

İSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE

M.Sc. Thesis by
Ilker KOPAN

Department : Informatics Institute

Programme : Computational Science and Engineering

DECEMBER 2009

PERFORMANCE ANALYSIS OF PDE BASED PARALLEL ALGORITHMS
ON DIFFERENT COMPUTER ARCHITECTURES

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62752316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY ���� INFORMATICS INSTITUTE

M.Sc. Thesis by
İlker KOPAN
(702051008)

Date of submission : 06 June 2009

Date of defence examination: 07 October 2009

Supervisor (Chairman) : Prof. Dr. M. Serdar ÇELEBİ (ITU)
Members of the Examining Committee : Prof. Dr. Hasan DAĞ (KHAS)

 Yrd.Doç.Dr. Lale TÜKENMEZ
ERGENE (ITU)

DECEMBER 2009

PERFORMANCE ANALYSIS OF PDE BASED PARALLEL ALGORITHMS
ON DIFFERENT COMPUTER ARCHITECTURES

ARALIK 2009

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� BİLİŞİM ENSTİTÜSÜ

YÜKSEK LİSANS TEZİ
Ilker KOPAN
(702051008)

Tezin Enstitüye Verildiği Tarih : 06 Haziran 2009

Tezin Savunulduğu Tarih : 07 Ekim 2009

Tez Danışmanı : Prof. Dr. M. Serdar ÇELEBİ (ITU)
Diğer Jüri Üyeleri : Prof. Dr. Hasan DAĞ (KHAS)

 Yrd.Doç.Dr. Lale TÜKENMEZ
ERGENE (ITU)

PARALEL KISMİ FARK DENKLEMLERİ FARKLI BİLGİSAYAR
MİMARİLERİNDE PERFORMANS ANALİZİ

v

FOREWORD

I would like to express my deep appreciation and thanks for my advisor and my
teachers. Also I want to thank NCHPC support team, our assistants and my
classmates for encouraging me. Our friendship with Erdem Üney, Sayat Baronyan,
Deniz Güvenç and Barış Avşaroğlu started as grad students, after graduation it will
become a life time friendship. The last but certainly not the least person I would like
to acknowledge is my love Şirin Özdilek. I am very grateful for your presence and
continuous support since the beginning.

SEPTEMBER 2009

İlker Kopan

(Computer Engineer)

vii

TABLE OF CONTENTS

 Page

ABBREVIATIONS... ix
LIST OF TABLES..x
LIST OF FIGURES.. xi
SUMMARY... xiii
1. INTRODUCTION...1

1.1 Objectives of the Study..3
1.2 Background ...4

2. SELECTION OF PARALLELIZATION METHODS7
2.1 Introduction...7
2.2 Parallelization Methods ...9

2.2.1 Message Passing Interface (MPI)..12
2.2.2 OpenMP...13
2.2.3 Mixed Programming (MPI+OpenMP) ..15

3. PARALLEL COMPUTER ARCHITECTURES ..17
3.1 Flynn’s Taxonomy ..17
3.2 Parallel Computer Memory and Communication Architectures......................20

3.2.1 Shared Memory..20
3.2.2 Distributed Memory ...22
3.2.3 Hybrid Distributed-Shared Memory ...22

3.3 CPU Cache Memory Hierarchy ...23
3.4 Network Interfaces ..27

4. PERFORMANCE ANALYSIS...33
4.1 Performance Evaluation and Objectives...33
4.2 Instrumentation ...36
4.3 Measurement...38

4.3.1 Profile of an Algorithm...39
4.3.2 Trace of an Algorithm ..40

4.4 Analysis ..40
5. COMPUTATION OPTIMIZATIONS...43

5.1 Objectives ...43
5.2 Optimization Levels ..43

5.2.1 Design level ...45
5.2.2 Source code level ...45
5.2.3 Compiler level..46
5.2.4 Assembly level ...47

6. COMMUNICATION OPTIMIZATIONS ...49
6.1 Objectives ...49
6.2 Communication Methods...49

6.2.1 Point-to-Point Communication ...49
6.2.2 Collective Communication ...50

viii

6.3 Hardware Based Optimizations ... 51
6.4 Algorithm Based Optimizations .. 51

7. PARALLELIZATION OF PARTIAL DIFFERENTIAL EQUATIONS....... 55
7.1 Finite Difference as a Discretization Model... 56
7.2 Gauss-Seidel and SOR .. 60
7.3 Red-Black and Multi-coloring Scheme.. 63
7.4 Pseudo Code for Parallel PDE... 66
7.5 Decomposition an Topolgy of PDE Matrix ... 67

8. IMPLEMENTATION AND RESULTS .. 69
8.1 Runs and Results... 72

9. CONCLUSION AND RECOMMENDATIONS ... 83
9.1 Application of The Work .. 84
9.2 Future Work.. 85

REFERENCES... 87
CURRICULUM VITA ... 89

ix

ABBREVIATIONS

TAU : Tuning and Analysis Utilities
MPI : Message Passing Interface
App : Appendix
PDE : Partial Differential Equation
SMP : Symmetric MultiProcessing
NCHPC : National Center for High Performance Computing Turkey
NUMA : Non-Uniform Memory Access
SOR : Successive over-relaxation
HPC : High Performance Computing
OpenMP : Open Multi-Processing
CPU : Central Processing Unit
UMA : Uniform Memory Access
NUMA : Non-Uniform Memory Access
TLB : Translation Look aside Buffer
IBA : Infiniband Architecture
RDMA : Remote Direct Memory Access
SDP : Sockets Direct Protocol
PDT : Program Database Toolkit

x

LIST OF TABLES

 Page

Table 3.1 : Local Area Network Device Bandwidths.. 27

xi

LIST OF FIGURES

 Page

Figure 2.1 : Steps for parallelizing a problem...8
Figure 2.2 : OpenMP Thread Model...14
Figure 3.1 : Flynn's taxonomy..17
Figure 3.2 : SISD Model ..18
Figure 3.3 : SIMD Model...18
Figure 3.4 : MISD Model...19
Figure 3.5 : MIMD Model ...19
Figure 3.6 : UMA and NUMA Architectures ...21
Figure 3.7 : Distributed Memory Architecture..22
Figure 3.8 : Hybrid Memory Architecture ..23
Figure 3.9 : General Memory Hierarchy...24
Figure 3.10 : Generic System Architecture...25
Figure 3.11 : Block diagram of an Intel Itanium 2 core ..25
Figure 3.12 : Block diagram of the Intel Xeon processor..26
Figure 4.1 : Performance Evaluation ..34
Figure 4.2 : Program Database Toolkit Diagram ..37
Figure 4.3 : Architecture of TAU (Instrumentation and Measurement)...................39
Figure 4.4 : Architecture of TAU (Analysis and Visualization)41
Figure 6.1 : Small Messages Performance..52
Figure 6.2 : Medium Messages Performance..52
Figure 6.3 : Large Messages Performance..53
Figure 6.4 : Persistent vs Isen/Irecv..54
Figure 7.1 : Grid points for a five point formula...57
Figure 7.2 : Grid points for a nine-point formula..57
Figure 7.3 : Grid system used for solution of Equation (7-7)58
Figure 7.4 : Grid points for Equation (7-13) ...61
Figure 7.5 : Red and Black Stencils..64
Figure 7.6 : Red-Black ordering for equation 7-20 ...65
Figure 8.1 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2 CPUs73
Figure 8.2 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2 CPUs74
Figure 8.3 : Optimization comparison of two processors ..75
Figure 8.4 : Trace output showing cluster network performance variety76
Figure 8.5 : Trace output showing SMP computer communication performance76
Figure 8.6 : Profile output of 64 processor communication bottleneck77
Figure 8.7 : SOR Iteration Counts for Different Relaxation Values77
Figure 8.8 : Wall Clock Times for Different Relaxation Values78
Figure 8.9 : Communication Time for Different Error Tolerance Values................78
Figure 8.10 : Scalability for 400x400 matrix size ...79
Figure 8.11 : Scalability for 800x800 matrix size ...79
Figure 8.12 : Scalability for 1600x1600 matrix size ...80
Figure 8.13 : Scalability for 3200x3200 matrix size ...80
Figure 8.14 : 400x400 Matrix Balance Effect...81

xii

Figure 8.15 : 3200x3200 Matrix Balance Shift .. 81

xiii

PERFORMANCE ANALYSIS OF PDE BASED PARALLEL ALGORITHMS
ON DIFFERENT COMPUTER ARCHITECTURES

SUMMARY

In last two decades, use of parallel algorithms on different architectures increased the
need of architecture and application independent performance analysis tools. Tools
that support different communication methods and hardware prepare a common
ground regardless of equipments provided.

Partial differential equations (PDE) are used in several applications (such as
propagation of heat, wave) in computational science and engineering. These
equations can be solved using iterative numerical methods. Problem size and error
tolerance effects iteration count and computation time to solve equation. PDE
computations take long time using single processor computers with sequential
algorithms, and if data size gets bigger single processors memory may be
insufficient. Thus, PDE’s are solved using parallel algorithms on multiple processors.
In this thesis, elliptic partial differential equation is solved using Gauss-Seidel and
Successive Over-Relaxation (SOR) methods parallel algorithms.

Performance analysis and optimization basically has three steps; evaluation, analysis
of gathered information, defining and optimizing bottlenecks. In evaluation,
performance information is gathered while program runs, then observations are made
on gathered information by using visualization tools. Bottlenecks are defined and
optimization techniques are researched. Necessary improvements are made to
analyze the program again. Different applications in each of these stages can be used
but in this thesis TAU is used, which collects these applications under one roof.

TAU (Tuning and Analysis Utilities) supports many hardware, operating systems and
parallelization methods. TAU is an open source application and collaborates with
other open source applications at different levels.

In this thesis, differences based on performance analysis of an algorithm in different
two architectures are investigated. In performance analysis and optimization there is
no golden rule to speed up algorithm. Each algorithm must be analyzed on that
specific architecture. In this context, the performance analysis of a PDE algorithm on
two architectures has been interpreted.

xiv

xv

FARKLI PLATFORMLARDAKİ PDE TABANLI PARALEL
ALGORİTMALARIN PERFORMANS ANALİZİ VE ENİYİLEMESİ

ÖZET

Son yıllarda dağıtık algoritmaların farklı platformlarda kullanılabilmesi platform ve
uygulama bağımsız performans analizi uygulamaları ihtiyacını arttırmıştır. Farklı
donanımları ve haberleşme metodlarını destekleyen uygulamalar kullanıcılara
donanım ve yazılımdan bağımsız ortak bir zemin hazırladıkları için kolaylık
sağlamaktadır.

Kısmi fark denklemleri hesaplamalı bilim ve mühendisliğin bir çok alanında
kullanılmaktadır (ısı, dalga yayılımı gibi). Bu denklemlerin sayısal çözümü
yinelemeli yöntemler kullanılarak yapılmaktadır. Problemin boyutu ve hata değerine
göre çözüme ulaşmak için gereken yineleme sayısı ve buna bağlı olarak süresi
değişmektedir. Kısmi fark denklemelerinin tek işlemcili bilgisayarlardaki çözümü
uzun sürdüğü ve yüksek boyutlarda hafızaları yetersiz kaldığı için paralelleştirilerek
birden fazla bilgisayarın işlemcisi ve hafızası kullanılarak çözülmektedir. Tezimde
eliptik kısmi fark denklemlerini Gauss-Seidel ve Successive Over-Relaxation (SOR)
metodlarını kullanarak çözen paralel algoritmalar kullanılmıştır.

Performans analizi ve eniyilemesi kabaca üç adımdan oluşmaktadır; ölçüm,
sonuçların analizi, darboğazların tespit edilip yazılımda iyileştirme yapılması. Ölçüm
aşamasında programın koşarken ürettiği performans bilgisi toplanır, toplanan bu
veriler görselleştirme araçları ile anlaşılır hale getirilerek yorumlanır. Yorumlama
aşamasında tespit edilen dar boğazlar belirlenir ve giderilme yöntemleri araştırılır.
Gerekli iyileştirmeler yapılarak program yeniden analiz edilir. Bu aşamaların her
birinde farklı uygulamalar kullanılabilir fakat tez çalışmamda uygulamaları tek çatı
altında toplayan TAU kullanılmıştır.

TAU (Tuning and Analysis Utilities) farklı donanımları ve işletim sistemlerini
destekleyerek farklı paralelleştirme metodlarını analiz edebilmektedir. Açık kaynak
kodlu olan TAU diğer açık kaynak kodlu uygulamalar ile uyumlu olup birçok
seviyede bütünleşme sağlanmıştır.

Bu tez çalışmasında, iki farklı platformda aynı uygulamanın performans analizi
yapılarak platform farkının getirdiği farklılıklar incelenmektedir. Performans
analizinde bir algoritmanın eniyilemesini yapmak için genel bir kural olmadığından
her algoritma her platformda incelenerek gerekli değişiklikler yapılmalıdır. Bu
bağlamda kullandığım PDE algoritmasının her iki sistemdeki analizi sonucu elde
edilen bilgiler yorumlanmıştır.

xvi

1

1. INTRODUCTION

In the past, processor design trends were dominated by adding new instruction sets

and increasing clock speeds. Recently, clock speeds have reached to maximum

speed. Processor manufacturers are making multiple core designs to correspond

demand for increasing performance. Consider clock frequency, which was on an

exponential trend in the mid 90’s. From about 1993 with the Intel Pentium processor

and continuing through mid 2003 with the Intel Pentium IV processor, clock

frequency doubled every 18 months to 2 years. This was a driving force for

increasing performance of microprocessors during this timeframe. However, due to

increased dynamic power dissipation and design complexity, this trend tapered with

maximum clock frequencies around 4GHz [1].

Since sequential algorithms use only one processor (core), makes need of parallel

algorithms on the increase. Especially, some algorithms need more processing power

that cannot be satisfied using single processor. Considering that, hardware trends are

making multiple core processors instead of speeding up a single core, algorithms

making intensive calculations will not be satisfied with sequential algorithms.

In parallel computing, a program is split up into parts that run simultaneously on

multiple computers communicating over a network. Distributed computing is a form

of parallel computing, but parallel computing is most commonly used to describe

program parts running simultaneously on multiple processors in the same computer.

Both types of processing require dividing a program into parts that can run

simultaneously, but distributed programs often must deal with heterogeneous

environments, network links of varying latencies. There are different types of

distributed computer architectures based on communication, memory and

computation distribution. In this thesis, parallel architectures; cluster computing and

symmetric multiprocessing (SMP) architectures has been studied.

Parallel algorithms are designed to run on computer hardware constructed from

interconnected processors. Parallel algorithms are used in various application areas,

such as scientific computing.

2

Parallel algorithms are typically executed concurrently, with separate parts of the

algorithm being run simultaneously on independent processors, and having limited

information about what the other parts of the algorithm are doing. One of the major

challenges in developing and implementing parallel algorithms is successfully

coordinating the behavior of the independent parts of the algorithm. The choice of an

appropriate parallel algorithm to solve a given problem depends on both the

characteristics of the problem, and characteristics of the system, the kind of inter-

process communication that can be performed, and the level of timing

synchronization between separate processes [2].

Performance analysis tools used for parallel algorithms are different from sequential

algorithm performance analysis tools. Data gathered from distinct nodes must be

merged together in the conscious of cooperative basis between nodes. On the other

hand, performance analysis tool must be compatible with the hardware, operating

system and software languages. This is why developers who are developing software

on different architectures and software languages are in demand of a highly portable

performance analysis tool.

Performance analysis tools generate output data, which is collected when program

runs. Generated output data can be interpreted by visualization tools. If data can be

transformed into different formats, different visualization tools can be used for

different purposes.

On the other hand, portability looks for common abstractions in performance

methods and how these can be supported by reusable and consistent techniques

across different computing environments (software and hardware). Lack of portable

performance evaluation environments forces users to adopt different techniques on

different systems, even for common performance analysis.

Given the diversity of performance problems, evaluation methods, and types of

events and metrics, the instrumentation and measurement mechanisms needed to

support performance observation must be flexible, to give maximum opportunity for

configuring performance experiments, and portable, to allow consistent cross-

platform performance problem solving [3].

3

1.1 Objectives of the Study

Parallel algorithms achieved more popularity by the increase of HPC (High

Performance Computing) systems and widespread use of algorithms for these

systems. Like sequential algorithms, parallel algorithms need to be analyzed for

performance. However, the increasing complexity of parallel systems is an issue for

a portable and robust performance analysis tool. TAU (Tuning and Analysis

Utilities) satisfies parallel systems requirements. In this thesis, TAU is used for

performance analysis.

Complex scientific calculations requires significant amount of computational power

that cannot be done or done on time with sequential algorithms. Parallel algorithms

are inevitable for some calculations. To achieve high performance computing

software developer must be aware of the computing architecture. Because of the

parallel algorithms characteristics, program performance may vary on different

architectures. Today’s computing centers have different types of parallel computing

servers. ITU National Center for High Performance Computing of Turkey (NCHPC)

has three super computers with different architecture. Differences of systems achieve

advantage to some parallel algorithms and disadvantage for some. These three

systems have two distinct architecture types; symmetric multiprocessing (SMP) and

cluster.

Purpose of this thesis is to compare two architectures by making performance

analysis of a parallel PDE algorithm. By this experiment, software developer can

choose either of the architectures by looking at the parallel algorithm characteristics

like communication and synchronization. By defining pros and cons of two parallel

architectures, developer can select best suitable system for algorithm. Although

knowing advantages of the parallel computing architecture, developers can write

algorithms that are more efficient.

Unfortunately, there is no golden recipe to speed up an algorithm. Hence, each

algorithms performance analysis must be done individually to define bottleneck and

find solutions for speeding up algorithm. Concordantly, this thesis is also a guideline

for analyzing performance of a parallel algorithm and finding bottlenecks. Steps of

performance analysis are common and described in details but finding solutions for

bottlenecks are algorithm specific.

4

Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism. This classification is broadly analogous to the

distance between basic computing nodes. In NCHPC, there are two different types of

parallel computers, a cluster and a symmetric multiprocessor. A cluster is a group of

loosely coupled computers that work together closely, so that in some respects they

can be regarded as a single computer. A symmetric multiprocessor (SMP) is a

computer system with multiple identical processors that share memory and connect

via a bus. Difference of two architectures makes them preferable on some

applications. A parallel PDE algorithms performance analysis is made and

performance effects of two systems are defined by the data gathered. This work will

help parallel algorithm developers to write software by knowing the performance

characteristics of computer architecture.

1.2 Background

Here are some studies comparing parallel programming models and for PDE

algorithms and making performance analysis on different architectures. In addition,

performance analysis tools are criticized for their competency. TAU is used in many

applications and architectures.

Scalability of performance analysis software is important as much as scaling of the

tested algorithm. TAU performance systems scalability in terascale systems has been

proven [4]. In conclusion, the need of a performance observation framework that

supports a wide range of instrumentation and measurement strategies for terascale

systems is pronounced.

The goals of a performance system in terascale is defined as:

• greater dynamics and flexibility in performance measurements,

• improved methods for performance mapping in multi-layered and mixed

model software, and

• more comprehensive application/system performance data integration

TAU supports MPI at library level instrumentation [4].

Programming models has been compared on four different architectures for solving

implicit finite-element method [5]. Four parallel architectures were used in this

5

study: (1) IBM SP with 184 4-way SMP nodes (Winterhawk I or WH I) each with

four 375 MHz Power 3 processors, (2) IBM SP with 144 8-way SMP nodes

(Nighthawk II or NH II) each with eight 375 MHz Power 3 processors, (3)

Compaq/Alpha SC server with 64 4-way SMP nodes each with four 667 MHz

CPU’s, (4) SGI Origin 2000 with 256 250 MHz processors. The performance

analyses that were performed in this context showed that the pure MPI performance

was usually better than the pure OpenMP performance for all architectures except for

the case of two processors in which case the performances were close. This

limitation in the pure OpenMP model also extends to the hybrid model, which

performs best only when two OpenMP threads are used.

Also another work on SGI Origin 2000 with 300MHz R12000 showed that some

algorithms scale better on pure MPI implementation and some on OpenMP [6].

Especially if MPI implementation suffers from pure scaling due to poor load balance

or memory limitations due to the use of replicated data strategy, OpenMP strategy

may perform better [6].

In addition, iterative PDE solvers performance has been studied on elder

architectures. PDE algorithms performance analysis on Digital Alpha-Server 8400

with Alpha 21164 processor showed the inefficiency of programs [7]. Using red-

black decomposition made data level parallelization. Also, loop fusing was used for

instruction level parallelism and to enable re-use of cache. When two or four

iterations are fused together this two methods increased efficiency of the algorithm.

Modern compilers can do these optimizations if algorithm supports optimization.

When selecting parallelization method and its implementation, computers network

connection must be considered. Implementations performance varies on different

network architectures. MVAPICH is an MPICH2 based MPI implementation for

Infiniband network infrastructure. MVAPICH uses Infiniband’s Remote Direct

Memory Access (RDMA) and low latency features. With optimizations such as

piggybacking, pipelining and zero-copy, MPICH2 is able to deliver good

performance to the application layer. For example, MVAPICH designs achieves 7.6

microsecond latency and 857MB/s peak bandwidth, which come quite close to the

raw performance of InfiniBand [8].

6

7

2. SELECTION OF PARALLELIZATION METHODS

2.1 Introduction

Algorithm development is a critical component of problem solving using computers.

A sequential algorithm is a sequence of basic steps for solving a given problem using

a serial computer. Similarly, a parallel algorithm is a recipe that tells us how to solve

a given problem using multiple processors. However, specifying a parallel algorithm

involves more than just specifying the steps. At the very least, a parallel algorithm

has the added dimension of concurrency and the algorithm designer must specify sets

of steps that can be executed simultaneously. In practice, specifying a nontrivial

parallel algorithm may include some or all of the following:

• Identifying portions of the work that can be performed concurrently.

• Mapping the concurrent pieces of work onto multiple processes running in

parallel.

• Distributing the input, output, and intermediate data associated with the

program.

• Managing accesses to data shared by multiple processors.

• Synchronizing the processors at various stages of the parallel program

execution.

Typically, there are several choices for each of the above steps, but usually,

relatively few combinations of choices lead to a parallel algorithm that yields

sufficient performance with the computational and storage resources employed to

solve the problem. Often, different choices yield the best performance on different

parallel architectures or under different parallel programming paradigms [9].

Below Figure 2.1 shows basic four steps for parallelizing a problem. These steps are

explained individually.

8

Figure 2.1 : Steps for parallelizing a problem [9]

Dividing a computation into smaller computations and assigning them to different

processors for parallel execution are the two key steps in the design of parallel

algorithms. The process of dividing a computation into smaller parts to be executed

in parallel is called decomposition. The main computation is divided into tasks,

which are programmer-defined units of computation. Simultaneous execution of

multiple tasks is the key to reducing the time required to solve the entire problem.

The number and size of tasks into which a problem is decomposed determines the

granularity of the decomposition. Decomposition into a large number of small tasks

is called fine-grained and decomposition into a small number of large tasks is called

coarse-grained [9].

The tasks run on physical processors. A process uses the code and data to produce

the output of that task within a finite amount of time after the task is activated by the

parallel program. The mechanism by which tasks are assigned to processes for

execution is called assignment.

The task-dependency and task-interaction graphs that result from a choice of

decomposition play an important role in the selection of a good assignment for a

parallel algorithm. A good assignment should seek to maximize the use of

concurrency by assigning independent tasks onto different processes. Assignment

stage is important for balancing workload and reducing communication between

processes.

P 0

T asks Processes Processors

P 1

P 2 P 3

p 0 p 1

p 2 p 3

p 0 p 1

p 2 p 3

Partitioning

Sequential Parallel
Program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

computation

9

During computation, a process may synchronize or communicate with other

processes, if needed. In order to obtain any speedup over a sequential

implementation, a parallel program must have several processes active

simultaneously, working on different tasks. Designing this communication and

synchronization structure is called orchestration. Reducing the cost of

communication, and preserving locality of data is the important goals of this stage.

Mapping is the process of mapping processes into processors that we have. There are

situations where mapping is done by Operating System (centralized multiprocessor),

and there are situations where we manually do the mapping (distributed memory

system). Maximizing processors utilization and minimizing interprocessor

communication are the main goals of this stage.

2.2 Parallelization Methods

Parallel programming model is a set of software technologies to express parallel

algorithms and match applications with the underlying parallel systems. A

programming model must allow the programmer to balance the competing goals of

productivity and implementation efficiency.

Parallel models are implemented in several ways: as libraries invoked from

traditional sequential languages, as language extensions, or complete new execution

models.

It is typically concerned with either the implicit or explicit specification of the

following program properties:

• The computational tasks – How is the application divided into parallel tasks?

• Mapping computational tasks to processing elements – The balance of

computation determines how well utilized the processing elements are.

• Distribution of data to memory elements – Locating data to smaller, closer

memories increases the performance of the implementation.

• The mapping of communication to the inter-connection network –

interconnect bottlenecks can be avoided by changing the communication of

the application.

10

• Inter-task synchronization – The style and mechanisms of synchronizations

can influence not only performance, but also functionality.

There are several different forms of parallel computing:

• bit-level

• instruction level

• data parallelism

• task parallelism

Bit-level parallelism is a form of parallel computing based on increasing processor

word size. From the advent of very-large-scale integration (VLSI) computer chip

fabrication technology in the 1970s until about 1986, advancements in computer

architecture were done by increasing bit-level parallelism [10].

A computer program is, in essence, a stream of instructions executed by a processor.

These instructions can be re-ordered and combined into groups, which are then

executed in parallel without changing the result of the program. This is known as

instruction-level parallelism [11].

Data parallelism is parallelism inherent in program loops, which focuses on

distributing the data across different computing nodes to be processed in parallel.

Task parallelism is the characteristic of a parallel program that "entirely different

calculations can be performed on either the same or different sets of data" [11]. This

contrasts with data parallelism, where the same calculation is performed on the same

or different sets of data.

There are several parallel programming models in common use:

• Shared Memory

• Threads

• Message Passing

• Data Parallel

• Hybrid

Shared Memory Model: In the shared-memory programming model, tasks share a

common address space, which they read and write asynchronously.

11

Various mechanisms such as locks / semaphores may be used to control access to the

shared memory. An advantage of this model from the programmer's point of view is

that the notion of data "ownership" is lacking, so there is no need to specify

explicitly the communication of data between tasks. Program development can often

be simplified.

An important disadvantage in terms of performance is that it becomes more difficult

to understand and manage data locality. Keeping data local to the processor that

works on it conserves memory accesses, cache refreshes and bus traffic that occur

when multiple processors use the same data.

Unfortunately, controlling data locality is hard to understand and beyond the control

of the average user.

Threads Model: In the threads model of parallel programming, a single process can

have multiple, concurrent execution paths. Perhaps the simplest analogy that can be

used to describe threads is the concept of a single program that includes a number of

subroutines:

The main program is scheduled to run by the native operating system. Main program

performs some serial work, and then creates a number of tasks (threads) that can be

scheduled and run by the operating system concurrently. Each thread has local data,

but also, shares the entire resources of main program. This saves the overhead

associated with replicating a program's resources for each thread. Each thread also

benefits from a global memory view because it shares the memory space of main

program.

Threads communicate with each other through global memory (updating address

locations). This requires synchronization constructs to insure that more than one

thread is not updating the same global address at any time.

Threads can come and go, but main program remains present to provide the

necessary shared resources until the application has completed.

Threads are commonly associated with shared memory architectures and operating

systems. OpenMP is an implementation of threaded parallel programming model.

Message Passing Model: In the message-passing model a set of tasks use their own

local memory during computation. Multiple tasks can reside on the same physical

12

machine as well across an arbitrary number of machines. These tasks exchange data

through communications by sending and receiving messages. Data transfer usually

requires cooperative operations to be performed by each process. For example, a

send operation must have a matching receive operation. Message Passing Interface

(MPI) is an implementation of message passing model.

Data Parallel Model: In the data parallel model most of the parallel work focuses on

performing operations on a data set. The data set is typically organized into a

common structure, such as an array or cube. A set of tasks work collectively on the

same data structure, however, each task works on a different partition of the same

data structure. Tasks perform the same operation on their partition of work. On

shared memory architectures, all tasks may have access to the data structure through

global memory. On distributed memory architectures, the data structure is split up

and resides as "chunks" in the local memory of each task.

Hybrid Model: Hybrid model is the collection of different parallel models. By

combining two or more parallel models, parallelization of the program can be

increased. This technique also helps to increase the parallel part of the algorithm.

2.2.1 Message Passing Interface (MPI)

MPI is a language-independent communications protocol used to program parallel

computers. Both point-to-point and collective communications are supported. MPI is

a message-passing application programmer interface, together with protocol and

semantic specifications for how its features must behave in any implementation.

MPI's goals are high performance, scalability, and portability. MPI remains the

dominant model used in high-performance computing today [12].

Most MPI implementations consist of a specific set of routines (i.e., an API) callable

from FORTRAN, C, or C++ and from any language capable of interfacing with such

routine libraries. The advantages of MPI over older message passing libraries are

portability (because MPI has been implemented for almost every distributed memory

architecture) and speed (because each implementation is in principle optimized for

the hardware on which it runs) [13].

13

The MPI interface is meant to provide essential virtual topology, synchronization,

and communication functionality between a set of processes (that have been mapped

to nodes/servers/computer instances) in a language-independent way, with language-

specific syntax (bindings), plus a few features that are language-specific. MPI

programs always work with processes, but programmers commonly refer to the

processes as processors. Typically, for maximum performance, each CPU (or core in

a multicore machine) will be assigned just a single process. This assignment happens

at runtime through the agent that starts the MPI program, normally called mpirun or

mpiexec.

The MPI library functions include, but are not limited to, point-to-point rendezvous-

type send/receive operations. MPI supports a Cartesian or graph-like logical process

topology for exchanging data between process pairs (send/receive operations). MPI

combines partial results of computations (gathering and reduction operations),

synchronizes nodes (barrier operation) as well as obtaining network-related

information such as the number of processes in the computing session. Point-to-point

operations come in synchronous, asynchronous, buffered, and ready forms, to allow

both relatively stronger and weaker semantics for the synchronization aspects of a

rendezvous-send.

2.2.2 OpenMP

The OpenMP (Open Multi-Processing) is an application programming interface

(API) that supports multi-platform shared memory multiprocessing programming in

C, C++ and FORTRAN on many architectures, including UNIX and Microsoft

Windows platforms. It consists of a set of compiler directives, library routines, and

environment variables that influence run-time behavior.

Jointly defined by a group of major computer hardware and software vendors,

OpenMP is a portable, scalable model that gives programmers a simple and flexible

interface for developing parallel applications for platforms ranging from the desktop

to the supercomputer.

An application built with the hybrid model of parallel programming can run on a

computer cluster using both OpenMP and MPI.

14

OpenMP is an implementation of multithreading, a method of parallelization

whereby the master "thread" (a series of instructions executed consecutively) "forks"

a specified number of slave "threads" and a task is divided among them. The threads

then run concurrently, with the runtime environment allocating threads to different

processors.

Figure 2.2 : OpenMP Thread Model [9]

By default, each thread executes the parallelized section of code independently.

"Work-sharing constructs" can be used to divide a task among the threads so that

each thread executes its allocated part of the code. Both Task parallelism and Data

parallelism can be achieved using OpenMP in this way.

The runtime environment allocates threads to processors depending on usage,

machine load and other factors. The number of threads can be assigned by the

runtime environment based on environment variables or in code using functions. The

OpenMP functions are included in a header file labeled "omp.h" in C/C++.

Getting N times less wall clock execution time (or N times speedup) when running a

program parallelized using OpenMP on an N processor platform, is seldom due to

the other limitations. A large portion of the program may not be parallelized by

OpenMP, which means that the theoretical upper limit of speedup is according to

Amdahl's law [14]. One other limitation is; N processors in an SMP may have N

times the computation power, but the memory bandwidth usually does not scale up N

times. In addition, many other common problems affecting the final speedup in

parallel computing also apply to OpenMP, like load balancing and synchronization

overhead.

15

2.2.3 Mixed Programming (MPI+OpenMP)

We can mix MPI and OpenMP if architecture has SMP nodes connected with a

network. Most of the clusters have nodes connected to each other via communication

network. However, inside nodes there are multiple processing units (cores). In

NCHPC, cluster nodes have 4 or 8 cores. Parallelizing algorithm using OpenMP

inside nodes and using MPI for inter node connection can be advantageous.

Multiple levels of parallelism can be achieved by combining message passing and

OpenMP parallelization. Which programming paradigm is the best will depend on

the nature of the given problem, the hardware components of the cluster, and the

network.

Hybrid programming avoids the extra communication overhead with MPI within

node. However, OpenMP has thread creation overhead, and explicit synchronization

is required.

16

17

3. PARALLEL COMPUTER ARCHITECTURES

Parallel computers can be roughly classified according to the level at which the

hardware supports parallelism. This classification is broadly analogous to the

distance between basic computing nodes.

3.1 Flynn’s Taxonomy

There are different ways to classify parallel computers. One of the more widely used

classifications is called Flynn’s taxonomy. Flynn's taxonomy is a classification of

computer architectures, proposed by Michael J. Flynn in 1966 [15]. Flynn's

taxonomy distinguishes multi-processor computer architectures according to how

they can be classified along the two independent dimensions of Instruction and Data.

Each of these dimensions can have only one of two possible states: Single or

Multiple.

S I S D

Single Instruction, Single Data

S I M D

Single Instruction, Multiple Data

M I S D

Multiple Instruction, Single Data

M I M D

Multiple Instruction, Multiple Data

Figure 3.1 : Flynn's taxonomy

The four classifications defined by Flynn are based upon the number of concurrent

instruction and data streams available in the architecture:

Single Instruction, Single Data stream (SISD): A sequential computer, which

exploits no parallelism in either the instruction or data streams. This corresponds to

the von Neumann architecture. Examples of SISD architecture are the traditional

uniprocessor machines like a PC or old mainframes.

18

Figure 3.2 : SISD Model

Single Instruction, Multiple Data streams (SIMD): A computer, which exploits

multiple data streams against a single instruction stream to perform operations,

which may be naturally parallelized. SIMD (Single Instruction, Multiple Data;

colloquially, "vector instructions") is a technique employed to achieve data level

parallelism. Each processing unit can operate on a different data element, thus SIMD

suits for specialized problems characterized by a high degree of regularity, such as

graphics/image processing. Since the release of MMX, all the desktop CPU

manufacturers have released chips with SIMD instructions (MMX, SSE, 3DNow!).

As SIMD on the desktop becomes both more common and more technically

advanced, the number of cases where it can be used has increased dramatically [16].

Figure 3.3 : SIMD Model

19

Multiple Instructions, Single Data stream (MISD): Multiple instructions operate

on a single data stream. Few actual examples of this class of parallel computer have

ever existed.

Figure 3.4 : MISD Model

Multiple Instructions, Multiple Data streams (MIMD): Multiple autonomous

processors simultaneously executing different instructions on different data. Parallel

systems are generally recognized to be MIMD architectures; either exploiting a

single shared memory space or a distributed memory space. Machines using MIMD

have a number of processors that function asynchronously and independently. At any

time, different processors may be executing different instructions on different pieces

of data.

Figure 3.5 : MIMD Model

20

MIMD computers support higher-level parallelism (subprogram and task levels) that

can be exploited by “divide and conquer” algorithms organized as largely

independent subcalculations (for example, searching and sorting) [17].

3.2 Parallel Computer Memory and Communication Architectures

Main memory in a parallel computer is either shared memory (shared between all

processing elements in a single address space), or distributed memory (in which each

processing element has its own local address space) [18]. Distributed memory refers

to the fact that the memory is logically distributed, but often implies that it is

physically distributed as well. Distributed shared memory is a combination of the

two approaches, where the processing element has its own local memory and access

to the memory on non-local processors. Accesses to local memory are typically faster

than accesses to non-local memory.

Computer systems have caches which are small, fast memories located close to the

processor which store temporary copies of memory values. Parallel computer

systems have difficulties with caches that may store the same value in more than one

location, with the possibility of incorrect program execution. These computers

require a cache coherency system, which keeps track of cached values and

strategically purges them, thus ensuring correct program execution. Designing large,

high-performance cache coherence systems is a very difficult problem in computer

architecture. As a result, shared-memory computer architectures do not scale as well

as distributed memory systems do [18].

3.2.1 Shared Memory

Shared memory parallel computers vary widely, but generally have in common the

ability for all processors to access all memory as global address space. A shared

memory system is relatively easy to program since all processors share a single view

of data and the communication between processors can be as fast as memory

accesses to a same location. In shared memory architecture, multiple processors can

operate independently but share the same memory resources. The issue with shared

memory systems is that many CPUs need fast access to memory and will likely

cache memory, which has two complications:

21

• CPU-to-memory connection becomes a bottleneck. Shared memory

computers cannot scale very well.

• Cache coherence: Whenever one cache is updated with information that may

be used by other processors, the change needs to be reflected to the other

processors; otherwise, the different processors will be working with

incoherent data. Coherence protocols can provide extremely high-

performance access to shared information between multiple processors. On

the other hand, they can sometimes become overloaded and become a

bottleneck to performance [19].

Computer architectures in which each element of main memory can be accessed with

equal latency and bandwidth are known as Uniform Memory Access (UMA)

systems. Typically, that can be achieved only by a shared memory system, in which

the memory is not physically distributed. A system that does not have this property is

known as a Non-Uniform Memory Access (NUMA) architecture.

Figure 3.6 : UMA and NUMA Architectures [37]

Main advantages of shared memory system are user-friendly programming

perspective to memory and data sharing between tasks is both fast and uniform due

to the proximity of memory to CPUs. Primary disadvantage is the lack of scalability

between memory and CPUs. Adding more CPUs can geometrically increases traffic

on the shared memory-CPU path, and for cache coherent systems, geometrically

increase traffic associated with cache/memory management.

In NCHPC a ccNUMA symmetric multiprocessing (SMP) computer, HP Integrity

Superdome, is used for computational calculations. HP Integrity Superdome has

cache coherency to imply this property its memory architecture is referred as

ccNUMA, which means that processors have shorter access times for their cell's

memory but longer access times for other cell's memories, and data items are allowed

22

to be replicated across individual cache memories but are kept coherent with one

another by cache coherence hardware mechanisms [20].

3.2.2 Distributed Memory

Distributed memory refers to a multiple-processor computer system in which each

processor has its own private memory. Computational tasks can only operate on local

data, and if remote data is required, the computational task must communicate with

one or more remote processors.

Figure 3.7 : Distributed Memory Architecture [37]

In a distributed memory system, there is typically a processor, a memory, and some

form of interconnection that allows programs on each processor to interact with each

other. The interconnect can be organized with point-to-point links or separate

hardware can provide a switching network.

Main advantage of distributed memory system is its scalability. Increase the number

of processors and the size of memory increases proportionately. In addition, each

processor can rapidly access its own memory without interference and without the

overhead incurred with trying to maintain cache coherency. Main disadvantage is

low communication speed and higher latency (compared with shared memory) which

causes more wait time at synchronization points.

3.2.3 Hybrid Distributed-Shared Memory

Hybrid memory is a mixture of distributed and shared memory systems. In hybrid

memory, each compute node has its own address space, which is used by multiple

processors. These processors have their own caches and implement cache coherency

protocol. Nodes have fewer processors and more cost effective compared to a shared

23

memory system. Nodes have multiple processors, a global memory and an

interconnection that allows nodes to communicate with each other.

Figure 3.8 : Hybrid Memory Architecture [37]

NCHPC also has a HP DL360 G5 Cluster, which has hybrid memory architecture.

Cluster has 192 nodes and 1004 cores.

3.3 CPU Cache Memory Hierarchy

Improvements in technology do not change the fact that microprocessors are still

much faster than main memory. Memory access time is increasingly the bottleneck in

overall application performance. As a result, an application might spend a

considerable amount of time waiting for data [21]. To overcome this problem CPU

caches are used. A CPU cache is used by the central processing unit of a computer to

reduce the average time to access memory. The cache is a smaller, faster memory,

which stores copies of the data from the most frequently used main memory

locations. As long as most memory accesses are cached memory locations, the

average latency of memory accesses will be closer to the cache latency than to the

latency of main memory. When the processor needs to read from or write to a

location in main memory, it first checks whether a copy of that data is in the cache. If

so, the processor immediately reads from or writes to the cache, which is much faster

than reading from or writing to main memory. The application can take advantage of

this enhancement by fetching data from the cache instead of main memory. Of

course, there is still traffic between memory and the cache, but it is minimal.

Figure 3.9 shows general cache memory hierarchy model.

24

Figure 3.9 : General Memory Hierarchy [38]

In a modern microprocessor, several caches are found. They not only vary in size and

functionality, but also their internal organization is typically different across the

caches. Common caches are instruction, data, and Translation Lookaside Buffer

(TLB) cache.

The instruction cache is used to store instructions. This helps to reduce the cost of

going to memory to fetch instructions.

A data cache is a fast buffer that contains the application data. Before the processor

can operate on the data, it must be loaded from memory into the data cache. The

element needed is then loaded from the cache line into a register and the instruction

using this value can operate on it. The resultant value of the instruction is also stored

in a register. The register contents are then stored back into the data cache.

Translating a virtual page address to a valid physical address is rather costly. The

TLB is a cache to store these translated addresses.

Each entry in the TLB maps to an entire virtual memory page. The CPU can only

operate on data and instructions that are mapped into the TLB. If this mapping is not

present, the system has to re-create it, which is a relatively costly operation. The

larger a page, the more effective capacity the TLB has. If an application does not

make good use of the TLB (for example, random memory access) increasing the size

of the page can be beneficial for performance, allowing for a bigger part of the

address space to be mapped into the TLB.

25

Figure 3.10 : Generic System Architecture [38]

Figure 3.10 shows unified cache at level two. Both instructions and data are stored in

this type of cache. The cache at the highest level is often unified and external to the

microprocessor. The cache architecture shown in figure 3.10 is rather generic. There

are other types of caches in a modern microprocessor. In NCHPC two types of

processors are used. HP Integrity Superdome is a RISC-based ccNUMA SMP system

and uses Intel Itanium 2 processors. Another HP cluster uses Intel XEON processor.

Below is the block diagram of Intel Itanium processor.

Figure 3.11 : Block diagram of an Intel Itanium 2 core [22]

As can be seen from Figure 3.11 there are four floating-point units capable of

performing Fused Multiply Accumulate (FMAC) operations. However, two of these

26

work at the full 82-bit precision, which is the internal standard on Itanium

processors, while the other two can only be used for 32-bit precision operations.

When working in the customary 64-bit precision the Itanium has a theoretical peak

performance of 6 Gflop/s at a clock frequency of 1.5 GHz [22]. Using 32-bit floating

arithmetic, the peak is doubled. In addition, four MMX units are present to

accommodate instructions for multi-media operations, an inheritance from the Intel

Pentium processor family. For compatibility with this Pentium family there is a

special IA-32 decode and control unit.

Because now two cores are present on a chip, some improvements had to be added to

let them cooperate without problems. The synchronizers in the core feed their

information about read and write requests and cache line validity to the arbiter. The

arbiter filters out the unnecessary requests and combines information from both cores

before handing the requests over to the system interface.

Intel Xeon processors play a major role in the cluster community as the majority of

compute nodes in Beowulf clusters are of this type.

In Figure 3.12, a block diagram of the processor is shown with one of the cores in

some detail. Note that the two cores share one second-level cache while the L1

caches and TLBs are local to each of the cores.

Figure 3.12 : Block diagram of the Intel Xeon processor [22]

27

The floating-point units, depicted in Figure 3.12, contain also additional units that

execute the Streaming SIMD Extensions 2 and 3 (SSE2/3) instructions, a 144-

member instruction set, that is especially meant for vector-oriented operations like in

multimedia, and 3-D visualization applications but which will also be of advantage

for regular vector operations as occur in dense linear algebra. The length of the

operands for these units is 128 bits. The throughput of these SIMD units has been

increased by a factor of two in the core architecture, which greatly increase the

performance of the appropriate instructions. The Intel compilers have the ability to

address the SSE2/3 units. This makes it in principle possible to achieve a 2-3 times

higher floating-point performance [22].

3.4 Network Interfaces

Cluster computers are connected through network devices. There are several types of

network devices. Each device has different speed and latency. Speeds of these

devices are listed in Table 3.1 [23].

Table 3.1 : Local Area Network Device Bandwidths

Device Speed (bit/s) Speed (byte/s)
Token Ring IEEE 802.5t 100 Mbit/s 12.5 MB/s

Fast Ethernet (100base-X) 100 Mbit/s 12.5 MB/s

FDDI 100 Mbit/s 12.5 MB/s

FireWire (IEEE 1394) 400 393.216 Mbit/s 49.152 MB/s

HIPPI 800 Mbit/s 100 MB/s

Token Ring IEEE 802.5v 1,000 Mbit/s 125 MB/s

Gigabit Ethernet (1000base-X) 1,000 Mbit/s 125 MB/s

Myrinet 2000 2,000 Mbit/s 250 MB/s

Infiniband SDR 1X 2,000 Mbit/s 250 MB/s

Quadrics QsNetI 3,600 Mbit/s 450 MB/s

Infiniband DDR 1X 4,000 Mbit/s 500 MB/s

Infiniband QDR 1X 8,000 Mbit/s 1,000 MB/s

Infiniband SDR 4X 8,000 Mbit/s 1,000 MB/s

Quadrics QsNetII 8,000 Mbit/s 1,000 MB/s

10 Gigabit Ethernet (10Gbase-X) 10,000 Mbit/s 1,250 MB/s

Myri 10G 10,000 Mbit/s 1,250 MB/s

Infiniband DDR 4X 16,000 Mbit/s 2,000 MB/s

Scalable Coherent Interface (SCI) Dual
Channel SCI, x8 PCIe

20,000 Mbit/s 2,500 MB/s

28

Infiniband SDR 12X 24,000 Mbit/s 3,000 MB/s

Infiniband QDR 4X 32,000 Mbit/s 4,000 MB/s

Infiniband DDR 12X 48,000 Mbit/s 6,000 MB/s

Infiniband QDR 12X 96,000 Mbit/s 12,000 MB/s

100 Gigabit Ethernet (100Gbase-X) 100,000 Mbit/s 12,500 MB/s

NCHPC cluster network interface is Infiniband DDR 4X. InfiniBand is a switched

fabric communications link primarily used in high-performance computing. Its

features include quality of service and failover, and it is designed to be scalable. The

InfiniBand architecture specification defines a connection between processor nodes

and high performance I/O nodes such as storage devices. It is a superset of the

Virtual Interface Architecture.

Like Fibre Channel, PCI Express, Serial ATA, and many other modern interconnects,

InfiniBand is a point-to-point bidirectional serial link intended for the connection of

processors with high speed peripherals such as disks. It supports several signaling

rates and, as with PCI Express, links can be bonded together for additional

bandwidth.

Infiniband architecture (IBA) defines a System Area Network (SAN) for connecting

multiple independent processor platforms (i.e., host processor nodes), I/O platforms,

and I/O devices (see Figure 6). The IBA SAN is a communications and management

infrastructure supporting both I/O and interprocessor communications (IPC) for one

or more computer systems. An IBA system can range from a small server with one

processor and a few I/O devices to a massively parallel supercomputer installation

with hundreds of processors and thousands of I/O devices. Furthermore, the internet

protocol (IP) friendly nature of IBA allows bridging to an internet, intranet, or

connection to remote computer systems. IP over InfiniBand (IPoIB) is implemented

for using IP communication on IBA [24].

IBA defines a switched communications fabric allowing many devices to

concurrently communicate with high bandwidth and low latency in a protected,

remotely managed environment. An end node can communicate over multiple IBA

ports and can utilize multiple paths through the IBA fabric. The multiplicity of IBA

ports and paths through the network are exploited for both fault tolerance and

increased data transfer bandwidth.

29

IBA hardware off-loads from the CPU much of the I/O communications operation.

This allows multiple concurrent communications without the traditional overhead

associated with communicating protocols. The IBA SAN provides its I/O and IPC

clients zero processor-copy data transfers, with no kernel involvement, and uses

hardware to provide highly reliable, fault tolerant communications [24].

The serial connection's signaling rate is 2.5 gigabit per second (Gbit/s) in each

direction per connection. InfiniBand supports double (DDR) and quad data (QDR)

speeds, for 5 Gbit/s or 10 Gbit/s respectively, at the same data-clock rate [24].

Links use 8B/10B encoding — every 10 bits sent carry 8bits of data — so that the

useful data transmission rate is four-fifths the raw rate. Thus single, double, and quad

data rates carry 2, 4, or 8 Gbit/s respectively [24].

Links can be aggregated in units of 4 or 12, called 4X or 12X. A quad-rate 12X link

therefore carries 120 Gbit/s raw, or 96 Gbit/s of useful data. Most systems today use

either a 4X 2.5 Gbit/s (SDR) or 5 Gbit/s (DDR) connection. Larger systems with 12x

links are typically used for cluster and supercomputer interconnects and for inter-

switch connections.

The single data rate switch chips have a latency of 200 nanoseconds, and DDR

switch chips have a latency of 140 nanoseconds. The end-to-end latency range is

from 1.07 microseconds MPI latency (Mellanox ConnectX HCAs) to 1.29

microseconds MPI latency (Qlogic InfiniPath HTX HCAs) to 2.6 microseconds

(Mellanox InfiniHost III HCAs). Various InfiniBand host channel adapters (HCA)

exist in the market today, each with different latency and bandwidth characteristics.

InfiniBand also provides RDMA capabilities for low CPU overhead. The latency for

RDMA operations is less than 1 microsecond (Mellanox ConnectX HCAs) [24].

InfiniBand uses a switched fabric topology, as opposed to a hierarchical switched

network like Ethernet. Like the channel model used in most mainframe computers,

all transmissions begin or end at a channel adapter. Each processor contains a host

channel adapter (HCA) and each peripheral has a target channel adapter (TCA).

These adapters can also exchange information for security or quality of service.

Data is transmitted in packets of up to 4 kB that are taken together to form a

message. A message can be:

30

• a direct memory access read from or, write to, a remote node (RDMA)

• a channel send or receive

• a transaction-based operation (that can be reversed)

• a multicast transmission.

• an atomic operation

Sockets Direct Protocol (SDP): The Sockets Direct Protocol (SDP) is a networking

protocol originally defined by the Software Working Group (SWG) of the InfiniBand

Trade Association. Originally designed for InfiniBand, SDP now has been redefined

as a transport agnostic protocol for Remote Direct Memory Access (RDMA) network

fabrics. SDP defines a standard wire protocol over an RDMA fabric to support

stream sockets (SOCK_STREAM) network. SDP utilizes various RDMA network

features for high-performance zero-copy data transfers. SDP is a pure wire-protocol

level specification and does not go into any socket API or implementation specifics.

The purpose of the Sockets Direct Protocol is to provide an RDMA accelerated

alternative to the TCP protocol on IP. The goal is to do this in a manner, which is

transparent to the application.

Today, Sockets Direct Protocol for the Linux operating system is part of the

OpenFabrics Enterprise Distribution (OFED), a collection of RDMA networking

protocols for the Linux operating system. OFED is managed by the OpenFabrics

Alliance. Many standard Linux distributions include the current OFED.

Sockets Direct Protocol only deals with stream sockets, and if installed in a system,

bypasses the OS resident TCP stack for stream connections between any endpoints

on the RDMA fabric. All other socket types (such as datagram, raw, packet etc.) are

supported by the Linux IP stack and operate over standard IP interfaces (i.e., IPoIB

on InfiniBand fabrics). The IP stack has no dependency on the SDP stack; however,

the SDP stack depends on IP drivers for local IP assignments and for IP address

resolution for endpoint identifications.

IP over IB: InfiniBand is an emerging standard intended as an interconnect for

processor and I/O systems and devices. IP is one type of traffic that could use this

interconnect. InfiniBand would benefit greatly from a standardized method of

handling IP traffic on IB fabrics. It is also important to be able to manage InfiniBand

31

devices in a common way. IPoIB enables advanced functionalities such as mapping

IP QOS into IB-specific.

Direct Access Provider Library (kDAPL/uDAPL): Direct Access Provider

Library is a transport-independent, platform-independent, high-performance API for

using the remote direct memory access (RDMA) capabilities of modern interconnect

technologies such as InfiniBand, the Virtual Interface Architecture, and iWARP.

The Kernel Direct Access Programming Library (kDAPL) defines a single set of

kernel-level APIs for all RDMA-capable Transports [25]. The User Direct Access

Programming Library (uDAPL) defines a single set of user-level APIs for all

RDMA-capable Transports. Both kDAPL and uDAPL mission are to define a

Transport-independent and Platform-standard set of APIs that exploits RDMA

capabilities, such as those present in IB, VI, and RDDP WG of IETF [26].

Latency and bandwidth are most used network performance parameters. These two

parameters affect MPI performance too. Latency is a dominant factor for network

performance on small sized messages and synchronization points. Bandwidth

becomes dominant on heavy data transfers. IBA’s low latency and high bandwidth

increases its performance. Thus, MPI implementations latency and bandwidth vary

and they cannot achieve theoretical values of IBA. MVAPICH2 (MPI over

InfiniBand and iWARP) is MPICH2 based MPI implementation for IBA.

MVAPICH2 designs achieves 7.6 microsecond latency and 857MB/s peak

bandwidth, which come quite close to the raw performance of InfiniBand [8].

MVAPICH is an MPICH2 based MPI implementation for Infiniband network

infrastructure. MVAPICH uses Infiniband’s Remote Direct Memory Access

(RDMA) and low latency features. With optimizations such as piggybacking,

pipelining and zero-copy, MPICH2 is able to deliver good performance to the

application layer. For example, MVAPICH designs achieves 7.6 microsecond

latency and 857MB/s peak bandwidth, which come quite close to the raw

performance of InfiniBand [8]. IBA’s high-speed infrastructure delivers high

bandwidth compared to other network architectures. InfiniBand can outperform other

interconnects if the application is bandwidth-bound [27].

The Superdome has a 2-level crossbar processor interconnection: one level within a

4-processor cell and another level by connecting the cells through the crossbar

32

backplane. Every cell connects to the backplane at a speed of 8 GB/s and the global

aggregate bandwidth for a fully configured system is therefore 64 GB/s.

Another parallel architecture used in this work is HP Integrity Superdome in

ccNUMA architecture SMP computer. HP Integrity Superdome has crossbar

connection between cells. Crossbar connection throughput per cell is 27.3 GB/s,

which is much higher than any network connection device [28].

The basic building block of the Superdome is the 4-processor cell. All data traffic

within a cell is controlled by the Cell Controller. It connects to the four local memory

subsystems at 16 GB/s, to the backplane crossbar at 8 GB/s, and to two ports, that

each serves two processors at 6.4 GB/s/port. As each processor houses two CPU

cores, the available bandwidth per CPU core is 1.6 GB/s [28].

33

4. PERFORMANCE ANALYSIS

Performance analysis is the investigation of a program's behavior using information

gathered as the program runs. The usual goal of performance analysis is to determine

which parts of a program to optimize for speed or memory usage.

A profiler is a performance analysis tool that measures the behavior of a program as

it runs, particularly the frequency and duration of function calls. The output is a

stream of recorded events (a trace) or a statistical summary of the events observed (a

profile). Profilers use a wide variety of techniques to collect data, including hardware

interrupts, code instrumentation, operating system hooks, and performance counters.

Performance analysis tools generates data while program runs, and data size is

related to code size and run time. To keep pace with the growing complexity of

large-scale parallel supercomputers, performance tools must handle effective

instrumentation of complex software and the correlation of runtime performance data

with system characteristics. In addition, workload characterization is an important

tool for understanding the the nature and performance of the workload submitted to a

parallel system.

In this thesis, TAU (Tuning and Analysis Utilities) is used for performance analysis.

TAU parallel performance system is the product of seventeen years of development

to create a robust, flexible, portable, and integrated framework and toolset for

performance instrumentation, measurement, analysis, and visualization of large-scale

parallel computer systems and applications. The success of the TAU project

represents the combined efforts of researchers at the University of Oregon and

colleagues at the Research Centre Juelich and Los Alamos National Laboratory. [3]

4.1 Performance Evaluation and Objectives

In general, the objective of performance analysis is to define and reduce the

consumption of sources. Performance analysis of a parallel algorithm is used to

determine which sections of an algorithm to optimize. Optimization is made either to

34

Instrumentation

Optimization

Presentation

Analysis

Measurement

increase speed or decrease communication time (or both). In this thesis, both

computation and communication time tried to be decreased.

This flow chart (Figure 4.1) is the general approach in performance evaluation [29].

Choosing the collection method of data (library level,
 manual)

 Collecting performance data from software

 Calculation of the measurement metrics, finding
 performance bottlenecks.

 Easily understandable presentation of the results

 Optimization to reduce performance bottlenecks

Figure 4.1 : Performance Evaluation

Most performance problems are unique. The metrics, workload, and evaluation

techniques used for one problem generally cannot be used for the next problem.

Nevertheless, there are steps common to all performance evaluation projects that

help you avoid the common mistakes. These steps are as follows [30].

State Goals and Define the System: The first step in any performance evaluation

project is to state the goals of the study and define what constitutes the system by

delineating system boundaries. Given the same set of hardware and software, the

definition of the system may vary depending upon the goals of the study. The goal is

to find bottlenecks and reduce wall clock time.

Select Metrics: The next step is to select criteria to compare the performance. These

criterias are called metrics. In general, the metrics are related to the speed, accuracy,

and availability of services. The performance of a network, for example, is measured

by the speed (throughput and delay), accuracy (error rate), and availability of the

packets sent. The performance of a processor is measured by the speed of (time taken

to execute) various instructions. Metrics used in this thesis are, time taken to execute

a part of program, speedup and network throughput.

35

List Parameters: The next step in performance projects is to make a list of all the

parameters that effect performance. The list can be divided into system parameters

and workload parameters. System parameters include both hardware and software

parameters. Workload parameters are characteristics of users’ requests. In this work

parameters were architecture, number of processers, data size and PDE error

tolerance.

Select Factors to Study: The list of parameters can be divided into two parts: those

that will be varied during the evaluation and those that will not. The parameters to be

varied are called factors and their values are called levels. In general, the list of

factors, and their possible levels, is larger than what the available resources will

allow. Otherwise, the list will keep growing until it becomes obvious that there are

not enough resources to study the problem. It is better to start with a short list of

factors and a small number of levels for each factor and to extend the list in the next

phase of the project if the resources permit. In this thesis, different number of

processors and data size used to show scalability.

Select Evaluation Technique: The three broad techniques for performance

evaluation are analytical modeling, simulation, and measuring a real system. The

selection of the right technique depends upon the time and resources available to

solve the problem and the desired level of accuracy. In this work, real system values

measures with TAU.

Select Workload: The workload consists of a list of service requests to the system.

Depending upon the evaluation technique chosen, the workload may be expressed in

different forms. For analytical modeling, the workload is usually expressed as a

probability of various requests. For simulation, one could use a trace of requests

measured on a real system. For measurement, the workload may consist of user

scripts to be executed on the systems. In PDE algorithms data size defines programs

workload. Various workloads used to show scalability.

Design Experiments: The goal is to determine the relative effect of various factors.

In most cases, this can be done with fractional factorial experimental designs. In the

second phase, the number of factors is reduced and the number of levels of those

factors that have significant impact is increased. Experiments are done by running

program and collecting information using TAU.

36

Analyze and Interpret Data: In comparing two experiments, it is necessary to take

into account the variability of the results. Simply comparing the means can lead to

inaccurate conclusions. It must be understood that the analysis only produces results

and not conclusions. The results provide the basis on which the analysts or decision

makers can draw conclusions. TAU has visualization tools for interpreting data.

Paraprof is used for profiling visualization and Jumpshot is used for trace

visualization.

Present Results: The final step of all performance projects is to communicate the

results to other members of the decision-making team. It is important that the results

be presented in a manner that is easily understood. This usually requires presenting

the results in graphic form and without statistical title.

4.2 Instrumentation

In order to observe performance, additional instructions or probes are typically

inserted into a program. This process is called instrumentation. As events execute,

they activate the probes, which perform measurements. Thus, instrumentation

exposes key characteristics of an execution. Instrumentation can be introduced in a

program at several levels of the program transformation process. Instrumentation

methods below are used in this thesis.

Selective Instrumentation: Selective instrumentation is based on definitions of

listed events to be included or excluded for measurement. TAU supports this feature

by using an instrumentation file. The idea is to record a list of performance events to

be included or excluded by the instrumentation in a file. The file is then used during

the instrumentation process to restrict the event set. The basic structure of the file is a

list of names separated into include and exclude lists. File names can be given to

restrict instrumentation focus. Exclusion is used to eliminate unwanted performance

events, such as high frequency, small routines that generate excessive measurement

overhead, and provide easy event configuration for customized performance

experiments. Selective instrumentation is used for defining calculation areas of

algorithm.

Preprocessor-Based Instrumentation: The source code of a program can be altered

by a preprocessor before it is compiled. This approach typically involves parsing the

37

source code to infer where instrumentation probes are to be inserted. As an example

of automatic instrumentation through the preprocessing built into a compiler, TAU’s

memory allocation/deallocation tracking package can be used to re-direct the

references to the C malloc/free calls. The preprocessor invokes TAU’s corresponding

memory wrapper calls with the added information about the line number and the file.

The atomic event interface can then track the size of memory allocated and

deallocated to help locate potential memory leaks. Preprocessor-based

instrumentation is also commonly used to insert performance measurement calls at

interval entry and exit points in the source code. To support automatic performance

instrumentation at the source level, the TAU project has developed the Program

Database Toolkit (PDT) [31]. The purpose of PDT, shown in Figure 4.2 is to parse

the application source code and locate the semantic constructs to be instrumented.

PDT is comprised of commercial-grade front-ends that emit an intermediate

language (IL) file, IL analyzers that walk the abstract syntax tree and generate a

subset of semantic entities in program database (PDB) ASCII text files, and a library

interface (DUCTAPE) to the PDB files that allows to write static analysis tools.

When the application is executed subsequently, performance data is generated. TAU

also supports OpenMP instrumentation using a preprocessor tool called Opari [32].

Opari inserts POMP [32] annotations and rewrites OpenMP directives in the source

code. TAU’s POMP library tracks the time spent in OpenMP routines based on each

region in the source code. To track the time spent in user-level routines, Opari

instrumentation can be combined with PDT based instrumentation as well. Opari is

used with TAU to measure OpenMP performance.

Figure 4.2 : Program Database Toolkit Diagram [3]

38

Wrapper Library-Based Instrumentation: A common technique to instrument

library routines is to substitute the standard library routine with an instrumented

version, which in turn calls the original routine. The problem is that you would like

to do this without having to develop a different library just to alter the calling

interface. MPI provides an interface [33] that allows a tool developer to intercept

MPI calls in a portable manner without requiring a vendor to supply proprietary

source code of the library and without requiring the application source code to be

modified by the user. This is achieved by providing hooks into the native library. The

advantage of this approach is that library level instrumentation can be implemented

by defining a wrapper interposition library layer that inserts instrumentation calls

before and after calls to the native routines. TAU has a TAU MPI wrapper library

that intercepts calls to the native library by defining routines with the same name,

such as MPI_Send. These routines then call the native library routines with the name

shifted routines, such as PMPI_Send. Wrapped around the call, before and after, is

TAU performance instrumentation. An added advantage of providing such a wrapper

interface is that the profiling wrapper library has access to not only the routine

transitions, but also to the arguments passed to the native library. This allows TAU to

track the size of messages, identify message tags, or invoke other native library

routines. This type of instrumentation is used for MPI functions in this thesis.

4.3 Measurement

The instrumentation layer is responsible for defining the performance events for an

experiment, establishing relationships between events, and managing those events in

the context of the parallel computing model being used. Measurement is done

through the probes inserted in instrumentation.

Figure 4.3 shows TAU instrumentation and measurement architecture.

39

Figure 4.3 : Architecture of TAU (Instrumentation and Measurement) [3]

4.3.1 Profile of an Algorithm

Profiling characterizes the behavior of an application in terms of aggregate

performance metrics. Profiles are typically represented as a list of various metrics

(such as wall-clock time) and associated statistics for all performance events in the

program. There are different statistics kept for interval events (such as routines or

statements in the program) versus atomic events. For interval events, TAU profile

measurements compute exclusive and inclusive metrics spent in each routine.

The TAU profiling system supports several profiling variants [3]. The most basic and

standard type of profiling is called flat profiling. If TAU is being used for flat

profiling, performance measurements are kept for interval events only. For instance,

flat profiles will report the exclusive performance (e.g. time) for a routine, say A, as

the amount of time spent executing in A exclusively. Any time spent in routines

called by A will be represented in A’s profile as inclusive time, but it will not be

differentiated with respect to the individual routines A called. Flat profiles also keep

40

information on the number of times A was called and the number of routines (i.e.

events) called by A. Again, TAU will keep a flat profile for every node/

/context/thread of the program’s execution.

Depth of flat profiling is one hence TAU can be configured for deeper profiling.

Depth of profiling can be increased.

4.3.2 Trace of an Algorithm

While profiling is used to get aggregate summaries of metrics in a compact form, it

cannot highlight the time varying aspect of the execution. Event tracing usually

results in a log of the events that characterize the execution. Each event in the log is

an ordered row typically containing a time stamp, a location (e.g. node, thread), an

identifier that specifies the type of event (e.g. routine transition, user-defined event,

message communication, etc.) and event-specific information. With tracing enabled,

every node/context/thread will generate a trace for instrumented events. TAU will

write traces in its modern trace format as well as in VTF3 format. Support for a

counter value to be included in event records is fully implemented. In addition,

certain standard events are known by TAU’s tracing system, such as multi-threading

operations and message communication [3].

TAU also supports runtime trace reading and analysis, it is important to understand

what takes place when TAU records performance events in traces. Also in case of a

program crash traces generated so far will remain, this can help the user to find point

of crash.

4.4 Analysis

Analysis is interpretation of collected performance data. Several tools can be used to

visualize performance data. TAU gives the ability to track performance data in

widely diverse environments, and thus provides a wealth of information to the user.

The usefulness of this information, however, is highly dependent on the ability of

analysis toolsets to manage and present the information. As the size and complexity

of the performance information increases, the challenge of performance analysis and

visualization becomes more difficult. TAU supports different visualization tools. In

this thesis, ParaProf is used for profile analysis and Jumpshot is used for trace data.

Below Figure 4.4 shows analysis architecture of TAU [3].

41

Figure 4.4 : Architecture of TAU (Analysis and Visualization) [3]

Both ParaProf and Jumpshot are capable of handling large size of performance data.

TAU supports different profile and trace file formats with file converters.

42

43

5. COMPUTATION OPTIMIZATIONS

Parallel algorithms, used in High Performance Computing (HPC) are making

intensive floating-point calculations that take long time. For this reason, any

optimization in parallel algorithm saves significant time even if the percentage of

optimization is low. Computational optimizations are algorithm specific; algorithms

are modified to eliminate branches and used alternative instructions, which take less

computational time.

5.1 Objectives

One might reduce the amount of time that a program takes to perform some task at

the price of making it consume more memory. In an application where memory

space is at a premium, one might deliberately choose a slower algorithm in order to

use less memory. Often there is no “one size fits all” design which works well in all

cases, so engineers make trade-offs to optimize the attributes of greatest interest.

Additionally, the effort required to make a piece of software completely optimal is

almost always not needed when more than significant speedup left; so the process of

optimization may be halted before a completely optimal solution has been reached.

Fortunately, it is often the case that the greatest improvements come early in the

process.

In this thesis, overall wall clock time of the PDE algorithm is tried to be reduced.

Performance evaluation starts with finding most time consuming the part of the

algorithm. After improving that part, another section of code is selected for

performance improvement.

5.2 Optimization Levels

Techniques used in optimization can be broken up among various levels, which can

affect anything from a single statement to the entire program. In addition to scoped

optimizations, there are two further general categories of optimization:

44

Programming language-independent vs. language-dependent: Most high-level

languages share common programming constructs and abstractions; decision (if,

switch, case), looping (for, while, repeat.. until, do.. while), encapsulation (structures,

objects). Thus, similar optimization techniques can be used across languages.

However, certain language features make some kinds of optimizations difficult. For

instance, 2D matrix data order in C is row wise but in FORTRAN it is column wise.

This is important if matrix data is processed in nested two loops; loops order changes

cache performance. Software developer must be aware of the programming

languages characteristics.

Machine independent vs. machine dependent: Many optimizations that operate on

abstract programming concepts (loops, objects, structures) are independent of the

machine targeted by the compiler, but many of the most effective optimizations are

those that best exploit special features of the target platform. RISC and CISC

processors have different instruction sets. Software must be compiled for its

processor architecture. Easy way of machine dependent optimization is leaving it to

the compiler and forcing compiler to use machine dependent optimizations.

For instance, in the case of compile-level optimization, platform independent

techniques are generic techniques such as loop unrolling, reduction in function calls,

memory efficient routines, reduction in conditions, etc., that impact most CPU

architectures in a similar way. Generally, these serve to reduce the total instruction

path length required to complete the program and/or reduce total memory usage

during the process. On the other side, platform dependent techniques involve

instruction scheduling, instruction level parallelism, data level parallelism, cache

optimization techniques, i.e. parameters that differ among various platforms; the

optimal instruction scheduling might be different even on different processors of the

same architecture.

In this thesis, platform dependent optimizations are based on compiler level using

optimization level O3. Otherwise, CPU dependent optimization must be done using

assembler, which is not available in IA64 architecture compilers. Compilers for

specific architectures like IA64 are capable of doing CPU dependent optimization.

Compilers analyses code and decides optimization. Compilers need simple, clear and

data independent algorithms for better optimization. In this thesis compiler cannot

45

optimize code version 1 but after changing loop properties compiler is able to make

optimization.

Optimization can occur at a number of 'levels'. These levels are described below.

5.2.1 Design level

At the highest level, the design may be optimized to make best use of the available

resources. The implementation of this design will benefit from a good choice of

efficient algorithms and the implementation of these algorithms will benefit from

writing good quality code. The architectural design of a system overwhelmingly

affects its performance. The choice of algorithm effects efficiency more than any

other item of the design. In some cases, however, optimization relies on using fancier

algorithms, making use of special cases and special tricks and performing complex

trade-offs; thus, a fully optimized program can sometimes, if insufficiently

commented, be more difficult for less experienced programmers to comprehend and

hence may contain more faults than unoptimized versions.

In this thesis, a PDE solver algorithm has been analyzed and optimized. In the

algorithm, Gauss-Seidel method is used for solving PDE. 2-D PDE algorithms are

commonly used, and simple to understand. Algorithms matrix data distribution is

row-wise block stripped 1D decomposition. To achieve Gauss-Seidel method

multicoloring algorithm is used with three colors and nine stencils. Algorithm will be

explained in details later.

5.2.2 Source code level

Avoiding bad quality coding can also improve performance, by avoiding obvious

slowdowns. Parallel algorithm used in this thesis has three calculation blocks for

three colors. Each block contains two nested loops to calculate new values of matrix

at each iteration. However, each block has to calculate its color not all points. To test

the points color if branch was used; from now on, this version of algorithm will be

called as version 1. This part of the code is altered to eliminate if condition test. After

eliminating if condition, calculation block speeds up nearly five times. Below is the

code snippet of algorithms version1 and version 2.

46

Version 1:

for(i=2; i<rows_local-2; i++)

 for(j=2; j<cols_local-2; j++){
 if((i+j-global_start) % 3 == colorC){
 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)

 +A(i+1,j)+A(i,j-1)+A(i,j+1));
 if(fabs(temp - A(i,j)) > tol && iter%10 == 0)
 done = FALSE;
 }
}

Version 2:

start=(colorC+global_start-2)%3;
if (start<2)
 start+=3;

for(i=2; i<rows_local-2; i++) {
 for (j=start;j<cols_local-2;j=j+3) {
 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)

 +A(i+1,j)+A(i,j-1)+A(i,j+1));

 if(iter%10 == 0 && fabs(temp - A(i,j)) > tol)
 done = FALSE;
 }

 if (start > 2)
 start--;
 else start+=2;

}

5.2.3 Compiler level

Compiler optimization is the process of tuning the output of a compiler to minimize

or maximize some attribute of an executable computer program. The most common

requirement is to minimize the time taken to execute a program; a less common one

is to minimize the amount of memory occupied. In this thesis, compiler optimization

levels O2 and O3 are used to achieve compiler level optimization. If source code is

compiled with –O3 flag the optimization is will be CPU dependent. Programs,

compiled at optimization level O3, may not run on different processors. Compilers

optimization levels does not always decrease programs run time, this is shown with

the experiments.

47

5.2.4 Assembly level

At the lowest level, writing code using an assembly language designed for a

particular hardware platform will normally produce the most efficient code since the

programmer can take advantage of the full repertoire of machine instructions.

Unfortunately, c compilers in ia64 architecture do not allow using inline assembly in

c. No assembly level optimizations have been made in this work.

48

49

6. COMMUNICATION OPTIMIZATIONS

Parallel algorithms exchange their data using communication methods. This

communication can be point-to-point or collective. In MPI algorithms, the

programmer must design these communication steps. In contrast, OpenMP has a

seamless processor communication. Programmer does not use special

communication functions, because all memory is accessible to all processors.

6.1 Objectives

In PDE based iterative high performance parallel computing algorithms,

communication takes place at each iteration. Iteration count effects communication

time. If communication time can be reduced, whole program will benefit from this

optimization.

Two parameters effect communication time, latency and bandwidth. Latency refers

to any of several kinds of delays typically incurred in processing of network data.

Mostly latency is referred as time taken for transfer of a zero sized packet.

Bandwidth is a measure of available or consumed data communication resources

expressed in bit/s. Bandwidth effects data packets travel time.

In this work, MPI communication time is tried to reduce using persistent

communication methods.

6.2 Communication Methods

MPI supports both point-to-point and collective communications.

6.2.1 Point-to-Point Communication

MPI provides many ways to send and receive messages. Each routine has different

types based on blocking, non-blocking [9]. These routines give flexibility to the

programmer.

50

Send routines (match any receive, probe; non-blocking can match any

completion/testing)

• Blocking - standard, buffered, ready, synchronous

• Non-blocking - standard, buffered, ready, synchronous

• Persistent - standard, buffered, ready, synchronous

Receive routines (match any send)

• Blocking

• Non-blocking

• Persistent

Probe routines (match any send)

• Blocking

• Non-blocking

Completion / Testing routines (match any non-blocking send/receive)

• Blocking - one, some, any, all

• Non-blocking - one, some, any, all

6.2.2 Collective Communication

Collective communication must involve all processes in the scope of a

communicator. There are three types of collective operations [9].

• Synchronization: All processes wait until all members of the group have

reached the synchronization point.

• Data Movement: broadcast, scatter/gather, all to all.

• Collective Computation (reductions): One member of the group collects

data from the other members and performs an operation (min, max, add,

multiply, etc.) on that data.

51

6.3 Hardware Based Optimizations

Network devices performance directly effects communication time. We can analyze

network hardware with two parameters; latency and bandwidth.

If latency is high small messages becomes more expensive. In high latency when

message size is small enough latency becomes dominant in communication time. In

very low latency, communication can be split into smaller parts to make immediate

computation.

If bandwidth is too low data to be transmitted takes more time. In low bandwidth

networks, data compression can be used. Data compression decreases data size but

requires extra CPU time. If processing power is higher than bandwidth data

compression decreases wall clock time. There are several types of data compression

algorithms for different data types [34].

In NCHPC both two architectures has low latency high bandwidth interconnection.

Cluster network device is Infiniband DDR 4X. Infiniband DDR 4X has 2000MB/s

bandwidth and 140 nanosecond latency. HP Integrity Superdome has 27.3 GB/s

bandwidth [28]. No hardware-based optimization is made. Instead algorithm based

optimizations are experimented.

6.4 Algorithm Based Optimizations

MPI supports different types of communication methods. These methods have better

performances in different sizes of messages. Figure 6-1, 6-2, 6-3 shows point-to-

point performance of these methods [35].

52

Figure 6.1 : Small Messages Performance

Figure 6.2 : Medium Messages Performance

53

Figure 6.3 : Large Messages Performance

MPI Sendrecv method has high performance on every size of messages. For

scalability and easy of programming MPI Sendrecv is used for point-to-point

communication. In PDE like iterative methods, communication takes place with

same nodes in each iteration. MPI has a persistent connection method for these types

of connections. MPI persistent communications can be used to reduce

communication overhead for repeatedly called point-to-point message passing

routines with the same arguments. Persistent communications improvement is shown

in the Figure 6.4 below [35].

54

Figure 6.4 : Persistent vs Isen/Irecv

55

7. PARALLELIZATION OF PARTIAL DIFFERENTIAL EQUATIONS

In mathematics, partial differential equations (PDE) are a type of differential

equation, i.e., a relation involving an unknown function of several independent

variables and its partial derivatives with respect to those variables. Partial differential

equations are used to formulate, and thus aid the solution of, problems involving

functions of several variables; such as the propagation of sound or heat,

electrostatics, electrodynamics, fluid flow, and elasticity.

The solution procedure of a partial differential equation depends on the type of the

equation. Partial differential equations can be classified as linear or nonlinear. In a

linear PDE, the dependent variable and its derivatives enter the equation linearly. On

the other hand, a nonlinear PDE contains a product of the dependent variable and/or

a product of its derivatives [36].

Some linear, second-order partial differential equations can be classified as

parabolic, hyperbolic or elliptic.

Mathematically, a partial differential equation of the form

0=+++++ FEuDuCuBuAu yxyyxyxx (7-1)

Parabolic PDE: A parabolic partial differential equation is a type of second-order

partial differential equation, describing a wide family of problems in science

including heat diffusion and stock option pricing. These problems, also known as

evolution problems, describe physical or mathematical systems with a time variable,

and which behave essentially like heat diffusing through a medium like a metal plate.

If equation satisfies 042 =− ACB it is called parabolic.

Hyperbolic PDE: The wave equation is an example of a hyperbolic partial

differential equation.

If equation satisfies 042 >− ACB it is called hyperbolic.

56

Elliptic PDE: It can be defined on spaces of complex-valued functions, or some

more general function-like objects. What is distinctive is that the coefficients of the

highest-order derivatives satisfy a positivity condition. An important example of an

elliptic operator is the Laplacian.

If equation satisfies 042 <− ACB it is called elliptic.

7.1 Finite Difference as a Discretization Model

An important application of finite differences is in numerical analysis, especially in

numerical differential equations, which aim at the numerical solution of ordinary and

partial differential equations respectively. The idea is to replace the derivatives

appearing in the differential equation by finite differences that approximate them.

The resulting methods are called finite difference methods.

Typical elliptic equations in a two-dimensional Cartesian system are Laplace’s

equations,

0
2

2

2

2

=
∂

∂
+

∂

∂

y

u

x

u
 (7-2)

and Poisson’s equation,

),(
2

2

2

2

yxf
y

u

x

u
=

∂

∂
+

∂

∂
 (7-3)

These model equations are used to investigate a variety of solution procedures.

Of the various existing finite difference formulations, the so-called “five-point

formula” is the most commonly used. In this representation of the PDE, central

differencing which is second order accurate is utilized. Therefore, model Equation

(7-2) is approximated as

0
)(

2

)(

2
2

1,,1,

2

,1,,1
=

∆

+−
+

∆

+− −+−+

y

uuu

x

uuu jijijijijiji
 (7-4)

The corresponding points are shown in Figure 7.1

57

Figure 7.1 :Grid points for a five point formula

A higher order formulation is the nine-point formula, which uses a fourth-order

approximation for the derivatives. With this formulation, the PDE of model Equation

is:

0
)(12

163016

)(12

163016

2

2,1,,1,2,

2

,2,1,,1,2

=
∆

−+−+−
+

∆

−+−+−

++−−

++−−

y

uuuuu

x

uuuuu

jijijijiji

jijijijiji

 (7-5)

The grid point involved in Equation (7-5) is shown in Figure 7.2

Figure 7.2 :Grid points for a nine-point formula

One obvious difficulty with the application of this formula is the implementation of

the boundary conditions. Thus, for problems where higher accuracy is required, it is

easier to use the five-point formula with small grid sizes than the fourth-order

accurate nine-point formula. Due to its simplicity, the five-point formula represented

by Equation (7-4) will be considered. Rewrite Equation (7-4) as

58

() 022 1,,1,

2

,1,,1 =+−








∆

∆
++− −+−+ jijijijijiji uuu

y

x
uuu (7-6)

Define the ratio of step sizes as β , so that yx ∆∆= /β . By rearranging the terms in

Equation (7-6), one obtains

0)1(2 ,
2

1,
2

1,
2

,1,1 =+−+++ −+−+ jijijijiji uuuuu βββ (7-7)

In order to explore various solution procedures, first consider a square domain with

Diriclet boundary conditions. For instance, a simple 6x6 grid system (Figure 7-3)

subject to the following boundary conditions is considered:

34

12

,

0,0

uuHyuuLx

uuyuux

====

====

Applying Equation (7-7) to the interior grid points produces sixteen equations with

sixteen unknowns. The equations are:

Figure 7.3 :Grid system used for solution of Equation (7-7)

59

The equations gathered from this grid are expressed in a matrix form as

60

(7-8)

Where)1(2 2βα +−= .

The matrix formulation has two noteworthy features. First, it is a pentadiagonal

matrix with nonadjacent diagonals; and second, the elements in the main diagonal in

each row are the largest. These features are important when developing solution

procedures [36].

7.2 Gauss-Seidel and SOR

The Gauss–Seidel method is a technique used to solve a linear system of equations. It

is defined on matrices with non-zero diagonals, but convergence is only guaranteed if

the matrix is either diagonally dominant, or symmetric and (semi) positive definite.

In this method, the current values of the dependent variable are used to compute the

neighboring points as soon as available. This will certainly increase the convergence

rate dramatically over the Jacobi method (about 100%) [36]. The method is

convergent if the largest elements are located in the main diagonal of the coefficient

matrix, as in the case of the formulation that produced (7-8). The formal requirement

(sufficient condition) for the convergence of the method is,

61

∑
≠
=

≥
n

ij
j

ijii aa
1

(7-9)

And, at least for one row,

∑
≠
=

>
n

ij
j

ijii aa
1

(7-10)

Since this is a sufficient condition, the method may converge even though the

condition is not met for all rows. Now the formulation of the method is considered.

The finite difference equation is given here:

[])(
)1(2

1
1,1,

2
,1,12, −+−+ +++

+
= jijijijiji uuuuu β

β
 (7-11)

In order to solve for the value of u at grid point i,j, the values of u on the right-hand

side must be provided. This procedure is easy to understand if the application of

Equation (7-11) considered as a few grid points. For the computation of the first

point, example (2,2), as shown in Figure 7.4, it follows that

[])(
)1(2

1
1,23,2

2
2,12,32

1
2,2 uuuuu

k +++
+

=+ β
β

 (7-12)

Figure 7.4 :Grid points for Equation (7-13)

62

In this equation, 1,2u and 2,1u are provided by the boundary conditions. Only two

values, namely 2,3u and 3,2u , use the values from the previous iteration at k. Thus, in

terms of the iteration levels,

[])(
)1(2

1
1,23,2

2
2,12,32

1
2,2 uuuuu

kkk +++
+

=+ β
β

 (7-13)

Now, for point (3,2), one has

[])(
)1(2

1
1,33,3

21
2,22,42

1
2,3 uuuuu

kkkk +++
+

= ++ β
β

 (7-14)

In this equation, 1,3u is provided by the boundary condition, and 2,4u and 3,3u are

taken from the previous computation; but 2,2u is given by Equation (7-13).

Finally, the general formulation provides the equation

[])(
)1(2

1 1
1,1,

21
,1,12

1
,

+
−+

+
−+

+ +++
+

= k

ji

k

ji

k

ji

k

ji

k

ji uuuuu β
β

 (7-15)

The solution is to find a set of linear equations, expressed in matrix terms as

bxA
rr

= The Gauss-Seidel iteration is

nixaxab
a

x
ij

k

jij

ij

k

jiji

ii

k

i ,....,2,1,
1)()1()1(=










−−= ∑∑

≥<

++ (7-16)

Note that the computation of)1(+k

ix uses only those elements of)1(+kx that have

already been computed and only those elements of)(kx that have yet to be advanced

to iteration k + 1. This means that no additional storage is required, and the

computation can be done in place ()1(+kx replaces)(kx). While this might seem like a

rather minor concern, for large systems it is unlikely that every iteration can be

stored. Thus, unlike the Jacobi method, one does not have to do any vector copying

should one want to use only one storage vector. The iteration is generally continued

until the changes made by an iteration are below some tolerance.

63

Successive over-relaxation (SOR) is a numerical method used to speed up

convergence of the Gauss–Seidel method for solving a linear system of equations. A

similar method can be used for any slowly converging iterative process.

A similar technique can be used for any iterative method. Values of ω > 1 are used to

speedup convergence of a slow-converging process, while values of ω < 1 are often

used to help establish convergence of a diverging iterative process.

There are various methods that adaptively set the relaxation parameter ω based on

the observed behavior of the converging process. Usually they help to reach a super-

linear convergence for some problems but fail for the others.

No general guideline exists for computing the optimum value of the relaxation value

ω [36].

We seek the solution to a set of linear equations, expressed in matrix terms as

bxA
rr

= The successive over-relaxation (SOR) iteration is defined by the recurrence

relation

nixaxab
a

xx
ij

k

jij

ij

k

jiji

ii

k

i

k

i ,....,2,1,)1()()1()()1(=









−−+−= ∑∑

≥<

++ ω
ω (7-17)

This iteration reduces to the Gauss–Seidel iteration for ω = 1. As with the Gauss–

Seidel method, the computation may be done in place, and the iteration is continued

until the changes made by iteration are below some tolerance.

7.3 Red-Black and Multi-coloring Scheme

In Gauss-Seidel method calculated values are used immediately, this is not a problem

in sequential algorithms. Thus, in parallel algorithms processors need calculated

values of neighbors. Red-black decomposition is used if calculated values are

immediately used in the neighbor points calculations. Red-black decomposition

separates points with two colors red, black. This decomposition is like a

checkerboard. Red-black is the simplest version of multi-coloring scheme.

64

Figure 7.5 :Red and Black Stencils

The key idea is to group the grid points into two groups, identified as black and red

nodes, and observe that for Cartesian differencing the black nodes are surrounded by

red nodes only, and the red nodes are surrounded by black nodes only. This is shown

schematically in Figure 7.5 . The figure is 2D Cartesian topology and has five

stencils if nine stencils needed three or four colors can be used.

The implementation of the Gauss-Seidel method by means of the red-black ordering

of the grid points is limited to rather simple partial differential equations, such as

Poisson’s equation, and rather simple discretization.

Consider the equation

0=++ xyyyxx auuu (7-18)

Again in the unit square, where a is a constant. This is just Laplace’s equation with

an additional term. The standard finite difference approximation is

[]1,11,11,11,124

1
−−−++−++ +−−= jijijijixy uuuu

h
u (7-19)

65

Which combined with the previous approximation (7-2) for Laplace’s equation gives

the system of equations

[] 0
4

4 1,11,11,11,1,1,1,,1,1 =+−−+−+++ −−−++−++−+−+ jijijijijijijijiji uuuu
a

uuuuu (7-20)

Red-Black ordering for equation 7-20 is shown in Figure 7-6 below.

Figure 7.6 :Red-Black ordering for equation 7-20

Figure 7.7 :A Four-Color Ordering for equation 7-21

The system may be written in the matrix form as in 7-21



















=





































4

3

2

1

4434241

3433231

2423221

1413121

b

b

b

b

u

u

u

u

DBBB

BDBB

BBDB

BBBD

W

G

B

R

 (7-21)

Where the diagonal iD are diagonal. The Gauss-Seidel iteration can then be written

as

1141312
1

1D buBuBuBu
n

W

n

G

n

B

n

R +−−−=+ (7-22)

2242321
1

2D buBuBuBu
n

W

n

G

n

R

n

B +−−−=+ (7-23)

R

B

R R

B B

B

R R

66

3343231
1

3D buBuBuBu
n

W

n

B

n

R

n

G +−−−=+ (7-24)

4434241
1

4D buBuBuBu
n

G

n

B

n

R

n

W +−−−=+ (7-25)

Similarly, for the other two colors. Since the iD are diagonal, the solution off the

triangular system to carry out a Gauss-Seidel iteration has again reduced to matrix

multiplication.

The four colors ordering of Figure 7-7 was based on the coupling of grid points

illustrated in Figure 7-6, and such a pattern is called a stencil. A stencil shows the

connection of a grid point to its neighbors and depends on both the differential

equation and the discretization. The determination of the number of colors needed is

simplified if the stencil is the same at all points of the grid. Then the criterion for a

successful coloring is that when the stencil is put at each point of the grid, the center

point has a color different from that of all other points to which it is connected. It is

this “local uncoupling” of the unknowns that allows a matrix representation of the

problem that in general has the form



















=





































−

−

cccccc

cc

c

b

b

b

u

u

u

DBB

B

DB

BBD

MM

L

OM

M

L

2

1

2

1

1,1

,1

221

1121

 (7-26)

The Gauss-Seidel iteration can be carried out, analogously to Equation 7-27

ciuBuBbDu
ij ij

n

jij

n

jijii

n

i ,,1,111
K=








−−= ∑ ∑

< >

+−+ (7-27)

The solution of the triangular system is reduced to matrix-vector multiplications.

7.4 Pseudo Code for Parallel PDE

In this work, a nine-stencil multicolor Gauss-Seidel method is used to solve PDE.

Minimum three colors are needed for calculating nine-stencil equation. In each

iteration a colors calculation is made and calculated color is exchanged between

neighbors. Here is the pseudo code of the algorithm:

67

A,B,C are the three colors of multicolor algorithm.

while do until convergence

 Calculation of A points
 for i=2 step until n-2 do
 for j=2 step until n-2 do
 if (point is A)

 temp=A(i,j)
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+
 A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1));
 End if
 End j loop

 End I loop
 End of A points calculation
 Exchange ghost points
 Calculate B points

 Exchange ghost points
 Calculate C points

 Exchange ghost points
 Check if convergence is reached

End while

Exchange ghost points

 Send two upper row blocks to the upper neighbor

 Receive two upper row blocks from the upper neighbor
 Send two lower row blocks to the lower neighbor
 Receive two lower row blocks from the lower neighbor
End of exchange ghost points

Neighbor processors exchange two neighboring rows with each other. Since

decomposition is row wise, no derived data type is used to conserve sequential

access to data. In the ghost point exchange, two row blocks are exchanged with both

upper and lower neighbors. This means if a processor has two neighbors it has to

send four row blocks and receive four blocks.

7.5 Decomposition an Topolgy of PDE Matrix

Dividing data into parts is called decomposition. In the algorithm, 1D row wise

decomposition is used. A 1D Cartesian non-periodic topology is created for defining

neighbors. MPI methods are used to create the topology. Topology usage makes

communication routines simpler for the developer. If topology is created then

neighbors are known, no need to deal with processor ranks to find who is neighbor.

68

69

8. IMPLEMENTATION AND RESULTS

A parallel PDE solver algorithm using Gauss-Seidel method is used in this work.

This algorithm is written by Gülnur Demir, who is a graduate student in ITU

Computational Science and Engineering programme. This algorithm was developed

for Parallel Programming lecture project assignment. She implemented Gauss-Seidel

with three colors and nine stencils. In the algorithm, PDE equations variable matrix

is meshed to a two dimensional matrix. If PDE has 100 variables then this mesh

matrix size will be 10x10. This mesh matrix is solved iteratively. Algorithm is

parallelized using MPI. After analyzing this algorithm with TAU, bottlenecks have

been defined. There were two major bottlenecks one is computation of points other

one is communication for sharing ghost points between processors. First

computational bottleneck is analyzed.

Below is the v1 algorithm of colorA colorB and colorC computation. These

computations are done in each iteration.

//Color C calculation
for(i=2; i<rows_local-2; i++)

 for(j=2; j<cols_local-2; j++){
 if((i+j-global_start) % 3 == colorC){

 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+
 A(i+1,j)+A(i,j-1)+A(i,j+1));
 if(fabs(temp - A(i,j)) > tol && iter%10 == 0)

 done = FALSE;
 }
}
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm);

//Color B calculation
for(i=2; i<rows_local-2; i++)
 for(j=2; j<cols_local-2; j++){
 if((i+j-global_start) % 3 == colorB){

 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+

 A(i+1,j)+A(i,j-1)+A(i,j+1));
 if(fabs(temp - A(i,j)) > tol && iter%10 == 0)

 done = FALSE;
 }
}

UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm);

70

//Color A calculation
for(i=2; i<rows_local-2; i++)
 for(j=2; j<cols_local-2; j++){

 if((i+j-global_start) % 3 == colorA){
 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+
 A(i+1,j)+A(i,j-1)+A(i,j+1));

 if(fabs(temp - A(i,j)) > tol && iter%10 == 0)

 done = FALSE;
 }
}
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm);

Two nested loops have an if condition inside. This has two performance effects. One

if branch prediction miss predicts CPU wastes its pipelined instruction. Another

thing is, compiler cannot be aware of data independency in calculation of point

A(i,j). If inner loops j is incremented by three not by one compiler can detect data

independency. Data independency is important for massive parallelism.

Multicoloring is used for data independency between processors, but with the first

implementation, data is dependent inside one processor.

Below is the v2 algorithm, which eliminates if branch inside nested loops. This gains

performance by eliminating if branch and makes this loop data independent.

//colorC

start=(colorC+global_start-2)%3;

if (start<2)
 start+=3;
for(i=2; i<rows_local-2; i++) {

 for (j=start;j<cols_local-2;j=j+3) {
 temp = A(i,j);

 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+
 A(i+1,j)+A(i,j-1)+A(i,j+1));

 if(iter%10 == 0 && fabs(temp - A(i,j)) > tol)
 done = FALSE;
 }

 if (start > 2)
 start--;

 else start+=2;
}
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm);

//colorB
start=(colorB+global_start-2)%3;
if (start<2)
 start+=3;

for(i=2; i<rows_local-2; i++) {

 for (j=start;j<cols_local-2;j=j+3) {
 temp = A(i,j);
 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+

 A(i+1,j)+A(i,j-1)+A(i,j+1));
 if(iter%10 == 0 && fabs(temp - A(i,j)) > tol)

 done = FALSE;
 }

 if (start > 2)
 start--;
 else start+=2;
}

UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm);

71

//colorA
start=(colorA+global_start-2)%3;
if (start<2)

 start+=3;
for(i=2; i<rows_local-2; i++) {
 for (j=start;j<cols_local-2;j=j+3) {
 temp = A(i,j);

 A(i,j) = 0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+

 A(i+1,j)+A(i,j-1)+A(i,j+1));
 if(iter%10 == 0 && fabs(temp - A(i,j)) > tol)
 done = FALSE;
 }

 if (start > 2)
 start--;

 else start+=2;
}

In this implementation, inner loops start value is important it must be the color we

are computing. Thus, start value is computed and modified for next start. Another

optimization was in the if condition. If a condition has more than one value anded,

the first false invalidates this if condition. In v1 code, if conditions first condition

was a hard computation compared with mod operation. So mod operation changed to

be the first condition. If mod does not satisfies if condition the condition is not

calculated. By the way mod operations calculation time can be reduced by using

twos power in unsigned numbers. However, it was not used in this works

implementations.

Another hot spot was communication. MPI supports different communication

methods. In point-to-point communication, MPI Send-recv has high performance at

every size of messages [35]. One chance to reduce communication can be using MPI

persistent connection communication. In this algorithm, two neighbor processors

communicate with each other, so persistent connection can be used. Persistent

connection reduces connection overhead of communication, and stays connected

unless MPI finalized or persistent connection freed. In persistent connection, the

communication channel is initialized at the beginning of the algorithm and at each

iteration MPI_Startall() method is used for making transfer. Before ending program

persistent connection is terminated using MPI_Request_free() method. Algorithm

version is named v3 and algorithm changed as follows.

Algorithm v1 communication UpdateGhosts method:

MPI_Isend(&A(rows_local-4,0), 1, rowType, neigh[DOWN], 99, cartcomm, &rq1);
// send down
MPI_Recv(&A(0,0), 1, rowType, neigh[UP], 99, cartcomm, &st1);

// recv from up
MPI_Wait(&rq1, &st1);

MPI_Isend(&A(2,0), 1, rowType, neigh[UP], 999, cartcomm, &rq2); // send up
MPI_Recv(&A(rows_local-2,0), 1, rowType, neigh[DOWN], 999, cartcomm, &st2);

// recv from down
MPI_Wait(&rq2, &st2);

72

Algorithm v3 changes this with persistent communicaiton methods:

//Before beginning iterations

/* Setup persistent requests for both the send and receive */
MPI_Send_init(&A(rows_local-4,0),1,rowType,neigh[DOWN],99,cartcomm,&reqs[0]);
MPI_Recv_init(&A(0,0), 1, rowType, neigh[UP], 99, cartcomm, &reqs[1]);
MPI_Send_init(&A(2,0), 1, rowType, neigh[UP], 999, cartcomm, &reqs[2]);

MPI_Recv_init(&A(rows_local-2,0),1,rowType,neigh[DOWN],999,cartcomm,&reqs[3]);
………..
while(iter<1000000 && !alldone)
{
 Calculate color C

 MPI_Startall (count, reqs);
 MPI_Waitall (count, reqs, stats);
 Calculate color B
 MPI_Startall (count, reqs);

 MPI_Waitall (count, reqs, stats);
..

}
/* Free persistent requests */

MPI_Request_free (&reqs[0]);
MPI_Request_free (&reqs[1]);
MPI_Request_free (&reqs[2]);

MPI_Request_free (&reqs[3]);

On the other hand, Successive over relaxation (SOR) can be used instead of Gauss-

Seidel for faster convergence. Algorithm has been modified for SOR method. Only

calculation part has changed and w parameter is added.

for(i=2; i<rows_local-2; i++) {
 for (j=start;j<cols_local-2;j=j+3) {

 temp = A(i,j);
 A(i,j) = ((1-w)*temp)+(w*0.125*(A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) +
 A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1)));

 if(iter%10 == 0 && fabs(temp - A(i,j)) > tol)

 done = FALSE;
 }
 if (start > 2)
 start--;

 else start+=2;

}

Three w values has been tested w= 0.5, 1, 1.5. When w equals 1 this method is same

with the Gauss-Seidel method.

8.1 Runs and Results

Runs are made in two different architectures. There are three different versions of

algorithm v1 is unoptimized, v2 is computation sections optimized, v3

communication sections optimized. Below Figure 8.1 are the analyses of three

different version codes using 800x800 matrix size with 2 CPUs on HP Superdome

Infinity ccNUMA server with Intel Itanium processor. Measurements are made using

TAU performance analysis system. Library level instrumentation and selective

instrumentation for calculation sections are used. Performance analyses are made

73

both using profiling and tracing. ParaProf visualizes profiles. Jumpshot visualizes

traces. Linux timers are used measurement.

Figure 8.1 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2 CPUs

As seen on graphics calculation optimization speed up is approximately 9x.

Communication optimization (UpdateGhosts function) has approximately 2x speed-

up in this matrix size. Overall performance speed-up is almost 9x.

Below Figure 8.2 is Cluster computers performance analysis. Cluster has Intel Xeon

CPU and connected via InfiniBand. Figure 8.2 experiment parameters are 800x800-

matrix size, two cpus, three version codes.

74

Figure 8.2 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2 CPUs

Intel Xeon and Itanium have similar performance at computation section of version 1

algorithm. However, after making optimizations Intel Itanium performance is 3 times

better than Xeon. Architecture based optimizations are done at compiler level.

Compiler optimization flags O2 and O3 are used. With Intel Xeon processor O2

optimization and O3 optimization were the same. On the other hand, O3 optimization

speed-ups program on Itanium processor. Below Figure 8.3 shows this detail. Only

v1 and v2 algorithms are compared.

75

4 cpus - 800x800 Matrix Size

0,000

10,000

20,000

30,000

40,000

50,000

v1-O2 v1-O3 v2-O2 v2-O3

Code version - Optimization Level

C
a
lc

u
la

ti
o

n
 T

im
e
 (

s
e
c
)

Itanium

Xeon

Figure 8.3 : Optimization comparison of two processors

HPC systems are used shared. Different nodes can run different application

algortihms at the same time for maximum efficiency. In National Center for High

Performance Computing of Turkey (NCHPC) clusters nodes are shared between

projects, many independent programs are running on different nodes simultaneously.

Since these nodes communicate with each other using underlying network

infrastructure, different nodes communication effects others communication

performance. This is called network contention [9]. While running these tests,

NCHPC cluster with Xeon processors was having many other applications running

on other nodes. Because of this, communication times vary depending on the other

nodes communication. Figure 8.4 is a part of trace file output; network contention

effect can be seen on this figure. In Figure 8.4 four processors are communicating

with each other at each iteration but at some time network performance throughput

decreases dramatically. Two different time’s communications are seen on Figure 8.4.

At one time, 3200byte communication took 12 microsecond and at next iteration,

same sized communication took 4.493 millisecond. However, on SMP server tests

are done one by one. SMP server was not running any other application. Thus,

communication performance tests are done on SMP server. Figure 8.5 is a part of

trace output, which, shows contention effect in HP shared memory system. In HP

server communication performance is more consistent because it is only running test

algorithm.

76

Figure 8.4 : Trace output showing cluster network performance variety

Figure 8.5 : Trace output showing SMP computer communication performance

When more processors are involved in computation, communication becomes a

dominant factor. Time taken for calculation becomes smaller when processor number

increases. Below Figure 8.6 is an example of this. In Figure 8.6 three versions of

algorithms run on 64 cores using 1600x1600 matrix size. Increase of cores increases

message count and makes communication a bottleneck.

77

Figure 8.6 : Profile output of 64 processor communication bottleneck

In iterative methods, convergence rate determines iteration count. SOR is used to

increase the convergence of Gauss-Seidel. SOR method is also implemented to see

effects. SOR methods convergence can be showed by iteration counts, Figure 8.7

shows iteration counts for w=0.5 w=1.0 w=1.5 values.

SOR Iteration Counts for Different Matrix Sizes

0

10000

20000

30000

40000

50000

60000

w=0.5 w=1.0 w=1.5

SOR w value

It
e
ra

ti
o

n
 C

o
u

n
t

800x800

1600x1600

Figure 8.7 : SOR Iteration Counts for Different Relaxation Values

Figure 8.8 shows measured wall clock times for different relaxation (w) values. As

seen, iteration count effects wall clock time.

78

Wall Clock Times for Different Matrix Sizes

0

50000

100000

150000

200000

w=0.5 w=1.0 w=1.5

SOR w value

w
a
ll

 c
lo

c
k
 t

im
e
 (

s
e
c
)

800x800

1600x1600

Figure 8.8 : Wall Clock Times for Different Relaxation Values

Network performance optimization shows becomes important when message size is

small and iteration count increases. For example if tolerance value gets smaller

iteration count increases. This means there will be many communications with small

message sizes. Algorithm v1 uses MPI_Isend() and MPI_Recv(), v2 uses

MPI_Sendrecv(), v3 uses MPI_Send_init() and MPI_Recv_init() persistent

connection communication methods. Figure 8.9 shows relation between error

tolerance value and communication time of different algorithms. As seen when error

rate gets lower v3 algorithms performance gain increases. Matrix size is 400x400

core count is four in Figure 8.9.

Communication Time Trends for Tolerance Values

0

1

2

3

4

5

6

7

v1 v2 v3

Algorithm Version

T
im

e
 (

s
e
c
)

e=0.00001

e=0.0001

e=0.001

Figure 8.9 : Communication Time for Different Error Tolerance Values

79

Scalability of algorithms for different matrix sizes is shown in the figures below. As

seen on Figures 8.10 – 8.13 at some point (related to the data size) wall clock time

increases when more processors are used. The reason is, communication becomes a

bottleneck when processors do less computation due to the increasing size of

processors. In addition, it seen that increasing data size number of cores need for

minimum wall clock time slightly shifts to the right.

400x400 matrix size scalibility

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2core 4core 8core 16core 32core 64core

Core Count

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

v1

v2

v3

Figure 8.10 : Scalability for 400x400 matrix size

800x800 Matrix Size Scalibility

0

50

100

150

200

250

300

2core 4core 8core 16core 32core 64core

Core Count

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

v1

v2

v3

Figure 8.11 : Scalability for 800x800 matrix size

80

1600x1600 Matrix Size Scalibility

0

200

400

600

800

1000

1200

1400

2core 4core 8core 16core 32core 64core

Core Count

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

v1

v2

v3

Figure 8.12 : Scalability for 1600x1600 matrix size

In Figure 8.13, v1 algorithm does not used due its insufficient performance, this is

why wall clock time seems decreased but it increases.

3200x3200 Matrix Size Scalibility

0

100

200

300

400

500

600

2core 4core 8core 16core 32core 64core

Core Count

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

v2

v3

Figure 8.13 : Scalability for 3200x3200 matrix size

As seen on Figures 8.10 to Figure 8.13 processor scalability is higher at big matrix

sizes. When matrix size is not big enough communication becomes dominant. Thus,

communication contention effects when communication is made at the same time

between all processors.

81

The relation between communication-calculation time and processor count can be

seen in the in the Figure 8.14 and 8.15. If communication and calculation times are

balanced, optimum wall-clock time is gained. Figure 8.14 shows balance effect of a

400x400 sized matrix scaling on different core counts.

Effect of Communication - Calculation Time Balance

0

3000

6000

9000

12000

15000

18000

2core 4core 8core 16core 32core 64core

Number of Cores

C
a
lc

.-
 C

o
m

m
.

T
im

e

(m
s
e
c
)

0

4000

8000

12000

16000

20000

W
a
ll

 C
lo

c
k
 T

im
e

(m
s
e
c
)

calculation communication wall clock

Figure 8.14 : 400x400 Matrix Balance Effect

If the matrix size increases calculation increases too. This shifts the communication-

calculation balanced core count. In 400x400 matrix size core count that satisfies

communication and calculation time is between 4 and 8 cores. However, in

3200x3200 matrix size balance is satisfied between 16-32 cores. Figure 8.15 shows

3200x3200 matrix size balance shift.

Effect of Communication - Calculation Time Balance

0

100

200

300

400

500

600

2core 4core 8core 16core 32core 64core

Number of Cores

C
a
lc

.
-

C
o

m
m

.
T

im
e

(s
e
c
)

0

100

200

300

400

500

600

W
a
ll

 C
lo

c
k
 T

im
e
 (

s
e
c
)

calculation communication wall clock

Figure 8.15 : 3200x3200 Matrix Balance Shift

83

9. CONCLUSION AND RECOMMENDATIONS

Processor types have different characteristics, for example, Xeon processor has

higher clock rate than Itanium processors. Thus, Itanium is a RISC processor and

Xeon is a CISC processor, CPU clock rate is not a pure performance determining

parameter. Processors internal hardware like cache size and floating-point registers is

other factors of processors computing power. For gaining maximum performance

from a processor, algorithm must be efficient and right compiler parameters must be

used. It is proven with experiments that, unoptimized algorithm runs faster on Xeon

compared to Itanium processor but when right compiler parameters are used on

efficient algorithm Itanium processor shows much better performance. Itanium

processors performance is high on floating point intensive applications.

In addition, SOR algorithm issued on two architectures, SOR algorithm only effects

convergence, if convergence rate decreases iteration count algorithm completes

faster. However, defining optimal relaxation parameter is another work.

Communication optimization is done by using MPI persistent connection. Persistent

connection removes connection initiation overhead at each iteration. Performance

gain of persistent connection is maximum at small size messages. Moreover, when

iteration count increases with small sized messages (like lowering error tolerance)

time gained using persistent connection increases. MPI persistent communication

methods can be preferred if same nodes are communicating at each iteration.

Using more processors for fixed data sizes does not always speed-up program. If

computation takes less then communication time, then increasing processor count

will raise overall time due to the increased communication count. Since

communication medium is shared, more communication means slower

communication.

In these entire measurements, TAU framework is used. Instrumentation is done using

automatic library level instrumentation and for calculation sections, selective

instrumentation is used. In profiling TAU tracks inclusive and exclusive times and

84

function/sections call counts. Function call count values are used for determining

iteration counts. In addition, trace output is enabled for tracing. Since profiling only

has statistical information, profile files are always small but trace files linearly

increase as iteration count increases. That is why tracing must be used for test

purposes on small data sizes, otherwise overhead of tracing raises.

9.1 Application of The Work

This work shows differences of two architectures with experiments. These

experiments can guide HPC software developers for making performance analysis

and optimization.

Optimizations made in these experiments are algorithm specific. Each algorithm has

different characteristics and bottlenecks. Since iterative methods have similar

characteristics, these optimization techniques can be applied to different iterative

algorithms.

For processor-based optimization, using compilers related flag is the easiest and most

effective way. Software developers may not be aware of processor internals, but they

can develop highly parallelizable algorithms. In this works experiments, key point in

writing parallel algorithm was to satisfy data in-dependency inside loops and

avoiding unpredictable branches. Compilers know processor architecture and they

can benefit from it if algorithm has fewer branches inside loops. Nonetheless, HPC

algorithms are compiled from source code for the specific system. We can benefit

from this by compiling program optimized for that specific architecture. Compilers -

O3 level optimization and -fast parameters does this. If source code is compiled

using these parameters compiler will do processor specific optimizations, which may

limit the binary program to run only that specific processor.

Using more CPUs does not directly speed up program. It is seen that at low data sizes

using more processors generates a communication bottleneck. Communication is

related to processor count if more processors are involved more communication is

needed. Roughly if calculation time equals communication time it is the best point of

processor scalability.

85

In addition, to reduce communication contention, communication and calculation can

be overlapped. Alternatively, while one group of processors is making calculation,

others can communicate with each other. However, this cannot be achieved in PDE

algorithm do the dependency of calculated values.

In addition, persistent connection becomes important when error tolerance is low on

small sized matrix. When error tolerance is low, iteration count increases and

persistent connection shows significant speed up on small messages.

9.2 Future Work

In this work, measurements are made using Linux timers. Due to the incompatibility

between hardware counter patches and Lustre file system, hardware counters cannot

be used on real system yet. Hardware counters can be used to see L1,L2 ad L3 cache

hit rates of the algorithm. Also hardware counters show correctly predicted and

unpredicted branch counts. One more important counter is TLB (Translate Lookaside

Buffer) hit count. If these are known algorithms efficiency can be compared in this

respect.

As seen making blocking communication decreases performance when many

processors are used. Algorithm improvements can be researched to overlap

communication and computation for based iterative numerical methods. Overlapping

would improve scalability.

87

REFERENCES

[1]Jeff Parkhurst, John Darringer, Bill Grundmann, 2006: From Single Core to
Multi-Core: Preparing for a new exponential

[2]Lynch, Nancy, 1997: Distributed Algorithms (1st ed.). San Francisco, CA:
Morgan Kaufman Publishers.

[3]Sameer S. Shende and Allen D. Malony, 2006: The Tau Parallel Performance
System. International Journal of High Performance Computing
Applications

[4]Jack Dongarra, Allen D. Malony, Shirley Moore, Philip Mucci, and Sameer
Shende, 2003: Performance Instrumentation and Measurement for
Terascale Systems. International Conference on Computational

Science (ICCS 2003)

[5]Mahinthakumar G., Saied F., 2002: A Hybrid MPI-OpenMP Implementation of
an Implicit Finite-Element Code on Parallel Architectures

[6]Smith L.A,.2002: Mixed Mode MPI / OpenMP Programming

[7]Ulrich Rfide, 1997: Iterative Algorithms on High Performance Architectures

[8]Jiuxing Liu, Weihang Jiang, and others, 2004: Design and Implementation of
MPICH2 over InfiniBand with RDMA Support

[9]Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, 2003:
Introduction to Parallel Computing, Second Edition.

[10]David E. Culler, Jaswinder Pal Singh, Anoop Gupta, 1999: Parallel Computer
Architecture - A Hardware/Software Approach. Morgan Kaufmann
Publishers.

[11]B. Ramakrishna Rau1, Joseph A. Fisher , 1993: Instruction-level parallel
processing: History, overview, and perspective

[12]Patt Yale, 2004: The Microprocessor Ten Years From Now: What Are The
Challenges, How Do We Meet Them?

[13]Sayantan Sur, Matthew J. Koop, Dhabaleswar K. Panda, 2006: High-
performance and scalable MPI over InfiniBand with reduced memory
usage

[14]Gene Amdahl, 1967: Validity of the Single Processor Approach to Achieving
Large-Scale Computing Capabilities

[15]Flynn, M., 1972: Some Computer Organizations and Their Effectiveness, IEEE

Trans. Comput.

[16]Josh Stewart, 2005: An Investigation of SIMD instruction sets

[17]Ralph Duncan, 1990: A Survey of Parallel Computer Architectures

[18]Patterson and Hennessy, 2008: Computer Organization and Design

88

[19]Handy, Jim, 1998: The Cache Memory Book. Academic Press, Inc.

[20]HP, 2009: < http://h20338.www2.hp.com/hpux11i/downloads/WP_ccnuma_final.pdf>

[21]Ruud van der Pas, 2002: Memory Hierarchy in Cache-Based Systems, Sun

BluePrints.

[22]Utrecht University, < http://www.phys.uu.nl/~steen/web06/architecture.html>,
accessed at 20.04.09.

[23]Wikipedia, <http://en.wikipedia.org/wiki/List_of_device_bandwidths>,
accessed at 20.04.09.

[24]InfiniBandTM, 2007: InfiniBandTM Architecture Specification Volume 1,
Release 1.2.1

[25]DAT Collaborative, 2007: kDAPL: Kernel Direct Access Programming
Library, Version: 2.0

[26]DAT Collaborative, 2007: uDAPL:User Direct Access Programming Library,
Version: 2.0

[27]Jiuxing Liu, Sushmitha Kini and others, 2003: Performance Comparison of
MPI Implementations over InfiniBand, Myrinet and Quadrics

[28]HP, 2007: HP Integrity Superdome Data sheet, 5982-9830EEW Rev. 5

[29]International Supercomputer Conference (ISC), 2006: Tutorial, Performance
Measurement and Analysis of Parallel Programs

[30]Raj Jain, 1991: Art of Computer Systems Performance Analysis Techniques For
Experimental Design Measurements Simulation And Modeling,
Wiley Computer Publishing, John Wiley & Sons, Inc.

[31]Lindlan, K., Cuny, J., Malony, A. D., Shende, S., Mohr, B., Rivenburgh, R.,
and Rasmussen, C. 2000: A Tool Framework for Static and Dynamic
Analysis of Object-Oriented Software with Templates. Proceedings of

the SC’2000 Conference

[32]Mohr, B., Malony, A., Shende, S., and Wolf, F. 2002: Design and Prototype of
a Performance Tool Interface for OpenMP. The Journal of

Supercomputing.

[33]Forum, M.P.I. 1994: MPI: A Message Passing Interface Standard. International

Journal of Supercomputer Applications (Special Issue on MPI)

[34]Martin Burtscher, Paruj Ratanaworabhan, 2009: FPC: A High-Speed
Compressor for Double-Precision Floating-Point Data

[35]Lawrence Livermore National Laboratory,
<https://computing.llnl.gov/tutorials/mpi_performance/>, accessed at
20.04.09.

[36]Klaus A. Hoffman, Steve T. Chiang, Computational Fluid Dynamics (4.
Edition)

[37]Lawrence Livermore National Laboratory,
<https://computing.llnl.gov/tutorials/parallel_comp/>, accessed at
20.04.09

[38]Ruud van der Pas, 2002: Memory Hierarchy in Cache-Based Systems

89

CURRICULUM VITA

Candidate’s full name: İlker Kopan

Place and date of birth: İstanbul, 15/07/1981

Permanent Address: Denizköşkler Mah. Dr Sadık Ahmet Cad. Maritim
Sitesi No 83 Daire: 13 Avcılar/ İstanbul

Universities and
Colleges attended: Yıldız Technical University (Computer Engineering)

Publications: PERFORMANCE ANALYSIS OF PDE BASED
PARALLEL ALGORITHMS ON DIFFERENT
COMPUTER ARCHITECTURES at ICSCCW 2009

