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PERFORMANCE ANALYSIS OF PDE BASED PARALLEL ALGORITHMS 
ON DIFFERENT COMPUTER ARCHITECTURES  

SUMMARY 

In last two decades, use of parallel algorithms on different architectures increased the 
need of architecture and application independent performance analysis tools. Tools 
that support different communication methods and hardware prepare a common 
ground regardless of equipments provided. 

Partial differential equations (PDE) are used in several applications (such as 
propagation of heat, wave) in computational science and engineering. These 
equations can be solved using iterative numerical methods. Problem size and error 
tolerance effects iteration count and computation time to solve equation. PDE 
computations take long time using single processor computers with sequential 
algorithms, and if data size gets bigger single processors memory may be 
insufficient. Thus, PDE’s are solved using parallel algorithms on multiple processors. 
In this thesis, elliptic partial differential equation is solved using Gauss-Seidel and 
Successive Over-Relaxation (SOR) methods parallel algorithms. 

Performance analysis and optimization basically has three steps; evaluation, analysis 
of gathered information, defining and optimizing bottlenecks. In evaluation, 
performance information is gathered while program runs, then observations are made 
on gathered information by using visualization tools. Bottlenecks are defined and 
optimization techniques are researched. Necessary improvements are made to 
analyze the program again. Different applications in each of these stages can be used 
but in this thesis TAU is used, which collects these applications under one roof.   

TAU (Tuning and Analysis Utilities) supports many hardware, operating systems and 
parallelization methods. TAU is an open source application and collaborates with 
other open source applications at different levels. 

In this thesis, differences based on performance analysis of an algorithm in different 
two architectures are investigated. In performance analysis and optimization there is 
no golden rule to speed up algorithm. Each algorithm must be analyzed on that 
specific architecture. In this context, the performance analysis of a PDE algorithm on 
two architectures has been interpreted. 
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FARKLI PLATFORMLARDAKİ PDE TABANLI PARALEL 
ALGORİTMALARIN PERFORMANS ANALİZİ VE ENİYİLEMESİ 

ÖZET 

Son yıllarda dağıtık algoritmaların farklı platformlarda kullanılabilmesi platform ve 
uygulama bağımsız performans analizi uygulamaları ihtiyacını arttırmıştır. Farklı 
donanımları ve haberleşme metodlarını destekleyen uygulamalar kullanıcılara 
donanım ve yazılımdan bağımsız ortak bir zemin hazırladıkları için kolaylık 
sağlamaktadır. 

Kısmi fark denklemleri hesaplamalı bilim ve mühendisliğin bir çok alanında 
kullanılmaktadır (ısı, dalga yayılımı gibi). Bu denklemlerin sayısal çözümü 
yinelemeli yöntemler kullanılarak yapılmaktadır. Problemin boyutu ve hata değerine 
göre çözüme ulaşmak için gereken yineleme sayısı ve buna bağlı olarak süresi 
değişmektedir. Kısmi fark denklemelerinin tek işlemcili bilgisayarlardaki çözümü 
uzun sürdüğü ve yüksek boyutlarda hafızaları yetersiz kaldığı için paralelleştirilerek 
birden fazla bilgisayarın işlemcisi ve hafızası kullanılarak çözülmektedir. Tezimde 
eliptik kısmi fark denklemlerini Gauss-Seidel ve Successive Over-Relaxation (SOR) 
metodlarını kullanarak çözen paralel algoritmalar kullanılmıştır.   

Performans analizi ve eniyilemesi kabaca üç adımdan oluşmaktadır; ölçüm, 
sonuçların analizi, darboğazların tespit edilip yazılımda iyileştirme yapılması. Ölçüm 
aşamasında programın koşarken ürettiği performans bilgisi toplanır, toplanan bu 
veriler görselleştirme araçları ile anlaşılır hale getirilerek yorumlanır. Yorumlama 
aşamasında tespit edilen dar boğazlar belirlenir ve giderilme yöntemleri araştırılır. 
Gerekli iyileştirmeler yapılarak program yeniden analiz edilir. Bu aşamaların her 
birinde farklı uygulamalar kullanılabilir fakat tez çalışmamda uygulamaları tek çatı 
altında toplayan TAU kullanılmıştır. 

TAU (Tuning and Analysis Utilities) farklı donanımları ve işletim sistemlerini 
destekleyerek farklı paralelleştirme metodlarını analiz edebilmektedir. Açık kaynak 
kodlu olan TAU diğer açık kaynak kodlu uygulamalar ile uyumlu olup birçok 
seviyede bütünleşme sağlanmıştır. 

Bu tez çalışmasında, iki farklı platformda aynı uygulamanın performans analizi 
yapılarak platform farkının getirdiği farklılıklar incelenmektedir. Performans 
analizinde bir algoritmanın eniyilemesini yapmak için genel bir kural olmadığından 
her algoritma her platformda incelenerek gerekli değişiklikler yapılmalıdır. Bu 
bağlamda kullandığım PDE algoritmasının her iki sistemdeki analizi sonucu elde 
edilen bilgiler yorumlanmıştır. 
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1.  INTRODUCTION 

In the past, processor design trends were dominated by adding new instruction sets 

and increasing clock speeds. Recently, clock speeds have reached to maximum 

speed. Processor manufacturers are making multiple core designs to correspond 

demand for increasing performance. Consider clock frequency, which was on an 

exponential trend in the mid 90’s. From about 1993 with the Intel Pentium processor 

and continuing through mid 2003 with the Intel Pentium IV processor, clock 

frequency doubled every 18 months to 2 years. This was a driving force for 

increasing performance of microprocessors during this timeframe. However, due to 

increased dynamic power dissipation and design complexity, this trend tapered with 

maximum clock frequencies around 4GHz [1]. 

Since sequential algorithms use only one processor (core), makes need of parallel 

algorithms on the increase. Especially, some algorithms need more processing power 

that cannot be satisfied using single processor. Considering that, hardware trends are 

making multiple core processors instead of speeding up a single core, algorithms 

making intensive calculations will not be satisfied with sequential algorithms. 

In parallel computing, a program is split up into parts that run simultaneously on 

multiple computers communicating over a network. Distributed computing is a form 

of parallel computing, but parallel computing is most commonly used to describe 

program parts running simultaneously on multiple processors in the same computer. 

Both types of processing require dividing a program into parts that can run 

simultaneously, but distributed programs often must deal with heterogeneous 

environments, network links of varying latencies. There are different types of 

distributed computer architectures based on communication, memory and 

computation distribution. In this thesis, parallel architectures; cluster computing and 

symmetric multiprocessing (SMP) architectures has been studied.  

Parallel algorithms are designed to run on computer hardware constructed from 

interconnected processors. Parallel algorithms are used in various application areas, 

such as scientific computing.  
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Parallel algorithms are typically executed concurrently, with separate parts of the 

algorithm being run simultaneously on independent processors, and having limited 

information about what the other parts of the algorithm are doing. One of the major 

challenges in developing and implementing parallel algorithms is successfully 

coordinating the behavior of the independent parts of the algorithm. The choice of an 

appropriate parallel algorithm to solve a given problem depends on both the 

characteristics of the problem, and characteristics of the system, the kind of inter-

process communication that can be performed, and the level of timing 

synchronization between separate processes [2]. 

Performance analysis tools used for parallel algorithms are different from sequential 

algorithm performance analysis tools. Data gathered from distinct nodes must be 

merged together in the conscious of cooperative basis between nodes. On the other 

hand, performance analysis tool must be compatible with the hardware, operating 

system and software languages. This is why developers who are developing software 

on different architectures and software languages are in demand of a highly portable 

performance analysis tool.  

Performance analysis tools generate output data, which is collected when program 

runs. Generated output data can be interpreted by visualization tools. If data can be 

transformed into different formats, different visualization tools can be used for 

different purposes.  

On the other hand, portability looks for common abstractions in performance 

methods and how these can be supported by reusable and consistent techniques 

across different computing environments (software and hardware). Lack of portable 

performance evaluation environments forces users to adopt different techniques on 

different systems, even for common performance analysis. 

Given the diversity of performance problems, evaluation methods, and types of 

events and metrics, the instrumentation and measurement mechanisms needed to 

support performance observation must be flexible, to give maximum opportunity for 

configuring performance experiments, and portable, to allow consistent cross-

platform performance problem solving [3]. 
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1.1 Objectives of the Study 

Parallel algorithms achieved more popularity by the increase of HPC (High 

Performance Computing) systems and widespread use of algorithms for these 

systems. Like sequential algorithms, parallel algorithms need to be analyzed for 

performance. However, the increasing complexity of parallel systems is an issue for 

a portable and robust performance analysis tool. TAU (Tuning and Analysis 

Utilities) satisfies parallel systems requirements. In this thesis, TAU is used for 

performance analysis. 

Complex scientific calculations requires significant amount of computational power 

that cannot be done or done on time with sequential algorithms. Parallel algorithms 

are inevitable for some calculations. To achieve high performance computing 

software developer must be aware of the computing architecture. Because of the 

parallel algorithms characteristics, program performance may vary on different 

architectures. Today’s computing centers have different types of parallel computing 

servers. ITU National Center for High Performance Computing of Turkey (NCHPC) 

has three super computers with different architecture. Differences of systems achieve 

advantage to some parallel algorithms and disadvantage for some. These three 

systems have two distinct architecture types; symmetric multiprocessing (SMP) and 

cluster. 

Purpose of this thesis is to compare two architectures by making performance 

analysis of a parallel PDE algorithm. By this experiment, software developer can 

choose either of the architectures by looking at the parallel algorithm characteristics 

like communication and synchronization. By defining pros and cons of two parallel 

architectures, developer can select best suitable system for algorithm. Although 

knowing advantages of the parallel computing architecture, developers can write 

algorithms that are more efficient. 

Unfortunately, there is no golden recipe to speed up an algorithm. Hence, each 

algorithms performance analysis must be done individually to define bottleneck and 

find solutions for speeding up algorithm. Concordantly, this thesis is also a guideline 

for analyzing performance of a parallel algorithm and finding bottlenecks. Steps of 

performance analysis are common and described in details but finding solutions for 

bottlenecks are algorithm specific. 
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Parallel computers can be roughly classified according to the level at which the 

hardware supports parallelism. This classification is broadly analogous to the 

distance between basic computing nodes. In NCHPC, there are two different types of 

parallel computers, a cluster and a symmetric multiprocessor. A cluster is a group of 

loosely coupled computers that work together closely, so that in some respects they 

can be regarded as a single computer. A symmetric multiprocessor (SMP) is a 

computer system with multiple identical processors that share memory and connect 

via a bus. Difference of two architectures makes them preferable on some 

applications. A parallel PDE algorithms performance analysis is made and 

performance effects of two systems are defined by the data gathered. This work will 

help parallel algorithm developers to write software by knowing the performance 

characteristics of computer architecture. 

1.2 Background 

Here are some studies comparing parallel programming models and for PDE 

algorithms and making performance analysis on different architectures. In addition, 

performance analysis tools are criticized for their competency. TAU is used in many 

applications and architectures.   

Scalability of performance analysis software is important as much as scaling of the 

tested algorithm. TAU performance systems scalability in terascale systems has been 

proven [4]. In conclusion, the need of a performance observation framework that 

supports a wide range of instrumentation and measurement strategies for terascale 

systems is pronounced. 

The goals of a performance system in terascale is defined as: 

• greater dynamics and flexibility in performance measurements, 

• improved methods for performance mapping in multi-layered and mixed 

model software, and 

• more comprehensive application/system performance data integration 

TAU supports MPI at library level instrumentation [4]. 

Programming models has been compared on four different architectures for solving 

implicit finite-element method [5]. Four parallel architectures were used in this 
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study: (1) IBM SP with 184 4-way SMP nodes (Winterhawk I or WH I) each with 

four 375 MHz Power 3 processors, (2) IBM SP with 144 8-way SMP nodes 

(Nighthawk II or NH II) each with eight 375 MHz Power 3 processors, (3) 

Compaq/Alpha SC server with 64 4-way SMP nodes each with four 667 MHz 

CPU’s, (4) SGI Origin 2000 with 256 250 MHz processors. The performance 

analyses that were performed in this context showed that the pure MPI performance 

was usually better than the pure OpenMP performance for all architectures except for 

the case of two processors in which case the performances were close. This 

limitation in the pure OpenMP model also extends to the hybrid model, which 

performs best only when two OpenMP threads are used. 

Also another work on SGI Origin 2000 with 300MHz R12000 showed that some 

algorithms scale better on pure MPI implementation and some on OpenMP [6]. 

Especially if MPI implementation suffers from pure scaling due to poor load balance 

or memory limitations due to the use of replicated data strategy, OpenMP strategy 

may perform better [6]. 

In addition, iterative PDE solvers performance has been studied on elder 

architectures. PDE algorithms performance analysis on Digital Alpha-Server 8400 

with Alpha 21164 processor showed the inefficiency of programs [7]. Using red-

black decomposition made data level parallelization. Also, loop fusing was used for 

instruction level parallelism and to enable re-use of cache. When two or four 

iterations are fused together this two methods increased efficiency of the algorithm. 

Modern compilers can do these optimizations if algorithm supports optimization. 

When selecting parallelization method and its implementation, computers network 

connection must be considered. Implementations performance varies on different 

network architectures. MVAPICH is an MPICH2 based MPI implementation for 

Infiniband network infrastructure. MVAPICH uses Infiniband’s Remote Direct 

Memory Access (RDMA) and low latency features. With optimizations such as 

piggybacking, pipelining and zero-copy, MPICH2 is able to deliver good 

performance to the application layer. For example, MVAPICH designs achieves 7.6 

microsecond latency and 857MB/s peak bandwidth, which come quite close to the 

raw performance of InfiniBand [8].  
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2.  SELECTION OF PARALLELIZATION METHODS 

2.1 Introduction 

Algorithm development is a critical component of problem solving using computers. 

A sequential algorithm is a sequence of basic steps for solving a given problem using 

a serial computer. Similarly, a parallel algorithm is a recipe that tells us how to solve 

a given problem using multiple processors. However, specifying a parallel algorithm 

involves more than just specifying the steps. At the very least, a parallel algorithm 

has the added dimension of concurrency and the algorithm designer must specify sets 

of steps that can be executed simultaneously. In practice, specifying a nontrivial 

parallel algorithm may include some or all of the following: 

• Identifying portions of the work that can be performed concurrently. 

• Mapping the concurrent pieces of work onto multiple processes running in 

parallel. 

• Distributing the input, output, and intermediate data associated with the 

program. 

• Managing accesses to data shared by multiple processors. 

• Synchronizing the processors at various stages of the parallel program 

execution. 

Typically, there are several choices for each of the above steps, but usually, 

relatively few combinations of choices lead to a parallel algorithm that yields 

sufficient performance with the computational and storage resources employed to 

solve the problem. Often, different choices yield the best performance on different 

parallel architectures or under different parallel programming paradigms [9].  

Below Figure 2.1 shows basic four steps for parallelizing a problem. These steps are 

explained individually. 
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Figure 2.1 : Steps for parallelizing a problem [9] 

Dividing a computation into smaller computations and assigning them to different 

processors for parallel execution are the two key steps in the design of parallel 

algorithms. The process of dividing a computation into smaller parts to be executed 

in parallel is called decomposition. The main computation is divided into tasks, 

which are programmer-defined units of computation. Simultaneous execution of 

multiple tasks is the key to reducing the time required to solve the entire problem. 

The number and size of tasks into which a problem is decomposed determines the 

granularity of the decomposition. Decomposition into a large number of small tasks 

is called fine-grained and decomposition into a small number of large tasks is called 

coarse-grained [9]. 

The tasks run on physical processors. A process uses the code and data to produce 

the output of that task within a finite amount of time after the task is activated by the 

parallel program. The mechanism by which tasks are assigned to processes for 

execution is called assignment. 

The task-dependency and task-interaction graphs that result from a choice of 

decomposition play an important role in the selection of a good assignment for a 

parallel algorithm. A good assignment should seek to maximize the use of 

concurrency by assigning independent tasks onto different processes. Assignment 

stage is important for balancing workload and reducing communication between 

processes. 
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During computation, a process may synchronize or communicate with other 

processes, if needed. In order to obtain any speedup over a sequential 

implementation, a parallel program must have several processes active 

simultaneously, working on different tasks. Designing this communication and 

synchronization structure is called orchestration. Reducing the cost of 

communication, and preserving locality of data is the important goals of this stage. 

Mapping is the process of mapping processes into processors that we have. There are 

situations where mapping is done by Operating System (centralized multiprocessor), 

and there are situations where we manually do the mapping (distributed memory 

system). Maximizing processors utilization and minimizing interprocessor 

communication are the main goals of this stage. 

2.2 Parallelization Methods 

Parallel programming model is a set of software technologies to express parallel 

algorithms and match applications with the underlying parallel systems. A 

programming model must allow the programmer to balance the competing goals of 

productivity and implementation efficiency.  

Parallel models are implemented in several ways: as libraries invoked from 

traditional sequential languages, as language extensions, or complete new execution 

models.  

It is typically concerned with either the implicit or explicit specification of the 

following program properties:  

• The computational tasks – How is the application divided into parallel tasks?  

• Mapping computational tasks to processing elements – The balance of 

computation determines how well utilized the processing elements are.  

• Distribution of data to memory elements – Locating data to smaller, closer 

memories increases the performance of the implementation.  

• The mapping of communication to the inter-connection network – 

interconnect bottlenecks can be avoided by changing the communication of 

the application.  
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• Inter-task synchronization – The style and mechanisms of synchronizations 

can influence not only performance, but also functionality.  

There are several different forms of parallel computing:  

• bit-level 

• instruction level 

• data parallelism 

• task parallelism 

Bit-level parallelism is a form of parallel computing based on increasing processor 

word size. From the advent of very-large-scale integration (VLSI) computer chip 

fabrication technology in the 1970s until about 1986, advancements in computer 

architecture were done by increasing bit-level parallelism [10]. 

A computer program is, in essence, a stream of instructions executed by a processor. 

These instructions can be re-ordered and combined into groups, which are then 

executed in parallel without changing the result of the program. This is known as 

instruction-level parallelism [11]. 

Data parallelism is parallelism inherent in program loops, which focuses on 

distributing the data across different computing nodes to be processed in parallel.  

Task parallelism is the characteristic of a parallel program that "entirely different 

calculations can be performed on either the same or different sets of data" [11]. This 

contrasts with data parallelism, where the same calculation is performed on the same 

or different sets of data. 

There are several parallel programming models in common use:  

• Shared Memory  

• Threads  

• Message Passing  

• Data Parallel  

• Hybrid 

Shared Memory Model: In the shared-memory programming model, tasks share a 

common address space, which they read and write asynchronously.  
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Various mechanisms such as locks / semaphores may be used to control access to the 

shared memory. An advantage of this model from the programmer's point of view is 

that the notion of data "ownership" is lacking, so there is no need to specify 

explicitly the communication of data between tasks. Program development can often 

be simplified.  

An important disadvantage in terms of performance is that it becomes more difficult 

to understand and manage data locality. Keeping data local to the processor that 

works on it conserves memory accesses, cache refreshes and bus traffic that occur 

when multiple processors use the same data.  

Unfortunately, controlling data locality is hard to understand and beyond the control 

of the average user. 

Threads Model: In the threads model of parallel programming, a single process can 

have multiple, concurrent execution paths. Perhaps the simplest analogy that can be 

used to describe threads is the concept of a single program that includes a number of 

subroutines:  

The main program is scheduled to run by the native operating system. Main program 

performs some serial work, and then creates a number of tasks (threads) that can be 

scheduled and run by the operating system concurrently. Each thread has local data, 

but also, shares the entire resources of main program. This saves the overhead 

associated with replicating a program's resources for each thread. Each thread also 

benefits from a global memory view because it shares the memory space of main 

program.  

Threads communicate with each other through global memory (updating address 

locations). This requires synchronization constructs to insure that more than one 

thread is not updating the same global address at any time.  

Threads can come and go, but main program remains present to provide the 

necessary shared resources until the application has completed.  

Threads are commonly associated with shared memory architectures and operating 

systems. OpenMP is an implementation of threaded parallel programming model. 

Message Passing Model: In the message-passing model a set of tasks use their own 

local memory during computation. Multiple tasks can reside on the same physical 
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machine as well across an arbitrary number of machines. These tasks exchange data 

through communications by sending and receiving messages. Data transfer usually 

requires cooperative operations to be performed by each process. For example, a 

send operation must have a matching receive operation. Message Passing Interface 

(MPI) is an implementation of message passing model. 

Data Parallel Model: In the data parallel model most of the parallel work focuses on 

performing operations on a data set. The data set is typically organized into a 

common structure, such as an array or cube. A set of tasks work collectively on the 

same data structure, however, each task works on a different partition of the same 

data structure. Tasks perform the same operation on their partition of work. On 

shared memory architectures, all tasks may have access to the data structure through 

global memory. On distributed memory architectures, the data structure is split up 

and resides as "chunks" in the local memory of each task. 

Hybrid Model: Hybrid model is the collection of different parallel models. By 

combining two or more parallel models, parallelization of the program can be 

increased. This technique also helps to increase the parallel part of the algorithm. 

2.2.1 Message Passing Interface (MPI) 

MPI is a language-independent communications protocol used to program parallel 

computers. Both point-to-point and collective communications are supported. MPI is 

a message-passing application programmer interface, together with protocol and 

semantic specifications for how its features must behave in any implementation. 

MPI's goals are high performance, scalability, and portability. MPI remains the 

dominant model used in high-performance computing today [12].  

Most MPI implementations consist of a specific set of routines (i.e., an API) callable 

from FORTRAN, C, or C++ and from any language capable of interfacing with such 

routine libraries. The advantages of MPI over older message passing libraries are 

portability (because MPI has been implemented for almost every distributed memory 

architecture) and speed (because each implementation is in principle optimized for 

the hardware on which it runs) [13]. 
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The MPI interface is meant to provide essential virtual topology, synchronization, 

and communication functionality between a set of processes (that have been mapped 

to nodes/servers/computer instances) in a language-independent way, with language-

specific syntax (bindings), plus a few features that are language-specific. MPI 

programs always work with processes, but programmers commonly refer to the 

processes as processors. Typically, for maximum performance, each CPU (or core in 

a multicore machine) will be assigned just a single process. This assignment happens 

at runtime through the agent that starts the MPI program, normally called mpirun or 

mpiexec. 

 

The MPI library functions include, but are not limited to, point-to-point rendezvous-

type send/receive operations. MPI supports a Cartesian or graph-like logical process 

topology for exchanging data between process pairs (send/receive operations). MPI 

combines partial results of computations (gathering and reduction operations), 

synchronizes nodes (barrier operation) as well as obtaining network-related 

information such as the number of processes in the computing session. Point-to-point 

operations come in synchronous, asynchronous, buffered, and ready forms, to allow 

both relatively stronger and weaker semantics for the synchronization aspects of a 

rendezvous-send.  

2.2.2 OpenMP 

The OpenMP (Open Multi-Processing) is an application programming interface 

(API) that supports multi-platform shared memory multiprocessing programming in 

C, C++ and FORTRAN on many architectures, including UNIX and Microsoft 

Windows platforms. It consists of a set of compiler directives, library routines, and 

environment variables that influence run-time behavior. 

Jointly defined by a group of major computer hardware and software vendors, 

OpenMP is a portable, scalable model that gives programmers a simple and flexible 

interface for developing parallel applications for platforms ranging from the desktop 

to the supercomputer. 

An application built with the hybrid model of parallel programming can run on a 

computer cluster using both OpenMP and MPI. 
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OpenMP is an implementation of multithreading, a method of parallelization 

whereby the master "thread" (a series of instructions executed consecutively) "forks" 

a specified number of slave "threads" and a task is divided among them. The threads 

then run concurrently, with the runtime environment allocating threads to different 

processors. 

 

Figure 2.2 : OpenMP Thread Model [9] 

By default, each thread executes the parallelized section of code independently. 

"Work-sharing constructs" can be used to divide a task among the threads so that 

each thread executes its allocated part of the code. Both Task parallelism and Data 

parallelism can be achieved using OpenMP in this way. 

The runtime environment allocates threads to processors depending on usage, 

machine load and other factors. The number of threads can be assigned by the 

runtime environment based on environment variables or in code using functions. The 

OpenMP functions are included in a header file labeled "omp.h" in C/C++. 

Getting N times less wall clock execution time (or N times speedup) when running a 

program parallelized using OpenMP on an N processor platform, is seldom due to 

the other limitations. A large portion of the program may not be parallelized by 

OpenMP, which means that the theoretical upper limit of speedup is according to 

Amdahl's law [14]. One other limitation is; N processors in an SMP may have N 

times the computation power, but the memory bandwidth usually does not scale up N 

times. In addition, many other common problems affecting the final speedup in 

parallel computing also apply to OpenMP, like load balancing and synchronization 

overhead.  
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2.2.3 Mixed Programming (MPI+OpenMP) 

We can mix MPI and OpenMP if architecture has SMP nodes connected with a 

network. Most of the clusters have nodes connected to each other via communication 

network. However, inside nodes there are multiple processing units (cores). In 

NCHPC, cluster nodes have 4 or 8 cores. Parallelizing algorithm using OpenMP 

inside nodes and using MPI for inter node connection can be advantageous. 

Multiple levels of parallelism can be achieved by combining message passing and 

OpenMP parallelization. Which programming paradigm is the best will depend on 

the nature of the given problem, the hardware components of the cluster, and the 

network.  

Hybrid programming avoids the extra communication overhead with MPI within 

node. However, OpenMP has thread creation overhead, and explicit synchronization 

is required. 
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3.  PARALLEL COMPUTER ARCHITECTURES 

Parallel computers can be roughly classified according to the level at which the 

hardware supports parallelism. This classification is broadly analogous to the 

distance between basic computing nodes.  

3.1 Flynn’s Taxonomy  

There are different ways to classify parallel computers. One of the more widely used 

classifications is called Flynn’s taxonomy. Flynn's taxonomy is a classification of 

computer architectures, proposed by Michael J. Flynn in 1966 [15]. Flynn's 

taxonomy distinguishes multi-processor computer architectures according to how 

they can be classified along the two independent dimensions of Instruction and Data. 

Each of these dimensions can have only one of two possible states: Single or 

Multiple. 

S I S D 

Single Instruction, Single Data 

S I M D 

Single Instruction, Multiple Data 

M I S D 

Multiple Instruction, Single Data 

M I M D 

Multiple Instruction, Multiple Data 

Figure 3.1 : Flynn's taxonomy 

The four classifications defined by Flynn are based upon the number of concurrent 

instruction and data streams available in the architecture: 

Single Instruction, Single Data stream (SISD): A sequential computer, which 

exploits no parallelism in either the instruction or data streams. This corresponds to 

the von Neumann architecture. Examples of SISD architecture are the traditional 

uniprocessor machines like a PC or old mainframes. 
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Figure 3.2 : SISD Model 

Single Instruction, Multiple Data streams (SIMD): A computer, which exploits 

multiple data streams against a single instruction stream to perform operations, 

which may be naturally parallelized. SIMD (Single Instruction, Multiple Data; 

colloquially, "vector instructions") is a technique employed to achieve data level 

parallelism. Each processing unit can operate on a different data element, thus SIMD 

suits for specialized problems characterized by a high degree of regularity, such as 

graphics/image processing. Since the release of MMX, all the desktop CPU 

manufacturers have released chips with SIMD instructions (MMX, SSE, 3DNow!). 

As SIMD on the desktop becomes both more common and more technically 

advanced, the number of cases where it can be used has increased dramatically [16]. 

 

Figure 3.3 : SIMD Model 
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Multiple Instructions, Single Data stream (MISD): Multiple instructions operate 

on a single data stream. Few actual examples of this class of parallel computer have 

ever existed. 

 

Figure 3.4 : MISD Model 

Multiple Instructions, Multiple Data streams (MIMD): Multiple autonomous 

processors simultaneously executing different instructions on different data. Parallel 

systems are generally recognized to be MIMD architectures; either exploiting a 

single shared memory space or a distributed memory space. Machines using MIMD 

have a number of processors that function asynchronously and independently. At any 

time, different processors may be executing different instructions on different pieces 

of data. 

 

Figure 3.5 : MIMD Model 
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MIMD computers support higher-level parallelism (subprogram and task levels) that 

can be exploited by “divide and conquer” algorithms organized as largely 

independent subcalculations (for example, searching and sorting) [17]. 

3.2 Parallel Computer Memory and Communication Architectures 

Main memory in a parallel computer is either shared memory (shared between all 

processing elements in a single address space), or distributed memory (in which each 

processing element has its own local address space) [18]. Distributed memory refers 

to the fact that the memory is logically distributed, but often implies that it is 

physically distributed as well. Distributed shared memory is a combination of the 

two approaches, where the processing element has its own local memory and access 

to the memory on non-local processors. Accesses to local memory are typically faster 

than accesses to non-local memory.  

Computer systems have caches which are small, fast memories located close to the 

processor which store temporary copies of memory values. Parallel computer 

systems have difficulties with caches that may store the same value in more than one 

location, with the possibility of incorrect program execution. These computers 

require a cache coherency system, which keeps track of cached values and 

strategically purges them, thus ensuring correct program execution. Designing large, 

high-performance cache coherence systems is a very difficult problem in computer 

architecture. As a result, shared-memory computer architectures do not scale as well 

as distributed memory systems do [18]. 

3.2.1 Shared Memory 

Shared memory parallel computers vary widely, but generally have in common the 

ability for all processors to access all memory as global address space. A shared 

memory system is relatively easy to program since all processors share a single view 

of data and the communication between processors can be as fast as memory 

accesses to a same location. In shared memory architecture, multiple processors can 

operate independently but share the same memory resources. The issue with shared 

memory systems is that many CPUs need fast access to memory and will likely 

cache memory, which has two complications: 
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• CPU-to-memory connection becomes a bottleneck. Shared memory 

computers cannot scale very well. 

• Cache coherence: Whenever one cache is updated with information that may 

be used by other processors, the change needs to be reflected to the other 

processors; otherwise, the different processors will be working with 

incoherent data. Coherence protocols can provide extremely high-

performance access to shared information between multiple processors. On 

the other hand, they can sometimes become overloaded and become a 

bottleneck to performance [19]. 

Computer architectures in which each element of main memory can be accessed with 

equal latency and bandwidth are known as Uniform Memory Access (UMA) 

systems. Typically, that can be achieved only by a shared memory system, in which 

the memory is not physically distributed. A system that does not have this property is 

known as a Non-Uniform Memory Access (NUMA) architecture. 

 

Figure 3.6 : UMA and NUMA Architectures [37] 

Main advantages of shared memory system are user-friendly programming 

perspective to memory and data sharing between tasks is both fast and uniform due 

to the proximity of memory to CPUs. Primary disadvantage is the lack of scalability 

between memory and CPUs. Adding more CPUs can geometrically increases traffic 

on the shared memory-CPU path, and for cache coherent systems, geometrically 

increase traffic associated with cache/memory management. 

In NCHPC a ccNUMA symmetric multiprocessing (SMP) computer, HP Integrity 

Superdome, is used for computational calculations. HP Integrity Superdome has 

cache coherency to imply this property its memory architecture is referred as 

ccNUMA, which means that processors have shorter access times for their cell's 

memory but longer access times for other cell's memories, and data items are allowed 
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to be replicated across individual cache memories but are kept coherent with one 

another by cache coherence hardware mechanisms [20]. 

3.2.2 Distributed Memory 

Distributed memory refers to a multiple-processor computer system in which each 

processor has its own private memory. Computational tasks can only operate on local 

data, and if remote data is required, the computational task must communicate with 

one or more remote processors.  

 

Figure 3.7 : Distributed Memory Architecture [37] 

In a distributed memory system, there is typically a processor, a memory, and some 

form of interconnection that allows programs on each processor to interact with each 

other. The interconnect can be organized with point-to-point links or separate 

hardware can provide a switching network. 

Main advantage of distributed memory system is its scalability. Increase the number 

of processors and the size of memory increases proportionately. In addition, each 

processor can rapidly access its own memory without interference and without the 

overhead incurred with trying to maintain cache coherency. Main disadvantage is 

low communication speed and higher latency (compared with shared memory) which 

causes more wait time at synchronization points. 

3.2.3 Hybrid Distributed-Shared Memory 

Hybrid memory is a mixture of distributed and shared memory systems. In hybrid 

memory, each compute node has its own address space, which is used by multiple 

processors. These processors have their own caches and implement cache coherency 

protocol. Nodes have fewer processors and more cost effective compared to a shared 
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memory system. Nodes have multiple processors, a global memory and an 

interconnection that allows nodes to communicate with each other. 

 

Figure 3.8 : Hybrid Memory Architecture [37] 

NCHPC also has a HP DL360 G5 Cluster, which has hybrid memory architecture. 

Cluster has 192 nodes and 1004 cores. 

3.3 CPU Cache Memory Hierarchy 

Improvements in technology do not change the fact that microprocessors are still 

much faster than main memory. Memory access time is increasingly the bottleneck in 

overall application performance. As a result, an application might spend a 

considerable amount of time waiting for data [21]. To overcome this problem CPU 

caches are used. A CPU cache is used by the central processing unit of a computer to 

reduce the average time to access memory. The cache is a smaller, faster memory, 

which stores copies of the data from the most frequently used main memory 

locations. As long as most memory accesses are cached memory locations, the 

average latency of memory accesses will be closer to the cache latency than to the 

latency of main memory. When the processor needs to read from or write to a 

location in main memory, it first checks whether a copy of that data is in the cache. If 

so, the processor immediately reads from or writes to the cache, which is much faster 

than reading from or writing to main memory. The application can take advantage of 

this enhancement by fetching data from the cache instead of main memory. Of 

course, there is still traffic between memory and the cache, but it is minimal. 

Figure 3.9 shows general cache memory hierarchy model. 
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Figure 3.9 : General Memory Hierarchy [38] 

In a modern microprocessor, several caches are found. They not only vary in size and 

functionality, but also their internal organization is typically different across the 

caches. Common caches are instruction, data, and Translation Lookaside Buffer 

(TLB) cache.  

The instruction cache is used to store instructions. This helps to reduce the cost of 

going to memory to fetch instructions. 

A data cache is a fast buffer that contains the application data. Before the processor 

can operate on the data, it must be loaded from memory into the data cache. The 

element needed is then loaded from the cache line into a register and the instruction 

using this value can operate on it. The resultant value of the instruction is also stored 

in a register. The register contents are then stored back into the data cache.  

Translating a virtual page address to a valid physical address is rather costly. The 

TLB is a cache to store these translated addresses. 

Each entry in the TLB maps to an entire virtual memory page. The CPU can only 

operate on data and instructions that are mapped into the TLB. If this mapping is not 

present, the system has to re-create it, which is a relatively costly operation. The 

larger a page, the more effective capacity the TLB has. If an application does not 

make good use of the TLB (for example, random memory access) increasing the size 

of the page can be beneficial for performance, allowing for a bigger part of the 

address space to be mapped into the TLB. 
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Figure 3.10 : Generic System Architecture [38] 

Figure 3.10 shows unified cache at level two. Both instructions and data are stored in 

this type of cache. The cache at the highest level is often unified and external to the 

microprocessor. The cache architecture shown in figure 3.10 is rather generic. There 

are other types of caches in a modern microprocessor. In NCHPC two types of 

processors are used. HP Integrity Superdome is a RISC-based ccNUMA SMP system 

and uses Intel Itanium 2 processors. Another HP cluster uses Intel XEON processor. 

Below is the block diagram of Intel Itanium processor. 

 

Figure 3.11 : Block diagram of an Intel Itanium 2 core [22] 

As can be seen from Figure 3.11 there are four floating-point units capable of 

performing Fused Multiply Accumulate (FMAC) operations. However, two of these 
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work at the full 82-bit precision, which is the internal standard on Itanium 

processors, while the other two can only be used for 32-bit precision operations. 

When working in the customary 64-bit precision the Itanium has a theoretical peak 

performance of 6 Gflop/s at a clock frequency of 1.5 GHz [22]. Using 32-bit floating 

arithmetic, the peak is doubled. In addition, four MMX units are present to 

accommodate instructions for multi-media operations, an inheritance from the Intel 

Pentium processor family. For compatibility with this Pentium family there is a 

special IA-32 decode and control unit. 

Because now two cores are present on a chip, some improvements had to be added to 

let them cooperate without problems. The synchronizers in the core feed their 

information about read and write requests and cache line validity to the arbiter. The 

arbiter filters out the unnecessary requests and combines information from both cores 

before handing the requests over to the system interface.  

Intel Xeon processors play a major role in the cluster community as the majority of 

compute nodes in Beowulf clusters are of this type.  

In Figure 3.12, a block diagram of the processor is shown with one of the cores in 

some detail. Note that the two cores share one second-level cache while the L1 

caches and TLBs are local to each of the cores. 

 

Figure 3.12 : Block diagram of the Intel Xeon processor [22] 
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The floating-point units, depicted in Figure 3.12, contain also additional units that 

execute the Streaming SIMD Extensions 2 and 3 (SSE2/3) instructions, a 144-

member instruction set, that is especially meant for vector-oriented operations like in 

multimedia, and 3-D visualization applications but which will also be of advantage 

for regular vector operations as occur in dense linear algebra. The length of the 

operands for these units is 128 bits. The throughput of these SIMD units has been 

increased by a factor of two in the core architecture, which greatly increase the 

performance of the appropriate instructions. The Intel compilers have the ability to 

address the SSE2/3 units. This makes it in principle possible to achieve a 2-3 times 

higher floating-point performance [22]. 

3.4 Network Interfaces 

Cluster computers are connected through network devices. There are several types of 

network devices. Each device has different speed and latency. Speeds of these 

devices are listed in Table 3.1 [23]. 

Table 3.1 : Local Area Network Device Bandwidths 

Device   Speed (bit/s)    Speed (byte/s)    
Token Ring IEEE 802.5t 100 Mbit/s 12.5 MB/s 

Fast Ethernet (100base-X) 100 Mbit/s 12.5 MB/s 

FDDI 100 Mbit/s 12.5 MB/s 

FireWire (IEEE 1394) 400 393.216 Mbit/s 49.152 MB/s 

HIPPI 800 Mbit/s 100 MB/s 

Token Ring IEEE 802.5v 1,000 Mbit/s 125 MB/s 

Gigabit Ethernet (1000base-X) 1,000 Mbit/s 125 MB/s 

Myrinet 2000 2,000 Mbit/s 250 MB/s 

Infiniband SDR 1X 2,000 Mbit/s 250 MB/s 

Quadrics QsNetI 3,600 Mbit/s 450 MB/s 

Infiniband DDR 1X 4,000 Mbit/s 500 MB/s 

Infiniband QDR 1X 8,000 Mbit/s 1,000 MB/s 

Infiniband SDR 4X 8,000 Mbit/s 1,000 MB/s 

Quadrics QsNetII 8,000 Mbit/s 1,000 MB/s 

10 Gigabit Ethernet (10Gbase-X) 10,000 Mbit/s 1,250 MB/s 

Myri 10G 10,000 Mbit/s 1,250 MB/s 

Infiniband DDR 4X 16,000 Mbit/s 2,000 MB/s 

Scalable Coherent Interface (SCI) Dual 
Channel SCI, x8 PCIe 

20,000 Mbit/s 2,500 MB/s 
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Infiniband SDR 12X 24,000 Mbit/s 3,000 MB/s 

Infiniband QDR 4X 32,000 Mbit/s 4,000 MB/s 

Infiniband DDR 12X 48,000 Mbit/s 6,000 MB/s 

Infiniband QDR 12X 96,000 Mbit/s 12,000 MB/s 

100 Gigabit Ethernet (100Gbase-X) 100,000 Mbit/s 12,500 MB/s 

 

NCHPC cluster network interface is Infiniband DDR 4X. InfiniBand is a switched 

fabric communications link primarily used in high-performance computing. Its 

features include quality of service and failover, and it is designed to be scalable. The 

InfiniBand architecture specification defines a connection between processor nodes 

and high performance I/O nodes such as storage devices. It is a superset of the 

Virtual Interface Architecture. 

Like Fibre Channel, PCI Express, Serial ATA, and many other modern interconnects, 

InfiniBand is a point-to-point bidirectional serial link intended for the connection of 

processors with high speed peripherals such as disks. It supports several signaling 

rates and, as with PCI Express, links can be bonded together for additional 

bandwidth. 

Infiniband architecture (IBA) defines a System Area Network (SAN) for connecting 

multiple independent processor platforms (i.e., host processor nodes), I/O platforms, 

and I/O devices (see Figure 6). The IBA SAN is a communications and management 

infrastructure supporting both I/O and interprocessor communications (IPC) for one 

or more computer systems. An IBA system can range from a small server with one 

processor and a few I/O devices to a massively parallel supercomputer installation 

with hundreds of processors and thousands of I/O devices. Furthermore, the internet 

protocol (IP) friendly nature of IBA allows bridging to an internet, intranet, or 

connection to remote computer systems. IP over InfiniBand (IPoIB) is implemented 

for using IP communication on IBA [24]. 

IBA defines a switched communications fabric allowing many devices to 

concurrently communicate with high bandwidth and low latency in a protected, 

remotely managed environment. An end node can communicate over multiple IBA 

ports and can utilize multiple paths through the IBA fabric. The multiplicity of IBA 

ports and paths through the network are exploited for both fault tolerance and 

increased data transfer bandwidth. 
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IBA hardware off-loads from the CPU much of the I/O communications operation. 

This allows multiple concurrent communications without the traditional overhead 

associated with communicating protocols. The IBA SAN provides its I/O and IPC 

clients zero processor-copy data transfers, with no kernel involvement, and uses 

hardware to provide highly reliable, fault tolerant communications [24]. 

The serial connection's signaling rate is 2.5 gigabit per second (Gbit/s) in each 

direction per connection. InfiniBand supports double (DDR) and quad data (QDR) 

speeds, for 5 Gbit/s or 10 Gbit/s respectively, at the same data-clock rate [24]. 

 

Links use 8B/10B encoding — every 10 bits sent carry 8bits of data — so that the 

useful data transmission rate is four-fifths the raw rate. Thus single, double, and quad 

data rates carry 2, 4, or 8 Gbit/s respectively [24]. 

Links can be aggregated in units of 4 or 12, called 4X or 12X. A quad-rate 12X link 

therefore carries 120 Gbit/s raw, or 96 Gbit/s of useful data. Most systems today use 

either a 4X 2.5 Gbit/s (SDR) or 5 Gbit/s (DDR) connection. Larger systems with 12x 

links are typically used for cluster and supercomputer interconnects and for inter-

switch connections. 

The single data rate switch chips have a latency of 200 nanoseconds, and DDR 

switch chips have a latency of 140 nanoseconds. The end-to-end latency range is 

from 1.07 microseconds MPI latency (Mellanox ConnectX HCAs) to 1.29 

microseconds MPI latency (Qlogic InfiniPath HTX HCAs) to 2.6 microseconds 

(Mellanox InfiniHost III HCAs). Various InfiniBand host channel adapters (HCA) 

exist in the market today, each with different latency and bandwidth characteristics. 

InfiniBand also provides RDMA capabilities for low CPU overhead. The latency for 

RDMA operations is less than 1 microsecond (Mellanox ConnectX HCAs) [24]. 

InfiniBand uses a switched fabric topology, as opposed to a hierarchical switched 

network like Ethernet. Like the channel model used in most mainframe computers, 

all transmissions begin or end at a channel adapter. Each processor contains a host 

channel adapter (HCA) and each peripheral has a target channel adapter (TCA). 

These adapters can also exchange information for security or quality of service. 

Data is transmitted in packets of up to 4 kB that are taken together to form a 

message. A message can be: 
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• a direct memory access read from or, write to, a remote node (RDMA) 

• a channel send or receive 

• a transaction-based operation (that can be reversed) 

• a multicast transmission. 

• an atomic operation 

Sockets Direct Protocol (SDP): The Sockets Direct Protocol (SDP) is a networking 

protocol originally defined by the Software Working Group (SWG) of the InfiniBand 

Trade Association. Originally designed for InfiniBand, SDP now has been redefined 

as a transport agnostic protocol for Remote Direct Memory Access (RDMA) network 

fabrics. SDP defines a standard wire protocol over an RDMA fabric to support 

stream sockets (SOCK_STREAM) network. SDP utilizes various RDMA network 

features for high-performance zero-copy data transfers. SDP is a pure wire-protocol 

level specification and does not go into any socket API or implementation specifics. 

The purpose of the Sockets Direct Protocol is to provide an RDMA accelerated 

alternative to the TCP protocol on IP. The goal is to do this in a manner, which is 

transparent to the application. 

Today, Sockets Direct Protocol for the Linux operating system is part of the 

OpenFabrics Enterprise Distribution (OFED), a collection of RDMA networking 

protocols for the Linux operating system. OFED is managed by the OpenFabrics 

Alliance. Many standard Linux distributions include the current OFED. 

Sockets Direct Protocol only deals with stream sockets, and if installed in a system, 

bypasses the OS resident TCP stack for stream connections between any endpoints 

on the RDMA fabric. All other socket types (such as datagram, raw, packet etc.) are 

supported by the Linux IP stack and operate over standard IP interfaces (i.e., IPoIB 

on InfiniBand fabrics). The IP stack has no dependency on the SDP stack; however, 

the SDP stack depends on IP drivers for local IP assignments and for IP address 

resolution for endpoint identifications. 

IP over IB: InfiniBand is an emerging standard intended as an interconnect for 

processor and I/O systems and devices. IP is one type of traffic that could use this 

interconnect. InfiniBand would benefit greatly from a standardized method of 

handling IP traffic on IB fabrics. It is also important to be able to manage InfiniBand 
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devices in a common way. IPoIB enables advanced functionalities such as mapping 

IP QOS into IB-specific.  

Direct Access Provider Library (kDAPL/uDAPL): Direct Access Provider 

Library is a transport-independent, platform-independent, high-performance API for 

using the remote direct memory access (RDMA) capabilities of modern interconnect 

technologies such as InfiniBand, the Virtual Interface Architecture, and iWARP.  

The Kernel Direct Access Programming Library (kDAPL) defines a single set of 

kernel-level APIs for all RDMA-capable Transports [25]. The User Direct Access 

Programming Library (uDAPL) defines a single set of user-level APIs for all 

RDMA-capable Transports. Both kDAPL and uDAPL mission are to define a 

Transport-independent and Platform-standard set of APIs that exploits RDMA 

capabilities, such as those present in IB, VI, and RDDP WG of IETF [26]. 

Latency and bandwidth are most used network performance parameters. These two 

parameters affect MPI performance too. Latency is a dominant factor for network 

performance on small sized messages and synchronization points. Bandwidth 

becomes dominant on heavy data transfers. IBA’s low latency and high bandwidth 

increases its performance. Thus, MPI implementations latency and bandwidth vary 

and they cannot achieve theoretical values of IBA. MVAPICH2 (MPI over 

InfiniBand and iWARP) is MPICH2 based MPI implementation for IBA. 

MVAPICH2 designs achieves 7.6 microsecond latency and 857MB/s peak 

bandwidth, which come quite close to the raw performance of InfiniBand [8]. 

MVAPICH is an MPICH2 based MPI implementation for Infiniband network 

infrastructure. MVAPICH uses Infiniband’s Remote Direct Memory Access 

(RDMA) and low latency features. With optimizations such as piggybacking, 

pipelining and zero-copy, MPICH2 is able to deliver good performance to the 

application layer. For example, MVAPICH designs achieves 7.6 microsecond 

latency and 857MB/s peak bandwidth, which come quite close to the raw 

performance of InfiniBand [8]. IBA’s high-speed infrastructure delivers high 

bandwidth compared to other network architectures. InfiniBand can outperform other 

interconnects if the application is bandwidth-bound [27]. 

The Superdome has a 2-level crossbar processor interconnection: one level within a 

4-processor cell and another level by connecting the cells through the crossbar 
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backplane. Every cell connects to the backplane at a speed of 8 GB/s and the global 

aggregate bandwidth for a fully configured system is therefore 64 GB/s.  

Another parallel architecture used in this work is HP Integrity Superdome in 

ccNUMA architecture SMP computer. HP Integrity Superdome has crossbar 

connection between cells. Crossbar connection throughput per cell is 27.3 GB/s, 

which is much higher than any network connection device [28]. 

The basic building block of the Superdome is the 4-processor cell. All data traffic 

within a cell is controlled by the Cell Controller. It connects to the four local memory 

subsystems at 16 GB/s, to the backplane crossbar at 8 GB/s, and to two ports, that 

each serves two processors at 6.4 GB/s/port. As each processor houses two CPU 

cores, the available bandwidth per CPU core is 1.6 GB/s [28].  
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4.  PERFORMANCE ANALYSIS 

Performance analysis is the investigation of a program's behavior using information 

gathered as the program runs. The usual goal of performance analysis is to determine 

which parts of a program to optimize for speed or memory usage. 

A profiler is a performance analysis tool that measures the behavior of a program as 

it runs, particularly the frequency and duration of function calls. The output is a 

stream of recorded events (a trace) or a statistical summary of the events observed (a 

profile). Profilers use a wide variety of techniques to collect data, including hardware 

interrupts, code instrumentation, operating system hooks, and performance counters. 

Performance analysis tools generates data while program runs, and data size is 

related to code size and run time. To keep pace with the growing complexity of 

large-scale parallel supercomputers, performance tools must handle effective 

instrumentation of complex software and the correlation of runtime performance data 

with system characteristics. In addition, workload characterization is an important 

tool for understanding the the nature and performance of the workload submitted to a 

parallel system. 

In this thesis, TAU (Tuning and Analysis Utilities) is used for performance analysis. 

TAU  parallel performance system is the product of seventeen years of development 

to create a robust, flexible, portable, and integrated framework and toolset for 

performance instrumentation, measurement, analysis, and visualization of large-scale 

parallel computer systems and applications. The success of the TAU project 

represents the combined efforts of researchers at the University of Oregon and 

colleagues at the Research Centre Juelich and Los Alamos National Laboratory. [3] 

4.1 Performance Evaluation and Objectives 

In general, the objective of performance analysis is to define and reduce the 

consumption of sources. Performance analysis of a parallel algorithm is used to 

determine which sections of an algorithm to optimize. Optimization is made either to 



 
34 

Instrumentation 

Optimization 

Presentation 

Analysis 

Measurement 

increase speed or decrease communication time (or both). In this thesis, both 

computation and communication time tried to be decreased. 

This flow chart (Figure 4.1) is the general approach in performance evaluation [29]. 

 
 

Choosing the collection method of data (library level,  
    manual) 
 
 Collecting performance data from software 
 
 
 Calculation of the measurement metrics, finding  
      performance bottlenecks. 

 

 Easily understandable presentation of the results 
 
 
 Optimization to reduce performance bottlenecks 
 

Figure 4.1 : Performance Evaluation 

Most performance problems are unique. The metrics, workload, and evaluation 

techniques used for one problem generally cannot be used for the next problem. 

Nevertheless, there are steps common to all performance evaluation projects that 

help you avoid the common mistakes. These steps are as follows [30]. 

State Goals and Define the System: The first step in any performance evaluation 

project is to state the goals of the study and define what constitutes the system by 

delineating system boundaries. Given the same set of hardware and software, the 

definition of the system may vary depending upon the goals of the study. The goal is 

to find bottlenecks and reduce wall clock time. 

Select Metrics: The next step is to select criteria to compare the performance. These 

criterias are called metrics. In general, the metrics are related to the speed, accuracy, 

and availability of services. The performance of a network, for example, is measured 

by the speed (throughput and delay), accuracy (error rate), and availability of the 

packets sent. The performance of a processor is measured by the speed of (time taken 

to execute) various instructions. Metrics used in this thesis are, time taken to execute 

a part of program, speedup and network throughput. 
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List Parameters: The next step in performance projects is to make a list of all the 

parameters that effect performance. The list can be divided into system parameters 

and workload parameters. System parameters include both hardware and software 

parameters. Workload parameters are characteristics of users’ requests. In this work 

parameters were architecture, number of processers, data size and PDE error 

tolerance. 

Select Factors to Study: The list of parameters can be divided into two parts: those 

that will be varied during the evaluation and those that will not. The parameters to be 

varied are called factors and their values are called levels. In general, the list of 

factors, and their possible levels, is larger than what the available resources will 

allow. Otherwise, the list will keep growing until it becomes obvious that there are 

not enough resources to study the problem. It is better to start with a short list of 

factors and a small number of levels for each factor and to extend the list in the next 

phase of the project if the resources permit. In this thesis, different number of 

processors and data size used to show scalability. 

Select Evaluation Technique: The three broad techniques for performance 

evaluation are analytical modeling, simulation, and measuring a real system. The 

selection of the right technique depends upon the time and resources available to 

solve the problem and the desired level of accuracy. In this work, real system values 

measures with TAU. 

Select Workload: The workload consists of a list of service requests to the system. 

Depending upon the evaluation technique chosen, the workload may be expressed in 

different forms. For analytical modeling, the workload is usually expressed as a 

probability of various requests. For simulation, one could use a trace of requests 

measured on a real system. For measurement, the workload may consist of user 

scripts to be executed on the systems. In PDE algorithms data size defines programs 

workload. Various workloads used to show scalability. 

Design Experiments: The goal is to determine the relative effect of various factors. 

In most cases, this can be done with fractional factorial experimental designs. In the 

second phase, the number of factors is reduced and the number of levels of those 

factors that have significant impact is increased. Experiments are done by running 

program and collecting information using TAU. 
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Analyze and Interpret Data: In comparing two experiments, it is necessary to take 

into account the variability of the results. Simply comparing the means can lead to 

inaccurate conclusions. It must be understood that the analysis only produces results 

and not conclusions. The results provide the basis on which the analysts or decision 

makers can draw conclusions. TAU has visualization tools for interpreting data. 

Paraprof is used for profiling visualization and Jumpshot is used for trace 

visualization. 

Present Results: The final step of all performance projects is to communicate the 

results to other members of the decision-making team. It is important that the results 

be presented in a manner that is easily understood. This usually requires presenting 

the results in graphic form and without statistical title. 

4.2 Instrumentation 

In order to observe performance, additional instructions or probes are typically 

inserted into a program. This process is called instrumentation. As events execute, 

they activate the probes, which perform measurements. Thus, instrumentation 

exposes key characteristics of an execution. Instrumentation can be introduced in a 

program at several levels of the program transformation process. Instrumentation 

methods below are used in this thesis.  

Selective Instrumentation: Selective instrumentation is based on definitions of 

listed events to be included or excluded for measurement. TAU supports this feature 

by using an instrumentation file. The idea is to record a list of performance events to 

be included or excluded by the instrumentation in a file. The file is then used during 

the instrumentation process to restrict the event set. The basic structure of the file is a 

list of names separated into include and exclude lists. File names can be given to 

restrict instrumentation focus. Exclusion is used to eliminate unwanted performance 

events, such as high frequency, small routines that generate excessive measurement 

overhead, and provide easy event configuration for customized performance 

experiments. Selective instrumentation is used for defining calculation areas of 

algorithm. 

Preprocessor-Based Instrumentation: The source code of a program can be altered 

by a preprocessor before it is compiled. This approach typically involves parsing the 
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source code to infer where instrumentation probes are to be inserted. As an example 

of automatic instrumentation through the preprocessing built into a compiler, TAU’s 

memory allocation/deallocation tracking package can be used to re-direct the 

references to the C malloc/free calls. The preprocessor invokes TAU’s corresponding 

memory wrapper calls with the added information about the line number and the file. 

The atomic event interface can then track the size of memory allocated and 

deallocated to help locate potential memory leaks. Preprocessor-based 

instrumentation is also commonly used to insert performance measurement calls at 

interval entry and exit points in the source code. To support automatic performance 

instrumentation at the source level, the TAU project has developed the Program 

Database Toolkit (PDT) [31]. The purpose of PDT, shown in Figure 4.2 is to parse 

the application source code and locate the semantic constructs to be instrumented. 

PDT is comprised of commercial-grade front-ends that emit an intermediate 

language (IL) file, IL analyzers that walk the abstract syntax tree and generate a 

subset of semantic entities in program database (PDB) ASCII text files, and a library 

interface (DUCTAPE) to the PDB files that allows to write static analysis tools. 

When the application is executed subsequently, performance data is generated. TAU 

also supports OpenMP instrumentation using a preprocessor tool called Opari [32]. 

Opari inserts POMP [32] annotations and rewrites OpenMP directives in the source 

code. TAU’s POMP library tracks the time spent in OpenMP routines based on each 

region in the source code. To track the time spent in user-level routines, Opari 

instrumentation can be combined with PDT based instrumentation as well. Opari is 

used with TAU to measure OpenMP performance. 

 

Figure 4.2 : Program Database Toolkit Diagram [3] 
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Wrapper Library-Based Instrumentation: A common technique to instrument 

library routines is to substitute the standard library routine with an instrumented 

version, which in turn calls the original routine. The problem is that you would like 

to do this without having to develop a different library just to alter the calling 

interface. MPI provides an interface [33] that allows a tool developer to intercept 

MPI calls in a portable manner without requiring a vendor to supply proprietary 

source code of the library and without requiring the application source code to be 

modified by the user. This is achieved by providing hooks into the native library. The 

advantage of this approach is that library level instrumentation can be implemented 

by defining a wrapper interposition library layer that inserts instrumentation calls 

before and after calls to the native routines. TAU has a TAU MPI wrapper library 

that intercepts calls to the native library by defining routines with the same name, 

such as MPI_Send. These routines then call the native library routines with the name 

shifted routines, such as PMPI_Send. Wrapped around the call, before and after, is 

TAU performance instrumentation. An added advantage of providing such a wrapper 

interface is that the profiling wrapper library has access to not only the routine 

transitions, but also to the arguments passed to the native library. This allows TAU to 

track the size of messages, identify message tags, or invoke other native library 

routines. This type of instrumentation is used for MPI functions in this thesis. 

4.3 Measurement 

The instrumentation layer is responsible for defining the performance events for an 

experiment, establishing relationships between events, and managing those events in 

the context of the parallel computing model being used. Measurement is done 

through the probes inserted in instrumentation. 

Figure 4.3 shows TAU instrumentation and measurement architecture. 
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Figure 4.3 : Architecture of TAU (Instrumentation and Measurement) [3] 

4.3.1 Profile of an Algorithm 

Profiling characterizes the behavior of an application in terms of aggregate 

performance metrics. Profiles are typically represented as a list of various metrics 

(such as wall-clock time) and associated statistics for all performance events in the 

program. There are different statistics kept for interval events (such as routines or 

statements in the program) versus atomic events. For interval events, TAU profile 

measurements compute exclusive and inclusive metrics spent in each routine.  

The TAU profiling system supports several profiling variants [3]. The most basic and 

standard type of profiling is called flat profiling. If TAU is being used for flat 

profiling, performance measurements are kept for interval events only. For instance, 

flat profiles will report the exclusive performance (e.g. time) for a routine, say A, as 

the amount of time spent executing in A exclusively. Any time spent in routines 

called by A will be represented in A’s profile as inclusive time, but it will not be 

differentiated with respect to the individual routines A called. Flat profiles also keep 
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information on the number of times A was called and the number of routines (i.e. 

events) called by A. Again, TAU will keep a flat profile for every node/ 

/context/thread of the program’s execution.  

Depth of flat profiling is one hence TAU can be configured for deeper profiling. 

Depth of profiling can be increased. 

4.3.2 Trace of an Algorithm 

While profiling is used to get aggregate summaries of metrics in a compact form, it 

cannot highlight the time varying aspect of the execution. Event tracing usually 

results in a log of the events that characterize the execution. Each event in the log is 

an ordered row typically containing a time stamp, a location (e.g. node, thread), an 

identifier that specifies the type of event (e.g. routine transition, user-defined event, 

message communication, etc.) and event-specific information. With tracing enabled, 

every node/context/thread will generate a trace for instrumented events. TAU will 

write traces in its modern trace format as well as in VTF3 format. Support for a 

counter value to be included in event records is fully implemented. In addition, 

certain standard events are known by TAU’s tracing system, such as multi-threading 

operations and message communication [3].  

TAU also supports runtime trace reading and analysis, it is important to understand 

what takes place when TAU records performance events in traces. Also in case of a 

program crash traces generated so far will remain, this can help the user to find point 

of crash. 

4.4 Analysis 

Analysis is interpretation of collected performance data. Several tools can be used to 

visualize performance data. TAU gives the ability to track performance data in 

widely diverse environments, and thus provides a wealth of information to the user. 

The usefulness of this information, however, is highly dependent on the ability of 

analysis toolsets to manage and present the information. As the size and complexity 

of the performance information increases, the challenge of performance analysis and 

visualization becomes more difficult. TAU supports different visualization tools. In 

this thesis, ParaProf is used for profile analysis and Jumpshot is used for trace data. 

Below Figure 4.4 shows analysis architecture of TAU [3]. 
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Figure 4.4 : Architecture of TAU (Analysis and Visualization) [3] 

Both ParaProf and Jumpshot are capable of handling large size of performance data. 

TAU supports different profile and trace file formats with file converters. 
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5.  COMPUTATION OPTIMIZATIONS 

Parallel algorithms, used in High Performance Computing (HPC) are making 

intensive floating-point calculations that take long time. For this reason, any 

optimization in parallel algorithm saves significant time even if the percentage of 

optimization is low. Computational optimizations are algorithm specific; algorithms 

are modified to eliminate branches and used alternative instructions, which take less 

computational time. 

5.1 Objectives 

One might reduce the amount of time that a program takes to perform some task at 

the price of making it consume more memory. In an application where memory 

space is at a premium, one might deliberately choose a slower algorithm in order to 

use less memory. Often there is no “one size fits all” design which works well in all 

cases, so engineers make trade-offs to optimize the attributes of greatest interest. 

Additionally, the effort required to make a piece of software completely optimal is 

almost always not needed when more than significant speedup left; so the process of 

optimization may be halted before a completely optimal solution has been reached. 

Fortunately, it is often the case that the greatest improvements come early in the 

process.  

In this thesis, overall wall clock time of the PDE algorithm is tried to be reduced. 

Performance evaluation starts with finding most time consuming the part of the 

algorithm. After improving that part, another section of code is selected for 

performance improvement.  

5.2 Optimization Levels 

Techniques used in optimization can be broken up among various levels, which can 

affect anything from a single statement to the entire program. In addition to scoped 

optimizations, there are two further general categories of optimization: 
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Programming language-independent vs. language-dependent: Most high-level 

languages share common programming constructs and abstractions; decision (if, 

switch, case), looping (for, while, repeat.. until, do.. while), encapsulation (structures, 

objects). Thus, similar optimization techniques can be used across languages. 

However, certain language features make some kinds of optimizations difficult. For 

instance, 2D matrix data order in C is row wise but in FORTRAN it is column wise. 

This is important if matrix data is processed in nested two loops; loops order changes 

cache performance. Software developer must be aware of the programming 

languages characteristics. 

Machine independent vs. machine dependent: Many optimizations that operate on 

abstract programming concepts (loops, objects, structures) are independent of the 

machine targeted by the compiler, but many of the most effective optimizations are 

those that best exploit special features of the target platform. RISC and CISC 

processors have different instruction sets. Software must be compiled for its 

processor architecture. Easy way of machine dependent optimization is leaving it to 

the compiler and forcing compiler to use machine dependent optimizations. 

For instance, in the case of compile-level optimization, platform independent 

techniques are generic techniques such as loop unrolling, reduction in function calls, 

memory efficient routines, reduction in conditions, etc., that impact most CPU 

architectures in a similar way. Generally, these serve to reduce the total instruction 

path length required to complete the program and/or reduce total memory usage 

during the process. On the other side, platform dependent techniques involve 

instruction scheduling, instruction level parallelism, data level parallelism, cache 

optimization techniques, i.e. parameters that differ among various platforms; the 

optimal instruction scheduling might be different even on different processors of the 

same architecture. 

In this thesis, platform dependent optimizations are based on compiler level using 

optimization level O3. Otherwise, CPU dependent optimization must be done using 

assembler, which is not available in IA64 architecture compilers. Compilers for 

specific architectures like IA64 are capable of doing CPU dependent optimization. 

Compilers analyses code and decides optimization. Compilers need simple, clear and 

data independent algorithms for better optimization. In this thesis compiler cannot 



 
45

optimize code version 1 but after changing loop properties compiler is able to make 

optimization. 

Optimization can occur at a number of 'levels'. These levels are described below. 

5.2.1 Design level 

At the highest level, the design may be optimized to make best use of the available 

resources. The implementation of this design will benefit from a good choice of 

efficient algorithms and the implementation of these algorithms will benefit from 

writing good quality code. The architectural design of a system overwhelmingly 

affects its performance. The choice of algorithm effects efficiency more than any 

other item of the design. In some cases, however, optimization relies on using fancier 

algorithms, making use of special cases and special tricks and performing complex 

trade-offs; thus, a fully optimized program can sometimes, if insufficiently 

commented, be more difficult for less experienced programmers to comprehend and 

hence may contain more faults than unoptimized versions. 

In this thesis, a PDE solver algorithm has been analyzed and optimized. In the 

algorithm, Gauss-Seidel method is used for solving PDE. 2-D PDE algorithms are 

commonly used, and simple to understand. Algorithms matrix data distribution is 

row-wise block stripped 1D decomposition. To achieve Gauss-Seidel method 

multicoloring algorithm is used with three colors and nine stencils. Algorithm will be 

explained in details later.  

5.2.2 Source code level 

Avoiding bad quality coding can also improve performance, by avoiding obvious 

slowdowns. Parallel algorithm used in this thesis has three calculation blocks for 

three colors. Each block contains two nested loops to calculate new values of matrix 

at each iteration. However, each block has to calculate its color not all points. To test 

the points color if branch was used; from now on, this version of algorithm will be 

called as version 1. This part of the code is altered to eliminate if condition test. After 

eliminating if condition, calculation block speeds up nearly five times. Below is the 

code snippet of algorithms version1 and version 2. 
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Version 1: 

for(i=2; i<rows_local-2; i++) 

    for(j=2; j<cols_local-2; j++){ 
        if((i+j-global_start) % 3 == colorC){ 
    temp = A(i,j); 
    A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j) 

       +A(i+1,j)+A(i,j-1)+A(i,j+1) );  
    if( fabs(temp - A(i,j)) > tol && iter%10 == 0) 
      done = FALSE; 
  } 
} 

  

Version 2: 

start=(colorC+global_start-2)%3; 
if (start<2)  
 start+=3; 
 

for(i=2; i<rows_local-2; i++) {   
 for (j=start;j<cols_local-2;j=j+3) { 
   temp = A(i,j); 
  A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j) 

      +A(i+1,j)+A(i,j-1)+A(i,j+1) );  

  if(iter%10 == 0 && fabs(temp - A(i,j)) > tol  ) 
    done = FALSE; 
 } 

 if (start > 2)  
  start--;  
 else start+=2; 

} 

 

 

5.2.3 Compiler level  

Compiler optimization is the process of tuning the output of a compiler to minimize 

or maximize some attribute of an executable computer program. The most common 

requirement is to minimize the time taken to execute a program; a less common one 

is to minimize the amount of memory occupied. In this thesis, compiler optimization 

levels O2 and O3 are used to achieve compiler level optimization. If source code is 

compiled with –O3 flag the optimization is will be CPU dependent. Programs, 

compiled at optimization level O3, may not run on different processors. Compilers 

optimization levels does not always decrease programs run time, this is shown with 

the experiments.  



 
47

5.2.4 Assembly level 

At the lowest level, writing code using an assembly language designed for a 

particular hardware platform will normally produce the most efficient code since the 

programmer can take advantage of the full repertoire of machine instructions. 

Unfortunately, c compilers in ia64 architecture do not allow using inline assembly in 

c. No assembly level optimizations have been made in this work. 
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6.  COMMUNICATION OPTIMIZATIONS 

Parallel algorithms exchange their data using communication methods. This 

communication can be point-to-point or collective. In MPI algorithms, the 

programmer must design these communication steps. In contrast, OpenMP has a 

seamless processor communication. Programmer does not use special 

communication functions, because all memory is accessible to all processors. 

6.1 Objectives 

In PDE based iterative high performance parallel computing algorithms, 

communication takes place at each iteration. Iteration count effects communication 

time. If communication time can be reduced, whole program will benefit from this 

optimization. 

Two parameters effect communication time, latency and bandwidth. Latency refers 

to any of several kinds of delays typically incurred in processing of network data. 

Mostly latency is referred as time taken for transfer of a zero sized packet. 

Bandwidth is a measure of available or consumed data communication resources 

expressed in bit/s. Bandwidth effects data packets travel time.  

In this work, MPI communication time is tried to reduce using persistent 

communication methods. 

6.2 Communication Methods 

MPI supports both point-to-point and collective communications.  

6.2.1 Point-to-Point Communication  

MPI provides many ways to send and receive messages. Each routine has different 

types based on blocking, non-blocking [9]. These routines give flexibility to the 

programmer. 
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Send routines (match any receive, probe; non-blocking can match any 

completion/testing)  

• Blocking - standard, buffered, ready, synchronous  

• Non-blocking - standard, buffered, ready, synchronous  

• Persistent - standard, buffered, ready, synchronous  

Receive routines (match any send)  

• Blocking  

• Non-blocking  

• Persistent  

Probe routines (match any send)  

• Blocking  

• Non-blocking  

Completion / Testing routines (match any non-blocking send/receive)  

• Blocking - one, some, any, all  

• Non-blocking - one, some, any, all 

6.2.2 Collective Communication 

Collective communication must involve all processes in the scope of a 

communicator. There are three types of collective operations [9]. 

• Synchronization: All processes wait until all members of the group have 

reached the synchronization point.  

• Data Movement: broadcast, scatter/gather, all to all.  

• Collective Computation (reductions): One member of the group collects 

data from the other members and performs an operation (min, max, add, 

multiply, etc.) on that data. 
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6.3 Hardware Based Optimizations 

Network devices performance directly effects communication time. We can analyze 

network hardware with two parameters; latency and bandwidth. 

If latency is high small messages becomes more expensive. In high latency when 

message size is small enough latency becomes dominant in communication time. In 

very low latency, communication can be split into smaller parts to make immediate 

computation.  

If bandwidth is too low data to be transmitted takes more time. In low bandwidth 

networks, data compression can be used. Data compression decreases data size but 

requires extra CPU time. If processing power is higher than bandwidth data 

compression decreases wall clock time. There are several types of data compression 

algorithms for different data types [34]. 

In NCHPC both two architectures has low latency high bandwidth interconnection. 

Cluster network device is Infiniband DDR 4X. Infiniband DDR 4X has 2000MB/s 

bandwidth and 140 nanosecond latency. HP Integrity Superdome has 27.3 GB/s 

bandwidth [28]. No hardware-based optimization is made. Instead algorithm based 

optimizations are experimented. 

6.4 Algorithm Based Optimizations  

MPI supports different types of communication methods. These methods have better 

performances in different sizes of messages. Figure 6-1, 6-2, 6-3 shows point-to-

point performance of these methods [35]. 
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Figure 6.1 : Small Messages Performance 

 

Figure 6.2 : Medium Messages Performance 
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Figure 6.3 : Large Messages Performance 

 

MPI Sendrecv method has high performance on every size of messages. For 

scalability and easy of programming MPI Sendrecv is used for point-to-point 

communication. In PDE like iterative methods, communication takes place with 

same nodes in each iteration. MPI has a persistent connection method for these types 

of connections. MPI persistent communications can be used to reduce 

communication overhead for repeatedly called point-to-point message passing 

routines with the same arguments. Persistent communications improvement is shown 

in the Figure 6.4 below [35]. 
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Figure 6.4 : Persistent vs Isen/Irecv 
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7.  PARALLELIZATION OF PARTIAL DIFFERENTIAL EQUATIONS 

In mathematics, partial differential equations (PDE) are a type of differential 

equation, i.e., a relation involving an unknown function of several independent 

variables and its partial derivatives with respect to those variables. Partial differential 

equations are used to formulate, and thus aid the solution of, problems involving 

functions of several variables; such as the propagation of sound or heat, 

electrostatics, electrodynamics, fluid flow, and elasticity.  

The solution procedure of a partial differential equation depends on the type of the 

equation. Partial differential equations can be classified as linear or nonlinear. In a 

linear PDE, the dependent variable and its derivatives enter the equation linearly. On 

the other hand, a nonlinear PDE contains a product of the dependent variable and/or 

a product of its derivatives [36]. 

Some linear, second-order partial differential equations can be classified as 

parabolic, hyperbolic or elliptic. 

Mathematically, a partial differential equation of the form 

0=+++++ FEuDuCuBuAu yxyyxyxx  (7-1) 

Parabolic PDE: A parabolic partial differential equation is a type of second-order 

partial differential equation, describing a wide family of problems in science 

including heat diffusion and stock option pricing. These problems, also known as 

evolution problems, describe physical or mathematical systems with a time variable, 

and which behave essentially like heat diffusing through a medium like a metal plate. 

If equation satisfies 042 =− ACB  it is called parabolic.  

Hyperbolic PDE: The wave equation is an example of a hyperbolic partial 

differential equation. 

If equation satisfies 042 >− ACB  it is called hyperbolic.  
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Elliptic PDE: It can be defined on spaces of complex-valued functions, or some 

more general function-like objects. What is distinctive is that the coefficients of the 

highest-order derivatives satisfy a positivity condition. An important example of an 

elliptic operator is the Laplacian. 

If equation satisfies 042 <− ACB  it is called elliptic.  

7.1 Finite Difference as a Discretization Model 

An important application of finite differences is in numerical analysis, especially in 

numerical differential equations, which aim at the numerical solution of ordinary and 

partial differential equations respectively. The idea is to replace the derivatives 

appearing in the differential equation by finite differences that approximate them. 

The resulting methods are called finite difference methods. 

Typical elliptic equations in a two-dimensional Cartesian system are Laplace’s 

equations, 
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and Poisson’s equation, 
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These model equations are used to investigate a variety of solution procedures. 

Of the various existing finite difference formulations, the so-called “five-point 

formula” is the most commonly used. In this representation of the PDE, central 

differencing which is second order accurate is utilized. Therefore, model Equation 

(7-2) is approximated as 
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The corresponding points are shown in Figure 7.1 
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Figure 7.1 :Grid points for a five point formula 

A higher order formulation is the nine-point formula, which uses a fourth-order 

approximation for the derivatives. With this formulation, the PDE of model Equation 

is: 
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 (7-5) 

The grid point involved in Equation (7-5) is shown in Figure 7.2 

 

Figure 7.2 :Grid points for a nine-point formula 

One obvious difficulty with the application of this formula is the implementation of 

the boundary conditions. Thus, for problems where higher accuracy is required, it is 

easier to use the five-point formula with small grid sizes than the fourth-order 

accurate nine-point formula. Due to its simplicity, the five-point formula represented 

by Equation (7-4) will be considered. Rewrite Equation (7-4) as  
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Define the ratio of step sizes as β , so that yx ∆∆= /β . By rearranging the terms in 

Equation (7-6), one obtains 
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,1,1 =+−+++ −+−+ jijijijiji uuuuu βββ  (7-7) 

In order to explore various solution procedures, first consider a square domain with 

Diriclet boundary conditions. For instance, a simple 6x6 grid system (Figure 7-3) 

subject to the following boundary conditions is considered: 

34

12

,

0,0

uuHyuuLx

uuyuux

====

====

 

Applying Equation (7-7) to the interior grid points produces sixteen equations with 

sixteen unknowns. The equations are: 

 

Figure 7.3 :Grid system used for solution of Equation (7-7) 
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The equations gathered from this grid are expressed in a matrix form as 
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(7-8) 

Where )1(2 2βα +−= . 

The matrix formulation has two noteworthy features. First, it is a pentadiagonal 

matrix with nonadjacent diagonals; and second, the elements in the main diagonal in 

each row are the largest. These features are important when developing solution 

procedures [36]. 

7.2 Gauss-Seidel and SOR 

The Gauss–Seidel method is a technique used to solve a linear system of equations. It 

is defined on matrices with non-zero diagonals, but convergence is only guaranteed if 

the matrix is either diagonally dominant, or symmetric and (semi) positive definite. 

In this method, the current values of the dependent variable are used to compute the 

neighboring points as soon as available. This will certainly increase the convergence 

rate dramatically over the Jacobi method (about 100%) [36]. The method is 

convergent if the largest elements are located in the main diagonal of the coefficient 

matrix, as in the case of the formulation that produced (7-8). The formal requirement 

(sufficient condition) for the convergence of the method is, 
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And, at least for one row, 
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Since this is a sufficient condition, the method may converge even though the 

condition is not met for all rows. Now the formulation of the method is considered. 

The finite difference equation is given here: 
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In order to solve for the value of u at grid point i,j, the values of u on the right-hand 

side must be provided. This procedure is easy to understand if the application of 

Equation (7-11) considered as a few grid points. For the computation of the first 

point, example (2,2), as shown in Figure 7.4, it follows that 
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Figure 7.4 :Grid points for Equation (7-13) 
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In this equation, 1,2u  and 2,1u  are provided by the boundary conditions. Only two 

values, namely 2,3u  and 3,2u , use the values from the previous iteration at k. Thus, in 

terms of the iteration levels, 
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Now, for point (3,2), one has 
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In this equation, 1,3u  is provided by the boundary condition, and 2,4u  and 3,3u  are 

taken from the previous computation; but 2,2u  is given by Equation (7-13).  

Finally, the general formulation provides the equation 
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The solution is to find a set of linear equations, expressed in matrix terms as 

bxA
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=  The Gauss-Seidel iteration is 

nixaxab
a

x
ij

k

jij

ij

k

jiji

ii

k

i ,....,2,1,
1 )()1()1( =










−−= ∑∑

≥<

++  (7-16) 

Note that the computation of  )1( +k

ix  uses only those elements of  )1( +kx  that have 

already been computed and only those elements of )(kx  that have yet to be advanced 

to iteration k + 1. This means that no additional storage is required, and the 

computation can be done in place ( )1( +kx  replaces )(kx ). While this might seem like a 

rather minor concern, for large systems it is unlikely that every iteration can be 

stored. Thus, unlike the Jacobi method, one does not have to do any vector copying 

should one want to use only one storage vector. The iteration is generally continued 

until the changes made by an iteration are below some tolerance. 
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Successive over-relaxation (SOR) is a numerical method used to speed up 

convergence of the Gauss–Seidel method for solving a linear system of equations. A 

similar method can be used for any slowly converging iterative process.  

A similar technique can be used for any iterative method. Values of ω > 1 are used to 

speedup convergence of a slow-converging process, while values of ω < 1 are often 

used to help establish convergence of a diverging iterative process. 

There are various methods that adaptively set the relaxation parameter ω based on 

the observed behavior of the converging process. Usually they help to reach a super-

linear convergence for some problems but fail for the others. 

No general guideline exists for computing the optimum value of the relaxation value 

ω [36]. 

We seek the solution to a set of linear equations, expressed in matrix terms as 

bxA
rr

=  The successive over-relaxation (SOR) iteration is defined by the recurrence 

relation 
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This iteration reduces to the Gauss–Seidel iteration for ω = 1. As with the Gauss–

Seidel method, the computation may be done in place, and the iteration is continued 

until the changes made by iteration are below some tolerance. 

7.3 Red-Black and Multi-coloring Scheme 

In Gauss-Seidel method calculated values are used immediately, this is not a problem 

in sequential algorithms. Thus, in parallel algorithms processors need calculated 

values of neighbors. Red-black decomposition is used if calculated values are 

immediately used in the neighbor points calculations. Red-black decomposition 

separates points with two colors red, black. This decomposition is like a 

checkerboard. Red-black is the simplest version of multi-coloring scheme. 
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Figure 7.5 :Red and Black Stencils 

The key idea is to group the grid points into two groups, identified as black and red 

nodes, and observe that for Cartesian differencing the black nodes are surrounded by 

red nodes only, and the red nodes are surrounded by black nodes only. This is shown 

schematically in Figure 7.5 . The figure is 2D Cartesian topology and has five 

stencils if nine stencils needed three or four colors can be used.  

The implementation of the Gauss-Seidel method by means of the red-black ordering 

of the grid points is limited to rather simple partial differential equations, such as 

Poisson’s equation, and rather simple discretization.  

Consider the equation 

0=++ xyyyxx auuu  (7-18) 

Again in the unit square, where a is a constant. This is just Laplace’s equation with 

an additional term. The standard finite difference approximation is 
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Which combined with the previous approximation (7-2) for Laplace’s equation gives 

the system of equations 

[ ] 0
4

4 1,11,11,11,1,1,1,,1,1 =+−−+−+++ −−−++−++−+−+ jijijijijijijijiji uuuu
a

uuuuu  (7-20) 

Red-Black ordering for equation 7-20 is shown in Figure 7-6 below. 

 

Figure 7.6 :Red-Black ordering for equation 7-20 

 

Figure 7.7 :A Four-Color Ordering for equation 7-21 

The system may be written in the matrix form as in 7-21 
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Where the diagonal iD  are diagonal. The Gauss-Seidel iteration can then be written 

as 
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Similarly, for the other two colors. Since the iD  are diagonal, the solution off the 

triangular system to carry out a Gauss-Seidel iteration has again reduced to matrix 

multiplication. 

The four colors ordering of Figure 7-7 was based on the coupling of grid points 

illustrated in Figure 7-6, and such a pattern is called a stencil. A stencil shows the 

connection of a grid point to its neighbors and depends on both the differential 

equation and the discretization. The determination of the number of colors needed is  

simplified if the stencil is the same at all points of the grid. Then the criterion for a 

successful coloring is that when the stencil is put at each point of the grid, the center 

point has a color different from that of all other points to which it is connected. It is 

this “local uncoupling” of the unknowns that allows a matrix representation of the 

problem that in general has the form 
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The Gauss-Seidel iteration can be carried out, analogously to Equation 7-27 
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The solution of the triangular system is reduced to matrix-vector multiplications. 

7.4 Pseudo Code for Parallel PDE 

In this work, a nine-stencil multicolor Gauss-Seidel method is used to solve PDE. 

Minimum three colors are needed for calculating nine-stencil equation. In each 

iteration a colors calculation is made and calculated color is exchanged between 

neighbors. Here is the pseudo code of the algorithm: 
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A,B,C are the three colors of multicolor algorithm. 

while do until convergence  

 Calculation  of A points 
 for i=2 step until n-2 do 
  for j=2 step until n-2 do 
   if (point is A) 

    temp=A(i,j) 
      A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+ 
       A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1) );  
   End if 
  End j loop 

 End I loop 
 End of A points calculation 
 Exchange ghost points 
 Calculate B points 

 Exchange ghost points 
 Calculate C points 

 Exchange ghost points 
 Check if convergence is reached 

End while 
 
Exchange ghost points  

 Send two upper row blocks to the upper neighbor 

 Receive two upper row blocks from the upper neighbor 
 Send two lower row blocks to the lower neighbor 
 Receive two lower row blocks from the lower neighbor 
End of exchange ghost points 

Neighbor processors exchange two neighboring rows with each other. Since 

decomposition is row wise, no derived data type is used to conserve sequential 

access to data. In the ghost point exchange, two row blocks are exchanged with both 

upper and lower neighbors. This means if a processor has two neighbors it has to 

send four row blocks and receive four blocks. 

7.5 Decomposition an Topolgy of PDE Matrix 

Dividing data into parts is called decomposition. In the algorithm, 1D row wise 

decomposition is used. A 1D Cartesian non-periodic topology is created for defining 

neighbors. MPI methods are used to create the topology. Topology usage makes 

communication routines simpler for the developer. If topology is created then 

neighbors are known, no need to deal with processor ranks to find who is neighbor. 



 
68 



 
69

8.  IMPLEMENTATION AND RESULTS 

A parallel PDE solver algorithm using Gauss-Seidel method is used in this work. 

This algorithm is written by Gülnur Demir, who is a graduate student in ITU 

Computational Science and Engineering programme. This algorithm was developed 

for Parallel Programming lecture project assignment. She implemented Gauss-Seidel 

with three colors and nine stencils. In the algorithm, PDE equations variable matrix 

is meshed to a two dimensional matrix. If PDE has 100 variables then this mesh 

matrix size will be 10x10. This mesh matrix is solved iteratively. Algorithm is 

parallelized using MPI. After analyzing this algorithm with TAU, bottlenecks have 

been defined. There were two major bottlenecks one is computation of points other 

one is communication for sharing ghost points between processors. First 

computational bottleneck is analyzed. 

Below is the v1 algorithm of colorA colorB and colorC computation. These 

computations are done in each iteration. 

//Color C calculation 
for(i=2; i<rows_local-2; i++) 

 for(j=2; j<cols_local-2; j++){ 
    if((i+j-global_start) % 3 == colorC){ 

   temp = A(i,j); 
   A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+ 
      A(i+1,j)+A(i,j-1)+A(i,j+1) );  
   if( fabs(temp - A(i,j)) > tol && iter%10 == 0) 

      done = FALSE; 
  } 
} 
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm); 

  

//Color B calculation 
for(i=2; i<rows_local-2; i++) 
 for(j=2; j<cols_local-2; j++){ 
    if((i+j-global_start) % 3 == colorB){ 

   temp = A(i,j); 
   A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+ 

      A(i+1,j)+A(i,j-1)+A(i,j+1) );  
   if( fabs(temp - A(i,j)) > tol && iter%10 == 0) 

      done = FALSE; 
  } 
} 

UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm); 
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//Color A calculation  
for(i=2; i<rows_local-2; i++) 
 for(j=2; j<cols_local-2; j++){ 

    if((i+j-global_start) % 3 == colorA){ 
   temp = A(i,j); 
   A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2)+A(i-1,j)+ 
      A(i+1,j)+A(i,j-1)+A(i,j+1) );  

   if( fabs(temp - A(i,j)) > tol && iter%10 == 0) 

      done = FALSE; 
  } 
} 
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm); 

 

Two nested loops have an if condition inside. This has two performance effects. One 

if branch prediction miss predicts CPU wastes its pipelined instruction. Another 

thing is, compiler cannot be aware of data independency in calculation of point 

A(i,j). If inner loops j is incremented by three not by one compiler can detect data 

independency. Data independency is important for massive parallelism. 

Multicoloring is used for data independency between processors, but with the first 

implementation, data is dependent inside one processor. 

Below is the v2 algorithm, which eliminates if branch inside nested loops. This gains 

performance by eliminating if branch and makes this loop data independent. 

//colorC 

start=(colorC+global_start-2)%3; 

if (start<2)  
 start+=3;  
for(i=2; i<rows_local-2; i++) {   

 for (j=start;j<cols_local-2;j=j+3) { 
  temp = A(i,j); 

  A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+ 
     A(i+1,j)+A(i,j-1)+A(i,j+1) );  

  if(iter%10 == 0 && fabs(temp - A(i,j)) > tol  ) 
    done = FALSE; 
 } 

 if (start > 2)  
  start--;  

 else start+=2; 
}  
UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm); 
    

//colorB 
start=(colorB+global_start-2)%3; 
if (start<2)  
 start+=3;  

for(i=2; i<rows_local-2; i++) {   

 for (j=start;j<cols_local-2;j=j+3) { 
  temp = A(i,j); 
  A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+ 

     A(i+1,j)+A(i,j-1)+A(i,j+1) );  
  if(iter%10 == 0 && fabs(temp - A(i,j)) > tol  ) 

    done = FALSE; 
 } 

 if (start > 2)  
  start--;  
 else start+=2; 
}    

UpdateGhosts(A, rows_local, cols_local, rowType, neigh, cartcomm); 
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//colorA 
start=(colorA+global_start-2)%3; 
if (start<2)  

 start+=3;  
for(i=2; i<rows_local-2; i++) {   
 for (j=start;j<cols_local-2;j=j+3) { 
  temp = A(i,j); 

  A(i,j) = 0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) + A(i-1,j)+ 

     A(i+1,j)+A(i,j-1)+A(i,j+1) );  
  if(iter%10 == 0 && fabs(temp - A(i,j)) > tol  ) 
   done = FALSE; 
 } 

 if (start > 2)  
  start--;  

 else start+=2; 
}  

In this implementation, inner loops start value is important it must be the color we 

are computing. Thus, start value is computed and modified for next start. Another 

optimization was in the if condition. If a condition has more than one value anded, 

the first false invalidates this if condition. In v1 code, if conditions first condition 

was a hard computation compared with mod operation. So mod operation changed to 

be the first condition. If mod does not satisfies if condition the condition is not 

calculated. By the way mod operations calculation time can be reduced by using 

twos power in unsigned numbers. However, it was not used in this works 

implementations. 

Another hot spot was communication. MPI supports different communication 

methods. In point-to-point communication, MPI Send-recv has high performance at 

every size of messages [35]. One chance to reduce communication can be using MPI 

persistent connection communication. In this algorithm, two neighbor processors 

communicate with each other, so persistent connection can be used. Persistent 

connection reduces connection overhead of communication, and stays connected 

unless MPI finalized or persistent connection freed. In persistent connection, the 

communication channel is initialized at the beginning of the algorithm and at each 

iteration MPI_Startall() method is used for making transfer. Before ending program 

persistent connection is terminated using MPI_Request_free() method. Algorithm 

version is named v3 and algorithm changed as follows. 

Algorithm v1 communication UpdateGhosts method: 

MPI_Isend( &A(rows_local-4,0), 1, rowType, neigh[DOWN], 99, cartcomm, &rq1 );      
// send down 
MPI_Recv( &A(0,0), 1, rowType, neigh[UP], 99, cartcomm, &st1 );                    

// recv from up 
MPI_Wait( &rq1, &st1 ); 

MPI_Isend( &A(2,0), 1, rowType, neigh[UP], 999, cartcomm, &rq2 );    // send up 
MPI_Recv( &A(rows_local-2,0), 1, rowType, neigh[DOWN], 999, cartcomm, &st2 );      

// recv from down 
MPI_Wait( &rq2, &st2); 
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Algorithm v3 changes this with persistent communicaiton methods: 

//Before beginning iterations 

/* Setup persistent requests for both the send and receive */ 
MPI_Send_init(&A(rows_local-4,0),1,rowType,neigh[DOWN],99,cartcomm,&reqs[0]);  
MPI_Recv_init(&A(0,0), 1, rowType, neigh[UP], 99, cartcomm, &reqs[1]);  
MPI_Send_init(&A(2,0), 1, rowType, neigh[UP], 999, cartcomm, &reqs[2]);  

MPI_Recv_init(&A(rows_local-2,0),1,rowType,neigh[DOWN],999,cartcomm,&reqs[3]); 
……….. 
while(iter<1000000 && !alldone) 
{ 
 Calculate color C  

 MPI_Startall (count, reqs); 
 MPI_Waitall (count, reqs, stats); 
 Calculate color B 
 MPI_Startall (count, reqs); 

 MPI_Waitall (count, reqs, stats); 
.. 

} 
/* Free persistent requests */ 

MPI_Request_free (&reqs[0]); 
MPI_Request_free (&reqs[1]); 
MPI_Request_free (&reqs[2]); 

MPI_Request_free (&reqs[3]); 

On the other hand, Successive over relaxation (SOR) can be used instead of Gauss-

Seidel for faster convergence. Algorithm has been modified for SOR method. Only 

calculation part has changed and w parameter is added. 

for(i=2; i<rows_local-2; i++) {   
 for (j=start;j<cols_local-2;j=j+3) { 

  temp = A(i,j); 
  A(i,j) = ((1-w)*temp)+(w*0.125*( A(i-2,j)+A(i+2,j)+A(i,j-2)+A(i,j+2) +  
     A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1) ));  

  if(iter%10 == 0 && fabs(temp - A(i,j)) > tol  ) 

   done = FALSE; 
 } 
 if (start > 2)  
  start--;  

 else start+=2; 

} 

Three w values has been tested w= 0.5, 1, 1.5. When w equals 1 this method is same 

with the Gauss-Seidel method. 

8.1 Runs and Results 

Runs are made in two different architectures. There are three different versions of 

algorithm v1 is unoptimized, v2 is computation sections optimized, v3 

communication sections optimized. Below Figure 8.1 are the analyses of three 

different version codes using 800x800 matrix size with 2 CPUs on HP Superdome 

Infinity ccNUMA server with Intel Itanium processor. Measurements are made using 

TAU performance analysis system. Library level instrumentation and selective 

instrumentation for calculation sections are used. Performance analyses are made 



 
73

both using profiling and tracing. ParaProf visualizes profiles. Jumpshot visualizes 

traces. Linux timers are used measurement. 

 

Figure 8.1 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2 CPUs  

As seen on graphics calculation optimization speed up is approximately 9x. 

Communication optimization (UpdateGhosts function) has approximately 2x speed-

up in this matrix size. Overall performance speed-up is almost 9x. 

Below Figure 8.2 is Cluster computers performance analysis. Cluster has Intel Xeon 

CPU and connected via InfiniBand. Figure 8.2 experiment parameters are 800x800-

matrix size, two cpus, three version codes. 
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Figure 8.2 : Profile result of v1,v2,v3 algorithms; 800x800 matrix on 2  CPUs 

Intel Xeon and Itanium have similar performance at computation section of version 1 

algorithm. However, after making optimizations Intel Itanium performance is 3 times 

better than Xeon. Architecture based optimizations are done at compiler level. 

Compiler optimization flags O2 and O3 are used. With Intel Xeon processor O2 

optimization and O3 optimization were the same. On the other hand, O3 optimization 

speed-ups program on Itanium processor. Below Figure 8.3 shows this detail. Only 

v1 and v2 algorithms are compared. 
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Figure 8.3 : Optimization comparison of two processors 

HPC systems are used shared. Different nodes can run different application 

algortihms at the same time for maximum efficiency. In National Center for High 

Performance Computing of Turkey (NCHPC) clusters nodes are shared between 

projects, many independent programs are running on different nodes simultaneously. 

Since these nodes communicate with each other using underlying network 

infrastructure, different nodes communication effects others communication 

performance. This is called network contention [9]. While running these tests, 

NCHPC cluster with Xeon processors was having many other applications running 

on other nodes. Because of this, communication times vary depending on the other 

nodes communication. Figure 8.4 is a part of trace file output; network contention 

effect can be seen on this figure. In Figure 8.4 four processors are communicating 

with each other at each iteration but at some time network performance throughput 

decreases dramatically. Two different time’s communications are seen on Figure 8.4. 

At one time, 3200byte communication took 12 microsecond and at next iteration, 

same sized communication took 4.493 millisecond. However, on SMP server tests 

are done one by one. SMP server was not running any other application. Thus, 

communication performance tests are done on SMP server. Figure 8.5 is a part of 

trace output, which, shows contention effect in HP shared memory system. In HP 

server communication performance is more consistent because it is only running test 

algorithm. 
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Figure 8.4 : Trace output showing cluster network performance variety 

 

 

Figure 8.5 : Trace output showing SMP computer communication performance 

When more processors are involved in computation, communication becomes a 

dominant factor. Time taken for calculation becomes smaller when processor number 

increases. Below Figure 8.6 is an example of this. In Figure 8.6 three versions of 

algorithms run on 64 cores using 1600x1600 matrix size. Increase of cores increases 

message count and makes communication a bottleneck. 
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Figure 8.6 : Profile output of 64 processor communication bottleneck 

In iterative methods, convergence rate determines iteration count. SOR is used to 

increase the convergence of Gauss-Seidel. SOR method is also implemented to see 

effects. SOR methods convergence can be showed by iteration counts, Figure 8.7 

shows iteration counts for w=0.5 w=1.0 w=1.5 values. 
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Figure 8.7 : SOR Iteration Counts for Different Relaxation Values 

Figure 8.8 shows measured wall clock times for different relaxation (w) values. As 

seen, iteration count effects wall clock time. 
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Figure 8.8 : Wall Clock Times for Different Relaxation Values 

Network performance optimization shows becomes important when message size is 

small and iteration count increases. For example if tolerance value gets smaller 

iteration count increases. This means there will be many communications with small 

message sizes. Algorithm v1 uses MPI_Isend() and MPI_Recv(), v2 uses 

MPI_Sendrecv(), v3 uses MPI_Send_init() and MPI_Recv_init() persistent 

connection communication methods. Figure 8.9 shows relation between error 

tolerance value and communication time of different algorithms. As seen when error 

rate gets lower v3 algorithms performance gain increases. Matrix size is 400x400 

core count is four in Figure 8.9. 
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Figure 8.9 : Communication Time for Different Error Tolerance Values 
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Scalability of algorithms for different matrix sizes is shown in the figures below. As 

seen on Figures 8.10 – 8.13 at some point (related to the data size) wall clock time 

increases when more processors are used. The reason is, communication becomes a 

bottleneck when processors do less computation due to the increasing size of 

processors. In addition, it seen that increasing data size number of cores need for 

minimum wall clock time slightly shifts to the right. 
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Figure 8.10 : Scalability for 400x400 matrix size 
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Figure 8.11 : Scalability for 800x800 matrix size 
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1600x1600 Matrix Size Scalibility
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Figure 8.12 : Scalability for 1600x1600 matrix size 

In Figure 8.13, v1 algorithm does not used due its insufficient performance, this is 

why wall clock time seems decreased but it increases. 
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Figure 8.13 : Scalability for 3200x3200 matrix size 

As seen on Figures 8.10 to Figure 8.13 processor scalability is higher at big matrix 

sizes. When matrix size is not big enough communication becomes dominant. Thus, 

communication contention effects when communication is made at the same time 

between all processors.  
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The relation between communication-calculation time and processor count can be 

seen in the in the Figure 8.14 and 8.15. If communication and calculation times are 

balanced, optimum wall-clock time is gained. Figure 8.14 shows balance effect of a 

400x400 sized matrix scaling on different core counts. 
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Figure 8.14 : 400x400 Matrix Balance Effect 

If the matrix size increases calculation increases too. This shifts the communication-

calculation balanced core count. In 400x400 matrix size core count that satisfies 

communication and calculation time is between 4 and 8 cores. However, in 

3200x3200 matrix size balance is satisfied between 16-32 cores. Figure 8.15 shows 

3200x3200 matrix size balance shift. 
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Figure 8.15 : 3200x3200 Matrix Balance Shift 
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9.  CONCLUSION AND RECOMMENDATIONS 

Processor types have different characteristics, for example, Xeon processor has 

higher clock rate than Itanium processors. Thus, Itanium is a RISC processor and 

Xeon is a CISC processor, CPU clock rate is not a pure performance determining 

parameter. Processors internal hardware like cache size and floating-point registers is 

other factors of processors computing power. For gaining maximum performance 

from a processor, algorithm must be efficient and right compiler parameters must be 

used. It is proven with experiments that, unoptimized algorithm runs faster on Xeon 

compared to Itanium processor but when right compiler parameters are used on 

efficient algorithm Itanium processor shows much better performance. Itanium 

processors performance is high on floating point intensive applications. 

In addition, SOR algorithm issued on two architectures, SOR algorithm only effects 

convergence, if convergence rate decreases iteration count algorithm completes 

faster. However, defining optimal relaxation parameter is another work. 

Communication optimization is done by using MPI persistent connection. Persistent 

connection removes connection initiation overhead at each iteration. Performance 

gain of persistent connection is maximum at small size messages. Moreover, when 

iteration count increases with small sized messages (like lowering error tolerance) 

time gained using persistent connection increases.  MPI persistent communication 

methods can be preferred if same nodes are communicating at each iteration. 

Using more processors for fixed data sizes does not always speed-up program. If 

computation takes less then communication time, then increasing processor count 

will raise overall time due to the increased communication count. Since 

communication medium is shared, more communication means slower 

communication. 

In these entire measurements, TAU framework is used. Instrumentation is done using 

automatic library level instrumentation and for calculation sections, selective 

instrumentation is used. In profiling TAU tracks inclusive and exclusive times and 
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function/sections call counts. Function call count values are used for determining 

iteration counts. In addition, trace output is enabled for tracing.  Since profiling only 

has statistical information, profile files are always small but trace files linearly 

increase as iteration count increases. That is why tracing must be used for test 

purposes on small data sizes, otherwise overhead of tracing raises. 

9.1 Application of The Work 

This work shows differences of two architectures with experiments. These 

experiments can guide HPC software developers for making performance analysis 

and optimization.  

Optimizations made in these experiments are algorithm specific. Each algorithm has 

different characteristics and bottlenecks. Since iterative methods have similar 

characteristics, these optimization techniques can be applied to different iterative 

algorithms. 

For processor-based optimization, using compilers related flag is the easiest and most 

effective way. Software developers may not be aware of processor internals, but they 

can develop highly parallelizable algorithms. In this works experiments, key point in 

writing parallel algorithm was to satisfy data in-dependency inside loops and 

avoiding unpredictable branches. Compilers know processor architecture and they 

can benefit from it if algorithm has fewer branches inside loops. Nonetheless, HPC 

algorithms are compiled from source code for the specific system. We can benefit 

from this by compiling program optimized for that specific architecture. Compilers -

O3 level optimization and -fast parameters does this. If source code is compiled 

using these parameters compiler will do processor specific optimizations, which may 

limit the binary program to run only that specific processor. 

Using more CPUs does not directly speed up program. It is seen that at low data sizes 

using more processors generates a communication bottleneck. Communication is 

related to processor count if more processors are involved more communication is 

needed. Roughly if calculation time equals communication time it is the best point of 

processor scalability. 
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In addition, to reduce communication contention, communication and calculation can 

be overlapped. Alternatively, while one group of processors is making calculation, 

others can communicate with each other. However, this cannot be achieved in PDE 

algorithm do the dependency of calculated values.  

In addition, persistent connection becomes important when error tolerance is low on 

small sized matrix. When error tolerance is low, iteration count increases and 

persistent connection shows significant speed up on small messages. 

9.2 Future Work 

In this work, measurements are made using Linux timers. Due to the incompatibility 

between hardware counter patches and Lustre file system, hardware counters cannot 

be used on real system yet. Hardware counters can be used to see L1,L2 ad L3 cache 

hit rates of the algorithm. Also hardware counters show correctly predicted and 

unpredicted branch counts. One more important counter is TLB (Translate Lookaside 

Buffer) hit count. If these are known algorithms efficiency can be compared in this 

respect. 

As seen making blocking communication decreases performance when many 

processors are used. Algorithm improvements can be researched to overlap 

communication and computation for based iterative numerical methods. Overlapping 

would improve scalability. 
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