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VESSEL SEGMENTATION AND SURFACE RECONSTRUCTION FROM 

MRA IMAGES 

SUMMARY 

3D surface reconstruction of vascular structures plays a very important role in the 

medical field as vascular problems can be lethal and are in fact among the leading 

causes of death. The reconstructed patient specific vessel structure can be visualized 

and used for diagnostic and surgical planing purposes. Furthermore, analysing the 

vascular structure and detecting risk areas using CFD simulations can help in making 

therapeutic decisions and might, in the future, make it possible to prevent some 

diseases before they show any symptoms. Two very important applications of patient 

specific CFD simulations are the evaluation of the risk of atherosclerosis and 

cerebral aneurysm rupture. Atherosclerotic plagues are known to occur more 

frequently in regions where the flow is not laminar and wall sheer stress is low. 

Hemodynamic factors are also thought to play a role in the risk of aneurysm rupture. 

As measuring blood flow in vivo is not reliable or convenient, the only way to assess 

the risk is by numerical simulation on patient specific 3D vessel structure. 

The vessel surface reconstruction problem consists of two main steps. First, all the 

voxels in the volume data are labeled as vessel or non-vessel. This step is called 

vessel segmentation. Then, using the segmentation, the vessel surface is 

reconstructed as a polygonal mesh. If the mesh is to be used for numerical 

simulations instead of only visualization, then the mesh should be high quality which 

means that it should contain polygons of similar sizes and angles. Regrettably, 

manual segmentation of 3D data is a lengthy and cumbersome process and 

reconstruction of a high quality surface from the segmented data is not trivial. 

Therefore, both the problem of automatic or semi-automatic vessel segmentation 

from medical images and the problem of reconstructing a high quality surface from 

segmented volume data have been extensively studied in literature and there are 

many different types of approaches. Compared to the amount of research that study 

vessel segmentation and surface reconstruction seperately, the number of studies that 

aim to combine these methods for the purpose of patient specific numerical 

simulations is relatively low and they generally consider only a specific anatomical 

region. 

In this work, we focus on vessel segmentation and reconstruction from MRA data 

and we aim to design a unified model that works on all anatomical regions, can 

detect both large and small vessels and uses minimal user interaction. 

For the segmentation step, a level-set evolution scheme based on local geometric 

information is used. More specifically, the vessel surface is represented as the zero 

level-set of a 3D hypersurface and the hypersurface is evolved under guidance of an 

evolution function derived from multi-scale Hessian analysis and mean curvature.   

The evolution is modeled as an initial value problem resulting from a PDE. The 

surface can be initialized automatically using the Hessian analysis to detect bright 
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tubular structures. The results are analysed visually on real MRA data and 

quantitatively on a synthetically created dataset deformed with various noise 

intensities. It is seen from the results that the proposed method is promising. 

The second step of our work is to construct a polygonal representation of the vessel 

surface using the result of the first part which is an implicit representation of the 

vessel surface as a discrete sampling of a 3D volume. The standart classical method 

for polygonizing implicit surfaces is Marching Cubes which constructs a surface with 

triangles. Although Marching Cubes is fast and guaranteed to be accurate, it 

generates a very rough surface and can contain low quality triangles(highly acute-

angled triangles). Thus, it is not suitable if we want to run numerical simulations 

using the resulting surface. Therefore, we use an advancing front method which is 

known to generate smoother surfaces with better triangle quality. Advancing front 

methods have the downside of being slow but this is not such a big issue when the 

surface reconstruction is done offline. Finally, Taubin smoothing is used to further 

smooth the surface. Compared to simpler smoothing methods like Laplacian and 

Gaussian smoothing which produce shrinkage, Taubin smoothing does not change 

the topology of the vessel structure if used correctly. The results obtained from using 

an advancing front method and Taubin smoothing are compared to the classical 

Marching Cubes results visually to show that much higher triangle quality is 

achieved while maintaining acceptable accuracy. 
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MRA GÖRÜNTÜLERİNDEN DAMAR AYRIŞTIRILMASI VE DAMAR 

YÜZEYİNİN OLUŞTURULMASI 

ÖZET 

Kalp-damar hastalıklarının özellikle batılı ülkelerde ölüm sebeplerinin başında 

gelmesi, damar yapısının 3 boyutlu olarak oluşturulmasını çok önemli kılmaktadır. 

Hastaya özel oluşturulan damar yüzeyi, görselleştirilerek teşhis veya cerrahi 

planlama amaçlı kullanılabilir. Bunun yanında,  oluşturulan yüzey temel alınarak 

yapılacak olan hesaplamalı sıvı dinamiği(HSD) simülasyonları ile hastalık oluşma 

riski yüksek olan bölgeler tespit edilebilir ve böylece gelecekte bazı hastalıkların 

herhangi bir belirti göstermeden önce engellenmesi mümkün olabilir. Hastaya özel 

HSD simülasyonlarının çok önemli iki uygulaması ateroskleroz ve serebral 

anevrizma yırtılması riskinin belirlenmesidir. Aterosklerotik plakların, kan akışının 

düzgün olmadığı ve damar duvarı üzerindeki kayma gerilmesinin düşük olduğu 

bölgelerde oluşma riskinin daha fazla olduğu bilinmektedir. Anevrizma yırtılması 

riski için de benzer hemodinamik etkiler rol oynamaktadır. Kan akışının hastanın 

içinde ölçülmesi güvenilir veya rahat bir işlem olmadığından, akışın hastaya özel 

damar yapısı üzerinde HSD simülasyonu yapılarak ölçülmesi gerekmektedir. 

Damar yapısının 3 boyutlu olarak oluşturulması problemi iki ana adımdan oluşur. İlk 

önce, hacim verisindeki bütün vokseller damara ait veya değil olarak etiketlenir. Bu 

adıma damar ayrıştırılması adı verilir. Daha sonra, bu ayrıştırılmış veri kullanılarak 

damar yapısı poligonal meş şeklinde 3 boyutlu olarak oluşturulur.  Eğer meş sadece 

görselleştirme amaçlı değil, ayrıca simülasyonlar için de kullanılacaksa meşin 

yüksek kalitede olması gerekir. Yani, meşi oluşturan çokgenlerin açı ve büyüklükleri 

nümerik simülasyona uygun olmalıdır. Ne yazık ki, 3 boyutlu verilerden damar 

ayrıştırılmasının manuel olarak yapılması uzun ve zahmetli bir işlemdir. Ayrıca, 

ayrıştırılmış veriden yüksek kaliteli meş oluşturmak da kolay değildir. Bu nedenle, 

hem otomatik ve yarı-otomatik damar ayrıştırılması, hem de ayrıştırılmış veriden 

poligonal meş şeklinde yüzey oluşturulması sorunları bilimsel yazında çokça 

incelenmiştir ve birçok farklı yaklaşım bulunmaktadır. Bu iki adım için ayrı ayrı 

yapılan çalışmaların sayısına kıyasla, iki adımı birleştirmek ile ilgili fazla çalışma 

bulunmamaktadır ve mevcut çalışmalar genelde tek bir anatomik bölgeye odaklıdır.   

Biz bu çalışmada MRA verisinden damar ayrıştırılması ve damar yüzeyinin 

oluşturulmasına odaklanarak, bütün anatomik bölgelerde çalışan, kalın, dar, sağlıklı 

ve hastalıklı her türlü damarı ayrıştırabilen ve mümkün olduğunca az kullanıcı 

müdahalesine gerek duyan birleşik bir model tasarlamayı hedefliyoruz. 

MRA verisini seçmemizin nedeni MRA’nın, CTA ve DSA gibi anjiyografi 

tekniklerine kıyasla hasta için daha az risk taşıması ve görüntüdeki en parlak 

yapıların damar olduğu varsayımının genelde geçerli olmasıdır. Bu varsayım, damar 

ayrıştırılması adımını kolaylaştıracaktır. 
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Damar ayrıştırılması adımında yerel geometri bilgisini kullanarak evrimleşen bir 

level-set yaklaşımı kullanılmıştır. Daha açık olarak söylersek, damar yüzeyi, 3 

boyutlu bir hiperyüzeyin sıfır level-seti olarak ifade edilmiş ve yerel multi-scale 

Hessian ve ortalama eğrilik bilgisinden türetilen bir evrim fonksiyonun rehberliği ile 

evrimleştirilmiştir. Hessian bilgisi ve damarların görüntüdeki en parlak yapı olduğu 

varsayımı kullanılarak, parlak ve boruya benzeyen bir yapı içerisinde bulunan 

noktalar tespit edilebilir. Ortalama eğrilik de eğriliği fazla olan damarlarda 

ayrıştırmanın devam etmesi için itici bir rol oynar çünkü bu gibi kıvrımlı damarlarda 

boruya benzerlik düşük olduğundan Hessian bilgisi yetersiz kalabilmektedir. Evrim 

fonksiyonu, Hessian bilgisinden türetilen bir ölçü ile ortalama eğriliği, kullanıcı 

tarafından belirleyen katsayılar yardımıyla dengeler.  

Evrim süreci, bir kısmi türevli diferansiyel denklem için başlangıç değer probleminin 

çözümü olarak modellenmiştir. Başlangıç yüzeyi, damar içerisinde olduğu bilinen 

noktaların etrafında küreler oluşturulmak suretiyle seçilebilir. Noktaların otomatik 

seçimi için de evrim fonksiyonunda kullandığımız Hessian ölçüsü kullanılabilir. Bu 

ölçünün en yüksek olduğu noktaların bir damar içerisinde olma olasılığı çok 

yüksektir. Tabii ki, bazı görüntülerdeki sorunlar, bu otomatik seçilimi 

etkileyebilmektedir ve böyle durumlarda kullanıcı müdahalesi gerekmektedir. 

Başlangıç yüzeyi belirlendikten sonra yüzey, evrim fonksiyonu rehberliği altında, 

yakınsama sağlanıncaya kadar evrimleşir.  

Damar ayrıştırılma adımının sonuçları, gerçek MRA verileri üzerinde görsel olarak 

ve sentetik olarak oluşturulmuş ve gürültü eklenmiş veriler üzerinde sayısal olarak 

değerlendirilmiştir. Sonuçlara bakıldığında Hessian bilgisinin, ortalama eğriliğe 

baskınlığı artırıldığında ayrıştırılan bölgenin damar olma olasılığının daha yüksek 

olduğu ancak özellikle yüksek eğrilikli damarların ayrıştırılmadığı görülmüştür. 

Tersine olarak, ortalama eğriliğin baskınlığı artırıldığında daha fazla damar 

ayrıştırılmakta ancak aşırı ayrıştırma durumunun ortaya çıkma şansı da artmaktadır. 

Ortalama eğrilik, noktanın damar içinde olup olmadığı ile ilgili bir bilgi 

taşımadığından bu beklenen bir durumdur. Diğer bir önemli gözlem de kullanıcı 

tarafından belirlenen katsayıların seçiminin ayrıştırılmaya etkisinin, gerçek 

görüntülerde sentetik görüntülere kıyasla çok daha yüksek olduğudur. Bunun iki 

nedeni vardır: Birincisi, sentetik görüntülerdeki tek bozulma Gaussian gürültü iken 

gerçek görüntülerde birçok farklı sorun olabilmesidir. İkinci neden, sentetik 

görüntülerde eğriliği yüksek olan damar olmamasıdır. Daha önce de bahsettiğimiz 

gibi, damarın eğriliği yüksek olduğunda Hessian ölçüsü yüksek değerler vermemekte 

ve ayrıştırmanın devam etmesi için eğrilikten destek gelmesi gerekmektedir. 

Böylece, önerdiğimiz metodun en önemli sorunu, kullanıcı tarafından belirlenen 

katsayıların doğru seçilimidir. Üzerinde çalıştığımız veriler için iyi sonuçlar veren 

katsayılar önermiş olsak da bu katsayıların genelleştirilebilir olduğunu söyleyemeyiz.  

Tıbbi görüntülerde birçok farklı artifact olması ve damarların çok farklı geometrik 

şekillerde bulunabilmesi, her görüntü için kullanıcı müdahalesi olmadan iyi sonuç 

verecek bir metod bulmayı çok zor hale getirmektedir. 

Çalışmamızın ikinci kısmı, birinci kısmın sonucunu, yani damar yüzeyini kapalı 

olarak ifade eden 3 boyutlu bir hacmin ayrık örneklemesini, kullanarak yüzeyi 

çokgenler yardımıyla ifade etmektir. Kapalı ifade edilmiş yüzeyleri çokgenleştirmek 

için kullanılan standart yöntem üçgenler kullanarak bu işlemi yapan Marching 

Cubes’dur. Bu yöntem çok hızlı ve isabetli olmakla beraber düşük kaliteli 

üçgenlerden (çok dar açılı veya çok küçük)  oluşan oldukça çıkıntılı yüzeyler 

oluşturmaktadır. Bu nedenle, sonuçta elde ettiğimiz yüzeyi nümerik simülasyonlarda 
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kullanmak istiyorsak, Marching Cubes uygun bir yöntem değildir. Dolayısıyla, 

yüksek kaliteli üçgenlerden oluşan daha pürüzsüz yüzeyler oluşturduğu bilinen bir 

advancing front metodunu tercih ettik. Advancing front metodlarının temel 

dezavantajı yavaş olmalarıdır ancak nümerik simülasyonlar için kullanılacak 

yüzeylerin oluşturulma aşamasının gerçek zamanlı olması gerekmediğinden bu 

soruna tahammül edilebilir. Yöntemde, yüzeyin pürüzsüzlüğü ile verilen veriye 

bağlılığını dengeleyen, kullanıcı tarafından tanımlanan katsayılar bulunmaktadır. Bu 

katsayılar, oluşturulan yüzeyin nasıl bir uygulamada kullanılacağına ve girdi olarak 

alınan verinin ne kadar gürültülü olduğu gözönünde bulundurularak seçilmelidir. 

Ayrıca, yüzey girdi verisine ne kadar bağlı olursa yöntemin çalışma süresinin de o 

kadar uzayacağı hesaba katılmalıdır.  

Son olarak, yüzeyin daha da pürüzsüzleştirilmesi için Taubin pürüzsüzleştirmesi 

kullanılmıştır. Bu yöntem, Laplacian veya Gaussian gibi klasik pürüzsüzleştirme 

yöntemlerinin aksine, doğru kullanıldığında, yüzeyde daralma oluşturmamaktadır.  

Sonuçlar, Marching Cubes yöntemiyle elde edilen sonuçlarla görsel olarak 

karşılaştırılmış ve önerilen yöntemin Marching Cubes’a kıyasla çok daha yüksek 

kalitede yüzeyler oluşturduğu ve kıyaslanabilir isabette olduğu görülmüştür.  

Çalışmamızın bütünü gözönüne alındığında üzerinde durulması gereken  en önemli 

nokta, her adımda istenilen bazı özelliklerin elde edilmesi için istenen başka 

özelliklerden vazgeçilmesi gerektiğidir. Damar ayrıştırılması kısmında isabetlilik ile 

kullanıcı müdahalesine gereksinim, hesaplama pahası (computation cost) ve genellik, 

damar yüzeyi oluşturulması kısmında ise isabetlilik ile pürüzsüzlük ve hesaplama 

pahası dengelenmelidir. Bu dengeleme işlemini yaparken, elde edilecek olan yüzeyin 

kullanılacağı özel tıbbi uygulamanın gereksinimleri dikkate alınmalıdır. Birkaç örnek 

vermek gerekirse, tehşis için yeterli olan bir isabet oranı, beyin ameliyatı planlaması 

için yeterli olmayabilir. Damar yüzeyinin pürüzsüz olması nümerik simülasyonlar 

için gerekli olmakla beraber tehşis veya ameliyat planlaması için istenmeyen bir 

durum olabilir. Sonuç yüzeyindeki çokgen sayısı ameliyat planlaması veya tehşis için 

bir sorun oluşturmayacak ancak nümerik simülasyonun hızını ciddi şekilde 

etkileyecektir. İdeal olarak gelecekte ulaşılmak istenilen nokta, verilen herhangi bir 

tıbbi süreç için herhangi bir tıbbi görüntüyü hiçbir kullanıcı müdahalesi veya 

düzeltmesine gerek olmaksızın anlamlı şekilde işleyecek bir programa sahip 

olunmasıdır. Ancak şu an bu noktadan uzak olunduğundan, bir algoritmanın her 

durumda işe yaramasını beklememek gerekir. Dolayısıyla, tıbbi uygulamalar 

üzerinde çalışan bilgisayar bilimcilerin, hekimlerle yakın bir işbirliği içerisinde 

çalışmaları ve böylece geliştirdikleri yöntemin kullanılacağı tıbbi uygulamanın 

gereksinimlerinden haberdar olmaları büyük önem arz etmektedir.  
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1.   INTRODUCTION 

With advances in medical imaging technology, medical imaging data available have 

rapidly increased and this trend continues. Although this is good news, it brings 

along the problem of how to analyse and use this data correctly and efficiently. An 

important subset of this area is vessel segmentation and surface reconstruction. 

Vessel segmentation is the extraction of vessel structures from medical images by 

labeling pixels/voxels as vessel or non-vessel. Then, surface of the vasculature can 

be reconstructed as a polygonal mesh from this data.  

Importance of vessel segmentation and surface reconstruction is clear from the fact 

that vascular diseases are among the leading causes of death [1]. Reconstructed 

patient specific vessel structure can be visualized and used for diagnostic and 

surgical planing purposes. Furthermore, analysing the vascular structure and 

detecting risk areas using CFD simulations can help in making therapeutic decisions 

and might, in the future, make it possible to prevent some diseases before they show 

any symptoms. Two very important applications of patient specific CFD simulations 

are the evaluation of the risk of atherosclerosis and cerebral aneurysm rupture. 

Atherosclerotic plagues are known to occur more frequently in regions where the 

flow is not laminar and wall sheer stress is low [2]. Hemodynamic factors are also 

thought to play a role in the risk of aneurysm rupture [3]. As measuring blood flow in 

vivo is not reliable or convenient, the ideal way to assess the risk is by numerical 

simulation on patient specific 3D vessel structure. More examples can be found in a 

good review of patient specific CFD simulation applications by Löhner et. al. [4]. 

Unfortunately, segmenting 3D images manually is a lengthy and cumbersome task. 

Moreover, surface reconstruction from segmented data is not trivial and poorly 

constructed surfaces are not suitable for numerical simulations and can give wrong 

results even if the segmentation is accurate. Furthermore, most of the studies in 

literature focus seperately on vessel segmentation and surface reconstruction. As 

there exist a huge amount of research in these areas, there are lots of different input 

and output types. Therefore, how to combine these two steps is not immediately 



 
2 

clear. Compared to the amount of research done seperately on vessel segmentation 

and surface reconstruction, studies that aim to combine vessel segmentation and 

surface reconstruction for patient specific applications are relatively few and target 

specific anatomical regions.  

Not surprisingly, there is a tremendous amount of research on the problem of vessel 

segmentation. Two great reviews of the area are given in [5,6]. As seen in these 

reviews, there are many different approaches and target application areas. For this 

study, we will focus on local geometry based level-set evolution methods as it is 

impossible to investigate all types of approaches due to timing constraints. 

Admittedly, this choice is mostly subjective as the huge number of methods and 

application areas coupled with the lack of a public database with available ground 

truth segmentations and standard quantitative evaluation parameters make 

comparison of methods very difficult even if the methods are targeted for similar 

applications. Therefore, it is unfortunately not possible to quantitatively select a best 

approach for a certain application and our judgement has to be based on visual 

results and what seems to be interesting and promising. As local geometry based 

level-set evolution methods are flexible and can be applied to any type of vessel or 

shape, we decided to focus on this type of method for this study. 

The idea of level set evolution methods is to represent the surface implicitly as the 

zero level-set of a hypersurface and evolve the hypersurface. The hypersurface is  

initialized using seed points that are known to be inside vessels. This initialization 

can be manual, semi-automatic or automatic depending on the image. Numerical 

theory of surface evolution using level sets was first introduced by Osher and Sethian 

in [7] and is described in more detail in [8]. Level-set evolution methods proved to 

be superior to classical snake methods as they are able to represent topological 

changes in the surface without a need for reparametrization and can evolve surfaces 

of arbitrary shape.  

Caselles et al. [9] and Malladi et al. [10] independently applied the level set 

framework to segment shapes from images. They used image gradients and mean 

curvature of the surface in the level set evolution equation. The expansion speed of 

the surface is inversely proportional to the gradient magnitude. This makes sense as 

the gradient magnitude is expected to be low inside the object of interest and high on 

the boundary. Mean curvature is used as a volume minimizing force to promote 
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stability and smoothness. This method can give sufficient results for segmenting 

large vessels in low noise images but it will not work on small vessels as the gradient 

magnitude will be large inside the vessel too. A now well-known method called 

CURVES was later developed by Lorigo et al. [11] for vessel segmentation. The 

main idea of CURVES was to evolve the underlying centerline curve of the vessel 

instead of the surface. In practice however, they evolved a tube around the curve and 

thus the method was similar to the method of  Caselles et al. [9] and Malladi et al. 

[10] but it used the smaller of the principal curvatures instead of mean curvature for 

regularization. This means that it avoided regularizing against the curvature that 

corresponds to the radii of the vessel and instead regularized against the curvature of 

the underlying curve. This allowed segmentation of more vessels but vessels whose 

underlying curve has high curvature can still be left out of the segmentation. Yan and 

Kassim [12] proposed adding a capillary force term to the evolution function 

proposed in [9] to facilitate segmentation along thin vessels and reported that their 

algorithm outperforms CURVES. Law and Chung [13] derived a level set evolution 

equation by modelling the problem as an elastic solid deforming under pressure from 

a liquid. Liquid is the vasculature and background is the elastic solid. The terms in 

the obtained equation involve multi-scale Hessians and mean curvature. The method 

is reported to achieve better results than the CURVES algorithm. In a different 

approach, Frangi et al. developed a vessel enhancement filter based on the Hessian of 

the image intensity [14]. The Hessian is calculated at different scales for multi-scale 

detection of vessels with different radii. The vesselness measure function defined in 

this filter was later incorporated into the level set segmentation framework by Yu et 

al. [15]. They combined the gradient and mean curvature terms with a new term 

derived from Frangi’s vesselness measure and the terms are weighted by user-

defined parameters. The algorithm was only tested on 2D images. 

The surface reconstruction problem is to polygonize a surface that is defined by other 

means, e.g. point cloud, parametric function, implicit function.  We will of course 

constrain ourselves according to the output of the vessel segmentation method, that 

is, a regular uniform 3D grid sampling of an implicit function. The area of implicit 

surface polygonization has been extensively studied in the past three decades and an 

overview of different types of methods is given in [16]. The methods can be 

classified as volume based and surface tracking based. Although most methods 
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assume a continuous implicit function, they have to sample the function anyway and 

when the input is already a discrete sampling, depending on the method, it can either 

be used directly as the sampling or interpolation is used to find the value at required 

points. 

The classic and most popular volume based method is without a doubt the Marching 

Cubes algorithm [17,18]. It works by sampling the implicit function at corners of 

cubes in a regular uniform grid. Then the values at each corner of a cube is checked 

to determine if and how the surface intersects the cube. If the surface intersects the 

cube, a polygon is created by combining points on the edges of the cube where the 

surface intersects. This method is simple, fast and known to accurately represent the 

surface up to the chosen grid resolution. It is also so widely used that it can safely be 

used as a validation tool when a new algorithm is tried. Another advantage is that as 

it samples the volume cubicly, it lends itself well to discrete input on 3D volumes. 

On the other hand, the fact that the sampling is a fixed grid means the number of 

triangles near a certain point on the surface is also fixed. This is not desirable 

because the ideal number of triangles is different in different parts of the surface. For 

example, areas with high curvature require more triangles and using a too large 

triangle size would mean some details are not represented in the final surface. If the 

triangle size is reduced, this will unnecessarily increase computation time because 

other parts of the surface may not require such a small triangle size. Another problem 

of the Marching Cubes algorithm is that the surface is very rough with staircase 

artifacts and most triangles have low quality(which means they are too acute-angled). 

Thus, this method is not suitable for running numerical simulations. Other volume 

based methods are mostly based on the Marching Cubes. Some of the famous 

variations are Bloomenthal's Marching Tethedra [19] which uses tetrahedra instead 

of cubes for sampling and Carr et. al.'s method [20] which uses octahedra. 

Due to the popularity of Marching Cubes [17,18] , many remeshing methods have 

been proposed to improve the surface quality of its output and when a volume based 

method is used, it is usually necessary to apply a remeshing method or a combination 

of remeshing methods to get a surface with acceptable quality. A review of 

remeshing methods can be found in [21]. After remeshing, an extra smoothing step( 

e.g. [22-26] ) may also be applied. 
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Another volume-based approach is grid adaptation which warpes the grid for better 

performance. This approach was first introduced by Moore and Warren [27]. They 

warped the grid to reduce the number of triangles created by the Marching Cubes 

algortihm. Azernikov and Fischer [28] improved this idea by warping the grid 

according to the local differential properties of the implicit function, thus making the 

warping adaptive to surface shape. 

Surface tracking based methods aim to directly generate a high-quality surface from 

the implicit function thereby eliminating the need to use any post-processing 

methods. The polygonization is initialized with some seed points and progressively 

grown by adding new close-to-equilateral traingles until the whole surface is 

polygonized. The resulting surface therefore, usually has very high quality triangles. 

Early surface tracking based methods [29,30] are not adaptive and have the same 

fixed triangle size problem like volume based methods but adaptive versions were 

later developed( e.g. [31,32,33] ). These methods determined triangle sizes based on 

curvature and other local properties but this brings a problem too. If the curvature on 

the surface changes too rapidly, the size of triangles will also change rapidly and this 

can cause low quality triangles. Also, some details in the high-curvature area may be 

missed because of the large triangle size determined in a close but low-curvature 

area. Schreiner et. al. construct a guidence field taking into account all the curvatures 

at points sampled from the surface to deal with this problem [34]. This method 

constructs very high quality surfaces but is slow.   

Compared to the amount of research done seperately on vessel segmentation and 

surface reconstruction, there are only a few previous studies that use vessel 

segmentation and surface reconstruction together in a pipeline from the original 

angiography image to a surface mesh. These studies mostly focus on a specific 

anatomic region.  Cebral, Hernandez and Frangi propose a full pipeline from CTA 

and 3D rotational angiography data to simulating blood flow for cerebral aneurysms 

[35]. For vessel segmentation, they use a fast-marching method [36] to get a rough 

initial segmentation and then refine it using a combination of [9] and [14]. For 

generating a surface mesh, they use the marching tetrahedra method developed by 

Cebral and Löhner [37]. Antiga, Ene-Iordache and Remuzzi generate a volume mesh 

for arteries from CTA and MRA [38]. They use a similar level set based vessel 

segmentation method proposed in [39] and surface reconstruction is achieved by 
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Marching Cubes and several mesh improvement methods. Zhang et. al. constructs 

hexahedral volume meshes from CT and MRI data [40]. They first use a 

preprocessing step of contrast enhancement, filtering and classification. They then 

use a fast-marching method [41] for segmentation and the method proposed by Ju et. 

al. for surface reconstruction [42]. 

In this study, we propose some improvements on Yu et. al.’s method[15] and use it 

for the vessel segmentation step. The term derived from Frangi’s vesselness measure 

is adapted for 3D images, the gradient term is removed as it does not help in small 

vessels and can cause problems in noisy images and finally, the mean curvature is 

used as an expansion force rather than a regularization force. Using the curvature in 

this manner greatly helps the segmentation of high curvature vessels but can cause 

irregular surfaces and oversegmentation if the weighting parameters are selected 

incorrectly. The result of the proposed vessel segmentation method is fed to 

Schreiner et. al.’s advancing front method [34] which is known to generate high-

quality surfaces. Although this method is slow, surface quality is essential for our 

purpose of using the resulting surface in CFD simulations. Finally, Taubin smoothing 

[26] is used to smooth the surface. We expect our method to prove useful in the 

pipeline from MRA data to CFD simulations and aid in diagnostic and therapeutic 

decision making process related to vascular diseases. 
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2.  ANGIOGRAPHIC IMAGING MODALITIES 

Before describing our vessel segmentation and surface reconstruction method, we 

would first like to give brief information on widely used angiography techniques and 

discuss their advantages and disadvantages.         

2.1 Digital Subtraction Angiography(DSA) 

Planar X-ray is an imaging technique based on the fact that different tissues have 

different X-ray absorption rates. X-rays are passed through the patient and a detector 

detects these X-rays. The areas behind tissues with high X-ray absorption appear 

brighter in the final image. DSA technique works based on the same principle. First, 

a normal planar X-ray image is taken. Then, a contrast agent with high X-ray 

absorption is injected into the bloodstream using a catheter. A second image is taken 

after this injection and subtracted from the first image. Blood vessels are thus seen as 

black in this final subtracted image [43]. A DSA of the brain is shown in Figure 2.1. 

DSA images have the advantage of very high accuracy, detail and clarity. Also, using 

the catheter allows for targeting specific vessels. The main disadvantage of DSA is 

its invasiveness. The catheter has to be navigated inside the patient which is 

uncomfortable and risky. The required time and cost are also high. X-ray radiation 

poses some risk but this risk is very small compared to more X-ray intensive 

modalities like CTA. 

Classical DSA is 2D but rotational 3D DSA has also become available with the C-

arm, which is a device that rotates around the patient to acquire 2D images from 

different angles and combines them to get a 3D image. The radiation dose is of 

course increased for 3D DSA but it includes more information than 2D DSA [44]. 

DSA is considered the gold standart most reliable angiography method but its 

invasiveness make it undesirable and non-invasive methods like CTA and MRA are 

preferred when very high accuracy and detail are not a necessity.  
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Figure 2.1 : A DSA image of blood vessels in brain. Figure taken from [43]. 

2.2 Computed Tomography Angiography(CTA) 

CTA uses the same physical principles used in DSA. The difference is that CTA 

produces a full 3D volume by combining many images taken from different angles 

and positions. Modern CTA devices have multiple X-ray sources and detectors and 

can acquire many slices at once making CTA a very fast technique. Another 

difference from DSA is that the contrast material is injected into a small vein in hand 

or arm with an intravenous(IV) line thus making it a much less invasive technique 

than DSA. Finally, no subtraction is performed in CTA and blood vessels appear 

bright because contrast material has high X-ray absorption [43]. As bone also 

appears bright in CTA, this can make vessel segmentation very difficult. Recently, 

bone removal by using dual energy CTA was introduced but it is not widely used yet 

[45]. CTA data is usually visualized by volume rendering [46] or maximum intensity 

projection(MIP) which is a method that involves projecting parallel rays through the 

volume and choosing the highest encountered intensity along the path to get a 2D 
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projection. An MIP and volume rendering of supraaortic vessels are shown in Figure 

2.2.  

 

Figure 2.2 : a) MIP with bones removed. b) Volume rendering with bones not 

removed. Figure taken from [45]. 

The main advantages of CTA are its quasi non-invasiveness, speed, comparatively 

low cost and wide availability. Its disadvantages are low accuracy compared to DSA 

and high radiation dose. 

2.3 Magnetic Resonance Angiography(MRA) 

The physical principles of MRA are entirely different from DSA and CTA. Unlike 

the other two modalities that depend on X-rays, MRA uses electromagnetism and 

radio waves. MR equipment creates an extremely strong external magnetic field and 

protons in the patient's body start precessing around this magnetic field. The 

precession is then disturbed by radio waves and it takes a while for the protons to 

return to equilibrium. This return to equilibrium is called relaxation. Different tissues 

have different relaxation times and MR technology uses this fact to differentiate 

tissue in the final image which is full 3D. Because of the nature of MR physics, very 

different images can be obtained by changing acquisition schemes. For example, 

blood can appear dark in one MR image while appearing white on another. The MR 

technician is responsiple for acquiring an image that will be useful for the case being 
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investigated. Details of physical principles and how the acquisition works can be 

found in [47]. An MIP of an MRA image showing a cerebral aneurysm is shown in 

Figure 2.3. 

MRA is non-invasive and pretty safe. As the technology is not based on X-rays, there 

is no radiation. Also, angiographic images can be obtained even without using 

contrast material. This lowers quality of course but may be necessary for patients that 

are allergic to contrast materials. On the other hand, accuracy and details are low 

compared to DSA, it cannot be used on patients that have metallic objects in their 

bodies, it is more costly and less available than CTA, it is slower than CTA which 

means there are more motion artifacts and it has difficulty in correctly depicting very 

small vessels [43].  

 

 

Figure 2.3 : An MIP of an MRA image showing a cerebral aneurysm. 
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In this study, we chose to work on MRA data because we believe that it will be more 

dominant in the future as the technology advances. The main reasoning behind our 

belief is that the physical principles of MRA are the safest. Also, vessels are the 

brightest structures in MRA images and this makes segmentation easier compared to 

CTA where bones are also bright. Note that recently introduced dual energy CTA 

images with bone removal look like MRA images . Therefore, although we have only 

tested our algorithm with MRA, it can be expected to work with dual energy CTA 

too.  
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3.  VESSEL SEGMENTATION 

3.1 Objective 

The objective of the vessel segmentation step is to take a 3D MRA image as input 

and give the vessel surface represented as the zero level set of a 3D volume as 

output. Voxels with negative values will be inside of vessels and voxels with positive 

values will be outside of vessels.  

3.2 Surface Evolution With the Level Set Method 

3.2.1 Representing the surface as level set of a volume 

Let 3U be the domain of a volume and let   be a scalar function from U to . 

Then, a surface can be represented as 

{ | ( ) }.S k x x  (3.1) 

Here, k can be chosen arbitrarily and choosing different k gives different surfaces. 

When k = 0, the surface S is called the zero level-set of  . Sometimes   is called the 

embedding and S is called an isosurface. It is important to mention that the surface 

will be closed as long as it does not intersect with the boundary of the domain U 

[48]. There is no consensus in literature whether negative values of   are considered 

inside or outside the surface. In this text, we will define negative values to be inside 

the surface to be consistent with the convention used in the Insight Toolkit(ITK) [49] 

which is the software framework we have used for implementation. So namely, when 

( ) 0, x  the point x  is inside the surface, when ( ) 0, x  x  is on the surface and 

when ( ) 0, x x  is outside the surface. For implementation, the volume will be a 

grid sampling of .  An illustration of how this representation defines a family of 

surfaces and how it would seem in the discrete case is given Fig 3.1. The volume is 

chosen as 2D for easier visualization. 



14 

 

Figure 3.1 : Illustration of implicit representation given by the function
2 2( ) 9x y   x  and eq. (3.1). Left: Surfaces for different k in the 

continuous case. Right: Zero level set( 0k  ) in the discrete case. 

Two variables we will need for the evolution are the surface normal and mean 

curvature so let us discuss how they are defined in this representation. The outward 

surface normal is simply 

( )
( )

( )









x
n x =

x
 

(3.2) 

where   denotes the gradient operator and the mean curvature is the divergence of 

the surface normal: 
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(3.3) 

In the discrete case, these variables have to be numerically approximated. The mean 

curvature can be expressed in terms of partial derivatives of   as 
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and the partial derivatives can be approximated with central differences [8]. The 

surface normal however cannot be approximated with a simple difference scheme 

because the direction of the surface normal abruptly jumps at corners of   and if the 
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chosen evolution function is sensitive to the direction of the normal, this can 

significantly affect the evolution. The surface normal should thus be approximated 

by calculating the one-sided difference approximations in all possible directions and 

averaging them [50]. More openly, let 
ijk denote ( )ijkx  and let us define: 

1 1,  .i i i i
x i x iD D

x x

   
    
 

 
 (3.5) 

Then, the approximation to the surface normal is written as: 
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(3.6) 

If any of the denominators are zero, that term is ignored and the rest are weighted 

accordingly.    
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3.2.2  Evolving the embedding volume  

As the surface will evolve, let us denote the embedding hypersurface ( , ).t x  The 

surface is defined as the zero level set of ( , )t x  at all times so for any point on the 

surface that moves with the surface as it evolves, we have 

( ( ), ) 0.t t x  (3.7) 

Differentiating with respect to time yields 

( ( ), ) '( ) 0.t t t t   x x  (3.8) 

Now let us assume that the surface is moving along the direction of its outward 

surface normals at every point with speed F. Then; 

'( ) .t F x n  (3.9) 

Remembering eq. (3.2) and comparing eqs. (3.8) and (3.9), it is seen that we have 

arrived at the following PDE: 

0.t F     (3.10) 

Given ( , 0),t x the equation can be solved as an initial value problem. This is the 

formulation given in [8]. 

The remaining problem is to implement all this in a computer. We first need a stable 

numerical scheme and then take into account the computational cost because with the 

level set formulation, a 2D problem has been increased to a 3D problem.  

Let the approximation to ( , )t ijkx t n   be denoted by .n

ijk  Then we will have the 

following update scheme: 

1 .n n n

ijk ijk ijkt       (3.11) 

If F has the form 

( ) ,F g      x  (3.12) 
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F     can be approximated with central differences but approximating 

( )g x  with simple finite differences is unstable as it tends to overshoot and the 

up-wind scheme proposed in [7] is used [8,16,50,51]. The up-wind scheme is as 

follows: 

   

   

   

2
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2
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x x

x x x
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 (3.13) 

and the time step is chosen so that the largest change in one time step cannot be 

larger than 1. This means that the fastest moving front on the surface cannot move 

more than 1 grid point. Formally; 

 , ,

1
.

sup ( , , , )i j k U

t
g i j k t

 


 
(3.14) 

 The only remaining problem now is computational cost. It obviously does not make 

sense to update the whole volume when we are interested in only one surface, i.e. the 

zero level set of .  Two algorithms have been proposed in literature to compute the 

updates efficiently when we are interested in only one surface: the narrow band 

method [52] and the sparse field method [51].  

The narrow band method constrains the updates to a band of width m around the 

surface and the embedding is calculated as the signed distance transform. The 

downside of the method is that as the surface evolves, it will come near the boundary 

of the narrow band and the band has to be reinitialized. Thus, the choice of m is a 

trade-off between the number of updates each iteration and the number of 

reinitializations. If m is large, a low number of reinitializations will be sufficient but 

updates for   will have to be calculated for more points. 

Our method of choice, the sparse field method, is the extreme case of the narrow 

band method where the update of   is only calculated on points that are adjacent to 

the surface, i.e. the points that have a value between -0.5 and 0.5. The author calls 

this set the active set. Of course, to calculate the update which requires finite 
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difference approximations, the nearest neighbors of all the points in the active set are 

necessary. Thus, 2 additional inside and 2 additional outside layers are used. The 

values in the additional layers are computed from the values of the active set. A 

linked list data structure is used to keep track of and update the layers as the surface 

evolves. 

3.3 Choosing the Function That Will Guide the Evolution 

Until this point, nothing that is specific to vessel segmentation has been developed. 

What will make the method perform vessel segmentation is the choice of the function 

F. F must be chosen such that the surface evolves and converges to the vessel 

boundaries in the image. Remembering that   takes negative values inside the 

surface and from eq. (3.10), it is evident that the surface expands at points where F is 

positive. Therefore, F should ideally be positive inside vessels, negative outside and 

zero on the boundary. For defining our F, we will make use of the Frangi vesselness 

measure proposed in [14]. The measure is based on the idea of making use of the fact 

that vessels are mostly tubular and brighter(or darker in some modalities) than 

surrounding tissue in angiographic images. To measure tubularity, analysis of the 

Hessian is used. As it is well known, computing derivatives on an image always 

requires smoothing because otherwise, noise would be amplified by the operation. 

Computing the Hessian thus has an intiuitive justification as the second order 

derivative at scale   is given by convolving the image with a Gaussian second 

derivative kernel computed at scale .  This will measure the intensity difference 

between the region  ,  x x  and the outside along the direction of the 

derivative. The continuous Gaussian second derivative function for two different 

scales is illustrated in Figure 3.2. As can be noticed, the Gaussian second derivative 

function has significantly smaller values in the larger scale. Thus, a scale 

normalization is used when computing the Hessian. All second derivatives are 

multiplied by the variance of the current scale, namely 2.  

Let 1 2 3, ,   be the eigenvalues of the Hessian and 1 2 3, ,u u u  be the corresponding 

eigenvectors. Also let 1 2 3    . Then, if x  is inside a vessel and   matches 

the radius of the vessel, 1u will be the direction along the vessel,  2u  and 3u  will 
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span the cross-sectional plane of the vessel and the corresponding eigenvalues will 

measure the convolution of the second derivative Gaussian with the image along the 

directions of the eigenvectors [14]. Therefore, in modalities where the vessels are 

brighter than surrounding tissue, 1  should have small magnitude while 2  and 3  

should both be negative and have large magnitude. Using this analysis, the 

vesselness measure in 3D for modalities where the vessels are brighter than 

surrounding tissue is defined as follows [14]: 

22 2
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(3.15) 

Here, , ,c  are user-defined variables that control the weight of each term and D is 

the dimension of the image. Taking 0.5, 0.5    and c equal to the half of the 

maximum Hessian norm in the image is reported to work well in most cases [14]. Of 

course, as we have mentioned, the vesselness measure only makes sense if the   

matches or is close to the radius of the vessel. Therefore, to detect vessels with 

different radii, the vesselness measure v should be computed for multiple scales and 

the maximum value should be selected as the effective value. 

 

Figure 3.2 : The continuous Gaussian second derivative function for scales 

1 and 3.    
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Using the Frangi vesselness measure in a level set vessel segmentation framework 

was already proposed in [15] but some of the terms included were redundant and the 

method had several shortcomings [53]. The evolution function used in [15] was: 

1 2( ) (1 ) ( )( ) ( ).F p I g I c c g I         n  (3.16) 

where   

1, if ( )

( ( )) ( ), if ( )  and ( )

(1 ( )), otherwise.

v a

p I v v a v b

v




  
 

x

x x x x

x

 (3.17) 

I  is image intensity,   is mean curvature, n is the outward surface normal and g is a 

function of I  that is usually chosen as 

1
( )

1
k

g I
I

 
 

 
(3.18) 

with 1 or 2k k   [15]. Parameters 1 2, , , ,c c a b  are all user-defined and good 

results are reported for 
1 20.5, 1.0, 0.1, 0.4, 0.2c c a b       on 2D images [15].  

Let us analyze the terms in eq. (3.16).  First, ( ( ))p I x  expands or shrinks the surface 

based on Frangi’s vesselness measure. A value of 1 gives the strongest expansion 

effect and a value of -1 gives the strongest shrinkage effect. ( )g I  is close to 1 when 

the gradient magnitude is small(e.g. inside large vessels) and values close to 0 when 

the gradient magnitude is large(e.g. on vessel boundary). Thus, its purpose is to 

expand the surface inside vessels. The term ( ).g I  n  usually gives positive values 

inside vessels and negative outside so its purpose is to help snap the surface 

boundary to the vessel boundary. Finally, mean curvature is used as a volume 

minimizing force for smoothing and regularization. 

A first observation is that the ( )g I  term is good for segmenting large vessels but it 

does not help the segmentation of tiny vessels because the gradient magnitude will be 

large inside tiny vessels. Furthermore, a smoothing scale has to be chosen for 

computing gradients which is not desirable in a multi-scale method and it also means 

more user-defined parameters to optimize. Another problem with the ( )g I  term is 
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that if the surface leaks beyond the vessel into the background, it will help the 

leakage to spread everywhere because gradient magnitude will be small in the 

background.  

A second observation is that as the Frangi vesselness measure ignores any vesselness 

values except the highest, this loss of information could cause oversegmentation 

because two tiny vessels that are close and roughly aligned to each other appear as 

one bigger vessel at larger scales and is segmented as such. The negative values 

between the vessels that occur at smaller scales are ignored. For the same reason, if 

the brightness of vessels vary significantly in the image, brighter vessels appear 

larger than they actually are as they make a larger area around themselves bright at 

larger scales. 

In [53], we have removed the terms that include ( )g I , as we consider them to be 

redundant,  to make the method simpler and faster and proposed a modification to the 

Frangi vesselness measure to deal with the identified shortcomings. The main 

drawback was that the selection of user defined variables was difficult and some 

images required manual initialization. We now propose the following very similar 

scheme that includes slight modifications to overcome those drawbacks. 

( ( ) (1 ) ),F p I d      (3.19) 

  which makes the evolution function 

( ( ) (1 ) ) .t p I d          (3.20) 

Here, 
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 is the mean curvature and , , , ,a b d k  are user-defined variables. As can be seen 

from (3.21), we are trying to scale ( )p I  to be between -1 and 1. This choice is 

arbitrary and does not matter as the fastest moving front is constrained to move at 

most 1 voxel because of stability issues. The vesselness response is simply scaled so 

that anything above a gives 1, values between a and b are scaled to range [1,0], [b,0] 

is scaled to [0,-1] and anything with negative vesselness is given -1. An important 

property is the modification to the vesselness function. A term is added that gives 

negative values if 3  is positive and of course the effective scale will now be 

selected according to the maximum absolute value. Doing this prevents the problems 

we have identified because 3  will be highly positive just outside the vessel border 

and give highly negative vesselness values preventing oversegmentation. This 

negative term is constrained to be active only in scales smaller than k  because this 

fixes the identified problems and it could prevent segmentation of thin vessels that 

are near large vessels if it were also active in larger scales. We choose k  to be twice 

the minimum standart deviation of the selected scale range. The improvement 

offered by this modification is illustrated in Figure 3.3. It is seen that using the 

original Frangi vesselness measure can result in oversegmentation as it can ignore 

information on small scales. 

It can be noticed that F is different from the one proposed in [53] as the absolute 

value of the mean curvature is now taken. This seems like a strange choice at first 

because the mean curvature is usually used as a smoothing, volume minimizing force 

in literature [7,8,9,10,13,14,15]. We have however shown in [53] that using the 

curvature oppositely can facilitate segmentation of tiny vessels and give better 

results. This idea works because at the tip of the surface that is evolving along the 

vessel, both principal curvatures are expected to be positive with large magnitude. 
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Using the curvature in this manner is made possible by our modification to the 

Frangi vesselness measure. In our scheme, the vesselness measure robustly gives 

negative values just outside of vessels and this prevents the expanding curvature 

force from making the surface expand everywhere. Our way of using the curvature as 

an expanding force by reversing the sign of d was however not ideal. With a reversed 

sign, the mean curvature can still act as a shrinking force at points where the vessel 

curves toward the surface normal. This serves no purpose and can be 

disadvantageous. Therefore, it is better to take the absolute value and make sure that 

the curvature tries to expand the surface at every point. It is important to stress that 

although using the curvature in this manner facilitates segmentation of thin and high 

curvature vessels, it also increases the risk of oversegmentation and irregularization 

of the surface, and may cause the solution to be unstable. Thus, the user-defined 

variable d that weigh the curvature should be selected carefully. Taking 0.2d 

gives good results in all our datasets which is consistent with the results from [53]. 

Another difference from [53] is that c is now chosen as one fifth of the highest 

intensity in the image instead of the half of the maximum Hessian norm at the current 

scale. The reasoning behind this change is to prevent oversegmentation caused by 

selecting the maximum scale too high. Even if the maximum scale is slightly higher 

than the radius of the thickest vessel in the image, the maximum Hessian norm will 

be lower compared to other scales. This will make the maximum scale have 

unusually high vesselness values and can cause oversegmentation. Of course, this 

new selection method will result in optimal a and b values to be very different for 

different images. Thus, we now propose the following selection formula: 

 
avg

max min

,
/

2 ,

v
b

a b



 




 (3.20) 

where   is a user-defined parameter, 
avgv  is the average of positive vesselness values 

in the image and min and max  are the minimum and maximum standart deviations 

that define the selected scale range. We have found in our experiments that this 

selection formula makes the choice of user-defined variables much easier. 

Obviously, increasing the value of   will segment less vessels but decrease the 

chance of oversegmentation. 20   gave satisfactory results for most of our images. 
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We do not claim that this is the optimal way to select these parameters. As images 

from different anatomical regions have different characteristics, finding an absolute 

optimal way is probably not possible. 

The variable   controls the weighting of vesselness and curvature terms. As the 

vesselness term should be dominant,   should be selected larger than 0.5 and 

obviously smaller than 1.  Choosing this variable between 0.6 and 0.8 seems to be 

logical and 0.7   consistently gave good results in all our datasets. 

Finally, initialization can be performed automatically by choosing the top 0.05% of 

the voxels with a positive vesselness according to their vesselness measure computed 

at scale 
avg min max( ) / 2     as seeds and the initial surface is spheres of radius 1 

around these seed points. The reason for using 
avg  instead of the normal vesselness 

measure computed at multiple scales is that this is more robust. The multi-scale 

measure has more false positives especially at low scales caused by noise. 
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Figure 3.3 : The improvement resulting from our proposed modification to Frangi’s 

vesselness measure illustrated on a coronal 2D slice of a 3D brain MRA 

image. Top image: The segmentation result when original Frangi 

vesselness measure is used. Middle Image: The segmentation result 

when our modified vesselness measure is used. Bottom Image: The 

original slice.  
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4.  SURFACE RECONSTRUCTION 

4.1 Objectives 

The aim of this chapter is to represent the vessel surface with polygons using the 

output of the vessel segmentation algorithm which is a 3D regular grid sampling of 

an implicit function. The resulting mesh should contain high quality triangles to be 

suitable for numerical simulation.    

4.2 Implicit Surface Polygonization 

As our aim is to run numerical simulations on the surface, triangle quality is essential 

and the speed of the surface reconstruction is not so important. Therefore, Schreiner 

et. al.’s advancing front method [34] seems like a good candidate for this task. 

Availability of source code is also advantageous as we do not need to worry about 

implementation. For the sake of completeness, let us summarize this method. 

As all advancing front methods, the fundamental idea of the algorithm is to start from 

seed points and grow the mesh from those seeds until the whole surface is covered. 

Triangle size adaptation to surface shape is based on curvature. Similar schemes 

already exist ( e.g. [35,36] ) but as curvature is computed locally, on areas where the 

curvature changes abruptly, badly shaped triangles can be created or surface details 

can be missed. To overcome this problem, a guidance field that takes into account all 

curvatures is constructed before starting the polygonization. The difference between 

using only local curvature and using a guidance field is illustrated in Figure 4.1. 

Notice that the triangles gradually get smaller before they reach the high curvature 

area. This idea was already proposed by Scheidegger et. al for polygonizing point set 

surfaces [58] and used by Schreiner et. al. for remeshing [59]. In [34], Schreiner et. 

al. improve this guidance field framework by giving a way to calculate the necessary 

number of sample points at which to calculate the guidance field such that all the 

details of the surface are captured.  
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Figure 4.1 :  Left: Surface constructed using only local curvature. Right: Surface 

constructed using a guidance field. Figure taken from [34]. 

Let us first describe the guidance field construction. Let s be a point on the surface. 

Then, the ideal edge length at that point is defined as: 

max

2sin( / 2)
( ) ,

( )
l




s

s
 

(4.1) 

where max  is the maximum curvature and 0 2 .    In other words, the ideal 

edge length always subtends the angle   of the osculating circle. This is illustrated 

in Figure 4.2. The user can control the accuracy of the method by specifying .  

 

Figure 4.2 : Illustration of why the edge length ideally subtends the same angle of 

the osculating circle. Figure taken from [58]. 

As previously mentioned, the guidance field should be constructed such that triangle 

sizes start getting gradually smaller before reaching a high curvature area so that 

triangle size does not change too rapidly. To this end, a function ( )gs x  from the 

embedding   to   is defined for all s as follows: 

 1 1( ) 1 ( ).g l     s x x s s  (4.2) 
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Notice that the function gives smaller values as x gets closer to s. The variable   is 

user-defined and controls how fast triangle size increases as x gets away from s. The 

guidance field function is obtained by taking the minimum ( )gs x  for all s. Formally, 

( ) min ( ).g g


 s
s

x x  
(4.3) 

For the function to make sense,   should be chosen 1.   When   is close to 1, 

triangle sizes will change very slowly, resulting in extremely high quality triangles 

but the number of triangles will also be very high everywhere resulting in slower 

computation times both for the construction of the surface and for any algorithms 

that will be run on the resulting surface. Notice that 1   removes adaptability to 

curvature and makes all edge lengths equal to the smallest ideal edge length. This is 

of course not practical and   should be chosen such that there is a good balance 

between adaptability and triangle quality. It is important to mention that the ideal 

edge length ( )l s  is scaled in the guidance field by 
1 
 which is a value between 0 

and 1. Although this introduces no theoretical problem, it may be confusing for the 

user when selecting   and .  Ideally, the accuracy should depend solely on   while 

triangle quality and adaptivity to curvature depend solely on   for the selection to be 

more intuitive. This however is not the case in this formulation. Here we propose a 

quick rough fix for this problem that can be used without changing the 

implementation. As   will typically be small, we can roughly assume that  

 

 

sin / 2
1.

/ 2




  (4.4) 

Then we can define 2   and use 2  instead of   in eq. (4.1) in which case the 

accuracy will roughly only depend on   while triangle quality and adaptivity to 

curvature depends on .  

The algorithm starts by first calculating the number of points on which to sample the 

surface for creating the guidance field. A sufficient sampling ensures that 

( ) ( )g ls s s for all s. After the number of points required for sufficient sampling is 

determined, the points are created as a set of jittered random points in cells that 
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neighbor the surface and projected on the surface with gradient descent. Some of 

these points are actually irrelevant and do not contribute anything to the guidance 

field so these are removed to reduce memory consumption and increase running 

speed. See [34] for details on how the necessary number of points is computed and 

how irrelevant points are determined. 

After the guidance field is constructed, we are ready to start the triangulation process. 

First, seed points are found near the surface and projected on the surface with 

gradient descent. One seed point is enough for each connected component. The seed 

points can be calculated efficiently as described in [60]. 

The surface is then progressively grown from seed points until all the surface has 

been constructed. The method used is the same as in [59]. New triangles are formed 

by connecting an existing edge to a vertex. A new vertex is created by using a 

combination of the value of the guidance field at the vertices of the edge and  

ordering and normals of edge vertices to create a new point and projecting that point 

on the surface. If the vertex is a new point on the surface, the triangle formed is 

called a free triangle. If this free triangle winds up too close to an existing front, a 

vertex that is already part of the triangulation is used instead and the created triangle 

is called a connection triangle. If the edge and the new vertex are part of the same 

front, the front is split in two. If the new vertex is part of another existing front, the 

fronts are merged. Free triangles are placed before connection triangles and within 

each class of triangle, triangles which have larger ratios of incircle radius to 

circumcircle radius are placed first. Triangle quality is further improved by keeping a 

band of triangles behind the advancing front and allowing edge flip operations on 

this band. An edge flip operation is performed if the two new triangles have larger 

minimum angles than the two original triangles adjacent to the edge and if the 

normals of the new triangles are not in opposition to the original triangles. A triangle 

is moved out of the band and finalized when all three vertices of the triangle are no 

longer on a front. 

The framework described so far is a general advancing front scheme and is not 

specific to how the implicit function is defined. Now, let us describe how to handle a 

3D regular grid sampling of an implicit function. Schreiner et. al. define two ways 

for regular grids [34]: Catmull-Rom splines [61] and B-splines [62]. The splines are 

used to generate piecewise cubic trivariate polynomials. Then, curvature and 
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gradients can be easily computed analytically. Schreiner et. al. use Catmull-Rom 

splines to interpolate and B-splines to approximate the input data [34]. Thus, 

Catmull-Rom splines represent the data much more accurately but this may not be 

desirable when the input is not perfect and contains noise. Noise causes high 

curvature in many areas and significantly more triangles are created when Catmull-

Rom is used. Moreover, the smoothing nature of B-splines may be desirable 

depending on application. The downside of B-splines is that some details of the 

surface may be missed because of the approximation. For our vessel segmentation 

input, this means some very tiny vessels may be lost.  

4.3 Mesh Smoothing 

Although the advancing front method constructs a high quality surface, a further 

smoothing step may be desirable. Here, we describe Taubin smoothing [26] which is 

a simple but effective method that modifies the Gaussian smoothing idea [63] to not 

produce shrinkage. 

Gaussian smoothing method works by changing the position of a vertex by 

convolving it and the vertices that share an edge with it with a discrete Gaussian 

kernel. As this operation is very local, many iterations are necessary to achieve a 

significant amount of smoothing. This however, also causes significant shrinkage 

which is unacceptable for a vessel segmentation method. 

To explain the modification of Taubin [26], let us first describe the Gaussian 

smoothing method more formally. First let us denote our set of vertices   .iV v  

Then, let iM  be the set of vertices that share an edge with .iv  An average difference 

between vertices is first calculated as follows: 

 .
i

i ij j i

j M

v w v v


    
(4.5) 

The weigths 
ijw  can be taken from a discrete Gaussian kernel or any other weighting 

scheme can also be chosen as long as all 
ijw  are positive and their sum is 1. The 

vertex positions are then updated  using 
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i i iv v v     (4.6) 

with 0 1   at each iteration. To prevent the shrinkage caused by this algorithm, 

Taubin [26] propose defining a second update using a scale factor that has opposite 

sign to :  

i i iv v v     (4.7) 

where 0 .     These two updates are rotated at each iteration preventing 

shrinkage. The magnitude of   should be slightly larger than   because iv  will get 

smaller at each iteration and eq (4.6) is the first update used.  
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5.  VESSEL SEGMENTATION AND RECONSTRUCTION ALGORITHM 

AND RESULTS 

5.1 Implementation Details 

The original MRA data is in DICOM series or MetaImage(MHA) format. If the data 

is in DICOM series format, the series are read and converted to greyscale volume 

data as MHA files. Higher greyscale values ideally correspond to vessels. As a pre-

processing step, a sigmoid filter[49] is used on the MHA file to emphasize the 

expected intensity range of vessels. A curvature flow smoothing filter[49] is also 

used in noisy images. The resulting MHA file is used by the vessel segmentation step 

to produce another scalar volume data which is the implicit representation of the 

surface. 

 

 

Figure 5.1 : Summary of the algorithm. 
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The sparse field algorithm is used for evolution as described by Whitaker [51] and as 

implemented  in ITK [49]. For scale selection, the range of vessel radii that the user 

is interested in, is manually chosen by the user. The number of scales is chosen based 

on the scale range as: 

  1.5 max minceil logN     (5.1) 

and the scales in between are chosen logarithmically as suggested by Sato et. al. [54]: 

 
   max min

min

ln ln
exp ln ,  0,1,..., 1.

1
i i i N

N

 
 

 
    

 
 (5.2) 

For calculating the Hessians, the image is first Gaussian smoothed with different 

scales. The Gaussian kernel is used with maximum error equal to 0.01 and maximum 

kernel size equal to 30. Then, central differences are calculated using a 3x3x3 

neighborhood. The step size in each direction is taken to be equal to the standart 

deviation of the current scale. When the reached point is out of the boundary, the 

value of the closest boundary is used. This is preferred instead of mirroring because 

mirroring can cause unusually high vesselness response and adversely affect the 

algorithm, especially the automatic initialization.  

Convergence is checked every 100 iterations by computing the change in the level 

set function per segmented voxel over 100 iterations. Evolution is stopped when the 

current change is below 0.05 and the difference between previous change and current 

change is below 0.005. In all computations, linear interpolation is used when 

required. 

The pseudocode for the vessel segmentation step is as follows:  

VESSEL_SEGMENTATION(input_MRA_data, sigma_min, sigma_max, , ,d  ) 

1 Find maximum intensity in the image and set c as one sixth of it. 

2 Compute the vesselness measure for the whole image. 

3 Calculate a and b as explained in eq 3.20. 

4 Set seeds as explained in Section 3.3. 

5 Use fast marching and seeds to initialize. 

6 Use the sparse field method with the evolution function proposed in Section 

 3.3 until convergence.  
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For the surface reconstruction step, the advancing front algorithm of Schreiner et. al. 

[34] kindly provided by the authors, is used without changes. The program takes 

Nearly Raster Raw Data(NRRD) files as input so the output of the segmentation 

should be NRRD. Also, spacing is not considered so spacing ratios are equalized in a 

pre-processing step. The output mesh is given as a text file and we convert it to PLY 

for further processing. PLY files are visualized with Paraview [64] and MeshLab 

[65] is used for Taubin smoothing. The Marching Cubes result that we use for 

comparison is computed with VTK [66].   

5.2 Results and Discussion 

The proposed method was tested on 34 real MRA images and a synthetic image with 

intensity range [0,255] created by the software VascuSynth [55].  20 of the real 

images are healthy brain images which were collected and made available by the 

CASILab at The University of North Carolina at Chapel Hill and were distributed by 

the MIDAS Data Server at Kitware, Inc. [56]. The remaining 14 real images were 

acquired from Sonomed Medical Imaging Center and Laboratory in Istanbul and 

contain both healthy and unhealthy images from different anatomical regions. For 

comparison with existing methods, we have used the confidence connected region 

growing method and the geodesic active contour method implemented in ITK [49]. 

Some of the results are shown in Figure 5.2 and Figure 5.3 along with the 

corresponding maximum intensity projections. For the proposed algorithm, 0.7, 

0.2d   and 20   were used for all images. For the other methods, we have tried 

several sets of user-defined parameters for each image and the best result is shown. 

The same seeds were given to all methods for initialization. The results are 

visualized with ITK-SNAP [57] which uses Marching Cubes to triangulate a binary 

segmentation result. As our output is a grid sampling of an implicit function, we use 

a zero-crossing filter to convert it to binary. It is true that some information is lost in 

this process but Marching Cubes is limited by the grid resolution anyway. Marching 

Cubes is sufficient for visually evaluating segmentation results because at the current 

state of the art, no segmentation algorithm is expected to achieve subpixel accuracy. 
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Figure 5.2 : Top row: Segmentation results of the geodesic active contour algorithm. 

Second row: Segmentation results of the confidence connected region 

growing algorithm. Third row: Segmentation results of proposed 

method. Bottom row: Maximum intensity projections of raw data. (a) A 

brain MRA with 448 448 128   voxels and 

0.51mm 0.51mm 0.8mm   voxel size. (b) A brain MRA with 

512 512 155   voxels and 0.47mm 0.47mm 0.6mm   voxel size. (c) 

An abdominal MRA with 512 512 70   voxels and 

0.95mm 0.95mm 1.00mm   voxel size. 
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Figure 5.3 : Top row: Segmentation results of the simple geodesic active contour 

algorithm. Second row: Segmentation results of the confidence 

connected region growing algorithm. Third row: Segmentation results 

of proposed method. Bottom row: Maximum intensity projections of 

raw data. (a)  An abdominal MRA with 512 512 50   voxels and 

0.78mm 0.78mm 1.00mm   voxel size. (b) A thigh MRA with 

512 512 70   voxels and 0.92mm 0.92mm 1.00mm   voxel size. (c) 

A synthetic image with added Gaussian noise noise 60   that has 

256 256 256   voxels and 1.00mm 1.00mm 1.00mm   voxel size. 
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It is seen that the proposed method clearly outperforms the two previous methods we 

have chosen for comparison. The geodesic active contour method which is based on 

[9] fails on tiny vessels because surface propagation is only high on areas of low 

gradient magnitude and gradient magnitude is usually high inside tiny vessels. The 

confidence connected region growing method is only based on image intensity so it 

can successfully segment most vasculature provided it is initialized with good seeds 

and correct user-defined parameters are chosen but it has a high risk to cause 

irregularities. Proposed method seems to segment most of the vasculature without 

causing severe problems. 

To give a better feeling of how the user-defined variables ,  d and   affect 

segmentation, the effect of varying these parameters are illustrated in Figure A.1, 

Figure A.2, Figure A.3, Table A.1 and Table A.2. As expected, increasing the weight 

of the curvature term by increasing d or lowering   segments more vasculature but 

increases the chance of oversegmentation. Increasing   obviously reduces 

oversegmentation but increases the chance of missing some vessels. Table A.1 and 

Table A.2 also serve as quantitative evaluation of the algorithm as results are 

compared against ground truth. Ground truth image is acquired by thresholding the 

noise-free synthetic image with the value 127. VascuSynth creates the image by 

dividing each voxel into 8 subvoxels and whether a vessel is contained in each 

subvoxel is calculated. For every subvoxel that contains a vessel, 32 is added to the 

image intensity for that voxel. Thus, thresholding with 127 means we accept all 

voxels which have 4 or more subvoxels that contain a vessel. For quantitative 

evaluation, 5 parameters are used. True Positive Ratio(TPR), False Positive 

Ratio(FPR), True Negative Ratio(TNR), False Negative Ratio(FNR) and Overlap 

Ratio. These are defined in eq. (5.3). 

A very important observation is that changing the user-defined variables has a bigger 

impact on real images compared to synthetic images and the algorithm performs 

much better in synthetic images. This has two causes: First, real images contain a 

variety of image artifacts while the synthetic image is only distorted with Gaussian 

noise. Second, vessels in the synthetic image do not have high curvature. Vessels 

with high curvature do not give a high vesselness response to our Hessian based 

measure and segmentation of these vessels are mostly facilitated by the curvature 

term. Of course, relying on the curvature term is not desirable as it can cause 
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irregularities and oversegmentation. Thus, the method is much more sensitive to 

user-defined variable selection and more prone to errors when the image contains 

vessels with high curvature and different types of artifacts.   

Number of True Positive Voxels
TPR ,

Total Number of Voxels

Number of False Positive Voxels
FPR ,

Total Number of Voxels

Number of True Negative Voxels
TNR ,

Total Number of Voxels

Number of False Negative
FNR








 Voxels

,
Total Number of Voxels

2TPR
Overlap Ratio .

2TPR FPR FNR


 

 (5.3) 

For the surface reconstruction part, let us start by first comparing the different spline 

types. The result of using Catmull-Rom splines and B-splines is shown in Figure 5.4. 

As Catmull-Rom splines are used to interpolate and B-splines are used approximate, 

Catmull-Rom gives a surface that is very loyal to the input data while B-splines 

smooth the data. As our segmentation output is not perfect and contains a lot of 

noise, Catmull-Rom splines create a rough surface with too many triangles. B-

Splines seem to be a better choice but it should not be forgotten that very tiny 

structures may be lost. 

Secondly, the effect of varying   and   is illustrated in Figure B.1 and Figure B.2 

respectively. As we have already discussed, increasing   reduces the number of 

triangles but it is less accurate and can lose some structures. Increasing   reduces the 

number of triangles by making the triangle size more adaptive to curvature but this 

reduces triangle quality. 

Next, the possible improvement provided by using Taubin smoothing is illustrated in 

Figure 5.5. 50 smoothing iterations are used with 0.50   and 0.54    on the 

surfaces acquired by using 10.4,  0.8    and B-splines. 

Finally, the smoothed surfaces from Figure 5.5. are compared against the classical 

Marching Cubes result in Figure 5.6. It is seen that the recommended reconstruction 

scheme can achieve a smooth surface with high triangle quality while remaining 

fairly accurate. 
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Radiologist Dr. med. Zafer Kaya was asked to rate the final meshes resulting from 

the segmentation and surface reconstruction of our 34 real images with a scale of 1 to 

5(1 worst, 5 best) and comment on what problems there are with the reconstruction. 

The average rating was 2.94 and the problems were as follows: Despite our 

improvement to the Frangi vesselness measure, two separate vessels can still 

sometimes appear as one vessel and vessels can appear thicker than they actually are. 

Also, vessel contours can be irregular especially in tiny vessels and some vessels are 

not segmented especially in low contrast leg images. Although the radiologist 

evalution turned out worse than desired, it should be noted that all the images were 

automatically seeded and the same user-defined variables were used despite the fact 

that the images were acquired from different sources and anatomical regions. It may 

be possible to improve the results by optimizing the user-defined parameters on a 

specific anatomical region and images taken by the same MR machine. 

It is important to note that at the current state of the art, no algorithm can be expected 

to be readily usable for all medical procedures and all images. There are many 

different types of artifacts and vessels in medical images and each medical procedure 

has different requirements. It is extremely difficult for a method to cope with all 

possible scenarios. It should be noticed that both the segmentation and reconstruction 

steps involve a tradeoff. The segmentation part has to balance accuracy with the 

amount of user interaction, computation cost and generalness, surface reconstruction 

step have to balance accuracy with smoothness and computation cost. These 

tradeoffs always have to be considered depending on the specific medical 

application. Requirements of an application should be determined by close 

collaboration with medical partners and vessel segmentation and surface 

reconstruction methods should be selected accordingly. Assessing the usefulness of 

our proposed method for specific medical applications remains as future work. 
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Figure 5.4 : Comparison of using Catmull-Rom splines(top) vs B-splines(bottom) on 

one of the brain images. 
10.4,  0.8   .  
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Figure 5.5 : Effect of Taubin smoothing. Top: Before Taubin smoothing. Surface 

created using 
10.4,  0.8    and B-splines. Bottom: After Taubin 

smoothing with 0.50   and 0.54    for 50 iterations. 
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Figure 5.6 : Comparison of our recommended scheme(bottom) against Marching 

Cubes(top).  
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6.  CONCLUSION AND RECOMMENDATIONS 

We have presented a combination of methods to extract a high-quality polygonized  

surface that represents the vasculature from MRA images. Two main steps involved 

are vessel segmentation and surface reconstruction.  

The vessel segmentation method takes as input MRA image data and produces as 

output a 3D discrete grid sampling of the implicit function that represents the vessel 

surface. The method was designed to work for all anatomical regions and segment 

both tiny and large vessels while requiring minimal user interaction. To this end, 

local multi-scale Hessian and curvature information were used to guide the evolution 

of the surface in a level set framework. Visually good-looking results were obtained 

for our dataset but careful inspection by our radiologist revealed some inaccuracies. 

The variability of medical image data make it extremely difficult to come up with a 

fully automatic method that works for all anatomical regions and all types of vessels. 

If very high accuracy is desired, a general method like the one proposed may not be 

desirable. In these cases, a general method could be used for initializing a more 

specialized algorithm. 

The result of the segmentation step is fed to an existing advancing front implicit 

surface polygonizer that can construct a high-quality surface suitable for numerical 

simulation. Finally, Taubin smoothing is used to further smooth the surface without 

changing its topology. 

It is important to stress that each step involves a tradeoff. The segmentation part has 

to balance accuracy with the amount of user interaction, computation cost and 

generalness, surface reconstruction and post-processing steps have to balance 

accuracy with smoothness and computation cost. These tradeoffs always have to be 

considered depending on the specific medical application. Although the ultimate goal 

is to have a computer that can process any imaging data in a meaningful way for a 

given medical procedure without requiring any user-interaction or correction, we are 

still far from achieving this and an algorithm cannot be expected to work for all 
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scenarios. Thus, computer scientists that work on developing medical algorithms 

should closely collaborate with clinicians and know the requirements of different 

medical procedures. To give some examples, an accuracy that is enough for 

diagnostics may not be acceptable for planning brain surgery. While smoothness is 

required for numerical simulations, it may not be desirable for diagnostics. The 

computational cost may not be an issue for planning and diagnostics but the number 

of created triangles may be prohibitive for a numerical simulation. 

6.1 Future Work 

As future work, the method should be optimized and validated for specific 

applications. Using the surface constructed by the method, a volume mesh should be 

generated and used in CFD simulations. The results of these CFD simulations should 

also be analysed and validated by clinical partners. The speed of the whole process 

should be improved by optimizing the code and making full use of computational 

resources by using all the CPU and GPU cores efficiently. A visually pleasing and 

intuitive user interface that can easily be used by clinicians should be developed. The 

user interface should ideally include all the pipeline from imaging data to CFD 

simulation and tools that allow for corrections in case the result of automatic 

algorithms contain inaccuracies. 
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APPENDIX A 

 

Figure A.1 : From top to bottom: Segmentation results for a brain MRA with 

448 448 128   voxels and 0.51mm 0.51mm 0.8mm   voxel size, an 

abdominal MRA with 512 512 70   voxels and 

0.95mm 0.95mm 1.00mm   voxel size,  and the  synthetic image with 

noise 60   which has 256 256 256   voxels and 

1.00mm 1.00mm 1.00mm   voxel size. From left to right: Varying .  



55 

 

Figure A.2 : From top to bottom: Segmentation results for a brain MRA with 

448 448 128   voxels and 0.51mm 0.51mm 0.8mm   voxel size, an 

abdominal MRA with 512 512 70   voxels and 

0.95mm 0.95mm 1.00mm   voxel size,  and the  synthetic image with 

noise 60   which has 256 256 256   voxels and 

1.00mm 1.00mm 1.00mm   voxel size. From left to right:Varying .d   
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Figure A.3 : From top to bottom: Segmentation results for a brain MRA with 

448 448 128   voxels and 0.51mm 0.51mm 0.8mm   voxel size, an 

abdominal MRA with 512 512 70   voxels and 

0.95mm 0.95mm 1.00mm   voxel size,  and the  synthetic image with 

noise 60   which has 256 256 256   voxels and 

1.00mm 1.00mm 1.00mm   voxel size. From left to right:Varying .  
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Table A.1 : Quantitative evaluation of segmentation results for synthetic images 

with noise 20.   

  d    TPR FPR TNR FNR Overlap 

Ratio 

0.60 0.00 10 0.677 0.020 99.206 0.098 92.013 

0.60 0.00 20 0.673 0.019 99.207 0.101 91.837 

0.60 0.00 40 0.646 0.013 99.212 0.128 90.137 

0.60 0.20 10 0.753 0.035 99.191 0.021 96.433 

0.60 0.20 20 0.752 0.034 99.192 0.023 96.380 

0.60 0.20 40 0.746 0.027 99.198 0.028 96.403 

0.60 0.40 10 0.753 0.035 99.191 0.021 96.451 

0.60 0.40 20 0.752 0.034 99.192 0.022 96.394 

0.60 0.40 40 0.747 0.030 99.196 0.027 96.318 

0.70 0.00 10 0.677 0.020 99.206 0.098 92.013 

0.70 0.00 20 0.673 0.019 99.207 0.101 91.826 

0.70 0.00 40 0.646 0.013 99.212 0.128 90.137 

0.70 0.20 10 0.753 0.035 99.191 0.021 96.434 

0.70 0.20 20 0.751 0.034 99.192 0.023 96.333 

0.70 0.20 40 0.745 0.026 99.200 0.029 96.396 

0.70 0.40 10 0.753 0.035 99.191 0.021 96.448 

0.70 0.40 20 0.752 0.034 99.192 0.022 96.396 

0.70 0.40 40 0.747 0.028 99.198 0.028 96.390 

0.80 0.00 10 0.677 0.020 99.206 0.098 92.013 

0.80 0.00 20 0.673 0.019 99.207 0.101 91.841 

0.80 0.00 40 0.646 0.013 99.212 0.128 90.138 

0.80 0.20 10 0.752 0.034 99.191 0.022 96.393 

0.80 0.20 20 0.751 0.034 99.192 0.023 96.341 

0.80 0.20 40 0.744 0.025 99.200 0.023 96.426 

0.80 0.40 10 0.753 0.035 99.191 0.021 96.444 

0.80 0.40 20 0.751 0.034 99.192 0.023 96.353 

0.80 0.40 40 0.745 0.027 99.199 0.029 96.400 
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Table A.2 : Quantitative evaluation of segmentation results for synthetic images 

with  noise 60.   

  d    TPR FPR TNR FNR Overlap 

Ratio 

0.60 0.00 10 0.622 0.031 99.195 0.152 87.156 

0.60 0.00 20 0.613 0.027 99.199 0.161 86.748 

0.60 0.00 40 0.573 0.010 99.215 0.201 84.454 

0.60 0.20 10 0.728 0.062 99.164 0.046 93.119 

0.60 0.20 20 0.723 0.048 99.177 0.051 93.540 

0.60 0.20 40 0.689 0.018 99.208 0.085 93.052 

0.60 0.40 10 0.729 0.064 99.162 0.045 93.029 

0.60 0.40 20 0.724 0.052 99.174 0.050 93.407 

0.60 0.40 40 0.698 0.023 99.202 0.076 93.363 

0.70 0.00 10 0.619 0.030 99.195 0.155 86.946 

0.70 0.00 20 0.613 0.027 99.199 0.161 86.748 

0.70 0.00 40 0.573 0.010 99.215 0.201 84.454 

0.70 0.20 10 0.728 0.061 99.165 0.046 93.148 

0.70 0.20 20 0.721 0.047 99.179 0.053 93.545 

0.70 0.20 40 0.685 0.016 99.209 0.089 92.870 

0.70 0.40 10 0.729 0.062 99.163 0.045 93.111 

0.70 0.40 20 0.723 0.050 99.176 0.051 93.512 

0.70 0.40 40 0.693 0.020 99.206 0.082 93.192 

0.80 0.00 10 0.622 0.031 99.195 0.152 87.156 

0.80 0.00 20 0.613 0.027 99.199 0.161 86.748 

0.80 0.00 40 0.573 0.010 99.215 0.201 84.454 

0.80 0.20 10 0.727 0.060 99.165 0.047 93.132 

0.80 0.20 20 0.721 0.046 99.180 0.053 93.578 

0.80 0.20 40 0.681 0.015 99.211 0.093 92.629 

0.80 0.40 10 0.729 0.061 99.164 0.046 93.149 

0.80 0.40 20 0.723 0.048 99.178 0.052 93.583 

0.80 0.40 40 0.686 0.017 99.209 0.089 92.884 
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APPENDIX B 

 
  

Figure B.1 : Surface reconstruction results for abdominal image(left) and cerebral 

image(right) with varying  . Top row: 0.6   middle row: 0.4 

bottom row: 0.2.   B-splines and 1 0.8   are used for all images. 



60 

 
 

Figure B.2 : Surface reconstruction results for abdominal image(left) and cerebral 

image(right) with varying  . Top row: 
1 0.8,   middle row: 

1 0.65,  bottom row: 
1 0.5.   B-splines and 0.4   are used for 

all images. 
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