large
initial mutation probability is selected because of thgdasize of the solution array.
If we start with a small mutation probability, tt&®Aalgorithm will search in a small
neighborhood of the starting point, which may lead to ggtstuck in local minima.
The mutation rate is gradually decreased to avoid a randgiotion in the search
space. We decrease the mutation probability until it resehealue of 1l.

Table 7.5 Resource usage results for different traffic matrices gusthfferent
approaches.

| | EA | AcO | AICS | SA | Random | LLHuax_snG | LLHwax tor | LLHrwp |

TM; 169 | 177 | 181 | 180 176 186 200 222
TM; 158 | 152 | 149 | 163 165 148 160 229
TM; 163 | 148 | 149 | 168 166 155 NA 219
TMy 160 | 146 | 152 | 160 162 172 172 226
TMs 154 | 149 | 151 | 156 157 170 159 220
TMg 172 | 156 | 156 | 173 170 183 188 212
My 175| 169 | 172 | 185 180 NA 169 203
TMg 167 | 159 | 162 | 173 173 167 169 222
TMy 157 | 157 | 151 | 166 163 NA NA 235
TMio 172 | 161 | 159 | 176 174 194 198 221
TMi1 156 | 137 | 145 | 165 161 NA 155 222
TMi2 158 | 146 | 145 | 164 164 149 NA 218
TMi3 157 | 158 | 158 | 156 155 182 NA 236
TMia 150 | 135 | 135 | 156 154 152 170 229
TMis 168 | 148 | 155 | 176 173 NA 161 236
TMis 163 | 145 | 147 | 165 165 NA NA 219
TMy7 178 | 175 | 182 | 177 182 195 188 215
TMig 152 | 162 | 156 | 160 163 NA NA 213
TMig 154 | 139 | 140 | 156 157 178 180 223
T Mg 170| 163 | 166 | 175 177 163 177 221
Average | 163 | 154 | 156 | 168 167 171 175 222
SR 10| 1.0 10 | 1.0 1.0 0.7 0.7 1.0

After the parameter tuning of each approach, tests to explwir performance are
conducted. In these tests, 3 LLHs, ilelLHuax sne LLHMAX ToT, @ndLLHgrnNpD, are
used. The tests are run 20 times for each traffic matrix. Batluses a random initial

seed. The results of the experiments are given in Table 8.5e@& the detailed results,
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the table includes results for each traffic matrix, separake the table, SR stands for
success rate. ThEM,; values in the first column of the table indicate that, the lissu
in the corresponding row are the results obtained usinfidragtrixi. In the next four
columns of Table 7.5, the results for the four HHs designetisistudy are given. The
fifth column lists the results of thRandomheuristic. The last three columns contain
the results of LLHs applied separately. In the table, thaesin the first five columns
are the averages of resource usages obtained after 20 raecfotraffic matrix using
the corresponding method. The last three columns are tldtges using only the
corresponding single LLH in the solution. TINA values in the table mean that a
feasible solution was not found in any of the runs. The cpwading box-whisker

plotis given in Figure 7.1.
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Figure 7.1 The box-whisker plot of the results obtained using HHs &ahdom
heuristic.

From Table 7.5, we see that all the HHs perform better tharsithgle LLHs. The
success rates for tHd.Hrnp, Randomand all the HHs are 100%, while, this rate is
70% for LLHmax sng andLLHuax ToT. The best results obtained for each traffic
matrix is marked in bold in the table. While in three of theficamatrices, a single
LLH produces the best result, it should be noted that theesscrate for these LLHs

is not 100%. The results show th&CO finds the best result for 13 out of 20 traffic
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matrices, while the next method AICSwith 5 best results. To test the statistical
significance of the results of the HHs aRdndomwe applied a two-way ANOVA and
a Tukey HSD post hoc test at a confidence level of 0.95. Thdtsestiow thatACO
and AICSproduce results which are statistically significantly eethanSA EA, and
Randomwhile a statistically significant difference cannot be eved betwee®CO
andAICS The box-whisker plot given in Figure 7.1 supports thesaltesTherefore,
we can say that, constructive search techniques are mocessiual for this problem.
Furthermore, based only on averages, we conclude that dgtigmubased scheme is

preferable to a single point one.

7.2 Performance Evaluation of Hyper-Heuristics for DoubleLink Failures

In Chapter 7.1, we show that the ACO-based HH approach dotpes other
HH-based methods for the survivable VT design problem aredeh&00% success

rate. However, it did not include any mechanisms to impraatesup.

To increase the scale-up of the solution, the flow-deviati@thod [101] is applied to
the best solution obtained in the end. The aim in flow devmagdo balance the traffic
load on lightpaths. After the traffic is routed through sbettpaths, new weights are
assigned to the lightpaths considering the traffic flow pastirough them. The new
weights are calculated using the equathd),= ﬁ whereC;; is the bandwidth
capacity of the lightpath between nodeand j, Fij is the traffic flow routed through
the lightpath between nodésnd j, andy is the total traffic demand throughout the
network. Then, the traffic amount of x y;; for each node pair is routed again using
shortest paths according to the new lightpath weighgs.is the amount of traffic
demand between nodeand j, anda is the parameter to determine the proportion of
traffic demand that will be rerouted. This reroute operatsaepeated for a predefined

number of steps. The flow-deviation method is given in Algon 15.

To see the effect of the flow deviation method, we analyze ith#id load on the
lightpaths of a selected solution. In Figure 7.2, the trdfimd on each lightpath is
given both before and after applying the flow deviation mdthdhe continuous line

shows the load before and the dotted line shows the loadth&dtow deviation. The
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Algorithm 15 General flow for flow-deviation method

1: route traffic through shortest paths using actual link costs

2: for a predefined number of stege
3: assign new weights to the lightpaths considering the triéfwe passed through

them

4.  for each node pair, reroute some portion of traffic demandgusew shortest

paths
5: end for

figure clearly indicates that the traffic load on the lightgatonverge after applying

the flow deviation method, so that, the traffic flow is balanatdr flow deviation.
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We tested differentr values, i.e., 0.1, 0.2, and 0.3, used in flow-deviation agilor
100 steps to see its effect on the solution quality when tiseaasingle-link failure. The
results given in Table 7.6 are the averages of resource si$Rgh and scale-ups (SU)
obtained after 20 runs for 20 different traffic matrices (@lof 400 results) using the

correspondingy value. Table 7.6 shows no significant difference betwederdifita
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values, and therefore, we chose 0.2.

Table 7.6 Effect of a for flow deviation (single-link failure case). Success rate
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Figure 7.2 Traffic flow on lightpaths before & after flow deviation.
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a=01 a=0.2 a=03
RU | scale-up|| RU | scale-up|| RU | scale-up
144 1.69 144 1.70 144 | 1.64
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The proposed ACO-based HH solves the survivable VT desigiol@m for single-link
failures with a 100% success rate in 23 minutes on averagaldtdested this method
to see its performance when there is a double-link failute@physical topology. The

results of these experiments are shown in Table 7.7.

Table 7.7 Effect of number of shortest paths (sp) used for routingptpgths and
maximum search time (st) for an ant in ACO-M (double-linkdee case).

# of sp used for routing lightpaths || search time for an ant
(ant search time: 10sec) (# of sp: 15)
10 15 20 25 50 10sec| 15sec| 20sec
successrate || 14% | 19% | 28% | 40% | 48% 23% | 25% | 29%
resource usage| 223 | 220 | 214 | 216 219 211 | 214 211
scale-up 2.83|2.85| 269|275 271 274 | 285 | 2.77
runtime (inmins)|| 24 | 27 | 28 | 34 55 24 33 47

The first observation is that, the success rate of our apprecreases when there is a
double-link failure, as expected. However, it should beeddhat, to solve the problem
with double-link failures, our approach can still be usethaut any modification. The
decrease in success rate led us to see how it is affectechwittuinber of shortest paths
used to route lightpathsg-tes} and the maximum search time for an atmng-tes}

in ACO-M1. First, we conducted thep-test in which, we tried different number of
precalculated shortest paths. The values in columns bet@e@d 6 of Table 7.7 are
the averages of 20 algorithm runs for each of the 20 traffiaioes (total 400 runs).
In order to isolate the effect of the maximum search time foaat in thetime-test
we omitted 4 traffic matrices for which no feasible solutierese found in thesp-test
Since the run time of the algorithm increases directly propoal with the increase in
the maximum search time for an ant in ACO-M,time-test the algorithm is run 10
times for each traffic matrix. The last 3 columns in Table h@vethe results for these

16*10=160 tests.

Table 7.7 shows that the increase in both the number of Sipdehs and the maximum
search time, in turn, increases the success rate. Sineeitharconsiderable increase

in success rate, the increase in run time when we use largeeruof shortest paths

1Since we use ACO in two phases for solution construction, iepping and heuristic selection
phases, the ACO used for mapping will be referred to as ACO+Mis Chapter.
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can be tolerable up to 25 shortest paths. We see that themenricrease is directly
proportional with maximum search times for an ant in ACO-M¢ dhe success rate
performance does not increase considerably. As a resufig @26 shortest paths to
route lightpaths and 10 seconds as a maximum search tima fantan ACO-M are

found to be a good set of parameters.

7.3 Performance Comparison of Hyper-Heuristics and Tabu Sarch for

Survivable Virtual Topology Design Problem

In the literature, there are only two studies on survivabledésign problem [3, 13].
The ILP solution in [3] can solve the survivable VT designigem for only small (3-4
node) networks. Therefore, it will not be a reasonable corapa since our approach

can also find the optimum solution for small networks in ayasmall amount of time.

The tabu search approach used in [13] can solve the sureivabbesign problem for
larger size networks. In their experimental study, theydus@, 14, 21, and 28 node
networks. The proposed algorithm used in [13] first choosesiial solution and then
applies tabu search to this solution. At each tabu iteratlmwhole neighborhood of

the current solution is explored, and the best is selectditeasurrent solution.

In [13], the tabu list size is selected as 7 and the stoppirtigrim is determined to
be 300 iterations. However, they say that 100 iterations nesenough to find the

optimum solution for only one case.

In this thesis, to compare the performance of our ACO-basddapproach and the
tabu search approach we use a 24-node 43-link telco netdipri e traffic matrices

are the same matrices used in Chapter 7.1.

In [13], the VT degree is given as an input to the algorithme Trirout degree of each
node in the VT is same. In their experimental study, they usmthl degrees of 2, 3,
4, and 5. Their experimental results show that, the besbpaence is obtained when
the nodal degree is 5. In our approach, the node degrees ttteersame throughout
the VT. We only give a maximum number of transceiver capd@8iiy the experiments

of this thesis) and the minimum number of node degrees can b&s2a result of
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the experiments, the average of node degrees in our appi®ach. Therefore, we

selected the nodal degree for tabu search approach as Serpgbemental study.

Table 7.8 Resource usage results for different traffic matrices gusthfferent

approaches.
ACO-HH Tabu Search
resource usage success rate| resource usage success rate

™™ 177 100 174 80

TM, 152 100 174 100
TM3 148 100 171 100
TMy 146 100 172 100
TMs 149 100 177 100
T Mg 156 100 174 100
TMy 169 100 179 100
TMg 159 100 173 60

TMg 157 100 175 100
TMyo 161 100 176 100
TMy1 137 100 170 100
TMi2 146 100 176 80

TMs3 158 100 168 100
TMya 135 100 172 100
TMss 148 100 175 100
TMsg 145 100 172 100
TMy7 175 100 178 80

TMsg 162 100 174 100
TMjg 139 100 171 100
T Myo 163 100 176 100

The experimental results are given in Table 7.8. In thisetabie results of both
approaches for each traffic matrix are given. Both the resousage (RU in the table)
and the success rate (SR in the table) results are discu$sedfirst column of the
table indicates the traffic matrix for which the correspadiow has results. In the
next two columns, the results of our approach and in the Vestcolumns, the tabu
search results are given. The values are the averages afcesagsages obtained after

5 runs for each traffic matrix using the corresponding method
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The experimental results show that, our ACO-based HH appraan solve the
problem with a 100% success rate for all the test cases. Hawthe success rate
of tabu search approach is 100% for the 80% of the test casege tonsider the
quality of the solutions given in Table 7.8, we see that tHatgm quality of the HH
approach is better than the tabu search approach for albfesexcept 1. Moreover,
the run time for our HH approach is at most 47 minutes, whiig &t least 5 hours for

tabu searchapproach.

2In the paper, it is said that for a 28 node network, the run tifrene tabu iteration is approximately
250 seconds. Similarly, with our implementation of thegaithm, the run time for one tabu iteration
is approximately 180 seconds for a 24 node network.
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8. CONCLUSION AND FUTURE WORK

In this thesis, we studied the survivable virtual topologsidn problem in optical
WDM networks. First, we solve the survivable virtual topgyanapping subproblem

separately, and then, the survivable virtual topologygteproblem as a whole.

In the first phase of the thesis, for the survivable virtupblogy mapping subproblem,
we designed two different nature inspired heuristics &A.and ACO. After designing
the proper operators for both heuristics, we tested theseisties for different
parameter values. In the parameter tuning tests, we did okxtenany statistical
difference between different values, which means thaetlseno need to struggle with
the time consuming parameter setting tests while usingthesristics. Any parameter

set will give a feasible solution for the survivable virtsapology mapping problem.

Moreover, we explored the effectiveness of these heuwsigiit network topologies
of different sizes, i.e. 14-node, 24-node and 48-node phy$opologies. Again,

both heuristics performed well for the problem for any sepafameter values. Both
heuristics can find a feasible solution in fairly short timies. in seconds for 14-node
topology, in less than a minute for 24-node topology, ancess lthan 8 minutes for
48-node topology. Furthermore, both heuristics can findida solutions for 100%

of the studied cases of 14-node and 24-node topologies cau8d$100% of the cases
of 48-node topology.

To assess the performance of our nature inspired heuristves compared our
experimental results with the ones obtained using basicdhé an ILP relaxation
given in the literature. Both the basic ILP and the ILP retetacan be used only for
the smaller size topologies of the problem due to the memianydtions. Test results
show that, only 58 out of 300 cases for the problem with 24entmgbology can be
solved using basic ILP. Besides this, ILP-relaxation cat &itower-bound for 240 out

of 300 cases for the problem with 24-node topology, wherts percentage is 300
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out of 300 using both the GA and the ACO heuristics. The tinggirements are even

incomparable, which is at least 2 hours for basic ILP.

The results clearly demonstrate that both of our heurisacssolve the problem even
for large-scale network topologies for which neither ILRA éiad the optimum solution
nor the ILP relaxation can find a survivable solution. Adzhlly, the CPU time
and the memory used by nature inspired heuristics is fasslydompared to the ILP

method.

In the second phase of the thesis, to solve the survivabteavitopology design
problem as a whole, we designed four different hyper-hearegpproaches. These

hyper-heuristics are based on GA, ACO, AICS, and SA.

In hyper-heuristics, the first process is to determine samele low-level heuristics
that solve the problem. In this thesis, first, we designed different low-level
heuristics. Then, to assess their performance for the \&abla virtual topology
problem, we experimented with these low-level heuristiés a result of this first
phase of experiments, we eliminated two of these low-leeeiristics which do not

perform well for the problem.

After determining the low-level heuristics, we experimeghtvith different parameter
set for each hyper-heuristic to fine-tune the parameterssélexperiments, as in the
survivable virtual topology mapping problem, show that¢his no need to deal with

fine-tuning, any parameter set will give a feasible solutmrthe problem.

To compare the performance of our four hyper-heuristicsgdesl for the problem,
we carried out some experiments. In these perfomance c@sopagxperiments, as
a baseline for the performance comparisons, we generatédat@om solutions.
As a result of the experiments, we can conclude that, eaclerkguristic can
find a feasible solution for 100% of the studied cases. Howed€O and AICS
based hyper-heuristics outperfom other hyper-heurigtia$ the random solutions.
The results show that, using hyper-heuristics can combfieebest features of the
low-level heuristics and give better results. The hyparriséic approaches proposed

in this thesis for survivable virtual topology design ardeato solve the problem for

90



large-sized networks having intensive traffic demands witld0% success rate for all

the test cases.

We also compared our results with the ones obtained usinguas@arch approach
proposed in the literature for the survivable virtual taypt design problem. The
success rate of tabu search approach is 100% for the 80% ofeitecases.

Furthermore, the solution quality of the hyper-heurisgip@ach is better than the tabu
search approach for all the cases except 1. As a result, weayathat hyper-heuristic
approaches can find better quality results using far less tR&l The run time for

our hyper-heuristic approach is at most 47 minutes, whikeat least 5 hours for tabu

search.

In the literature, there are no studies considering dolibkefailure situations in
survivable virtual topology design problem. However, oypér-heuristic approach
can be easily applied to the double-link failure situatianghout any modification in
the algorithm. We also tested ant colony optimization badsgebr-heuristic method to
see its performance when there is a double-link failure enghysical topology. The
results show that, our method can solve the survivablealittpology design problem

for double-link failures with more than 40% success rate.

There is no optimum solution method given in the literatunethe survivable virtual
topology design problem. The only study proposing an ILPhoétcan find the
optimum solutions for fairly small size networks (up to 4 el As a future work, an

ILP relaxation method can be derived to find the optimum sahstto the problem.

In this thesis, we studied the survivable virtual topologgidn problem considering
only the resource usage objective. However, the survivainleal topology design
problem consists of two objectives: resource usage and-sgalAnother future work

can be to design a multiobjective approach to solve the probl
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