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SUMMARY 

 
 

A DISCRETE FOURIER TRANSFORM BASED SUBBAND 
DECOMPOSITION APPROACH FOR THE SEGMENTATION OF 

REMOTELY SENSED IMAGES 
 
 

Segmentation is the partitioning of the image into separate homogeneous regions 
which have common properties. Feature extraction is an important phase in 
segmentation. Subband decomposition is an efficient way for analysing spatial-
spectral content of the signal and provides local energy distributions as features. 

Recently, Discrete Wavelet Transform (DWT) approach, which can be seen as a 
multiresolution filter bank, has been widely used in subband decomposition. But 
there are two main limitations of this method when overall performance of a 
segmentation problem is considered. First one is the dependency on the wavelets 
used as basis of the transform and the spectral signature of the images those are being 
studied. The other limitation is the loss of the transient information in the sub-images 
during the decomposition. This is the poor edge localization quality of the 
segmentation result. Moreover down sampling yields variable filter lengths of the 
analysing low-pass and high-pass bands and requires efficient recalculation of the 
filter coefficients. The second limitation has partly lost its importance with the use of 
the over-complete Stationary Wavelet Transform (SWT). 

We propose a Discrete Fourier Transform (DFT) based subband decomposition 
which uses a simple yet effective zero-phase, non-overlapping, 2-channel filter bank. 
These filters are ideal low-pass and high-pass filters designed in the frequency 
domain and their lengths are same as the length of the input image. These filters are 
applied to the signal in the Fourier domain.   

Experiments are carried out using both undecimated and decimated versions of the 
DFT based method. These are compared with SWT and DWT. In case of WT based 
methods, different wavelets are tested.  

It was shown that undecimated decompositions, although they cause some 
computational complexity in the image processing, always perform better than 
decimated decompositions. Another important result is that the DFT based subband 
decomposition methods are better than some wavelets. Generally DFT based 
subband decomposition methods provide satisfactory results for the segmentation of 
the remotely sensed images and may be a good candidate of the DWT which has 
gained high popularity in last few decades. 
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ÖZET 

 
 

UZAKTAN ALGILAMA GÖRÜNTÜLERİNİN BÖLÜTLENMESİNDE 
AYRIK FOURIER DÖNÜŞÜMÜ KULLANAN ALT BANT AYRIŞTIRMAYA 

DAYALI BİR YAKLAŞIM 
 
 

Bölütleme (segmentation) görüntünün ortak özellikler taşıyan homojen bölgelere 
ayrılmasıdır. Öznitelik çıkarma (feature extraction) bölütlemede önemli bir aşamadır. 
Alt bantlara ayrıştırma (subband decomposition) , bir sinyalin uzaysal-spektral 
içeriğinin çözümlenmesinde etkili bir yöntemdir ve bu yolla elde edilebilecek yerel 
enerji dağılımları öznitelik olarak kullanılabilir. 

Son yıllarda alt bantlara ayrıştırmada çok çözünürlüklü (multiresolution) süzgeç 
bankası (filter bank) yaklaşımı olarak da görülebilecek Ayrık Dalgacık Dönüşümü 
(ADD) yoğun olarak kullanılmaktadır. Ama toplam bölütleme başarısı dikkate 
alındığında bu yöntemin iki önemli sınırlaması olduğu görülmektedir. Birincisi 
dönüşümde baz olarak kullanılan dalgacıklara ve çalışılan görüntünün spektral 
özelliklerine olan bağımlılıktır. İkincisi, alt bantlardaki uzamsal değişim bilgilerinin 
alt örneklemeden dolayı kaybolmasıdır. Alt örnekleme bölütlemede kenar kestirim 
kalitesinin düşmesine neden olmaktadır. Daha da önemlisi alt örneklemeden dolayı 
her ayrıştırma aşamasında sinyalin boyutu değişmekte ve dolayısıyla alçak-geçiren 
ve yüksek-geçiren filtrelerin boyutları değişmektedir ki bu da filtre katsayılarının 
hızlı ve verimli bir biçimde yeniden hesaplanmasını gerektirir bu da tekrarlanması 
gereken hesaplamalar ve dolayısıyle işlem yükü getirmektedir. İkinci kısıtlama 
Durağan Dalgacık Dönüşümü (SWT) ile bir ölçüde aşılabilmektedir.    

Bu çalışmada Ayrık Fourier Dönüşümüne (AFD) dayalı basit ama etkili, sıfır-fazlı, 
spektrumu örtüşmeyen, iki-kanallı bir süzgeç bankası kullanan alt bant ayrıştırma 
yöntemi önerilmiştir. Boyutları her zaman giriş sinyalinin boyutuyla aynı tutulan bu 
filtreler frekans bölgesinde tasarlanmış ideal filtrelerdir. Filtreleme işlemi frekans 
bölgesinde gerçekleştirilmektedir.  

Uygulamalarda AFD’ye dayalı yöntemin hem alt-örneklenmiş hem de 
örneklenmemiş versiyonları denenmiştir. Bunlar, Ayrık Dalgacık Dönüşümü ve 
Durağan Dalgacık Dönüşümü ile karşılaştırılmıştır. Dalgacık Dönüşümünde farklı 
dalgacıklar kullanılarak deneyler gerçekleştirilmiştir.  

Alt örneklenmemiş ayrıştırmalar, görüntü işlemede hesaplama yükü getiriyor olsalar 
da, her zaman, alt örneklenmiş ayrıştırmalardan daha iyi sonuç vermişlerdir. Bir 
başka önemli bir sonuç da AFD’ye dayalı yöntemin ADD’nin kullandığı db6, sym6 
gibi bazı dalgacıklardan daha iyi sonuç verdiğidir. Genel olarak AFD’ye dayalı 
yöntemlerin bölütleme için yeterli sonuçlar verdiği gözlenmiş ve son yıllarda uzaktan 
algılama görüntülerinin bölütlenmesinde popülerlik kazanan ADD’ye bir alternatif 
olabileceği görülmüştür.   
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1. INTRODUCTION 

 

Image can be defined as a two-dimensional signal in scientific and technical context. 

It should be mentioned that, it has different contextual meanings in distinct 

disciplines such as optics, mathematics, computer science, finance, arts, philosophy, 

theology, and social psychology. An image of a physical object is taken with the help 

of natural or artificial sensors such as human eye, camera, radar etc. The sensors are 

located at a distance apart from the object. The distance may vary from nano, micro 

to macro scales but it is right to say that all images are remotely sensed.   

Segmentation of an image is the logical reordering and representation of the image. 

Through segmentation the image is partitioned into separate pieces of regions which 

have some common properties. 

Texture can be defined through the region in an image, in which local statistics or 

other local properties are constant or slowly varying [1, 2]. Segmentation of the 

texture content in digital images has received considerable attention during the past 

decades and numerous approaches have been presented [3, 4, 5]. Segmentation of 

images significantly reduces the amount of data. Moreover it is a very important 

phase before edge detection, classification and compression of images. More obvious 

edges and separate segments can be observed after segmentation process. It may be 

regarded as a pre or post processing operation before and after any other image 

processing and representation. It is expected that this new representation of the image 

which is more suitable for human and machine perception will provide some 

advantages for further image processing and both for the experts and the end users of 

the images. 

Remote Sensing images are especially appropriate for characterization by textures. 

SAR images are single band images which contain MR textures due to the non-
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stationarity of the microwave reflection of the ground and biomedical images also 

have textural properties. In last few decades the use of remote sensing is very much 

emphasized, because remotely sensed images are a valuable source of spatial data for 

a variety of applications such as urban mapping, natural resources management and 

environmental monitoring and for classification of geology, water temperature, soil 

characteristics, soil moisture, water pollution, flood damage estimation, groundwater 

location, vegetative diseases. RADAR sensors provide all-time and all-weather 

surveying tool making them ideal candidates for land cover mapping. Moreover they 

have been playing an important role in the remote sensing of environmental disasters. 

The fundamental assumption for most filtering approaches is based on the statements 

that the energy distribution identifies the texture and the local energy contained in a 

band can be used as a feature to discriminate the texture. Utilizing these facts, several 

filter bank approaches have been proposed for subband decomposition and by these 

subbands, it has become possible to reach local energy distributions of signals. 

Subband decomposition can be applied by various transformation techniques. We 

believe that the most important element is the filter or the filter bank used to 

decompose the signal. At this point we ask how can a filter or filter bank be 

efficiently designed that will give the best approximation of the signal. 

In particular we will focus on the efficient decomposition of the signal using simple 

low-pass and high-pass filtering in the frequency domain and decimation which is 

carried out in spatial domain. Discrete Fourier Transform (DFT)/Real Discrete 

Fourier Transform (RDFT) based subband decomposition and fast algorithms were 

studied by O. K. Ersoy [6, 7, 8] for the first time. Later, the DFT based subband 

decomposition method successfully applied to image fusion [6] and speckle 

reduction [7]. In [6, 7], image fusion and speckle reduction using DFT based 

subband decomposition were also compared to WT based decomposition methods. In 

this thesis we will apply this method to the segmentation problem and compare the 

results to the Wavelet Transform (WT) based methods. The design of such efficient 

filters is a challenging task to accomplish [8]. Although subband decomposition has 

been widely used in segmentation applications [9], critically sub sampled or full rate 

DFT based subband decompositions have not been widely applied to image 

segmentation problem and have not been compared to critically sampled Discrete 

Wavelet Transform (DWT) and redundant Stationary Wavelet Transform (SWT) 
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based subband decomposition methods which use different mother wavelets. 

Comparative studies tend to be unsatisfactory and don’t appear in the literature. Only 

a few comparative studies have been conducted so far, to justify their effectiveness 

[10].  

It was shown that although decimation is very important in some signal processing 

applications such as signal coding, it is not useful in many other applications such as 

segmentation, classification, noise removal and object recognition. Therefore, we 

question the role of the multiresolution analysis which is commonly played in 

subband decomposition and especially that of DWT in image segmentation.  

A signal can be represented as a weighted sum of certain base functions. WT is 

computed by the expansion of the signal into a family of functions which are 

dilations and translations of a unique function and completely characterizes the 

signal and represents it in an optimum way. WT has been attracting attention in 

diverse areas such as signal processing and image processing. 

DWT which is a useful technique for time-frequency analysis is often used in 

segmentation applications. The DWT can also be seen as a filter bank which consists 

of low-pass and high-pass filters. DWT has two distinct features. First it is 

maximally decimated and second it provides perfect reconstruction condition. DWT 

corresponds to Multiresolution Analysis (MRA) approximation expressions. This 

method permits the analysis of the signal in many frequency bands at many scales. In 

practice, MRA is carried out using 2-Channel filter banks composed of a low-pass 

and a high-pass filter and each bank is then sampled at a half rate. Mallat applied a 

critically decimated DWT with a dyadic subband structure [11]. The wavelet 

coefficients are sampled based on Nyquist criteria, this is critical sampling rate which 

is equal to a decimation factor that is equal to the number of channels of the filter 

bank. This representation is accordingly non-redundant and the total number of 

samples is equal to the size of the original image. 

DWT is an effective tool for multiresolution texture analysis. However, down 

sampling during decomposition does not properly characterize the shift invariance 

properties of the texture and therefore critically sampled filter banks typically imply 

inaccurate texture edge localization. This major inconvenience of this representation, 

that it does not conserve the invariance by translation, is reported in [12, 13]. 
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Discrete Wavelet Frame (DWF), an approach that does not down sample the signal 

during decomposition, may be used to avoid these circumstances [14]. Thus 

multiresolution analysis is not desirable for segmentation and estimation/detection 

problems. In order to preserve the rapid changes, the down sampling operation must 

be suppressed. SWT preserves the edges and many other textural properties in a SAR 

image. 

The main drawback is the complexity in design of these filters and the dependency of 

the performance on the type of the filter and the characteristic of the application and 

more specifically the spectral signature of the image at hand. Moreover, it is reported 

that the asymmetry of the impulse response of these filters causes bad localization of 

edges during segmentation [10].  

Another challenging issue is the use of a very broad class of filters, namely 

Quadrature Mirror Filters (QMF) incorporating both Finite Impulse Response (FIR) 

and Infinite Impulse Response (IIR) filters in subband decomposition. A work on 

designing IIR and 8-tap, 16-tap, 32-tap FIR filters can be found in [15]. It is natural 

to question whether the performance of subband decomposition could be enhanced 

by developing a simpler QMF. We use ideal Low-Pass (LP) and High-Pass (HP) FIR 

filters, lengths of which are adaptively adjusted to the length of the signal in the 

frequency domain [6, 7]. The reason why these structures are chosen is the 

expectation of less complexity and simple design structure and their robustness. 

The proposed maximally decimated DFT based filter bank is further extended to an 

undecimated one. So the subbands have the same size as the original image. And the 

length of the ideal LP and HP filters designed in the frequency domain and applied to 

the signal in the frequency domain will be fixed. Like with the wavelet filters, these 

filters will be tested both at critical sampling rate and full rate. 

The work in this thesis, following comparative study in [10], is trying to demonstrate 

that for certain tasks such as image segmentation, classification, edge detection WT 

based methods are not necessary but sufficient tools. 

In this thesis, contrary to [10], the filters used in DFT based method are ideal, their 

lengths are not fixed to a constant, wavelets used in WT based methods are different. 

The classifier, texture sets used and the overall system setup are also different. 
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We explore whether it is possible to design simple yet effective filters and use them 

with well-known DFT to be able to appropriately decompose signals, extract features 

from them and replace this newly developed technique with commonly used DWT. 

The work is organized as follows: 

In section 2 we give a brief description of a general segmentation scheme and detail 

its phases. The energy content of the subbands is expected to characterize the signal 

best and is used in feature vector. There are many classification schemes described in 

the literature we will use nearest mean classifier which uses Euclidian Distance as a 

similarity metric. Section 3 introduces the concept of subband decomposition using 

QMF. 2-Channel QMF which will be used in this thesis are explained. Decimation 

and interpolation are described here and then conditions and criteria that should be 

met for perfect reconstruction of the signal are also briefly given. Orthogonal Linear 

Transforms used in this thesis are detailed in Section 4. First we briefly give general 

concept of linear expansion of a signal and then the fundamental frequency analysis 

tool FT and a modification of FT the STFT is introduced as a time-frequency 

analysis method. Finally WT methods are explained in detail. In section 5 we present 

our the proposed algorithm for subband decomposition [6, 7], feature extraction, 

image segmentation, and give other components of the full system. In section 6 

numerical experiments are carried out and the results are shown in figures along with 

accuracy rates listed in tables to demonstrate the potential of the new DFT based 

method. We accomplish our task in four experiments as follows, first we simulate a 

2-class texture classification problem and try to segment the regions in a synthetic 

texture. Second we apply same methods to another artificial image which is 

composed of four different textures that are aggregated to form a new image. In third 

experiment, a problem which can be regarded as target detection, is simulated. In this 

image four objects that belong to the same texture are replaced on a uniform 

background. Finally, the experiments are carried out on a real SAR image of an oil 

spillage accident which is a remotely sensed monochrome image with gray-levels in 

the range {0–255}. In each of the experiments the overall system setup is kept same 

except for changing the transformation method and wavelets in WT.  
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2. TEXTURE FEATURE EXTRACTION AND SEGMENTATION USING 

SUBBAND DECOMPOSITION 

 
 

Many images contain regions characterized not so much by a unique value of 

brightness, but by a variation in brightness that is often called texture. Remote 

Sensing images are especially appropriate for characterization by textures. The 

addition of texture measures to spectral features has been widely studied to enhance 

classification accuracy. Textures can be used as the basis for discriminating various 

structural regions [16]. Many definitions for the term texture can be found in the 

literature, texture can be defined as a region in an image if a set of local statistics or 

other local properties of that region are constant or slowly varying [1, 2]. 

We will apply Discrete Fourier transform (DFT) and Wavelet transform (WT) to 

decompose image to be able to extract useful information from spatial distribution of 

subband images. Several studies have shown that it is possible to enhance the 

segmentation results by combining the textural and the spectral information [17]. In 

this study, the technique used takes the spatial as well as the spectral information into 

account. A general model for such a system is illustrated in Figure 2.1. Before 

applying the new method to the real SAR image, we will run it on textures. Textures 

used are selected from Brodatz album and are arranged manually on a computer 

using MATLAB platform.  

   
 
        Input                                                                                                          Output 
        Image                                                                                                         Image 
 
 

 
 
 
 

        Figure 2.1: General Model of a Feature Extraction and Segmentation System   
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2.1 Feature Extraction Methods 

Extraction and selection of features is critical in detection, recognition, identification, 

segmentation and classification problems. Prior to segmentation and classification 

stages it is necessary to extract features in order to be able to appropriately 

characterize the classes, the logical groups. In Figure 2.1, a general model for feature 

extraction and segmentation is illustrated. Tuceryan and Jain [18] identify five major 

categories of features for texture identification; statistical, geometrical, structural, 

model-based, and signal processing features. We use transform based methods at 

feature extraction phase. 

2.1.1 Statistical Methods  

From the second half of 70s until the mid 80s statistical methods were very popular. 

Statistical methods more generally used first order and second order statistics such as 

mean value, variance, energy, entropy and angular second moment of the spatial 

distribution of the gray level intensities of pixels in an image. The elements of co-

occurrence matrices are quantitative measures of the occurrence of gray levels in an 

image. Co-occurrence matrices were run on the spatial images.  Later other methods, 

such as transform based methods also utilized co-occurrence matrices [19]. 

2.1.2 Model Based Methods 

Model based methods assume a signal as a synthesized process at the output of a 

model. The model for example, can take white noise as the input, and parameters of 

the model are used as the features to characterize the image. The models proposed 

are Autoregressive (AR) models; Lattice Filter (LF) based models etc. In the AR 

model case the coefficients of the AR filter are taken, while in LF model the 

reflection coefficients are used in feature vector. These methods are also called signal 

processing methods in the signal processing society [9, 20]. 

2.1.3 Transform Based Methods  

The transform based methods first transform the image into a different domain in 

which it is expected to obtain more satisfactory information about the signal. Fourier 

transform for example can successfully locate frequencies of sinusoids in the 
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frequency domain where it is difficult to estimate the frequencies of sinusoids 

contained in a signal in the original time or spatial domain. FT, Discrete Sine 

Transform (DST), Discrete Cosine Transform (DCT), WT are most commonly used 

transformations. The data in the transform domain can then be manipulated. For 

example, the mean, variance and energy of the signal may be used in the feature 

vector.  

2.2     Subband Decomposition and Filter Bank Approach 

Subband coding of speech was introduced by Crochiere [21], and this technique was 

extended to multidimensional case [9, 22], and found applications in image and 

video processing [23]. In this method, time domain or spatial domain signal, is 

applied to the input of filter bank to produce low-pass and high-pass signals. 

Specifically if the filter bank is composed of just two filters, the filters are high-pass 

and low-pass. These complementary filters together cover the whole range of signal 

spectrum. If the reconstruction of the signal is among the tasks, then a synthesis stage 

follows. Image fusion, for example, requires reconstruction processes. In this thesis, 

we do not have to reconstruct the signal; however we have detailed the conditions 

and criteria that must be met in order to reconstruct the signal perfectly from its 

subbands. Once the analyzing low-pass filter defined, the analyzing high-pass and 

synthesizing filters, which are mirror-image of their analyzing stage counterparts, 

can be easily determined.  

The wavelet transform is a new technique for decomposing signals and found many 

applications in texture analysis [24]. Short Time Fourier Transform (STFT), unlike 

FT which gives no information about time of occurrence of frequency components, 

by mapping 1-D time signal to 2-D time-frequency domain, successfully locates the 

time of changes in the frequency domain. WT can be seen as an extension of STFT 

with better time-frequency localization. WT produces approximation and detail 

coefficients of a signal. Approximations are less changing parts while details are 

rapidly changing parts. In other words wavelet transform resembles high-pass and 

low-pass filtering, since low frequency components are slowly changing parts and 

high frequency components are rapidly changing parts of a signal.  In DWT to obtain 

and analyze the signal at different levels and resolutions, filtering techniques are 

used. The resolution of the signal can be changed by sub-sampling or decimation. To 
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obtain the approximation, a scaling function which can be seen as a LP filter is used 

and half of the frequencies, those are higher than the mid-frequency point, are 

eliminated, this implies the reduction of the information and the resolution. Therefore 

half of the samples are redundant and need not be contained as far as reconstruction 

is concerned.  The same is true for the LP part of the signal, therefore the total 

number of samples is kept same as the original signal and the redundancy is avoided. 

1-Dimensional case is extended to 2-Dimensional case by first applying the 1-D 

filters to the rows and second to the columns of the image. Two approaches exist for 

2-D case, separable and non-separable 2-D filters. A separable filter is the 

multiplication of two 1-D filters and most of the previous work is based on separable 

filtering, as they will be used in this work [25]. Non-separable filters are 2-D filters 

that are directly processed on image and have directionality property, which is not 

limited to vertical and horizontal directions of separable filters [9, 26].   

2.2.1 Pyramid Structured Decomposition 

The pyramid structured decomposition recursively decomposes sub-signals in the 

low frequency channel. In this approach it is assumed that the most of the energy of 

the signal is concentrated in the low end of the frequency spectrum, emitting the high 

frequency information at second and third stages of decomposition [11]. In this work 

we will neglect high frequency components in further decomposition steps, however 

other decomposition schemes that are provided for selecting best subbands are found 

in the literature. Depending on the type of the signal to be processed among all bands 

some may contain majority of the information and only essential bands should be 

further processed at each stage. Furthermore signal-adaptive concepts have been 

developed for the selection of appropriate branches of the tree and the selection is 

made on some predefined rules. Tree structure is an alternative to pyramid structure. 

Although it will not be used in this thesis, at this point it is important to mention the 

study of Chang and Kuo who  insist that for some signals the most important features 

are contained in intermediate frequencies, thus that the octave band decomposition is 

not optimal for such signals [11, 27]. They propose a decomposition scheme which 

explores the branches having the higher energy which possibly contain the maximum 

information. At each step, the energies of all subbands are calculated and compared 

with a threshold to see whether it passes this level, if any band falls under this level 
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then decomposition on that branch is stopped. In Figure 2.2 pyramid structure 

decomposition is shown. 
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Figure 2.2: Pyramid Structured Decomposition and Division of the Spectrum of 
Signal 
 

2.3 Feature Extraction and Selection 

In this thesis the spatial-spectral features are used. The image is a 2-D gray-level 

intensity matrix indicating the spatial distribution of objects on a background. The 

decomposition scheme, whether be wavelet or DFT based, transforms the image into 

a different domain which is mainly characterized by the spectral changes, and divides 

the spectrum in different parts depending on some predefined rules, and back 
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transforms the useful ones to their original spatial domain. This co-existence of the 

operations provides spatial-spectral features.  

1-Level decomposition produces 4 subbands, an approximation component, and three 

detail components. Three detail components are horizontal, vertical and diagonal 

details. The l1-norms of each of four bands are computed and the feature vector is 

filled in by these entries. Energies of subbands will be used as features. Thus the 

feature vector is composed of only 4 entries. The definition of l1-norm is given as: 
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After 1-Level decomposition, to further explore the spectrum one needs more 

decomposition levels. In 2-Level decomposition the approximation component of the 

first level is decomposed and detail coefficients are remained untouched. In 2-level 

decomposition the l1-norms of detail coefficients of first stage and l1-norms of the 

four new subbands produced from the approximation of the first stage are computed 

and stored. Then the feature vector of 2-Level decomposition has 7 elements. 

Similarly in 3-level decomposition we used the approximation component of the 

second stage and the feature vector is composed of l1-norms of 10 subbands. The 

feature vectors are composed as follows: 

 
 

],,,[ 1111,1 dvhalevel eeeefv =                                                  (1.2) 

 
],,,,,,[ 1112222,2 dvhdvhalevel eeeeeeefv =                              (1.3) 

 
],,,,,,,,,[ 1112223333,3 dvhdvhdvhalevel eeeeeeeeeefv =                  (1.4) 

 
 
 

2.3.1 Normalizing Feature Vector 

 

Normalization of the feature vector is needed to get more accurate results. By 

normalizing the feature vectors, the feature space is projected to a bounded space 

whose elements can take on values between 0 and 1.  
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2.3.2 Calculating the Mean of the Feature Vectors 

 

In order to test a pixel of the image to specify its class, a comparison with reference 

features is needed. These references, as explained above, are acquired from the 

training stage.  The number of training samples is more than one, therefore mean of 

these values have to be computed as follows,  
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The mean values for all classes are evaluated in the same manner as above. A typical 

two dimensional feature space of two classes is shown in Figure 2.3 
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Figure 2.3: An Example of a Feature Space for a 2- Class Segmentation Case, Each 
Feature Vector Contains 2 Elements. 
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2.4 Segmentation 

Segmentation is the process of determining the borders of homogeneous regions in 

an image. The most important task is to isolate regions that have common properties 

and distinguish them from the neighboring regions. Since the borders or edges are 

important for discriminating homogeneous regions, edge detection algorithms are 

widely used in segmentation procedures. And local statistics are also used to 

discriminate the borders of homogeneous sections.  Segmentation is the partitioning 

the image data into a set of disjoint regions with uniform property. Segmentation 

segments an image into disjoined regions corresponding to objects, or parts of 

objects that differ from their surroundings, and thus enables further classification to 

be performed based on the information provided by the clusters rather than 

individual pixels [16]. Generally classification process comes after the segmentation. 

2.5 Classification 

Classification is one of the most widely used information extraction techniques in 

remote sensing. The objective of classification is to assign all pixels in the image to 

particular classes. It turns the remote sensing data into meaningful categories 

representing surface conditions or classes. The resulting classified image is called 

thematic map. A thematic map is an informational representation of an image, which 

shows the spatial distribution of particular classes. Thematic maps are often used as 

input for information systems such as Geographic Information System (GIS) [16].  

Classification is the labeling of the sections. The labeling is logical naming of the 

heterogeneous regions. Decision making on the grouping of regions is a process 

accomplished manually or automatically. The manual handling of the selection of 

classes or at least determining the number of classes is called supervised 

classification. The analyst identifies pixels of known cover types, and then a 

computer algorithm is used to group all other pixels into one of these groups. 

Unsupervised classification on the other hand uses no prior information about the 

classes, since there might exist hidden classes in the image that are not expected or 

previously observed even by the experts. For that case, class labels are unknown and 
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pattern classes must be inferred from available data via unsupervised learning 

algorithms. In this thesis we will use supervised classification methods. 

2.5.1 Classifiers and Decision Rules 

There are many classification methods used in classification problems. The objective 

of the classification is to find the decision rules, which partition the feature space into 

the volumes called decision regions, each one corresponding to a given class. If a 

feature vector is located in a particular region it will be assigned to the class 

associated with that region. The decision regions are separated by surfaces called the 

decision boundaries [28]. So, partitioning the feature space implies establishing 

decision boundaries. Among a set of discriminant functions )}(),...,(),({ 21 xgxgxg m  

the one having lager value than others determines the class i  which x  belongs to 

[29]. 

The quantitative distance measure used in this thesis is the Euclidian distance. 

Nearest Mean classifier, using Euclidian distance, decides which class an individual 

pixel belongs to. After this step decision making, labeling is done. 

Bayes decision theory is a fundamental statistical approach for classification. The 

Bayes classification problem can be seen as an optimization problem in which one 

desires to construct a classifier, which minimizes the average probability of error 

called the error rate, or a loss function called the overall risk [28]. 

When the distribution of features in feature space is Gaussian or normal, the 

distribution function becomes [16] 
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Where iw  indicates the class i , x  is the feature vector , )( iwp  is a priori probability 

defined as the probability that a random observed feature vector x  belongs to class 

iw ,  im  is the mean of the distribution and iC  is the covariance matrix. 

If one takes the classes as equiprobable with a common covariance C for 

simplification, the discriminant function will reduce to [29] 
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If further one makes the assumption that the classes are equiprobable with the same 

covariance matrix that is equal to the identity matrix, the discriminant function, 

which is Minimum Distance to Means Classifier, reduces to 

  

 )()()( i

T

ik mxmxxg −−=                                                                        (1.11) 

 

In this thesis we will use this classifier for its simplicity, and its contributions to 

increase the efficiency of the algorithms by reducing the process time. The decision 

boundary for this classifier is linear and in fact it is the perpendicular bisector of the 

line between the two class values. Its location does not depend on the distributions of 

the classes [29]. 

Euclidian distance measure is used to decide which class an individual test pixel 

belongs to. As shown in the Figure 2.4, a line which is perpendicular to the line 

interconnecting the two means is the boundary between classes. A test pixel is 

labeled as the member of a class if it is nearer to the mean of that class than the mean 

of the other class or classes, whether it actually be or not be member of that class.  
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Figure 2.4: Decisions for a Test Pixel in the Segmented Feature Space by Measuring 
Euclidian Distances to the Means 
 
 
 
 

Distance2 Distance1 



 16 

2.6   Post-processing Operations 

Preprocessing operations such as contrast stretching, histogram equalization, gray 

level slicing, bit-plane slicing can increase the segmentation and classification 

accuracy when applied before these operations. In order to get better results we apply 

few post-processing operations to the image to increase the segmentation and 

classification accuracy. These operations may include mean and median filtering and 

mathematical morphology. 

Mean Filters are linear averaging filters. Spatial mean filtering is a convolution 

operation applied to a pixel group to obtain a new value for the center pixel. This 

blurs the image and corresponds to low-pass filtering. Uniform random noise is 

removed via this type of filtering but mean filtering is not practical when binary 

noise is present in the image. To remove binary noise and speckle noise a non-linear 

type averaging filter, median filter must be used. It is good at removing extreme 

values whereas preserving edges. The pixels are rearranged in ascending order and 

the value of the pixel that is in the middle of the mask is replaced with the value of 

the one in the middle of the rearranged order [30]. 

Mathematical morphology includes filling small holes in objects, separating adjacent 

or slightly overlapping objects, and joining broken boundaries into continuous 

segments, morphological operations have been successfully used in remote sensing 

applications [31]. 

Structuring elements such as disk, ball, square etc. are used with the four most basic 

operations: dilation, erosion, opening and closing. Opening and closing are 

combinations of dilation and erosion [32]. 
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3.  SUBBAND DECOMPOSITION AND FILTER BANKS  

 
 

3.1  1-Dimensional Subband Decomposition 

In this section 1-Dimensional 2-Channel filter banks and the perfect reconstruction 

conditions for these will be reviewed. The derivations used in this section heavily 

depend on the previous work by Vaidyanathan. The generalization to M-band case is 

also studied in [26, 33, 34]. The equations derived in sub sections can be found in [9, 

26, 33, 34]. 

3.1.1 Quadrature Mirror Filters (QMF) 

 
Let )(0 nh be an FIR filter with real coefficients. The filter )(1 nh  is defined as  

 

 )()1()( 01 nhnh n−=                                                                                       (3.1) 

 
And its frequency domain equivalent is  
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Substituting ω  with ω
π
−

2
 and noting that the magnitude is an even function of ω , 

the following relation is obtained, 
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From above it can be seen that )(0 zH  and )(1 zH  have the mirror image property 

about the point
2

π
ω = . Therefore they are called Quadrature Mirror Filters (QMF) 

and are used to eliminate the aliasing effect in two channel subband decomposition. 
 

3.1.2 Decimation and Interpolation in 1-Dimension 
 

Decimation is the process of reducing the sampling rate of a sequence. It is also 

called down sampling. The full-band signal is passed through an antialiasing filter
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and an intermediate signal )(' nx  is obtained then sub sampled. The down sampling 

process by M  is shown below. In Figure 3.1 decimation and interpolation for the 

factor 2 are shown. 

 
 
 
 
                                                         
 
 
      
 
 
 
Figure 3.1: Decimation and Interpolation by the Factor 2  
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The intermediate signal )(' nx  can be expressed in terms of the impulse train 
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In Discrete Fourier Series, the expansion of )(' nx  is as 
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And the Discrete Fourier Transform of the intermediate signal is  
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Where Mj

M eW /2π−= . The frequency response of the )(' nx , is obtained by replacing 

z  with jwe  
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Equation (3.9) shows that the Discrete Fourier Transform of the intermediate signal 

)(' nx  is the sum of M  replicas of the frequency response of the original signal )(nx  

spaced at
M

π2
. 

After selecting the values at the critical sampling rate, zeros between samples are 

eliminated and therefore time scale is compressed by the factorM . 
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)(zY  can be written in terms of )(' zX   
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And in terms of )(zX  
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On the unit circle the Frequency response is obtained by putting jwez =  
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Compression in time results in an expansion in Frequency domain. Without proper 

selection of the sampling filter, down sampling may also lead to a loss of information 

during reconstruction. 

Interpolation is the process of increasing the sampling rate of a signal by an integer 

factorM . This process is achieved by the combination of up sampler and low pass 

filter. This operation is defined by 
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This operation inserts 1−M  zeros between samples.  
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Up sampling in terms of )(zX  can be written as,  

 
 )()( zMXzY =                                                                                  (3.16) 

 

Two effects of interpolation are compression in frequency domain and generation of 

the additional high frequency signals which is a consequence of inserting zeros 

between samples which causes additional high frequency components [9, 26]. 

3.2 1-Dimensional 2-Channel Filter Banks 

In the Figure 3.2, a QMFB which is composed of the analysis and synthesis parts is 

shown. The analysis part decomposes the signal into separate bands and down 

samples by the factor 2. At the synthesis stage, the two subbands are up sampled, 

filtered and summed up to reconstruct the input signal. Here in the Figure 3.2 the 

filters )(0 zH  and )(1 zH  at the analysis stage are low-pass and high-pass filters 

respectively. These are anti-aliasing filters used to split the signal into two equal 

subbands. The anti-aliasing filtered signals 0v  and 1v  are down sampled by two to 

give the outputs 0p  and 1p  of the analyzing filter. At the synthesis stage these 

signals are up sampled by two by inserting zeros between samples to give out signals 

0q  and 1q  where 0q  and 1q  are filtered through interpolation filters )(0 zG  and 

)(1 zG  respectively. The outputs of the interpolating filters are summed up to give a 

perfect or approximate of the original signal x . 

 
 
  
 
 
 
 
 
 
 
 
           Figure 3.2: Analysis and Synthesis Parts of a 2-Channel QMFB 
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The equations for decimation and interpolation processes in the z-domain are given 

in equations (3.17) and (3.18). From decimation equation:  
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and from the interpolation equation: 
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The output of the synthesis filter can be obtained as in the following equations, 
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By expressing the intermediate signals )(0 zV  and )(1 zV  in terms of the input signal 

and the analyzing filters )()( 00 zHzX  and )()( 11 zHzX  respectively, one can rewrite 

the above relationships as  
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)( 00000 zGzHzXzGzHzXzY −−+=                                 (3.23) 

 

))()()()()()((
2

1
)( 11111 zGzHzXzGzHzXzY −−+=                                   (3.24) 

 

These two signals are used to reconstruct the signal )(ˆ zX  
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[ ]

[ ] )()()()()(
2

1

)()()()()(
2

1
)(ˆ

1100

1100

zXzGzHzGzH

zXzGzHzGzHzX

−−+−+

+=
                                              (3.25) 

 

The right side of the equation is composed of two parts. First part describes the 

transmission of the signal )(zX  through the system and the second describes the 

aliasing component of the output of the filter bank.  

 

  )()()()()(ˆ zXzSzXzTzX −+=                                                                (3.26) 

3.3 Perfect Reconstruction Conditions for 2-Channel Filter Banks 

Perfect reconstruction of the signal requires two conditions; firstly, transmission 

component of the signal must be delayed and constant c  times of the input signal 

and secondly no aliasing effect should remain. These are satisfied by the following 

two equations respectively, 

1- 0)( n
czzT

−=    Where c is a constant  

2- 0)( =zS           for all z 

If these two conditions satisfied then the output signal will be of the form 

 
  )()(ˆ 0nncxnx −=                                                                                       (3.27) 

 

Perfect reconstruction for a 2-channel QMFB is achieved via canceling the aliasing 

effect completely, which requires a simple design of the synthesis filters according to 

the task as follows, 

  
 )()( 10 zHzG −−=                                                                                  (3.28) 

 
 )()( 01 zHzG −=                                                                                  (3.29) 

 

For this choice of filters the aliasing effect is cancelled but non-constant amplitude 

and the non-linear phase of the )(zT  cause distortions over the approximated signal 
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 0)( =zS                                                           (3.30) 

  

[ ])()()()(
2

1
)( 0110 zHzHzHzHzT −+−=                                                   (3.31) 

 

One of the several choices for canceling amplitude and phase distortions, is FIR Para 

unitary solution which relates )(0 zH  and )(1 zH , where both are N-tap FIR filters and 

power complementary pairs, given as, 

  

 )()( 1
0

)1(
1

−−− −= zHzzH N                                                                            (3.32) 

 

Inserting this into the transfer equation )(zT  yields a pure delay multiplied by a 

constant as follows, 

 

[ ])()()()(
2

1
)( 1

11
1

00
)1( −−−− += zHzHzHzHzzT N                                  (3.33) 

 
)1()( −−= NczzT                                                                                            (3.34) 

 

3.4 2-Dimensional 2-Channel Subband Decomposition 

2-Dimensional filter bank implementation is utilized especially in image processing. 

2-D filters can either be separable or non-separable. Each has specific properties and 

filter type should be chosen according to the application. There are various 

applications, for example in image processing, in which non-separable 2-D filters are 

preferable. On the other hand separable filters are constructed by multiplying two    

1-D filters. And separable filters provide several advantages over the non-separable 

ones. The most important properties of separable filters are given as 

1- No need to process along both dimensions at the same time. Each 

dimension can be processed at a time, for example a 2-D image can be 

filtered by a 1-D filter first filtering along rows and then later filtering the 

output along columns.  

 2-   Separable filters are much easier since they do not require 2-D kernels 
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3- Operations using separable filters are faster, since mn  operations are 

needed in separable case while nm 2  operations are needed in a filtering 

operation using a non-separable filter 

For the sake of simplicity we will restrict ourselves to separable 2-D filters, and 

process on the rows and columns of the input signal successively. In Equation (3.35) 

1-D filters 1m  and 2m  are multiplied to form 2-D filter M  and a numerical example 

is provided.   

 
)()(),( 221121 kmkmkkM =                                                                        (3.35) 

 

 { }1 2 4 2 1
4

1
)( 11 =km                                                                                  (3.36) 

  

 { }1 2 4 2 1
4

1
)( 22 =km                                                                                 (3.37) 
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4.  WAVELET TRANSFORM BASED SUBBAND DECOMPOSITION 

 

In this section Wavelet Transform (WT) and its derivatives are explained. We begin 

with frequency analysis, explain FT briefly and introduce STFT which provides joint 

time-frequency analysis.  In DWT, the concept of Multiresolution Analysis (MRA) is 

explained. In the following we start by linear series expansion of a signal, since all 

transformation methods reviewed here represent a signal as a weighted linear 

summation.  

4.1  Linear Orthogonal Transforms 

A signal in a vector space S can be written as a linear combination of basis vectors of 

space B.  This representation of the signal in another way may be suitable for a 

specific problem type. 

 

 ∑=
i

iiax ψ                                                                                                  (4.1) 

 

Where, the set of elementary signals }{ iψ Ζ∈i  is complete for the vector space S, if 

all signals Sx∈ can be expanded as in (4.1). The dimension of the vector space S 

equals the number of the elements of the basis vector space B [35].  

If the vectors iψ  are linearly independent, in that case there exists a dual 

set }~{ iψ Ζ∈i , such that the coefficients ia  can be computed as 

 

 n

n

nii xa ∑= ,
~ψ                                                     (4.2) 

 

If the set }{ iψ Ζ∈i  is orthonormal and complete, then B is an orthonormal basis, 

and the basis and its dual are the same,  
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 ii ψψ ~=                                                                          (4.3) 

The inner product, using Kronecker’s symbol, is defined as 
 

 




=

≠
==〉〈

ji

ji
jiji 1

0
, ,δψψ                                                            (4.4) 

 
In orthogonal case the equation for x  can be written as: 
 
 ∑=

i

ii xx ψψ ,
                                                                                          (4.5)                                                                                                                  

 

If the basis vectors in the complete set are linearly independent but not orthonormal, 

then the set is biorthogonal. In that case the relations are given as: 

 

  




=

≠
==

ji

ji
jiii 1

0~, ,δψψ                                 (4.6) 

 

 ∑∑ ==
i

ii

i

ii xxx ψψψψ ~,,~                                       (4.7) 

 

If a redundancy in the complete basis vectors set exists, that is if the vectors are 

linearly dependent, then the representation has redundancy and is called a frame. 

Figure 4.1 shows a linear expansion of the vector x  onto the 2-D Euclidian space 

 
 
                                                                            〉Ψ〈+〉Ψ〈= xxx ,, 21  

                    〉Ψ〈 x,1  

 
                          1Ψ  

 
                                                  
                                                       
                                                   2Ψ                   〉Ψ〈 x,2  

 
 
 
Figure 4.1:  Linear Expansion of a Vector onto the Euclidian Space  
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4.2 Fourier Transform 

 

The frequency representation of a continuous signal x  is the multiplication and 

integration of the signal by a sinusoidal kernel throughout the entire domain. Fourier 

Transform pairs for the continuous time signal x  and its transform X  are defined as: 

 

∫
∞

∞−

−= dtetxX tjωω )()(                       (4.8) 

∫
∞

∞−

= ωω ω deXtx tj)()(                                                   (4.9) 

 

Where 1−=j  and the base function tjte tj ωωω sincos +=  is infinite in time and 

frequency. Fourier Transform separates the waveform into a sum of sinusoidal 

functions having different frequencies.  

Signals which are discrete in time are transformed into the Fourier Domain as: 

 

 ∑
∞

−∞=

−=
n

nfjfj enxeX ππ 22 ][)(                                          (4.10) 

 

 ∫
−

=
π

π

ππ dfeeXnx nfjfj 22 )(][                                     (4.11) 

 

Signal X  is continuous, periodic with π2 , and is computed on the entire frequency 

domain, while x  is discrete in time. The frequency f  of X  is a normalization of the 

actual frequency to the sampling frequency. Since X  is continuous it is impossible 

to use its actual analog values in digital systems. The widespread use of digital 

systems requires discrete formulations of the expressions for both domains. As a 

result Discrete Fourier Transform equations are defined as: 

 

 ∑
−

=

−=
1
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/2][][
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n

NnkjenxkX π           1,...,1,0 −= Nk                                          (4.12) 
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/2][][
N

k

NnkjekXnx π            1,...,1,0 −= Nn                                           (4.13) 
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In Equations (4.12) and (4.13) the signal x  and its DFT X  is periodic with period N. 

The basis functions used in Fourier Transform are infinite in time; conversely they 

are located well at frequency domain. Due to this property of the sinusoids 

information about the time is lost during Fourier Transformation. Since FT does not 

convey information about time to the transformed domain, the need to new 

techniques has arisen and a new version of Fourier Transform with time dependency, 

namely Short Time Fourier Transform is introduced. 

4.3 Short Time Fourier Transform 

Short Time Fourier Transform (STFT) is applied to the signals which do have rapidly 

changing properties with respect to time or space, in such cases the signal is 

segmented by finite duration windows. The length of the window depends on the 

length of time intervals during which the spectrum of the signal can be accepted as 

stationary. After windowing operation each windowed section is transformed into 

Fourier domain. Partitioning the signal into stationary parts is achieved through 

sliding the window. It should be noted that window is a rectangular one with 

amplitude 1, the width and amplitude of the window is constant. 

 

∫
∞

∞−

−−= dtekttfkSTFT tjωωω )()(),(                          (4.14) 

 
SHFT is invertible if the windowed function is of finite energy; the inverse is given 
as, 
 

 dkdetkSTFT
E

tf tkj ττωτ π2)(),(
1

)( −
∞

∞−

∞

∞−
∫ ∫ −=                                              (4.15) 

 

Where ∫
∞

∞−

= dttwE
2

)( . From another point of view the basis functions are, 

 

 τπττ fj

wt ethw 2
, )()( −=                                                                                (4.16) 

 

Which is same as that of Fourier Transform except for that, it is translated in time 

and modulated in frequency. 
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STFT provides time-frequency representation of a signal. Although this 

representation is very practical in use, it is subject to Heisenberg’s Uncertainty 

Principle, a phenomenon known well from classical mechanics [36]. It dictates that 

both time and frequency information of a signal cannot be exactly known. The width 

of the window determines the resolution. Narrow window provides good time 

resolution and poor frequency resolution, while wide window acts opposite. The type 

of window to be utilized is strongly related to the application and the signals at hand. 

On the other hand to obtain good frequency resolution one needs a narrow band 

window. Although it is possible to adjust window size to trade-off between time and 

frequency resolution, there is a fundamental limitation on the freedom of design for a 

fixed window length. For a window )(tw  and its Fourier Transform )(wW , both 

satisfying 0)(
2

=∫ dtttω  0)(
2

=∫ dffWf , the spreads in time and frequency, using 

Root-Mean Square as a measure, are defined as: 

   

dtt

dttt

t 2

2
2

2

)(

)(

∫
∫=∆
ω

ω
                                                                                      (4.17) 

 

dffW

dffWf

f 2

2
2

2

)(

)(

∫
∫=∆                    (4.18) 

 
The effective time duration and bandwidth of signals satisfy the following condition, 
 

π4
1

≥∆∆ ft                     (4.19) 

 

This means that, if a signal has bandwidth f∆  then its duration must be
f

t ∆
≥∆

π4
1

. 

Two pulses in time can be distinguished if they are more then t∆  apart, and two 

impulses at frequency domain can be distinguished if they are more then f∆  apart. 

Due to this trade-off between time and frequency, resolution in time and in frequency 

can not be arbitrarily small, since their product is lower bounded. 
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4.4 Wavelet Transform 

Following the above analyses another transformation method called Wavelet 

Transform gained high popularity among signal processing society in last two 

decades. Wavelet transform uses a family of special functions called wavelets. 

Unlike base functions used in FT and STFT which are sinusoidals having infinite 

duration and constant frequency, Wavelets are limited in time. Moreover a wavelet’s 

width does not remain constant and is adjusted by a factor called scale. Scaling can 

be regarded as changing the frequency.  

Instead of fixing the time-frequency resolutions t∆  and f∆ , one can let both 

resolutions vary in time-frequency plane in order to obtain a multiresolution analysis 

[26]. This variation can be carried out without violating the Heisenberg inequality 

[36]. In this case, time resolution must increase as frequency increases and the 

frequency resolution must increase as frequency decreases. This can be obtained by 

fixing the ratio of f∆  over f  to be equal to a constant c  

 

c
f

f
=

∆
                                                                       (4.20) 

 
 
 
    
 
 
 

   Scale 
 
 
 
 
 
 
 
 
 
 
 
                                                                                              Time 
 
    Figure 4.2: 2-Dimensional Time-Scale Representation of the Signal 
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4.4.1  Continuous Wavelet Transform 

 

The forward and backward wavelet transform for 1-Dimensional signals is given in 

the equation below, 

 

 ∫
∞

−∞=

Ψ=
t

ba dtttxbaC )()(),( ,                                      (4.21) 

 

Where translations and dilations of the mother wavelet )(tΨ  is as follows 

  

)(
1

)(,
a

bt

a
tba

−
Ψ=Ψ       }0{−= +Ra   Rb =                                        (4.22) 

 

The synthesis equation of the signal x  is  

 

 ∫∫
−

Ψ=
+Ψ RR

a

dadb

a

bt

a
baC

K
tx

2
)(

1
),(

1
)(                                                 (4.23) 

 

for the perfect reconstruction ΨK which is the interval ∞<< ΨK0  must satisfy 

following condition, 

 

∫
∞

∞−
Ψ

Ψ
= dt

t

t
K

2
)(

                                                                                      (4.24) 

 

In Continuous Wavelet Transform (CWT) case mother wavelets’ position is 

continuous over the time and also scaling is handled in continuous manner.  Through 

Wavelet Analysis a signal is decomposed on a family of analyzing functions. As far 

as reconstruction is concerned CWT is highly redundant, since its base space is over 

complete [35]. 
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4.4.2  Discrete Wavelet Transform 

The Discrete Wavelet Transform (DWT) equation is identical to that of Continuous 

Wavelet Transform (CWT) except for the definition of a  and b . To obtain a time 

orthonormal basis, the scale and time parameters, a  and b  must be appropriately 

discretized. Natural way is to discretize them in a logarithmic manner, as for 

example, the adaptation of hearing of human beings is similar, and hence the 

subband coding of sound is successfully handled by the wavelet transformation. In 

discrete case, the resultant wavelet analysis equation is, 

  

∫
∞

−∞=

−
Ψ=

t

dt
a

bt

a
txbaC )(

1
)(),(           ja 2= , jkb 2= , 2),( Zkj ∈       (4.25) 

 

Synthesis of the signal is as follows 

 

∑∑ Ψ=
k

kj

j

tkjCtx )(),()( ,                                                                       (4.26) 

 

When the scale is changed in powers of 2, that is if the computations are done octave 

by octave, the transform is named dyadic wavelet transform 

 

∑∑ −Ψ= −
−

k

j

j

j

ktkjCtx )2(2),()( 2                                                         (4.27) 

 

For this choice of scaling, the mother wavelet from which a family of orthogonal 

bases are derived as below and a true orthonormal basis will be obtained only for 

very special choices of ψ  

 

 )2(2)( 2
, ktt j

j

kj −Ψ=Ψ −
−

  (4.27) 

 

the factor 2/2 j−  normalizes each wavelet to maintain a continuous norm independent 

of scale j . Through this, lower resolution wavelets can be calculated from higher 

resolution coefficients. This approach is called DWT and is strongly related to 

Multiresolution Analysis (MRA) [37].  
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The concept of MRA is better understood by a function called scaling function.  

 

 )2(2)( 2
, ktt j

j

kj −Φ=Φ −
−

  For   k=1, 2, …                                               (4.28) 

 

Any continuous function )(tx  can be represented at a given resolution or scale 0j , by 

a sequence of coefficients given in ∑ Φ= )()()( ,000
tkxtx kjjj . In other words, the 

sequence )(
0
kx j  is the set of samples of the continuous function )(tx  at 

resolution 0j . The higher values of 0j  corresponds to higher resolution [38, 39]. 

The lower resolution scaling function filter can be expressed by a weighted sum of 

shifted versions of the same scaling function at the next higher resolution )2( tϕ , as 

follows, 

 

 ∑ −Φ=Φ
k

ktkht )2()(2)( 0                                                                      (4.28) 

 

The set of coefficients )(kh ’s are called the scaling function coefficients for the 

scaling filter. This equation is also called, 

1-the refinement equation 

2-MRA equation 

3-dilation equation 

The mother wavelet can be constructed using scaling function, design of which 

depends on )(kh ’s, the scaling function is related to the mother wavelet as below 

 

 ∑ −Φ=Ψ
k

ktkht )2()(2)( 1                                                           (4.29) 

 
Where the relationship between real scalar series 0h  and 1h  is given in (4.30) as 

defined in [38]. 
 

 )1()1()( 10 khkh k −−=                                                                                (4.30) 
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)(0 nh  is related to the original waveform )(tx . For a given scalar series )(th  it is 

difficult to solve for the scaling function. Scaling function is a smoothing function in 

behavior where wavelet function acts as a detailing one. 

It is shown in [38] and [40] that any continuous function can be represented by the 

following expansion, defined in terms of a given scaling function and its wavelet 

derivatives, 

 

 ∑ ∑∑
∞

−∞=

∞

=

∞

−∞=

Ψ+Φ=
k jj k

kjjkjoj tkdtkctx
0

,,0 )()()()()(             (4.31) 

 

this set of coefficients in the wavelet expansion is called the DWT of the function 

)(tx . In this expansion, the first summation gives a function that is a low resolution 

or coarse approximation of )(tx  at scale 0j . For each increasing j  in the second 

function, a finer resolution function is added, which increases details. 

4.5  Multiresolution Decomposition and Reconstruction 

It is shown that the scaling and wavelet coefficients at scale 1−j  are related to the 

scaling coefficients at scale j  by the following relations [38, 40]. 
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                    (4.31) 

 

The scaling coefficients at higher scale, using filter coefficients 0h  and 1h , can be 

used to calculate the wavelet and scaling coefficients at lower scales. Since in 

practice, a discrete signal, in its original resolution can be accepted as the first 

approximation, using the above relations in equation (4.31) one can completely 

determine the DWT coefficients of the signal at all desired levels, with only given 

filter coefficients 0h  and the original signal. The process described by the equation 

(4.31) takes place as follows; first by assuming that )()( kxkcJ = , and starting from 

Jj =  the coefficients 1−jc  are obtained filtering jc  with the FIR filter 0h  and then 

decimating the output by keeping only every other sample of the output. The details 
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1−jd  are obtained in a similar fashion [38, 41]. The filters 0h  and 1h  are low-pass and 

high-pass filters respectively. The procedure explained above gives the DWT 

coefficients set, for a signal )(tx  this collection is 

)}(),(),(),...,(),({
001021 kckdkdkdkd jjjJJ +−− . Total length of the elements of this set 

equals the length of the original signal. This is achieved via decimation by 2 at each 

stage. The above process is visualized in the Figure 4.3.  

 
 
  
 
 
 
 
 
 
 
 
 
 
 

             
 
 
 
 
 
 
 

 
 Figure 4.3: 1-Dimensional 2-Level Full Subband Decomposition  

 
 

The higher resolution scaling coefficients are related to the lower resolution scaling 

and wavelet coefficients as described below 
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this equation indicates how the approximation and detail coefficients at resolution 0j  

can be used to reconstruct the approximation of the original signal at the maximum 
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achievable resolution J. In the reconstruction process, the FIR filters 0g  and 1g  are 

flipped versions of 0h  and 1h  respectively, and more importantly, before filtering, 

zeros are placed between every two consecutive samples. After expansion in time 

which corresponds to interpolation, filtering occurs and a finer approximation is 

obtained. 
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 Figure 4.4: Interpolation and Reconstruction 
 

4.6 Discrete Stationary Wavelet Transform  

We know that the classical DWT suffers a drawback: the DWT is not a time 

invariant transform. This means that, even with periodic signal extension, the DWT 

of a translated version of a signal X is not, in general, the translated version of the 

DWT of X. To overcome the lost of the translation invariance which is a desirable 

property the Stationary Wavelet Transform (SWT) is defined. This property is useful 

)(0 zG  )(1 zG  

2↑  2↑  
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for several applications such as edge points detection. The main application of the 

SWT is de-noising. For more information, see [6, 42]. 

4.7 2-Dimensional Discrete Wavelet Transform 

For the analysis and the processing of 2-D images, 2-D scaling functions and 

wavelets must be constructed. For the sake of simplicity we will restrict ourselves to 

the separable case as we did before for 2-D filter bank structures. Since the scaling 

and wavelet functions can be obtained from low-pass and high-pass filters 

respectively, 2-D scaling and wavelet functions are then defined as in equations 

(4.38) and (4.39). The rows and columns of the image are processed one by one to 

decompose the signal as in Figure 4.5. 
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     Figure 4.5:  Separable Filtering Achieved Via Row and Column Processing  
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At each stage during the decomposition process 4 sub-images, approximation; 

horizontal, vertical and diagonal details are obtained. These subbands are shown in 

two dimensional domains as in Figure 4.6. 
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     Figure 4.6: Representation of Subbands of an Image Decomposed in 3-Levels  
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5. SUBBAND DECOMPOSITION USING DFT 

 

Frequency domain representation using DFT provides new perspectives on the 

signal. We can divide the spectrum into two regions, the high frequency region and 

the low frequency region. After separating the image into a blur approximation 

component and four high frequency components which are details, the sub images 

are back transformed to the spatial domain, and feature vectors that are used in 

segmentation are built from spatial domain subband images. By this method, both 

spatial and spectral properties of the image are used. This compact form which has 

both spatial and spectral characteristics is more powerful than the methods that use 

only spatial statistics of the gray level images.  

5.1  Decomposition Algorithm 

Decomposition algorithm which is explained briefly in the following steps is 

important for the participation of the well known Fourier Transform technique. 

Another important property of this technique is the utilization of the basic high-pass 

and low-pass filtering which is not complicated in computational means. 

Decomposition scheme which is used to extract features from image involves 5 main 

steps: 

1-transform the signal into Fourier Domain using DFT 

2-decompose the signal into high-pass and low-pass parts 

3-back transform the image into its original domain, the spatial domain 

4-subsample the image by decimating the image by 2 if required 

5-Finally acquire features specific to the sub image to best characterize the 

image, and build feature vector 

The general subband decomposition approach and the concept of filter banks are 

explained and detailed in sections 3 and 4. In this chapter the same methods will be 
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explained utilizing DFT, ideal HP and LP filtering and sub sampling. These three 

operations together are stated in the following equations. An application of the same 

scheme for the image fusion accomplishes the task and proves the ability to be an 

alternative to other decomposition techniques such as wavelet [6, 7].  

5.1.1 Discrete Fourier Transform 

The DFT pair is given as 
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5.1.2  Ideal High-Pass and Ideal Low-Pass Filtering and Decimation 

 

Let ][kX LP  be the low pass filtered part of ][kX , the DFT of the ][nx . If the filter 

used is a low-pass symmetric, zero-phase one then the expression in terms of ][kX is 

[6, 7]. 
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and the low-pass signal is  
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This is the output of the filter that has frequency response given by 
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and impulse response have symmetry about the mid-point 
 
 
  ][][ nNhnh −=                                                                               (5.6) 
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For the ideal low-pass expression if 2/NK =  chosen, taking every other sample, the 

decimated expression reduces to.  
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And for the high-pass signal the processes are taken in the same way as above. 

Applying a high-pass filterG  to the frequency response of the signal ][nx , ][kX HP  is 

obtained. The frequency response of the filter is defined as 
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Again ][ng has symmetry about the origin, and is a zero-phase filter. That is 

 
][][ ngng −=                                                         (5.9) 

 
][][][ kXkGkX HP =                                                                          (5.10) 

 

or equivalently 
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and high pass signal is obtained by inverse transforming ][kX HP  
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for a real signal ][nx , we have 

 

][][ * kNXkX HPHP −=                                                  (5.13) 
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Taking the relation in the Equation 5.7 into account the decimated high-pass signal 

can be reduced to the expression given in Equation 5.14 below as: 
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5.1.3  Reconstruction in the Synthesis Bank 

The reconstruction is the formation of the original image from its subbands. It is 

required in image fusion, image compression and coding processes. Although we 

don’t have to reconstruct the original image after extracting the information needed 

from the subbands and building feature vectors, in the following the steps of 

reconstruction process in the low-pass and high-pass synthesis banks are given. 

For reconstructing the low-pass signal these steps are followed, 
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In order to reconstruct ][kX LP  from ][' kX LP  we need additional information on the 

imaginary part of ]4/[NX LP . This can be considered to be the key data for perfect 

reconstruction. In summary, the reconstruction of the low-pass signal is achieved as 

follows: 

1- High frequency components )4/34/( NkN <<  are filled with zeros 

2- Low frequency components are obtained by using equation (5.15) and 

]}4/[Im{ NX LP  

3- the low frequency components for )4/3( NkN <≤  are the complex 

conjugates of the low frequency components for )4/0( Nk ≤<  in the 

case of the DFT 

4- ][nxLP  is recovered by the inverse transform of ][kX LP  
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The equation for recovering high pass signal can be written as 
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The reconstruction of the high-pass signal is achieved as follows: 

1- High frequency spectral components )4/34/( NkN <<  are obtained by 

eq.(5.16) 

2- other low frequency spectral components are set to zero 

3- ][nxHP  is recovered by the inverse transform of ][kX HP  

5.2  Ideal LP and HP Filters Used to Decompose and Reconstruct a Signal  

The ideal LP and HP filters used in the decomposition and reconstruction processes 

are shown in the figure 5.1 and 5.2. These filters are symmetric, zero-phase and used 

to construct non-overlapping digital filter banks [7]. Impulse response of the wavelet 

filter Daubechies-4 is given in the Figure 5.3.  

 

 

 
 

Figure 5.1: Frequency Responses of Ideal HP and LP Filters. Low-Pass 
Decomposition Filter: 0H , High-Pass Decomposition Filter: 0G ,  Low-Pass 

Reconstruction Filter : 1H , High-Pass Reconstruction Filter: 1G ( from left to right 

and top to bottom). 
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Figure 5.2: Impulse Responses of Ideal HP and LP Filters. Low-Pass 
Decomposition Filter: 0H , High-Pass Decomposition Filter: 0G ,  Low-Pass 

Reconstruction Filter : 1H , High-Pass Reconstruction Filter: 1G  (from left to right 

and top to bottom). 
 
 

 

 
 

Figure 5.3: Daubechies-4 Filter Coefficients. Low-Pass Decomposition Filter, 
High-Pass Decomposition Filter, Low-Pass Reconstruction Filter, High-Pass 
Reconstruction Filter (from left to right and top to bottom). 
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5.2.1 An Example of a 1-Dimensional 3-Level Sub band Decomposition Using 
DFT 

 

As an example a 1-Dimensional signal is decomposed at 3 levels into approximation 

and detail components, 

 
noisenfnfnfnfnx +++++= )2cos()2cos()2cos()2cos(1)( 4321 ππππ       (5.17) 

 

Where 512,...,2,1=n  and 512/31 =f , 512/52 =f , 512/103 =f , 512/1504 =f  are 

normalized frequencies 

 
 

             

 

 

 
 
Figure 5.4: Example: 1-D Decomposition Using DFT Subband Decomposition. 

)(nx , )(nxLP , )(nxHP , )(, nx LPLP , )(, nx HPLP , )(,, nx LPLPLP , )(,, nx HPLPLP (from left to 

right and top to bottom). 
. 
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5.3  The Proposed DFT Transform Based Feature Extraction and Image 

Segmentation Algorithm 

The feature extraction, segmentation and classification algorithm system is outlined 

in the following steps. Any such system is mainly composed of three parts: 

• Pre-processing 

• Processing 

� training phase 

� segmentation phase 

• Post-processing 

In most cases additional image processing operations are utilized. A typical pre-

processing step includes the acquisition and preparation of the image and filtering 

operations such as mean, median, histogram equalization, contrast enhancement and 

denoising. A post-processing step may also include fundamental filtering operations 

such as mean, median, morphological filtering for better segmentation, image 

enhancement and representation processes [30, 31]. In order to get appropriate results 

we will apply median filtering operation to remove the small points, which still 

remains after segmentation. And a mathematical morphological operation will also 

be used to erode the points which are most probably not the interested objects. Test 

images used are 256 grey level images. First, we select images from Brodatz Texture 

Database. They are used for testing the performance of the proposed algorithm, to 

assure its accuracy. New images are synthesized using images from that database [2].  

Images are 128x128 pixels, monochrome images. If they are not, they are resized by 

mathematical operations. The file formats of the artificial images are jpg, and gif. For 

the real images, to reduce the computation time, an interested area of the image is 

chosen, and the file type is generally converted from tiff to jpg, gif or bmp. 

5.3.1 Flow Diagram of DFT Subband Decomposition  

 

Flow Diagram of DFT Based Subband Decomposition Algorithm Proposed in this 

thesis is given in Figure 5.5. This algorithm is called as a subroutine at step 1.2 of the 
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training phase and at step 2.2 of the segmentation phase of the DFT based 

segmentation scheme. 

 
 
 
 
               Input 2-D image 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Yes           Decimate 
 
                                                                  ? 
 
                                                           No 
 
 
 
  
                                                                 Are                       no 
                                                    Columns processed 
                                                                   ? 
  
                                               Yes  end 
 
                       
      Figure 5.5: Flow Diagram of DFT Based Subband Decomposition Algorithm 
 

start row processing 

:N  length of a row 
4/1 Nn =   and  4/2 Nn =  

))(()( nxFFTkX =  

Taking 1n  and 2n as cut-off frequencies 

 
Design ideal Low-Pass Filter  : LPH of length N  

Compute LP Filtered Image   :  LPLP XHX =  

 
Design ideal High-Pass Filter : HPH of length N  

Compute HP Filtered Image   : HPHP XHX =  

Decimate by 2  
take every other sample  

Compute inverse DFT of LPX  : )( LPLP XIFFTx =  

 
Compute inverse DFT of HPX  : )( HPHP XIFFTx =  

 

Transpose image 
for column processing  
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5.3.2 Training Steps 

 

In the test stage it is decided to use an 8x8 window to scan the image, after few 

experiments it is proven to be the best window size in both computation time, and 

accuracy rate for the 128x128 test image. At training phase the size of the windows 

used to scan the training image must be same as the size of the window used to test 

the image. Although this is not a must, it is experimentally observed that in that way 

it performed better. 16 images of size 8x8 pixel are cropped from each of the classes 

to train the algorithm and the features are kept as reference features. The feature 

vectors built at this stage include l1-norms and are normalized. 

       1.    Training Phase 

1.1  Select regions from image class i. compute feature vectors for each of 16            

samples 

1.2    Transmit each sub image window to DFT based decomposition algorithm 

1.3    Build feature vector for class i sample j 

1.4   Normalize the feature vector of class i sample j 

1.5  Increment j by 1 and repeat for all samples 

1.6   Increment i by 1 and repeat for all classes 

1.7   Compute the mean value for all of the normalized feature vectors of class i 

1.8   Increment i by 1 repeat for all classes 

1.9    Pass normalized mean feature vectors of all classes to the testing step 

5.3.3 Segmentation Steps 

 

In a typical testing step we have an input image to be tested, reference feature vectors 

for each class. With these inputs segmentation algorithm outputs an image, either 

grey-level or binary, which is segmented. The input image is either an artificial 

image of size 128x128 pixel or a real SAR image. In both cases an 8x8 pixel window 

is run on the image starting from the top row and leftmost column of the image. At 

borders the symmetry of the image is taken for window operations. From two 

different modes of window sliding ways pixel by pixel and pixel group by pixel 

group we choose the first one, and decided for the pixel at the center of the window. 
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Since the window size is even, -not odd- we accepted the pixel point )5,5( ++ ji  of 

the window )8:,8:( ++ jjii  as the center pixel and decision is made for that pixel. 

2.   Segmentation Phase 

2.1  Run 8x8 pixel window on the 128x128 pixel image from left to right and top 

to bottom, in pixel by pixel manner. 

2.2 At each pixel transmit the 8x8 sub-image window to DTF based 

decomposition algorithm as input 

2.3   Build feature vector for the sub-image with center (i,j)  

2.4   Normalize the feature vector of sub-image with center (i,j) 

2.5  Compute the Euclidian distance d  between the normlized feature vector of 

class d  and the normalized feature vector of sub-image with center (i,j) 

2.6   Increment d  by 1 and find distances for all classes  

2.7  Compare the distances, find minimum distance to the test feature vector of 

sub-image with center (i,j) 

2.8  Decide which class it belongs to and label the pixel (i,j) of test image 

window with the label of that class 

2.9   Repeat steps from 2.1 to 2.8 until whole image is scanned by 8x8 windows 
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Subroutine called in 1.2 and 2.2 is depicted in the flow diagram shown in Figure 5.5. 

The steps of this routine are: 

3.   DFT Low-Pass Decomposition 

3.1   Compute N  the length of one row of the input signal x  

3.2   Compute length N  DFT of )(xFFTX =  of the signal x  

3.3   Compute cutting frequencies of the LP filter )(kH LP , 4/1 Nn = , 4/2 Nn =  

3.4   Set coefficients of LP filter 10 nk <≤  Nkn <<2  to 1, set the others to 0 

3.5   Compute )()()( kHkXkX LPLP =   

3.6   Compute length N  inverse DFT of LPX , ))(()(' kXIFFTnx LPLP =  

3.7   Decimate )2(')( nxnx LPLP =  

3.8   Repeat steps form 3.1 to 3.7 for column processing 

 

4.   DFT High-Pass Decomposition 

4.1   Compute N  the length of one row of the input signal x  

4.2   Compute DFT of )(xFFTX =  of the signal x  

4.3   Compute cutting frequencies of the HP filter )(kH HP , 4/1 Nn = , 4/2 Nn =  

4.4   Set coefficients of HP filter 21 nkn <<  to 1 and set the others to 0 

4.5   Compute )()()( kHkXkX HPHP =   

4.6   Compute inverse DFT of HPX , ))(()(' kXIFFTnx HPHP =  

4.7   Decimate )2(')( nxnx HPHP =  

4.8   Repeat steps form 4.1 to 4.7 for column processing 

 

For Undecimated DFT, steps 3.7 and 4.7 are skipped. 
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6. EXPERIMENTAL RESULTS 

 

In this section we apply the DFT based segmentation method both to the artificially 

synthesized images and to the remotely sensed images. The exact locations of the 

segments in the artificial images are known and therefore a performance measure can 

be driven and accuracy assessment is possible. Quantitative results that are obtained 

at the end of this stage are benefited when applying the segmentation algorithms to 

the SAR images. In the real remotely sensed image case, the assessments are made 

qualitatively and the qualities of the outputs are compared to see whether they 

coincide with the previous numerical results. In simulations, artificial images are 

built by composing different textures from Brodatz Album. A real SAR image from 

North Sea is studied for detecting oil spills on the sea surface. All of the images used 

are grayscale images.   

The experiments are carried out in the following order: 

Firstly the decimated version of the DFT based method is compared with DWT and 

then the undecimated version of DFT based method is compared with SWT. For a 

better visual presentation, median filtering and mathematical morphology are applied 

to the images as post processing operations. The resulting images are shown in the 

figures and accuracy rates are given in the tables for each experiment. 

For either decimated or undecimated DFT based decomposition we have only one 

filter pair, but for both DWT and SWT we have to work with different wavelets from 

different families. The wavelets used are from Daubechies, Symlet, Coiflet and 

Biorthogonal wavelet families. 

In the following four segmentation cases are studied  
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6.1 Simulation 1: 2-Classes Segmentation Problem 

 

The first experiment is a simulation of an artificial image consisting two classes. The 

goal is to separate and label these regions. Firstly, we apply Decimated DFT based 

subband decomposition method and compare it to DWT based methods and then 

Undecimated DFT based subband decomposition method to SWT based methods. 

6.1.1 Comparison of Decimated DFT and DWT Based Subband 

Decomposition Methods  

From the Table 6.1 and Figure 6.1 we conclude that DWT based subband 

decomposition method regardless of the wavelet used, outperforms the Decimated 

DFT based subband decomposition method. The rates obtained by DWT vary from 

0.8540 to 0.9100. The accuracy rate of Decimated DFT based subband 

decomposition method is poor, 0.7739. The decimation, sub sampling of the image, 

results in data loss and finally causes poor segmentation quality. 

 
 
 
 
 

Decomposition Method Accuracy 
Rates 

Decimated DFT 0.7739  
db1 0.9100   
db2 0.8540 
sym2 0.8540 

sym4 0.9204 
sym5 0.9202 
sym6 0.9206 
coif1 0.9091  

 
 
 
 
DWT 

bior1.1 0.9100 

       
         

Table 6.1: Accuracy Rates of Decimated DFT Based Subband Decomposition 
Method and DWT Based Subband Decomposition Methods 
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Figure 6.1: Synthesized Image, Decimated DFT and DWT Using: db1, db2, sym2, 
sym4, sym5, coif1, bior1.1 (from left to right and from top to bottom). 
 

6.1.2 Comparison of Undecimated DFT and SWT Based Subband 

Decomposition Methods 

The median filter used in this thesis, uses 8x8 image blocks, and replaces the value of 

the center pixel with the median of the 8x8 block. In morphological filtering an 

opening operation using a disk of diameter 3 as structural element is applied to the 

segmented image in order to get better segmentation. The accuracy rates are listed in 

Table 6.2. As it can be observed from the output images in Figure 6.2 and from the 

values given in the table, the Undecimated DFT based subband decomposition 

method gives better results than most of the wavelets. From the wavelets applied in 

the SWT based subband decomposition methods only db1 and bior1.1 are better than 

Undecimated DFT, the other wavelets except for these two have poorer performance. 

Moreover utilizing median filtering or morphological filtering increases the 

performance of all segmentation results. In both post-processing operations the 
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Undecimated DFT produces highest accuracy rates with the values   0.9712 and 

0.9805. The outputs of the post-processed images are shown in Figures 6.3 and 6.4.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6.2: Accuracy Rates of Undecimated DFT and SWT Based Subband 
Decomposition Methods. 

 
 
 
 
 
 

 

                     Accuracy  Rates Decomposition Method 

  Median 
Filtering 
Applied 

Mathematical 
Morphology  
Applied 

Undecimated DFT 0.9247 0.9712 0.9805 
db1 0.9315 0.9681 0.9794 
db2 0.9173 0.9572 0.9699 
db3 0.9031 0.9458 0.9637 
db4 0.8981 0.9466     0.9672 
db5 0.8930 0.9438     0.9643 
db6 0.8962 0.9477     0.9695 
db7 0.8887 0.9413     0.9685 
db8 0.8910 0.9471 0.9685 
db9 0.8855 0.9421     0.9671 
db10 0.8921 0.9466 0.9701 
sym2 0.9173 0.9572     0.9699 
sym3 0.9031 0.9458     0.9637 
sym4 0.8878 0.9364       0.9606 

sym5 0.8872 0.9366 0.9651 
sym6 0.8777 0.9309     0.9609 
coif1 0.9160 0.9551     0.9713 

 
 
 
 
 
 
 
 
SWT 

bior1.1 0.9315  0.9681     0.9794 
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Figure 6.2: Undecimated DFT; SWT Using: db1, db2, db3, db4,  db5, db6, db7,  
db8, db9, db10, sym2, sym3, sym4, sym5, sym6, coif1, bior1.1 (from left to right and 
from top to bottom). 
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Figure 6.3: Median Filtering, Undecimated DFT; SWT Using: db1, db2, db3, db4,  
db5, db6, db7,  db8, db9, db10, sym2, sym3, sym4, sym5, sym6, coif1, bior1.1 (from 
left to right and from top to bottom).     
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Figure 6.4: Morphological Filtering, Undecimated DFT and SWT Using: db1, db2, 
db3, db4, db5, db6, db7, db8, db9, db10, sym2, sym3, sym4, sym5, sym6, coif1, 
bior1.1 (from left to right and top to bottom). 
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6.2 Simulation 2: 4-Classes Segmentation Problem 

This simulation is designed to segment four different textures. The input image 

which is 128x128 pixel is formed by four 64x64 pixel images. We compare only 

Undecimated DFT with SWT based decomposition methods.  

6.2.1 Comparison of Undecimated DFT and SWT Based Subband 

Decomposition Methods 

As it is seen from Figures 6.5 and 6.6, the performances of both Undecimated DFT 

and SWT based subband decomposition methods are satisfactory. The accuracy rate 

of DFT based method is 0.7645 while the results obtained from SWT are in the rage 

0.7601-0.8219. Median filtering operation considerably increases the performances 

of all methods. But the increase of the performance after median filtering is better for 

all wavelets used in SWT then Undecimated DFT based subband decomposition 

method. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 6.3: Accuracy Rates of Undecimated DFT and SWT Based Subband 
Decomposition Methods 

 
 
 
 
 

            Accuracy  Rates     Decomposition Method 

  After Median     
Filtering 

Undecimated DFT 0.7645 0.8286 
db1 0.8219 0.9081 
db2 0.8146 0.9070 
db3 0.7978 0.8998 
db4 0.7844 0.8934 
db5 0.7762 0.8896 
db6 0.7566 0.8841 
db7 0.7601 0.8829 
db8 0.7611 0.8868 
db9 0.7620 0.8817 
db10 0.7622 0.8762 
sym2 0.8146 0.9070 
sym3 0.7978 0.8998 

 
 
 
 
 
 
 
 
SWT 

sym5 0.7682 0.8895 
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Figure 6.5: Synthesized Image. Undecimated DFT and SWT Using: db1, db2, db3, 
db4, db5, db6, db7, db8, db9, db10, sym2, sym3, sym5 (from left to right and top to 
bottom). 
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Figure 6.6: Median Filtered Undecimated DFT and SWT Using: db1, db2, db3, db4, 
db5, db6, db7, db8, db9, db10, sym2, sym3, sym5 (from left to right and top to 
bottom). 
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6.3 Simulation 3: Detection of 4 Objects on a Background 

In this simulation it is intended to extract four different regions belonging to the 

same object from a uniform background. Textures of different sizes are placed on the 

background.  

6.3.1 Comparison of Decimated DFT and DWT 

For all wavelets DWT based method yields better results than Decimated DFT based 

subband decomposition method which is 0.9464 in Table 6.4. This result coincides 

with the results of Simulation1, where we have concluded that decimation decreases 

the performance of segmentation. The outputs are shown in Figure 6.7.  

 
 
 
 

 
 
 
 
 
 
 
 
 

 
 

Table 6.4: Accuracy Rates of Decimated DFT and DWT Based Subband 
Decomposition Methods 

 

Decomposition Method Accuracy 
Rates 

Decimated DFT 0.9464 
db1 0.9723  
sym2 0.9657 
sym3 0.9659 
sym4 0.9730  
sym5 0.9732 
sym6 0.9730 

 
 
 
 
DWT 

bior1.1 0.9723 
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Figure 6.7: Decimated DFT and DWT Using: db1, sym2, sym3, sym4, sym5, sym6, 
bior1.1 (from left to right and top to bottom).    
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6.3.2 Comparison of Undecimated DFT and SWT Based Subband 

Decomposition Methods 

As it is expected Undecimated DFT increases the performance of the segmentation. 

The rate of Undecimated DFT is 0.9738 while it was 0.9494 in Decimated DFT case. 

But the performance of Undecimated DFT is still less then the performance of all 

wavelets used in SWT. But this time the difference is in order of 0.001 which is a 

neglectable difference. Furthermore, both median filtering and mathematical 

morphology as post processing operators, increase performances of all methods. 

From the values listed in the columns of Table 6.5 and images shown in Figures 6.8, 

6.9 and 6.10, it is seen that Undecimated DFT together with some post-processing 

operations can produce better results then SWT based decomposition methods. 

 

 
  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Table 6.5: Accuracy Rates of Undecimated DFT and SWT Based Subband 
Decomposition Methods. 

 
 
 

 

                 Accuracy Rates Decomposition Method 

 Median 
Filtered 

Mathematical 
Morphology 

Undecimated DFT 0.9738 0.9753 0.9758 
db1 0.9755 0.9759 0.9760 
db2 0.9781     0.9789     0.9777 
db3 0.9773     0.9783     0.9740 
db4 0.9757     0.9773     0.9745 
db5 0.9748     0.9769    0.9736 
db6 0.9739     0.9752     0.9729 
sym2 0.9781     0.9789     0.9777 
sym3 0.9773     0.9783     0.9740 
sym4 0.9760     0.9774     0.9728 
sym5 0.9747     0.9768     0.9745 

 
 
 
 
 
SWT 

sym6 0.9739     0.9752     0.9729 
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Figure 6.8:  Undecimated DFT and SWT Using: db1, db2, db3, db4, db5, db6, 
sym2, sym3, sym4, sym5, sym6 (from left to right and top to bottom). 
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Figure 6.9: Median Filtered Undecimated DFT and SWT Using: db1, db2, db3, db4, 
db5, db6, sym2, sym3, sym4, sym5, sym6 (from left to right and top to bottom). 
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Figure 6.10: Mathematical Morphology of Undecimated DFT and SWT Using: db1, 
db2, db3, db4, db5, db6, sym2, sym3, sym4, sym5, sym6 (from left to right and top 
to bottom). 
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6.4 Simulation 4: Detecting Oil Spills on the North Sea  

A real SAR image of an oil spill accident is studied in this experiment. The image 

used is provided in the web site [http://earth.esa.int/ew/oil_slicks/noth_sea_96/]. The 

scene which is shown in the Figure 6.11 below belongs to North Sea and acquired 

from ERS-2 satellite on July 18, 1996. It is resized in MATLAB; dimensions of the 

original image are reduced to 128x128 pixels for segmentation process.  

Median filtering is used to clear false detected points on the sea surface. The points 

which are scattered and do not have more points at the surrounding are successfully 

removed, since it is proven that median filtering is good at removing speckle noise. 

For all segmentation methods, the real SAR image is decomposed into subbands at 2-

levels, by four transformation techniques, Decimated DFT, DWT, Undecimated DFT 

and SWT based subband decomposition methods respectively.   

                                       
 
                           Figure 6.11: Real SAR Image Oil Spills at North Sea 
 

6.4.1 Comparison of Decimated DFT, DWT, Undecimated DFT and SWT 

Based Subband Decomposition Methods 

The top left image of the Figure 6.12 is the output of Decimated DFT based subband 

decomposition method and remaining images are products of DWT based subband 

decomposition methods. The image produced by the DFT based approach detected 

some small regions especially on the left side of the image as oil spills where these 

are not actual oil spills. However tree actual massive oil spills are successfully 

detected, and their shapes and boundaries are not certain. The db1 wavelet produces 

the best result among other wavelets. The boundaries of the image produced by db1 

are uncertain. In addition to this disadvantage, almost all wavelets detect many points 

on the whole surface. These points are not actual oil spills, however, since the size of 
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these points are not large in size and scattered throughout the scene they can be 

removed by median filtering. Figure 6.13 shows the median filtered images. After 

median filtering, most of the small points are successfully cleared in all methods and 

improved quality can be visually observed. The masses detected as oil spills, where 

they are not actual oil spills, still remain in the resulting images of DWT using db3, 

db4, db5, sym3, sym4, sym5 as wavelets. But median filtering reduced the size of 

these regions in Decimated DFT method to an acceptable size and the shapes and 

locations of three oil spills are close to those of the real SAR image.  

  

 

 

 

 
 

Figure 6.12: Decimated DFT and DWT Using: db1, db2, db3, db4, db5, db6, sym2, 
sym3, sym4, sym5, sym6 (from left to right and top to bottom). 
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Figure 6.13: Median Filtered Decimated DFT and DWT Using: db1, db2, db3, db4, 
db5, db6, sym2, sym3, sym4, sym5, sym6 (from left to right and top to bottom). 
 

In Figure 6.14 and Figure 6.15 the images produces by Undecimated DFT and SWT 

using different wavelets are given. As it is expected the Undecimated DFT and SWT 

are better than Decimated DFT and DWT respectively since they retain much more 

information in the subbands. Moreover Decimated DFT in top left of the Figure 6.14 
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outperforms some SWT based decomposition methods. SWT using db1, db2, and 

sym2 seem to be better than Undecimated DFT, while in the images produced by 

SWT using db3, db4, db5, db6, sym3, sym4, sym5 and sym6 the masses detected are 

degraded and eroded.  Incorrect small objects are removed with the help of median 

filtering as seen in the Figure 6.15.  In Undecimated DFT and SWT using db3, db4, 

db5, sym3, sym4, sym5, sym6 wavelets a few small faulty regions exist. Besides this, 

SWT using db1, db2 and sym2 wavelets successfully clears all small objects and 

detect three actual oil spills with exact shapes and locations. 

 

 

 

 

 
 
 
Figure 6.14: Undecimated DFT and SWT Using: db1, db2, db3, db4, db5, db6, 
sym2, sym3, sym4, sym5, sym6 (from left to right and top to bottom).  
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Figure 6.15: Median Filtered Undecimated DFT and SWT Using: db1, db2, db3, 
db4, db5, db6, sym2, sym3, sym4, sym5, sym6 (from left to right and top to bottom). 
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7.     CONCLUSIONS AND DISCUSSION 

 

A new DFT based subband decomposition scheme for segmentation of images is 

proposed in this thesis. Local energy distributions in spectral bands of signals are 

considered to be able to characterize the image. Feature sets are constructed using 

local energy distribution of the subbands of the image. Therefore feature extraction 

using subband decomposition is probably the most important phase of the overall 

segmentation phase. For efficient decomposition a 2-channel, zero-phase, non-

overlapping digital filter bank is designed. The filters are ideal low-pass and high-

pass filters which are designed in frequency domain. The size of the filters is always 

same as the size of the input signal and filters are applied to the frequency domain 

signal. After filtering in the frequency domain, images are transformed into spatial 

domain providing spatial-spectral features.  

First we examined the effect of the down sampling on the performance of 

segmentation. For DFT based methods in case of down sampling we decimated the 

subband signal in the spatial domain at each level of decomposition. For the Wavelet 

Transform based method we have Wavelet Frames (SWT) which are over-complete 

counterparts of the critically sampled multirate analysis tool DWT.  When exploring 

the effect of down sampling, the structure of the subband decomposition tree and 

general segmentation process did not change, only operations of down sampling are 

suppressed. Decimated DFT based method is compared to DWT and undecimated 

DFT based method is compared to SWT. 

The experiments are carried out as follows; first we simulated a 2-class texture 

classification problem and tried to segment 2 regions in this synthetic texture. Second 

we applied same methods to another artificial image which is composed of 4 regions. 

In the third experiment, a problem which can be regarded as target detection 

problem, in which four objects belonging to the same texture are replaced on a 

uniform background, is simulated. Finally, the experiments are carried out on a real 

SAR image of an oil spillage accident which is a remotely sensed monochrome 

image with gray-levels. As post-processing operations we applied median filtering or 

morphological operations after classification. 
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The quantitative evaluation and performance assessment of the methods are carried 

out by computing confusion matrices. A weighted sum of the diagonal elements of 

this matrice is used to provide overall accuracy rate. 

The results show that the proposed segmentation algorithm which uses DFT based 

subband decomposition may be considered as a good alternative to the conventional 

WT based approaches due to its less computation time, simple structure and 

sufficient segmentation performance. 

We see that, as expected, decimating filter outputs degrades the objects in the 

resultant images. This is due to the lack of the transient information in the spatial 

domain of the sub sampled images.  The major cause of the worse edge resolution 

and hence insufficient segmentation is due to sub sampling. Undecimated methods 

successfully detect edges and hence provide better segmentation then the decimated 

ones. However, it should be noted that in undecimated techniques at each 

decomposition level the size of the processed image is same as the size of the 

original image. This brings two conflicting results when compared to the 

multiresolution case. First one is a disadvantage for undecimated methods: in full 

rate case, at each step, images of the same size are filtered, this causes more 

computations than the multirate case in which at each level the size of the sub images 

is reduced. Second one can be considered as an advantage for undecimated methods: 

the length of filters used is always same at each level of decomposition, where for 

decimated case the length of the filter is reduced as the size of the image is reduced, 

that is filter coefficients are recalculated at each level and this causes computational 

complexity requiring efficient recursive mathematical manipulations as in DWT. 

The experiments reveal that an average accuracy rate between the highest and lowest 

rates of different wavelet filters can be achieved using a single, simple yet effective 

symmetric, zore-phase, non-overlapping, 2-Channel QMF. WT based methods are 

tested using wavelets of different families. It is shown that they are only giving 

similar, and even in some cases significantly worse results than the DFT based 

method. 

We have seen how various subband decomposition approaches yield different 

segmentation results for the same images. We demonstrate, in this thesis, that if 

wavelets either maximally sub sampled or over complete are replaced by a decimated 
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or an undecimated version of the DFT based subband decomposition using effective 

LP and HP filtering,  then similar or even better segmentation results can be 

obtained. 

From this study we can make two suggestions for the future research: First one may 

be the refinement of the ideal filters with a windowing, but that windowing should 

not violate the perfect reconstruction condition. The second one is on the design of 

the 2-D filters which are non-separable and can be directly applied to 2-D image. 

These filters are also directional and it is expected that these filters are capable of 

extracting directional properties such as edges those are neither horizontal nor 

vertical to be exactly located by the separable filters.  
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