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EĞİTİM TABANLI, İÇERİK UYARLAMALI BİR VİDEO ÇÖZÜNÜRLÜĞÜ 
DÖNÜŞTÜRME ALGORİTMASININ GERÇEK ZAMANLI OLARAK, SAHADA 

PROGRAMLANABİLİR KAPI DİZİLERİ(SPKD (FPGA)) İLE GERÇEKLENMESİ 

ÖZET 

Bu çalışmada, eğitim tabanlı, içerik uyarlamalı bir video çözünürlük yükseltme 
algoritması için, iş hattı ve kaynak paylaşımı kullanan yüksek performanslı bir 
donanım mimarisi önerilmiş ve önerilen yapı, 480x720 çözünürlükteki videonun 
720x1280 çözünürlükte videoya dönüştürülmesi uygulaması için düşük maliyetli bir 
sahada programlanabilir kapı dizisinde (SPKD (FPGA)) gerçeklenmiştir. İçerik 
uyarlamalı video çözünürlük yükseltme algoritmaları temel olarak alt örnekleme 
işlemi sürecinde video sinyalinde kaybolan yüksek frekans bileşenlerinin, geçmişte 
elde edilen istatistiksel bilgiden yararlanarak geri kazanılmasını hedefler. Bu 
çalışmada donanım yapısı önerilen ve gerçeklenen,  modifiye edilmiş çözünürlük 
sentezi (MRS) algoritması, kaybolan yüksek frekans bilgisini geri kazanmak için 
geniş bir video görüntü kümesi üzerinde yapılan eğitim sürecinden faydalanır. MRS 
algoritması çıkış görüntüsünü oluşturan her piksel için 137 çarpma ve 120 toplama 
işlemi içeren kompleks bir algoritmadır. 480x720 çözünürlükteki standart çözünürlük 
(SÇ (SD)) videonun 720x1280 çözünürlükteki yüksek çözünürlük (YÇ (HD)) videoya 
dönüştürülmesi problemi, 27 Mhz giriş saat çevriminde üretilen piksel datası ile 
gerçek zaman kısıtları içerir. Önerilen donanım mimarisi, içerideki çekirdek blokların, 
girişteki piksel saat frekansının tam sayı katı bir frekansta çalıştırılması yöntemi ile 
kaynak paylaşımına olanak sağlar. Hedeflenen FPGA için, tasarım, giriş piksel saat 
frekansının dört katı olan 108 Mhz saat frekansında çalışacak biçimde iş hattı yapısı 
kurulmuştur. Bu sayede içerideki çarpma ve toplama işlemleri için kaynak paylaşımı 
yapılmış ve, iş hattındaki saklayıcılarda ve kontrol lojiğinde küçük bir artış ile çarpıcı 
ve toplayıcı sayısı dörtte birine indirilmiştir. Tasarım akışı sürecinde, donanım 
kısıtları ve algoritma performansı gözönüne alınarak, algoritmanın kayan noktalı 
yazılım modelinden, sabit noktalı yazılım modeli çıkarılmıştır. Önerilen yapının, 
saklayıcı transfer seviyesindeki tanımı, VHDL dili ile yazılmış; sabit noktalı C modeli 
ile VHDL modeli çıktıları karşılaştırılarak donanım yapısı doğrulanmıştır. Doğrulanan 
tasarım, Xilinx XC3S2000 FPGA çipi kullanılarak gerçeklenmiş ve likit kristal ekranlı 
TV üzerinde SD giriş videosunun HD videoya dönüştürülmesi uygulaması için test 
edilmiştir. Gerçeklenen tasarım, 1.6 ms zaman içerisinde, SD çözünürlükteki 
görüntüyü HD çözünürlükte görüntüye dönüştürerek video çözünürlük dönüştürme 
probleminin gerçek zaman kısıtlarını sağlamaktadır. Tasarım, FPGA içerisinde 3533 
dilim ve yaklaşık 60 KB blok RAM yapısı kullanmaktadır. Tasarımın lojik kapı sayısı 
cinsinden karmaşıklığının, literatürdeki mevcut lineer video boyutlandırma 
algoritmaları ile yaklaşık aynı ölçekte olduğu görülmüştür. TV üzerinde 
gerçekleştirilen gerçek zamanlı testler sonucunda, uygulamanın geleneksek bikubik 
interpolasyon tabanlı video boyutlandırıcılardan daha başarılı detay koruma 
özelliğine sahip olduğu gözlenmiştir.  
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REAL TIME FPGA IMPLEMENTATION OF A TRAINING BASED CONTENT 
ADAPTIVE VIDEO RESOLUTION UP-CONVERSION ALGORITHM  

SUMMARY 
In this study, a high performance, pipelined, resource shared hardware architecture 
was proposed for a training based content adaptive video resolution up-conversion 
algorithm, and the proposed architecture was implemented in a low cost field 
programmable gate array (FPGA), for a video standards conversion application 
where the input resolution is 480x720 and the output resolution is 720x1280. 
Content adaptive video resolution up-conversion methods aim to recover the 
missing spectrum at the down sampled image, by using prior information obtained 
by statistical analysis. Modified resolution synthesis (MRS), which was implemented 
in this study is one such method, which makes use of statistical data obtained by 
training with large set of images. Modified resolution synthesis is a complex 
algorithm which requires 137 multiplications and 120 additions per output pixel. For 
480x720 standard definition (SD) video to 720x1280 high definition (HD) video 
conversion, the design is constrained by the input pixel rate which is 27 Mhz. The 
proposed architecture can make use of resource sharing by running the core blocks 
at an integer multiple of the input pixel rate. For the targeted FPGA, the design was 
pipelined to work at 108 Mhz, which is four times the input pixel clock rate.  Number 
of multipliers and adders were reduced by a factor of 4, with a minor increase in the 
pipeline stages and the control logic complexity. A fixed point model of the design 
was generated from the floating point model, by considering the hardware 
constraints imposed by the target FPGA, and by considering the performance of the 
algorithm with different bit precisions. Register transfer level (RTL) description of the 
proposed architecture was written in VHDL and RTL model was verified with fixed 
point C model outputs. The verified design was mapped to Xilinx XC3S2000 FPGA, 
and was tested on a 40 inch liquid crystal display (LCD) for 480p to 720p resolution 
up-conversion. The implemented design performs scaling of a frame in 1.6ms, which 
meets the real time constraints for target video up conversion application. The 
design uses 3533 slices, and 60KByte of block RAMS available in the FPGA. The 
logic gate count of the design is in the order of gate counts for bicubic scalers 
proposed previously. Real time tests on LCD TV shows that the performance of the 
algorithm is better in preserving the details when compared with conventional 
bicubic interpolation based scalers. 
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1. INTRODUCTION 

1.1 Motivation 

Recent advances in flat panel displays and the advent of high definition TV (HDTV) 
standard led to more emphasis on several video processing issues. Spatial 
resolution up-conversion of the input video is one such issue playing a more 
important role with current technological advancements. Flat panel displays, with the 
native resolution that supports high definition (HD) video input with resolution of 
1080*1920 or 720*1280 are now starting to dominate the market, with many of the 
high-end TV companies, investing only on flat panel displays rather than Cathode 
Ray Tubes (CRT). However, those flat panel displays with HD resolution, lack from 
appropriate input source compatible with the native resolution of the TVs. Although 
the current TV sets are capable of displaying video signals on HD resolution, most 
of the existing content and current video broadcasting is still in SD resolution, and 
those high resolution flat panel displays are fed with SD video input. In such cases, 
the resolution of the SD input video source must be up-converted to the native 
resolution of the flat panel display using a mathematical method. The performance 
of the up-conversion method used has a considerable effect on the video quality and 
the effect is becoming more obvious with the fast growth rate of the size of the flat 
panel displays, forcing the TV set manufacturers to focus more on the issue. Apart 
from the video quality performance of the up-conversion algorithm, there are two 
other constraints, namely the real time requirements and the cost. Video processing 
standards are set considering the human visual system, and a pre-defined refresh 
rate is listed in the standards that constraints the throughput of the video system. 
The tight real time constraints and the need for a high performance, high complexity 
scaling algorithm requires high performance processing elements capable of fast 
parallel processing, eliminating the option of software based, sequential processing. 
Therefore the video up-conversion algorithms are mostly implemented in fixed 
hardware blocks, which are a part of the video processor inside the TV set. In this 
work, several high complexity, high performance video up-scaling algorithms are 
evaluated and Modified Resolution Synthesis (MRS) algorithm proposed in [1] is 
chosen to be implemented in a high end flat panel display. A novel, resource shared, 
pipelined hardware architecture is proposed to implement the algorithm in fixed 
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hardware and the proposed architecture is implemented in a low cost FPGA family, 
Xilinx XC3S2000 targeting the consumer electronics market. 

1.2 Organization of Thesis 

This thesis presents an optimized, pipelined, resource shared architecture for a 
training based content adaptive video up-conversion algorithm, and utilizes that 
architecture to implement a real time video up-conversion system integrated into a 
flat panel LCD display with 768*1366 native resolution.  

Chapter 2 presents basics of digital video and current trends in design and 
implementation of video enhancement algorithms in flat panel displays. 

Chapter 3 is a review of video up-conversion algorithms in the literature. 
Performance evaluation of the algorithms obtained from previous work on the 
subject is presented. 

Chapter 4 describes the Modified Resolution Synthesis algorithm, which was 
selected to be implemented in this thesis.  

Chapter 5 presents the hardware architecture proposed for the Modified Resolution 
Synthesis algorithm. Details of the proposed architecture are given for each sub 
block.  

Chapter 6 presents the simulation and implementation results in FPGA platform. 
Real-time tests performed on TV are also presented.  

Chapter 7 concludes the thesis giving a brief overview of the contribution of the 
thesis study, and possible feature work.   
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2. INTRODUCTION TO DIGITAL VIDEO 

2.1 Digital Image Basics 

Digital video is composed of digital image frames. The structure of a digital image is 
illustrated in Figure 2-1. The image taken from [2] is acquired by microwave radar 
from an orbiting space probe.  

 

Figure 2-1 : Structure of a digital image  

The image shown is represented by 256 samples arranged in a two-dimensional 
array of 16 columns by 16 rows. In imaging jargon, each sample is called a pixel, 
which is an abbreviation of picture element. The value of each pixel in the example 
is between 0 and 255. When displaying this as a visual image, the value of each 
pixel is converted into a grayscale, where 0 is black, 255 is white and intermediate 
values are grey levels. The mapping of the grey levels in Figure 2-1 to 8 bit numbers 
in the range of 0-255 is illustrated in Figure 2-2. 
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Figure 2-2 : 8 bit coding of the image in Figure 2-1 

A typical digital image is composed of about 500 rows by 500 columns. This is the 
image quality encountered in television, personal computer applications, and 
general scientific research. Images with fewer pixels, are regarded as having 
unusually poor resolution. These low resolution images look noticeably unnatural, 
and the individual pixels can often be seen. On the other end, images with more 
than 1000 by 1000 pixels are considered exceptionally good. This is the quality of 
the best computer graphics, high-definition television, and 35 mm motion pictures. 
The strongest motivation for using lower resolution images is that there are fewer 
pixels to handle which reduces both the transmission and processing complexity. It 
is common for 256 grey levels (quantization levels) to be used in image processing, 
corresponding to a single byte per pixel. This choice is mainly due to the fact that a 
brightness step size of 1/256 is smaller than the human eye can perceive. However 
some images are now stored with 10 bits, and current video processors start using 
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10 bit processing as well .This is mainly done to reduce the undesired effects of 8 bit 
processing(e.g. false contours, quantization noise) [2]. 

Color is added to digital images by using three numbers for each pixel, representing 
the intensity of the three primary colors: red, green and blue. Mixing these three 
colors generates all possible colors that the human eye can perceive. A single byte 
is frequently used to store each of the color intensities, allowing the image to 
capture a total of 256×256×256 = 16.8 million different colors [2]. 

2.2 Algorithms in Digital Video Processing 

Raw video data at the inputs of a TV set pass through several processing steps in 
the TV processors’ pipeline. The main stages in the video processing pipeline can 
be listed as 

• Video format conversion 

• Interlaced to progressive conversion 

• Resolution up-conversion 

• Coding artifact reduction 

• Contrast enhancement 

• Sharpness enhancement 

• Color saturation enhancement 

• Spatial and temporal denoising 

Video format conversion refers to the issue of converting video signals which are 
recorded at different frame rates. Video cameras use a picture rate of 50 or 60Hz, 
while movie films are recorded at 24, 25 or 30Hz. The picture rate of TV and PC 
displays lie between 50 to 120Hz. High quality picture rate conversion methods 
make use of motion estimation and compensation techniques to predict the missing 
information [3].  

With interlaced scanning, only half of the scanning lines of individual pictures are 
transmitted and reproduced at a TV receiver. The first field is made of the odd 
scanning lines and the second field is made of the even scanning lines. It has been 
shown that interlaced video display matches the demands of the human visual 
system very well however; the interlacing procedure is a complication for many 
digital processing tasks and also most modern displays cannot handle interlaced 
signals well. Therefore, de-interlacing, or interlaced-to-progressive conversion, 
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doubles the vertical-temporal sampling density to produce a suitable signal for the 
display [3].  

With the introduction of HDTV-capable TV receivers, the transmission of SDTV 
material does not stop immediately, which requires up-conversion at the TV set. A 
similar situation occurs with PCs that have a screen resolution that is higher than 
required for television. In general the price of high resolution screens has come 
down to a level that it becomes affordable, even for TVs that have no HDTV 
reception. Consequently, resolution up-conversion is a hot topic to provide HD 
image quality from SD video source [3].  

Coding artifacts and noise are two important issues apparent in video. Coding 
artifacts are apparent in digital video if the video is coded with low bit rate. Noise is 
introduced when either acquiring the video data, or in conversion steps (e.g. analog 
to digital conversion, quantization etc.) Both coding artifact reduction techniques and 
denoising techniques are also available in the current video processor chipsets. To 
improve the perceived image quality, current video processors also have color, 
contrast and sharpness enhancement blocks.  



 7

3. VIDEO RESOLUTION UP-CONVERSION ALGORITHMS 

3.1 Sampling Structure Conversion 

Video up-conversion problem can be defined as a subset of “sampling structure 
conversion” problem. A continuous time signal )(txc can be represented as a  

discrete-time signal  

[ ] [ ]nTxnx c=  ( 3.1 )

where T  is the sampling period.  A 1D discrete time signal with sampling period of 
T can be converted into a discrete time signal with sampling period of 'T  

[ ] [ ]'' nTxnx c=  ( 3.2 )

One approach to obtain [ ]nx' from [ ]nx  is to reconstruct )(txc by using a 

reconstruction filter, and a digital to analog converter, and than re-sampling the 
resultant analog signal with sampling period 'T . However, this approach is usually 
not  preferred due to the non ideal characteristic of the reconstruction filter and A/D, 
D/A filters [4].  

3.1.1 Reducing Sampling Rate by an Integer Factor 

Sampling rate of the discrete time signal, [ ]nx , in equation ( 3.1 ), with sampling 
period of T , can be reduced by a factor of M by down sampling [ ]nx  at a sampling 

period of TMT .'= . This process is referred as decimation. Decimation process can 

be modeled in two steps. 

1. Multiplication by an impulse train to replace 1−M  samples between every 
thM sample with zero to obtain an intermediate signal [ ]ng  

[ ] [ ]∑∞

−∞=
−=

k
kMnnxng )(δ  ( 3.3 )

2. Discarding the zero samples to obtain the down sampled signal 
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[ ] )(' Mngnx =  (3.4)

Fourier transforms of the signals [ ]ng  and [ ]nx'  can be computed as, 

∑ −

=
<≤−−=

1

0
      )2(/1)( M

k
k

M
XMG πωππωω  

(3.5)

∑ −

=
<≤−

−
=

1

0
      ),2(/1)(' M

k M
kXMX πωππωω  

(3.6)

The frequency spectrum of the input, and decimated signals for 2=M , are 
illustrated in Figure 3-1 and Figure 3-2 respectively. It must be noted that horizontal 
axis ω  in Figure 3-1 and Figure 3-2 is scaled with the sampling period T  and T ′  
respectively.  

 

Figure 3-1 : )(ωX , frequency spectrum of the [ ]nx  signal 

 

Figure 3-2 : )(ωG , frequency spectrum of the intermediate signal [ ]ng  and )(' ωX , 

frequency spectrum of the decimated signal [ ]nx'  for 2=M  
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As it can be seen from Figure 3-2 the spectra of the intermediate signal, consists of 
M replicas of the input signal spectrum in the interval [ ]ππ ,− , and the frequency 

spectrum of the decimated signal is expansion of the frequency axis of the 
intermediate signal spectrum. If the bandwidth of the input signal is greater than 

M2/1 , then aliasing is observed at the decimated signal. To prevent aliasing at the 
decimated signal, either the input signal [ ]nx  which was sampled from )(txc must 

have been over sampled by a factor of M ( M times the Nyquist rate), or  a digital 
low pass filter with cut-off frequency of M2/1 must be applied to [ ]nx prior to 

decimation. Frequency spectrum of the decimated signal (with antialias filtering) is 
illustrated in Figure 3-3. It must be noted that horizontal axis ω in Figure 3-3-a and  

Figure 3-3-b is scaled with the sampling period T  and T ′  respectively.  

 

Figure 3-3 : a) )(ωX ,frequency spectrum of the input signal [ ]nx  (Dotted lines represent 

the antialising low pass filter) and )(' ωX , frequency spectrum of the decimated signal [ ]nx' . 

3.1.2 Increasing Sampling Rate by an Integer Factor 

Sampling rate of the discrete time signal [ ]nx  in Eq. ( 3.1 ), with sampling period of 
T , can be increased by a factor of L  to obtain [ ] [ ]'' nTxnx c=  where LTT /'= . This 

operation is referred as interpolation and using discrete-time operations, the process 
can be performed in two steps.  

1. Up-sampling by zero filling where 1−L  zeros are filled between every sample of 
the input signal. The operation can be modeled as, 

g(n) =    x[n/L], if n=k.L where k is an integer 

               0, otherwise 

( 3.7 )

2. Low pass filtering of the filled in signal. 
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To analyze the frequency spectrum of the filled-in signal [ ]ng , Fourier transform of 
the [ ]ng  signal can be written as  

)()( LXG ωω =  ( 3.8 )

The frequency spectrum of the input signal and the filled in signal for 2=L , is 
illustrated in Figure 3-4. It must be noted that horizontal axis ω in Figure 3-4-a and 

Figure 3-4-b is scaled with the sampling period T  and T ′  respectively. 

 

Figure 3-4 : [ ]ωX , frequency spectrum of the input signal [ ]nx  and )(ωG , frequency 

spectrum of the filled in signal [ ]ng  for 2=L  

As it can be seen from Figure 3-4, the filled-in signal spectrum is a compressed 
version of the input signal spectrum by a factor of L . To remove the replications 
caused by zero filling, the signal must be filtered using the appropriate low pass filter 
with cut off frequency of L2/1  .  

3.1.3 SD to HD Sampling Rate Conversion 

Spatial resolution up-conversion problem is basically the 2D version of the 
interpolation problem discussed in section 3.1.2  . In the case of SD to HD resolution 
up-conversion, the problem can be stated as “reverse process of the 2D decimation 
performed when down scaling the HD video to SD resolution”. In theory, it is 
possible to reconstruct the original HD signal, after decimation and interpolation 
process, however there are practical limitations.  
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1) To avoid antialising after decimation of the HD resolution signal to SD resolution 
signal, the HD signal must be over sampled by a factor of M  times the Nyquist rate 
or it must be low pass filtered with Mfc 2/1= . In practice, it is not possible to over 

sample the original signal by a factor M  times the Nyquist rate since video signal is 
not a band limited signal. Therefore to avoid anti-aliasing, it is common to pass the 
original signal through a low pass filter, which will remove high frequency 
components in the signal spectrum. It is not possible to recover these high 
frequency components in the interpolation process. 

2) Both decimation and interpolation process requires low pass filtering, and the 
filtering operations mentioned in section 3.1.2 assume ideal low-pass filters 
available. However the impulse response of an ideal low pass filter is a sinc function 
and its implementation requires infinite number of input samples, which is not 
possible in practice. The impulse response of the sinc function is approximated by 
several methods, which are discussed in the following sections. 

Figure 3-5 [3] illustrates decimation of a 1-D signal followed by interpolation. It must 
be noted that the horizontal axis ω is scaled with the sampling period. It is clearly 

seen that the high frequency part of the original signal spectrum is lost. HD - SD –
HD conversion is similar to the steps involved in Figure 3-5, the difference being the 
video signals are 2D signals. The input signal at Figure 3-5a can be treated as the 
HD signal acquired from a camera, and Figure 3-5c can be treated as the down 
sampled SD signal which is broadcasted using an SD channel. The output signal at 
Figure 3-5e can be treated as the HD signal reconstructed from the broadcasted SD 
signal, using interpolation. Flat panel TV sets’ spatial resolution up- conversion 
performance vary depending on the interpolation performed on the SD signal. 
Spatial resolution up-conversion problem had been solved in theory [5, 6] and 
approximations to the theory had been published in [7-10]. Several evaluations and 
implementations of these approximations are also available in [6-13]. More recently, 
more advanced methods on spatial resolution up-conversion problem had been 
published in [14-23] to improve performance on either subjective metrics, or mean 
squared error(MSE) performance. The conventional linear methods aim to 
approximate the ideal low pass filter behavior discussed previously, and try to find 
the optimal low-pass filter, while more advanced methods try recovering the missing 
spectral component[3].   

3.2 Linear methods for up-scaling 

Linear up-scaling is performed by convolving an interpolation kernel [ ]nh  with the 
sampled signal [ ]nx .   
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)()()( ∑ −= knhkxnF  ( 3.9 )

Here, [ ]nh  is basically the time domain impulse response of the low pass filter 

mentioned in section 3.1.2. For an ideal low pass filter, impulse response must be a 
sinc function, however it is already mentioned that such a filter can not be 
implemented at practice. Approximations to such a filter are obtained by 
constructing the convolution kernel based on piecewise polynomial functions.  

 

Figure 3-5: Frequency characteristics of decimation-interpolation process. Frequency 

spectrum of A) The original signal B) Low pass filtered signal C) Down sampled signal D) Up 

sampled signal E) Low pass filtered signal 
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3.2.1 Zero order hold interpolation 

This is the simplest method of spatial up-scaling. The 1-D impulse response of the 
zero order hold interpolation kernel is given as 

[ ]
⎩
⎨
⎧ −≤≤−

=
otherwise

Ln
nh

,0
15.0,1

 
( 3.10 )

where L  is the scaling ratio. 

 

Figure 3-6:  [ ]nh , the impulse response of the zero order hold interpolation function for 

3=L , and illustration of convolution using this kernel 

Impulse response of the zero order hold interpolation kernel is given in Figure 3-6. 
As it can be easily seen from Figure 3-6, the result of performing convolution using 
the zero older hold interpolation kernel with the SD signal,  is the replication of the 
SD pixels at the output image. Therefore the method is also known as pixel 
replication. This method is rarely used in TV scalers due to its low image quality.  

3.2.2 Linear Interpolation 

Another low cost method is to use a first degree piecewise polynomial function, 

which is obtained by convolving the nearest neighborhood kernel with itself.  1-D 

impulse response of the linear interpolation kernel is given as; 

[ ]
⎪⎩

⎪
⎨
⎧ −≤≤

−
=

otherwise

Lnif
L

nL
nh

,0

1||0,||
 

( 3.11 )

Figure 3-7 illustrates the impulse response of the linear interpolation kernel for 
3=L . As it can be seen from the convolution of the impulse response with the input 

signal, the interpolation process determines the missing signal value by taking the 
weighted linear average of the neighbor pixels, and the weights of neighbor pixels 
are proportional to the their distance to the interpolated pixel. For 2D applications, 
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linear interpolation is referred as bilinear interpolation, and despite its rather low 
image quality, it is widely used due to its low cost. 

 

Figure 3-7: [ ]nh , impulse response of the linear interpolation kernel for 3=L  and 

illustration of convolution using this kernel 

3.2.3 Cubic Interpolation 

In cubic interpolation, the impulse response of the ideal low pass filter is 
approximated using three cubic polynomial pieces.  The continuous interpolation 
kernel of cubic interpolation given in [7] is, 

⎪
⎩

⎪
⎨

⎧

≥
≤≤++

≤≤+−

=
2   |t| ,                                                        0

2 || ,1             2 |t| 4 - |t| 5/2  |t| 1/2-
1 || 0,                      ,1||2/5||2/3

)( 23

23

t
ttt

th  

( 3.12 )

Discrete time impulse response of the cubic convolution interpolation can be 
obtained sampling )(th  with 14 +L  samples in the interval -2 ≤ t  ≤ 2. Figure 3-8 

shows the discrete time impulse response sampled in this manner for 2=L . 

  

Figure 3-8: Impulse response of cubic interpolation function for 2=L  
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3.3 Advanced Methods for up scaling 

In section 3.2, conventional linear up-conversion methods were described. The main 

idea behind these methods is to approximate the time domain impulse response of a 

sinc function, which serves as a low pass filter in frequency domain. As mentioned 

in section 3.1, even if the low pass filter used in the interpolation stage is ideal, there 

is still loss of high frequency components, since an antialising low pass filter is used 

prior to decimation. The main idea behind advanced methods is to recover the 

missing spectrum at the down sampled image.  

3.3.1 Content Adaptive Training Based Methods 

The idea behind training based content adaptive methods is to use prior information 
obtained from training with large sets of images in order to recover the missing 
spectrum at the down sampled image. Natural images are structured signals and 
they have considerably less variability than random signals [24]. Training based 
methods try to exploit the spatial characteristics of image signals prior to 
interpolation, using large sets of training images. This type of interpolation is 
performed in two steps, namely the training and the filtering steps.  

Computationally intensive training step can be performed offline to reduce 
implementation complexity and cost. A large set of selected images are processed 
to extract statistical information about the spatial image characteristics. The 
information extracted consists of learned spatial structures, typically referred as 
context classes, and the way these structures are distorted during HD to SD 
conversion. Investigating the class specific distortions, one can design methods to 
restore degraded image components (typically high frequency components). Least 
Mean Square (LMS) method and Expectation Maximization (EM) algorithm are two 
commonly used techniques in the training stage.  

Filtering step is performed on the fly, and typically consists of feature extraction, 
classification and interpolation stages. Appropriate type of filter kernel is selected at 
the end of the feature extraction and classification stages, and the selected kernel is 
used to interpolate the HD pixel from the SD pixel neighborhood.  

Several training based interpolation methods are proposed in the literature. In [18] 
Atkins  et al proposed a training based method, whose optimization method at the 
training step is based on expectation maximization algorithm. In [17], Kondo et al 
proposed a training based method where coefficients are obtained based on LMS 
criterion. In [25], Freeman et al proposed a method where HD image is synthesized 
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block by block, where the blocks are chosen from a database generated during the 
training step. These methods are briefly described in the following sections. 

3.3.1.1 Digital Reality Creation (Kondo’s method) 

Kondo’s method [17]  is a training based, content adaptive interpolation method. The 
coefficients used during interpolation depend on the local content of the image. A 
classification is performed based on the pattern of the local neighborhood of the 
processed pixel, and interpolation is performed using the coefficients for the 
selected class. Filter coefficients are obtained by a training process performed 
offline. Figure 3-9 illustrates the training process performed. Training process uses 
the HD video and the SD video as the training material, and uses Least Mean 
Squares (LMS) criterion to obtain the optimal coefficients. Training process is 
computationally intensive; however it will not cause any trouble since it is performed 
only once and offline.  

 

Figure 3-9: Training process performed in Kondo’s method 

Classification is performed using Adaptive Dynamic Range Coding (ADRC) [24] and 
equation ( 3.13 ) is used when encoding each pixel into 1 bit Q. 

 ,5.0 ⎥
⎦

⎥
⎢
⎣

⎢
+

−
−

=
MINMAX

MINSD

FF
FF

Q  
( 3.13 )

where SDF is the SD pixel’s luminance value, and MAXF  and MINF are the maximum 

and minimum luminance values around the 3X3 neighborhood of the centre pixel. In 
case no encoding was used, the number of classes for a 3X3 window would be (28)9 
and using equation ( 3.13 ), the number of classes is reduced to 29.  
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Figure 3-10 illustrates the aperture used in Kondo’s method. Gray circles in the 
figure represent the input SD pixels, and the white circles represent the HD pixels 
produced. For a scaling factor of 2=L , SD pixel F11 will be replaced with 4 HD 
pixels denoted as A,B,C,D.  Gray pixels F00 through F22 illustrate the 3X3 local 
neighborhood of F11. The same local neighborhood of the centre pixel is used both 
in the classification and interpolation steps.  

 

 

Figure 3-10: Aperture used in Kondo’s method. The HD pixels A,B,C,D are interpolated 

using nine SD pixels, (F00 to F22)  

The interpolation of the HD pixels, is performed using equation ( 3.14 ); 

)1)2(2),1)2(2())2(2),2(2( 2

0

2

0 , ++++=++ ∑ ∑= =
ljkijiF

k l SDcklHI Fw  ( 3.14 )

where cklw , are the interpolation filter coefficients for class c . 
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3.3.1.2 Resolution Synthesis (Atkins’ Method) 

Atkins et al proposed a training based method, referred as Resolution 
Synthesis(RS), in [18]. The main idea behind RS is stated in [1] as “In a large 
training set, learn the high resolution image details that correspond to different 
spatial structures observed at low-resolution, such as edges of different 
orientations, uniform areas and texture regions, then use those learned relationships 
to identify and restore the details in other images.” The approach is based on 
recognizing that pixels in natural images can be classified as belonging to a limited 
number of context classes. These classes are defined by pixel neighborhoods that 
are visually identifiable such as shown in Figure 3-11. If the size of the local window 
is 5x5, and each pixel luminance value is quantized at 8 bits, the number of possible 
patterns is 28*25, which is practically not possible to deal with.  

 

 

Figure 3-11: 5x5 pixel neighborhoods identified as a vertical edge 

Fortunately, examination of the natural image signals show that number of 
meaningful spatial structures is limited, and a great rate of the possible patterns can 
be figured out as noise-like behavior. Even eliminating such noise-like patterns does 
not reduce the space to be explored; hence one can make use of the dominant 
spatial structure being the edge direction. If the optimum interpolation filters for the 
neighborhoods in Figure 3-11 are derived, they would possibly be very close[18]. So 
instead of assigning a context class to every pixel configuration, a context class can 
be assigned to large number of configurations with similar spatial structure. In 
resolution synthesis, number of context classes is fixed and is around 100. Structure 
of the RS algorithm predictor is depicted in[1] as in Figure 3-12. 

As it is seen in the figure, the structures of Kondo’s and Atkins’ methods are similar, 
the difference being how classification blocks are implemented. While Kondo’s 
method uses ADRC [24] in classification, Atkins’ method uses Expectation 
Maximization algorithm [26].   



 19

 

Figure 3-12: Structure of the RS predictor. 

RS algorithm can be performed in 3 steps : 

1) Feature Extraction : This is the first step of the algorithm to obtain the 8x1 
classification vector yr   which is defined as : 

⎩
⎨
⎧ ≠

=
−

otherwise ,                   0
0~ ,    ||~||~ 75.0 yyy

y
vvv

v  
( 3.15 )

The   y
r~  vector is an 8x1 vector constructed by the difference of the centre pixel with 

each neighbor pixel in the classification aperture in Figure 3-13 and yr  vector is the 

normalized version of the y
r~  vector, whose elements are given as : 

[ ]p
j

i

y

y

∑ =

8

1
2~

~
v

v

 
( 3.16 )

where p  is a parameter to control the amount of normalization. Feature vectors are 
normalized to unit length when p is selected as 1 and no normalization is performed 
when 0=p . In [18], p value is obtained as 0.75 experimentally. 
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Figure 3-13: Extraction of the y
r~  vector 

2 ) Context classification : In this step, classification vector yr  is compared with 

the representative vector cRV of the thc  class to calculate )|( ycP v , the probability 

that the current neighborhood belongs to class c , which is given as : 

)
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( 3.17 )

Representative vector, RV , represents the class, class weight, CW , indicates the 
global probability of the class, and the variance, VAR , indicates the average 

distance of the representative vector and the mean of the representative vector.  
These parameters are obtained for each class using EM algorithm at training stage.  

3) Filtering : High resolution pixels are calculated by first filtering the low resolution 
block with filters from each class, and then taking the linear weighted average of the 
filter outputs, where weighting coefficient of each filter is its corresponding )|( ycP v  

value. The same aperture in Kondo’s method is used for Atkins’ method. From the 
definition, high resolution pixel A is calculated as 

∑∑∑
−

= = =

+++++=++
1

0

2

0

2

0
,, )|())1)2(2,1)2(2(())2(2),2(2(

M

c k l
ijcSDklcHI ycPbljkiFajiF v

 

 (3.18) 
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Where a  is a 4x9 matrix and b  is a 4x1 matrix of class c  , each row corresponding 

to coefficients to interpolate high resolution pixels A,B,C,D. 

3.3.1.3 Example Based Super Resolution 

Example based super resolution is different from Kondo’s and Atkins’ method both 
in the classification and reconstruction step.  In example based super resolution, the 
input image is decomposed into low frequency and high frequency components. 
Low frequency image is obtained by first blurring and sub sampling the original high 
resolution image and then scaling back this image to its original size using a linear 
interpolation method. By this way, an image of desired size that lacks high resolution 
detail is obtained. In the training set, the differences between the high resolution 
image and linear interpolated image are stored. High resolution patches 
corresponding to every possible low-resolution image patch, typically of 5x5 and 7x7 
pixels, are stored. The detail component of the image is obtained by combining the 
high resolution patches. The prior information obtained at the training step provides 
statistical information on which low resolution patch typically corresponds to which 
high resolution patch, and this information is used to reconstruct the high resolution 
details of the image. For its constraints on huge storage of patches, cost of the 
method is high for real time implementation.  

3.3.2 Directional Interpolation Methods 

New Edge Directed Interpolation (NEDI) proposed in [14] is the typical sample of a 
directional interpolation method. NEDI aims to interpolate along edges rather than 
across them to prevent blurring. NEDI differs from Kondo’s and Atkins’ method in 
the place coefficient optimization is performed. The optimization of the interpolation 
coefficients is performed by applying an LMS algorithm on-the-fly. The main 
advantage on performance is that the local neighborhood does not need any 
simplification. The disadvantage is that more calculations are required for 
optimization since the original image is not available. Figure 3-14 shows the 
aperture used in NEDI.  

NEDI algorithm uses the following formulae for interpolation.  

))2(2),2(2())1(2),1(2(
1

0

1

0
2 ljkiFwjiF

k l
SDlkHI ++=++ ∑∑

= =
+  

( 3.19 )

where w  coefficients  in the formulae are computed at the runtime using LMS 
criterion. The sum of squared errors over a set S  in the optimization is written as 
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the sum of squared differences between the original SD pixels and interpolated SD 
pixels.  Sum of squared error(SSE) is given as : 

∑ ++−++=
ji

HISD jiFjiFSSE
,

2))22,22()22,22((  ( 3.20 )

Substituting HIF  in  equation ( 3.20 ) and writing the equation in matrix form, SSE is 

written as : 

2|||| CwySSE vv −=  ( 3.21 )

where yv  is the vector of SD pixels in S , and C is a 4x S 2  matrix whose thk row 
contains  4 diagonal SD neighbors of the thk  SD pixel in yv  vector. To find the 

minimum SSE, the derivative of SSE over wv  must be 0 hence wv  is obtained as : 

)()( 1 yCCCw TT vv −=  ( 3.22 )

 

Figure 3-14: Aperture used in NEDI 
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The computation of the coefficient matrix used at the interpolation step is more 
costly than the interpolation step itself, which brings a major disadvantage for the 
real-time implementation of the algorithm. 

3.3.3 Other Methods 

Other than the training based methods, and the directional interpolation based 
methods, there exists other advanced algorithms proposed for video up-scaling 
problem. In [19-21] image interpolation is performed using neural networks. In [16], 
frequency domain operations are used. In [22], SD image is up scaled using a linear 
scaling algorithm and a non linear sharpening method, Luminance Transient 
Improvement (LTI) [27] is applied to the scaled image, to recover the high frequency 
components lost during the decimation process. There are several other methods 
which are either similar to or derived from the methods discussed in previous 
sections. These are out of scope for this study, hence are not mentioned in this 
section.  

3.4 Video Performance Evaluation of the Methods 

Evaluation of video enhancement algorithms is quite tricky since the aim of video 
enhancement algorithms is to improve the perceived image quality which is 
subjective. After all, the target is the human eye, and the success of the algorithm 
might differ with the user’s taste. There exist subjective evaluation techniques which 
usually make use of a group of trained and non-trained eyes, to evaluate an 
algorithm’s performance; however such processes are expensive, slow and hard to 
manage. Several image quality metrics have been proposed in the literature which 
aims to correlate well with perceived image quality. Though not being closely 
correlated with perceived image quality, some simple metrics like mean square error 
(MSE), or Peak Signal to Noise Ratio (PSNR) are also widely used to evaluate an 
algorithm’s performance. In many of the scientific researches, MSE is taken as the 
major metric to compare the algorithms’ performance. In [3], the algorithms 
discussed in previous sections (Example based super resolution in [25] being the 
exception) are also compared and evaluated using MSE criterion and subjective 
tests. In this evaluation, four still images and seven video sequences were used, 
with several spatial characteristics. In objective evaluation, MSE criterion is used  
with with the formulae: 

∑ −=
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jiGjiF
N

MSE
,
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( 3.23 )
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where ),( jiF  is the luminance value of the thi row, thj column in the original high 
resolution image, and ),( jiG  is the luminance value of the same spatial location in 

the up converted image. N  is the number of pixels in the images. Table 3-1 shows 

the results of objective evaluation, performed in [3]. 

Table 3-1 : MSE performance evaluation performed in [3] 

 Bilin
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cubic 

Int. 

Keys 

kernel 

cubic int. 

Mitchell 
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kernel 

Kondo’s 

method 

Atkins’ 

met. 

Plaziac’s 
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Li’s 

met. 

Greenspan’

s method 

Tegen
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s met. 

Average 

MSE Score 

120.

2 

101.2 111.4 92.3 95.0 104.2 117.0 101.4 203.3 

Figure 3-15 illustrates the results of subjective evaluation performed in [3].  

 

Figure 3-15 :  Subjective evaluation performed in [3] ( A : Cubic B-spline interpolation, B: 

Kondo’s method, C: Li’s method, D: Tegenbosch’s method )   
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The subjective comparison is performed for four of the algorithms. In the figure, 
higher value horizontal scale represents higher perceived image quality. In the 
subjective evaluation, it is observed that optimal MSE score does not guarantee the 
best perceived image quality, since Tegenbosch’s method [22], which gives poor 
MSE scores can be found to have a better perceived image quality by user. 
However it is also stated that MSE is the most appropriate start point for further 
enhancement in the perceived image quality. It must be also noted that 
Tegenbosch’s method performs LTI over a bicubic based linear interpolation method, 
and further research on applying appropriate LTI over a training based interpolation 
may have the potential to get better perceived image quality as well as MSE score.  
More details on both subjective and objective evaluation of the algorithms, including 
the test pictures for each image group can be found in [28]. 
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4. MODIFIED RESOLUTION SYNTHESIS 

4.1 Overview 

In chapter 3, it has been shown that scaling an image by linear filtering can not bring 
back the high frequency components degraded (reduced to noise level, completely 
filtered out or aliased) during sampling. This is where advanced resolution up-
conversion techniques (which are also referred as resolution enhancement 
techniques) differ from linear scaling techniques. Resolution enhancement 
techniques can recover the missing or aliased high frequency components to a 
limited extent by estimating the missing high frequency components through 
spatially adaptive filtering and use of prior information. The main improvement 
offered by single frame resolution enhancement is observed around edges and 
textured areas. Compared to the results obtained by linear scaling filters such as 
bicubic interpolation combined with unsharpen filtering, techniques such as the 
resolution synthesis [18] algorithm can offer much smoother, continuous edges with 
sharp transitions, remove the blurry look from textured areas and rectify slight 
aliasing artifacts (where aliased signal components can not disturb the dominant 
spatial structure). Several content adaptive methods were considered to be a start 
point for the work done in this thesis, and resolution synthesis [18]  was taken as the 
start point since it had performed well in terms of MSE and perceptive image quality. 
The details of the algorithm had been given in section 3.3.1.2.  

In its current form, resolution synthesis is computationally too demanding for 
systems with limited computational resources and memory. The high computational 
load is mainly due to the large number of classes required for satisfactory 
performance (typically anywhere between 30-100) and the requirement for weighted 
combination (soft filtering) in Eq.  (3.18). Linear combination is especially demanding 
since it requires repeating application of a 5×5 filter, implying 25 additional 
multiplications and an additional accumulation for every class included in soft 
filtering. In addition, the combination weights ( )|( ycP v ’s in equation ( 3.17 ) must be 

computed to obtain the final result. In [1] several trials were performed to reduce the 
complexity of RS. It is observed that directly reducing the number of classes (below 
~30) severely degrades performance. Also using only one class (the class with 
maximum membership) to compute the high resolution pixels results in degraded 
performance. It is found out that the discrimination power of the feature vectors 
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defined by equation ( 3.15 ) was severely degraded as the number of context 
classes was reduced below ~ 25. These shortcomings render resolution synthesis 
useless for customer grade flat panel displays, where the computational complexity 
must be kept below some threshold. The goal in [1] is to introduce some 
modifications so that RS can operate satisfactorily with as low as 5 context classes 
using hard decision (using a single class in filtering).  

4.2 Algorithm Description 

Modified RS scheme consists of two phases, namely the offline training phase, and 
the online filtering phase.  

4.2.1 Offline Training Phase 

Proposed training method in [1] is shown in Figure 4-1.It is based on the observation 
that interpolation filter design stage has direct access to the high resolution pixels. If 
one can couple interpolation filters to the feature extraction and classification stages, 
the resulting clustering should improve. Given the low and high resolution training 
images, proposed method iteratively extracts the best interpolation filters and the 
context class prototypes that are used to determine input pixel’s context.  

 

Figure 4-1: Proposed training scheme in [1] 

The iterative training works as follows. 

0.Initialization : 

After extracting the feature vectors of all the low resolution pixels in the training set, 
class prototypes are initialized randomly. The prototype for class number 1 is 
manually set to a vector of all zeros. This guarantees that a class is reserved for 
uniform areas. All covariance matrices are set to identity matrices. 
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1. Clustering with respect to features: 

After initialization, the low resolution pixels are classified with respect to their feature 
vectors. This is done by going through all low resolution pixels, computing the 
weighted Euclidian distance (the weighting matrix is the inverse of feature 
covariance matrix) between the pixel’s feature vector, which is a representative of 
the local image characteristic of the low resolution pixel and the cluster prototypes, 
which are representatives of different context classes. Then the input low resolution 
pixel is labeled with the index of the cluster whose feature vector is the closest to the 
low resolution pixel’s feature vector. 

2. Filter update: 

Once the low resolution pixels are clustered with respect to their feature vectors 
(context) the interpolation filters for all clusters are updated with the filter that 
minimizes the mean squared error between the interpolated and the true high 
resolution pixels computed for all low resolution pixels in a specific cluster. While 
preparing the training samples, a small amount of blurring prior to down sampling is 
necessary to model the camera response and also to avoid aliasing. But completely 
filtering out the high frequency components effectively creates an inverse problem 
where the filters are asked to bring back completely removed signal components 
(this is only possible in multi-frame case), resulting in bad filters.  

3. Clustering with respect to filters : 

After filter update, all the input pixels are clustered with respect to the minimum 
mean-squared-error interpolation filter. This is accomplished by going through all 
low-resolution training pixels, computing the interpolated high resolution pixels one 
by one, and comparing the interpolated pixels to the available high resolution pixels. 
The low resolution pixel is then labeled with the index of the interpolation filter that 
gives the minimum mean-squared-error between the interpolated and real high 
resolution pixels.  

4. Class prototype update : 

Once all the input pixels are classified, the feature vectors of the obtained clusters 
are updated one by one. This update can be done in various different ways such as 
taking the average of the median of the feature vectors. Class covariance matrices 
are updated next. To reduce computational complexity, diagonal covariance 
matrices are assumed. Then the algorithm steps back to step 1, clustering with 
respect to features, and iterate in this fashion for predetermined times. In [1] the 
experiments are done with 2 iterations. 
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4.2.2 Online Content Adaptive Filtering Phase 

At the end of offline training phase, for each class i  ; an 8x1 representative vector 

iC
v

, each of which represents a class, an 8x1 variance set, iσ , which indicates the 

average distance of each representative vector and the mean of the representative 
vectors, and four 5x5 interpolation filter kernels 11100100 ,,, iiii KKKK  are calculated.  

 

Figure 4-2 : Up conversion of SD resolution image to HD resolution image 
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Once the offline training phase is completed and iC
v

, iσ  and 11100100 ,,, iiii KKKK  

values for each class is computed, online computations can be started to up-convert 
an SD resolution image to an HD resolution image as shown in Figure 4-2. 

The inputs to the algorithm are 

• the image matrix Y  of size VerHor xSDSD , with each element mnY   of the 

matrix representing the luminance value of thm  row, thn  column of the low 

resolution image.  

• representative vectors iC
v

 of size 8x1 for each class i . 

• set of normalization constants iσ  of size 8x1 for each class i . 

• Four 5x5 filter kernels 11100100 ,,, iiii KKKK  for each class i . 

The output of the algorithm is 

• The HorVer xHDHD  image matrix Z with each element mnZ  of the matrix 

representing the luminance value of thm  row, thn  column of the high 

resolution image.  

The algorithm consists of three stages, namely, feature extraction, context 
classification, and filtering. Feature extraction and context classification is performed 
for every pixel of the input SD image, and filtering is performed for every pixel of the 
output HD image. The aperture used in these stages, is shown in Figure 4-3  

 

Figure 4-3: Aperture used in Modified Resolution Synthesis 
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4.2.2.1 Feature Extraction 

In the feature extraction stage, for every SD input pixel, the feature vector of the 
pixel is extracted from a 3×3 local neighborhood. The feature vectors will be 
denoted asφ .  To obtain the feature vector, first, an 8x1 vector is obtained by 
subtracting the centre pixel value 2,2 −− nmY from its 8 neighbors and taking the 4th 

power of the difference. The elements of the 8x1 feature vector are given as, 

4
1,32,21 )( −−−− −= nmnm YYFV

4
2,32,22 )( −−−− −= nmnm YYFV

4
3,32,23 )( −−−− −= nmnm YYFV

4
1,22,24 )( −−−− −= nmnm YYFV

4
3,22,25 )( −−−− −= nmnm YYFV

4
1,12,26 )( −−−− −= nmnm YYFV

4
2,12,27 )( −−−− −= nmnm YYFV

4
3,12,28 )( −−−− −= nmnm YYFV  

( 4.1 )

Then the resultant vector FV is normalized obtain the normalized feature vector 
φ .The following equation shows the mapping used to obtain each element of the 
normalized feature vector φ   

∑ =

= 8

1
75.02 )(

j j

i
i

FV

FV
φ  

( 4.2 )

4.2.2.2 Context classification 

In the context classification stage, the feature vector φ  obtained in the previous step 
is compared to five predetermined iC

v
 vectors namely the representative vectors of 

each class. The distance between the feature vector φ  and the representative 
vector of class i , iC

v
is computed as 

∑
=

−
=−=

8

1 ,

2
, )(

||||
j ji

jij
ii

C
Cd

σ
φ

φ
v

               5,4,3,2,1=i  
( 4.3 )

That is, the distance between  φ  and iC
v

is the sum of squared differences between 

the corresponding entries of each vector divided by normalizing constants. The 
context class that is closest to the φ  vector (with minimum id ) is declared as the 
context of the current low resolution pixel 2,2 −− nmY , and its index cl  is passed to the 
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interpolation stage. It must be noted that the iC
v

vectors and the iσ normalizing 

constants are different for every class and they are pre-computed in the training 
phase.  

4.2.2.3 Filtering 

In the filtering stage, index passed by the context classification step is used to pick 
the interpolation filter corresponding to the context class of the current low resolution 
pixel. Interpolation is performed for every HD pixel, therefore the iteration is not 
performed in the SD input image, but on the HD output image to be created. For 
every output pixel at the HD output image, first the corresponding vertical and 
horizontal SD image coordinates vy and hy , are computed using the following 

formula : 

⎥⎦
⎥

⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢=

L
z

y
L
z

y h
h

v
v ,     

( 4.4 )

where, vz  and hz  are the horizontal and vertical coordinates of the HD pixel and 

L is the scaling ratio. Then the horizontal and vertical phases hp  and vp of the 

output pixel  is computed using the following formula: 

⎥⎦
⎥

⎢⎣
⎢ +−= ε)( h

h
h y

L
z

xQhp  
( 4.5 )

⎥⎦
⎥

⎢⎣
⎢ +−= ε)( v

v
v y

L
z

xQvp  
( 4.6 )

where vQ and hQ are the vertical and horizontal quantization values set as 2 in [1]. 

Using the context class index cl , horizontal phase hp and vertical phase vp , 5x5 
interpolation kernel  vphpclK ,,  is selected for the output pixel, and the interpolation of 

the output pixel is performed by convolving the 5x5 neighborhood of the 
corresponding SD coordinates, with the selected kernel. For the output pixel 
coordinate of )2(2),2(2 −− nmZ  the corresponding SD input pixel will be 2,2 −− nmY ,from 

Eq.( 4.4 ) and hp  and vp  will be both zero from Eq.( 4.5 ) and Eq.( 4.6 ). The 
selected filter will be 00,clK (denoted as K in Eq.( 4.7 )) and the interpolation output 

will be computed by 
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∑∑
−= −=

+−+−−− =
2

2

2

2
2,2)2(2),2(2

i j
ijjnimnm KYZ  

( 4.7 )

Pseudo code of the online filtering phase of the modified resolution synthesis 
algorithm is given in Figure 4-4.  

 

Inputs: )( verhor xSDSDY = input image matrix, cC
v
(8x1 representative 

vector for each class), cσ (8x1 normalization constant set for each 

class), 11100100 ,,, cccc KKKK (four kernel of size 5x5 for each class), 
c  = 1,2,3,4,5  
 

Output: HorVer xHDHDZ =  output image matrix 

  for m from 2 to 2−verSD  do 

     for n from 2 to 2−horSD  do 

        0:=SFV   
        for i = -1 to 1 do 
           for j = -1 to 1 do 

              4
,,)1()1(3 )( jnimnmji YYFV +++++ −=    

              ( )2)1()1(3 ++++= jiFVSFVSFV  

        75.0SFVSFV =    
        for i = -1 to 1 do 
           for j = -1 to 1 do 

              SFVFV jiji /)1()1(3)1()1(3 ++++++ =φ    

        for c = 1 to 5 do 
           for k=1 to 8 do 

               
kc

kck
cc

C
dd

,

2
, )(

σ
φ −

+=   

        clm,n = index_of( Min ( cd ))     c = 1,2,3,4,5  
 

  for s from 2 to 4−verHD  do 

     for t from 2 to 4−horHD  do 
        compute SD coordinates m,n corresponding to s,t  
        Select the class of the filter clm,n  
        Select the vertical and horizontal phase of the filter 
        Select the appropriate filter K using vp,hp, and clm,n 
 for x = -2 to 2 do 
   for y= -2 to 2 do  

            yxynxmtsts KYZZ ,,,, *−−+=  

 

Figure 4-4 : Pseudo code of the Modified RS algorithm 
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4.3 Visual Quality Results 

Prior to the implementation of the algorithm, several subjective benchmarks were 
run on the algorithm, in Vestel Video Quality Lab. In industrial video and image 
processing applications, it is mainly the perceived image quality that is targeted 
hence MSE criterion is discarded. The images scaled with MRS algorithm were 
compared with images scaled using bicubic scaling algorithm. MRS algorithm 
performance was also compared with state of the art video processors. Figure 4-5 
shows the input image with 200x200 resolution. The 400x400 output images scaled 
by MRS and bicubic scaling algorithms are shown in Figure 4-6 and Figure 4-7  

 

Figure 4-5 : Input image with 200x200 resolution 

 

Figure 4-6: MRS output image with 400x400 resolution 
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Figure 4-7 : Bicubic scaler output image with 400x400 resolution 

4.4 Complexity Analysis 

In this section, a hardware complexity analysis of the RS and MRS   algorithms are 
given. In computer science, time and space complexity of an algorithm is usually 
given in terms of asymptotic complexity, and the common approach is to use the 
order of n notation (e.g., “Big O”, “Big Theta” etc notations). Asymptotic complexity 
analysis seeks to find the complexity of a problem, when the size of the problem 
goes to infinity. Such an analysis will not make any benefit in this work since the 
point of interest is the algorithms’ hardware complexity. Several metrics are 
proposed to estimate the complexity of an algorithm in terms of its hardware 
resources. In this study, the basic approach which is also used in [6] is used. The 
algorithms are compared in terms of number of multiplications, additions and 
memory elements required per output pixel. 

4.4.1 Complexity of RS and Modified RS algorithms 

4.4.1.1 Feature Extraction : 
Feature extraction of the RS algorithm is given in Eq.( 3.15 ). Discarding the control 

logic and the registers inserted for pipelining or delaying the operands, the 
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complexity of the feature extraction block in terms of adder, multiplier and memory 

cells can be estimated in four steps : 

i) Computation of the  y
r~   vector  

ii) Computation of || y
r~  || from y

r~   

iii) Computation of || y
r~  ||-0.75    

iv) Computation of  y
r~   || y

r~  ||-0.75       

Computation of the y
r~ vector in step i requires 8 additions. Computation of the norm 

of the  y
v~  vector in step ii requires 8 multiplications followed by 8 additions. 

Assuming a piecewise linear implementation of the constant exponentiation 

operation, step iii can be performed using a look up table of k2  words where k  is 

the size of the input operand. Finally step iv requires 8 multiplications to compute 

the normalized feature vector. At total, the complexity of the feature extraction block 

in RS can be given as 

memorywordsadditionstionsmultiplicaComplexity k
FERS   2 16 16_ ++=  ( 4.8 )

Feature extraction module of the MRS algorithm given in Eq.( 4.1 ) and Eq.( 4.2 ) is 

similar to the one in RS algorithm and can be estimated in four steps : 

i) Computation of the  FV   vector  

ii) Computation of  || FV  || from FV   

iii) Computation of  || FV  ||-0.75    

iv) Computation of FV   || FV  ||-0.75       

Computation of  FV  differs from the RS algorithm, due to the additional squaring 

operations, which will require 16 multiplications. The rest of the steps use the same 

operations and hence have the same cost as in RS.  At total, the complexity of 

feature extraction stage in modified RS can be given as  

memorywordsadditionstionsmultiplicaComplexity k
FEMRS  2 16 32_ ++=  ( 4.9 )
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4.4.1.2 Context Classification 

Context classification stage of the RS algorithm is given in Eq.( 3.17 ). The 
expression in the nominator requires 8 additions for the 8x1 vector subtraction, 8 
multiplications, 8 additions and 8 divisions for the vector norm computation, 2 
multiplications for the division by a constant, and squaring operations, and at least 
log N  multiplications for the exponentiation operation where N  is exponent. In the 

denominator, the arithmetic operations mentioned for the nominator are done for M  
times and finally M  additions and a division is required to obtain the )|( ycP v value 
for one class.  To obtain the )|( ycP v  values for M  classes, one should only 

compute the nominator since the denominator will be the same for all classes. 
Therefore approximately, 2 M  ( 16 additions + 10 Multiplications + log N  

multiplications + 8 divisions) + M  additions + M  divisions are required . Using 
basic assumptions (taking the complexity of a division operation and exponentiation 
operation 10 times the complexity of a multiplication), the complexity of the 
classification step can be estimated as 

tionsmultiplicaMadditionsMComplexity CLRS  66 33_ +≈  ( 4.10 )

Context classification stage of the MRS algorithm is given in Eq.( 4.3 ). The 

expression in the nominator requires 8 additions and 8 multiplications. Divisions by a 

constant can be implemented by multiplication by the inverse of the constant hence 

the division operation requires 8 multiplications and the summation operation 

requires 7 additions at the final stage. Since the operations will be performed for 

every class, these operations will be performed M  times. To find the minimum 

distance value, 5 class distances are compared with each other, which will require 4 

comparators. Assuming the complexity of a comparator is the same with an adder, 

total complexity of the classification step of the MRS algorithm can be estimated as 

tionsmultiplicaMadditionsMComplexity CLMRS  16 )116(_ +−≈  ( 4.11 )

4.4.1.3 Interpolation 
Interpolation stage of the RS algorithm is given in Eq.(3.18) Soft filtering requires a 

5x5 convolution for each class and a linear combination of these convolutions, 

therefore the number of multiplications required will be equal to 5*5* M  for the 

convolutions and M  for the linear combinations. Number of additions will be (5*5 – 
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1) * M  for the convolutions and  1−M  for the linear combinations. Total complexity 

of the interpolation stage of the RS algorithm can be estimated as  

tionsmultiplicaMadditionsMComplexity INRS  26 )125(_ +−≈  ( 4.12 )

Interpolation stage of the MRS algorithm is given in Eq.( 4.7 ). Since hard 

interpolation is performed in MRS instead of the soft interpolation operation in RS, 

5x5 convolution is performed only for the selected class. Total complexity of the 

interpolation stage of the MRS algorithm can be estimated as, 

tionsmultiplicaadditionsComplexity INMRS  25 24_ +≈  ( 4.13 )

4.4.2 Complexity Comparison of RS and MRS algorithm 

Number of multiplications, additions and memory words required in RS and MRS 
algorithms are listed in Table 4-1. The aim of the MRS algorithm had been 
discussed in Section 4.1. MRS algorithm tries to reduce the complexity of the RS 
algorithm by 

• Replacing soft interpolation with hard interpolation 

• Reducing the number of classes, M . 

without sacrificing the performance, due to several modifications at the training 
stage. The effect of replacing the soft interpolation with hard interpolation to the 
hardware cost is obvious in Table 4-1. The complexity of the interpolation stage is 
roughly reduced by a factor of M , and the complexity of the classification stage is 
roughly reduced by a factor of 2, by the modifications performed to replace soft 
interpolation with hard interpolation. In [1], another modification is done on the 
number of context classes. It is reported that RS algorithm requires at least ~30 
context classes, and MRS algorithm requires 5 context classes to perform 
satisfactorily. Substituting 30=M  in the RS complexity equation, and 5=M  in the 

MRS complexity equation, RS will require ~2400 multiplications + 1800 additions per 
output pixel, whereas MRS will require 137 multiplications + 120 additions per 
output pixel.  
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Table 4-1 : Number of arithmetic operations in RS and MRS algorithms 

 Multiplication Addition / 

subtraction 

Memory 

words 

RS Feature 

Extraction 

16 16 k2  

RS 

Classification 

66M 33M  

RS interpolation 26M 25M-1  

RS Total 92M+16 55M+16 k2  

MRS Feature 

Extraction 

32 16 k2  

MRS 

Classification 

16M 16M-1  

MRS 

interpolation 

25 24  

MRS Total 16M+57 16M+40 k2  
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5. PROPOSED HARDWARE ARCHITECTURE 

The aim of this study is to find an efficient architecture to implement a content 
adaptive video resolution up-conversion scheme in a low cost hardware that is 
targeted for a high-end flat panel display product. The target application is video 
standard conversion where the input is standard definition video and the output is 
high definition video. Modified RS scheme, presented in chapter 4, is used for 
interpolation. The computational complexity of the Modified RS scheme in terms of 
multiplications and adders is given in chapter 4. In this chapter, an efficient 
hardware architecture to implement Modified RS scheme is given. Since the 
hardware is targeted to work on a real time platform, a detailed analysis of the 
system requirements is necessary. Section 5.1 lists the performance requirements 
to be considered in the design of the hardware architecture. The details of the 
hardware architecture designed considering the requirements are given in Section 
5.2.  

5.1 Performance Requirements 

5.1.1 Throughput Constraints 

The constraint on the throughput arises from the input and output pixel rates of the 
video standard to be converted. In this study, the input video standard is NTSC 480p 
@60Hz, which has 480 lines of vertical resolution and 720 columns of horizontal 
resolution, and the output video standard is NTSC 720p @60Hz which has 720 lines 
of vertical resolution and 1280 columns of horizontal resolution. The details of the 
input and output video specifications are given in Electronic Industries Alliance(EIA) 
DTV resolution standards specification [28]  

Figure 5-1 and Figure 5-2 illustrate the timing diagram for the input and output video 
standards. The throughput and the pixel clock frequencies can be derived from the 
video standards. Pixel clock period, clkT  can be written as, 

)        (
)     (

framevideooneforcyclesclockpixelofnumberN
framevideoonefortimeTotalT

T
cpf

frame
clk =  

( 5.1 )
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Figure 5-1: Timing diagram for NTSC 480p@60 Hz video standard  
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Figure 5-2 : Timing diagram for 720p@60 Hz video standard 
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Since the input and output video has a frame rate of 60 Hz defined in the standards 
specification [28] , the nominator will be equal to 1/60 seconds for both the input and 
output. The denominator can be derived as, 

)        ( 
 )        (

frameperlinestimeblankingframeperlinesvideoactivex
lineperclockstimeblankinglineperclocksvideoactiveNcpf

+

+=
 

( 5.2 ) 

Substituting the values from Figure 5-1 into Eq. ( 5.1 ), input pixel clock period can 
be found as, 

=
++

=
)45480()138720(

60/1
_ x

T inclk 37seconds 
( 5.3 )

and input pixel clock frequency can be found as 

MhzTF inclkinclk 027.27/1 __ ==  ( 5.4 )

Substituting the values from Figure 5-2 into Eq. ( 5.1 ), output pixel clock period can 
be found as, 

)30720()3701280(
60/1

_ ++
=

x
T outclk =13.468 seconds 

( 5.5 )

and output pixel clock frequency can be found as, 

MhzTF outclkoutclk 25.74/1 __ ==  ( 5.6 )

At each 74.25Mhz output pixel clock, one interpolated output pixel must be available, 
therefore the throughput of the system will be  

ondpixelsMThrougputoutput sec/ 25.74=
 

( 5.7 )

In 480p to 720p standards conversion, the scaling ratio is less than 2, which is 
chosen as an upper bound in the proposed architecture to reduce the complexity.  
Setting an upper bound at the scaling ratio, the hardware implementation of the 
proposed scaling algorithm can be performed in two different ways: 
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• Output based flow: For each HD pixel coordinate, find the corresponding 
5x5 low resolution window, and perform feature extraction, classification, and 
interpolation on this neighborhood. 

•  Input based flow: For each SD pixel coordinate, find the corresponding 
four HD pixel coordinates. Since these HD pixels are to be interpolated from 
the same SD pixel neighborhood, perform feature extraction, and 
classification steps only for once. Then perform interpolation for all four HD 
pixels corresponding to the SD pixel, and arrange the interpolated pixels in 
raster-scan order using line buffers. Discard redundant pixels at the 
interpolation output if L is a non-integer value. 

Since the complexity of the interpolation scheme is mainly on the feature extraction 
and classification blocks, input based method is preferred in this work, thus 
eliminating unnecessary computations for the feature extraction and classification 
stages. When output based flow is followed, maximum of four pixels must be 
available at every input pixel clock cycle, and therefore the throughput of the system 
will be  

ondMpixelsxThroughput sec/ 108  274 ==  ( 5.8 )

5.1.2 Logic Area Constraints 

The volume of the production of a flat panel display solution is in the order of million 
units for the consumer electronics market, and this brings a constraint on the cost of 
the solution, hence the logic area. In order the integrate the designed solution into 
an industrial product, only the low cost FPGA families are feasible, which eliminates 
the use of high performance FPGA families such as Xilinx Virtex-4 and Virtex -5 
family, or Altera Stratix –II or Stratix-III family. The target platform was chosen from 
the Xilinx low cost FPGA family, and the architecture was designed for a Spartan3 
XC3S2000 FPGA, with equivalent gate count of  2Milllion system gates. 

5.1.3 Resource Sharing Options 

Modified RS algorithm introduces reduced implementation cost by replacing soft 
filtering with hard filtering and by reducing the number of classes used in the 
classification stage. The hardware cost can be further reduced by exploring the 
design space. Two main factors that can affect the implementation efficiency are the 
input/output data rate, and the target implementation platform. The optimum degree 
of pipelining and resource sharing achievable may vary depending on these two 
factors. An efficient implementation for a low cost FPGA family may result in an over 



 44

pipelined, or over parallelized architecture, with low resource utilization for a high 
performance FPGA family. Although the design is targeted for 480p SD to 720p HD 
video conversion, a more flexible architecture is proposed to easily adapt to different 
scaling ratios. To provide an efficient implementation for different data rates, and 
different implementation platforms, the degree of resource sharing should be 
variable. The degree of resource sharing in feature extraction and classification units 
is defined as  

unit) extraction featurein  paths processing of (# N
 vector)feature in the elements of (#N

p

e=rD  
( 5.9 )

Choosing a non integer rD  value will result in ⎡ ⎤ epr NND −)*(  slots of the 

processing path to be idle at every ⎡ ⎤rD  clock cycle. Choosing an integer rD value 
will fully utilize the data path since  ⎡ ⎤ rD=rD  which implies no idle slots. To 

achieve the desired data throughput with different resource sharing levels, core 
clock frequency, coreclkF _ , must be related to the input pixel clock frequency, inclkF _  

with the following formula 

inclkrcoreclk FDF __ *=  ( 5.10 )

One can choose the degree of resource sharing, rD  by investigating the input pixel 

rate and the maximum core clock frequency achievable by the target FPGA 

5.2 Hardware Blocks 

5.2.1 Top Level 

Top level block diagram of the hardware architecture designed for the modified RS 
algorithm is shown in Figure 5-3. There are 6 main blocks; input memory (IM), 
output memory (OM), feature extraction (FE), classification (CL), interpolation (IN), 
and color space conversion units (rgb2ycbcr,ycbcr2rgb). Modified RS algorithm is 
performed on the luminance ( Y ) path. Chrominance signal is interpolated 
performing pixel replication. RGB input data is converted to YCbCr using ITU 
equations. 4 rows of luminance data are stored in line buffers to provide the 5x5 
pixel neighborhood required for interpolation step. 

At each input pixel arrival, the control unit reads a 4x1 pixel column from the line 
buffers, writes the incoming pixel to the line buffers and provides the 3x3 and 5x5 
pixel windows to the feature extraction and classification units. Feature extraction 
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unit operates on a 3x3 window and extracts an 8x1 feature vector which is used by 
the classification unit. The classification unit calculates the distance between the 
feature vector and the predetermined class vectors and outputs the index of the 
class with minimum distance to the feature vector. Interpolation unit uses the class 
index to address the filter coefficient LUT and select the appropriate filter for the 
input pixel neighborhood. Convolution is performed using constant coefficient 
multipliers. Interpolated outputs are stored at output line buffers. Since the input and 
output sample rates are different, output memories are required to provide 
appropriate rate and order of data at the outputs. 

The proposed architecture supports scaling of video signals where the scaling ratio 
2≤L . When scaling ratio 2=L , 4 HD pixels are interpolated for each SD pixel. For 

non integer scaling ratios  21 << L , output pixel selector block finds the pixels to be 
discarded using Eq.( 4.4 ).  

 

Figure 5-3: Top level block diagram of the proposed hardware 

5.2.2 Control Unit (CU) 

Control unit provides input data to the data path blocks at appropriate timing and 
format. The functionality of the CU is illustrated in Figure 5-4. 

The control unit 
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• Generates the memory address and control signals for IM and OM blocks, 
and pipeline control signals for other blocks. 

• generates the synchronization signals defined at the video standards 
(hsync,vsync,data enable).The porch time and sync time are defined as 
generics in the RTL code, and the values corresponding to the input and 
output video resolutions must be available before logic synthesis. 

• Generates the hp  and vp  values used at interpolation stage.  

• For scaling ratios less than 2, control unit selects the pixels to be omitted 
using the low resolution pixel coordinate and the scaling ratio L . 

 

Figure 5-4 : Control unit block diagram 

5.2.3 Color Space Conversion Unit (CSC) 

Color space conversion unit converts the RGB data to YCbCr data and vice versa 
using the equations defined in ITU-R BT.601 standard specification. The equations 
to convert gamma corrected RGB data, referred as R’G’B’ into YCbCr are 

128')256/21(')256/110(')256/131(
128')256/131(')256/87(')256/44(

')256/29(')256/150(')256/77(

+−−=
++−−=

++=

BGRCr
BGRCb

BGRY
 

( 5.11 )

The equations to convert YCbCr data into R’G’B’ are 
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)128(732.1'
)128(336.0)128(698.0'

)128(371.1'

−+=
−−−−=

−+=

CbYB
CbCrYG

CrYR
 

( 5.12 )

Both the RGB data and the coefficients have 8 bit precision. The multiplications in 
the color space conversion block are implemented as shift-add operations since the 
coefficients are always constant.  

5.2.4 Input Memory Unit (IM) 

IM unit operates at input pixel clock frequency inclkf _ . The block consists of 4 line 

buffers, to provide a 5x1 pixel column to the CU. The length of the line buffers is 
equal to the input video’s horizontal resolution. Block diagram of the IM unit is 
shown in Figure 5-5. 

 

Figure 5-5 : Input memory unit block diagram 
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When the YCbCr data for thm  row, thn column,  )0:23(,nmYCbCr arrives at the IM 

unit, it is bypassed to the last element of the 5x1 pixel column register at the outputs. 
The remaining 4 pixels of pixel column registers are read from column n  of the line 

buffers. Finally the input pixel is written to one of the line buffers, selected by the 
control unit. Line buffers are designed in the form of a circular buffer. thm  row of the 
image is written into line buffer )4(modm , therefore the 2 least significant bits of the 

line counter can be decoded to serve as the write enable signal to the line buffers. 
Since the order of rows at the line buffer are changing at every image row, the line 
buffer outputs are switched to the appropriate column registers, with the multiplexer 
logic controlled by the CU. In addition to 4 rows of luminance(Y) values, the 
chrominance(CbCr) values must also be stored in line buffers to line align the 
processed Y value and replicated CbCr values at the output. However 2 line buffers 
are sufficient since the latency of the processed Y values will be equal to 2 lines + 5 
columns + pipeline latency. 

5.2.5 Feature Extraction Unit (FE) 

FE unit operates at core clock frequency fclk_core defined at Eq.( 5.10 ). Figure 5-6 
shows the architecture of the feature extraction unit for resource sharing 
value 1=rD . A fully parallel implementation where 1=rD , will use 15 

adder/subtractors and 32 multipliers. Exponentiation with constant value, 0.75 is 
performed using a look up table. For 1=rD , the core clock frequency of the FE unit 

can be calculated from equation ( 5.10) to be equal to the input pixel clock frequency 
which is 27.027 Mhz, for 480p to 720p conversion. Running the FE unit four times 
the input pixel clock frequency, rD can be set to 4 to reduce the number of 

adder/subtractors to 4 and the multipliers to 8, with an ignorable increase at the 
number of pipeline registers. Figure 5-6 shows the architecture of the feature 
extraction unit for 4=rD . Instead of computing each feature vector element in 

parallel by inserting 8 pixels to the pipeline at every 27.027 Mhz clock, the vector 
elements are computed in a serial parallel manner where two feature vector 
elements are inserted into the pipeline at every 108 Mhz clock. The block will 
generate 2 feature vector values at each 108 Mhz clock cycle, producing a 
throughput of 8x1 feature vector per input pixel clock cycle. As long as the design 
can be synthesized to work at faster clock frequencies, increasing the resource 
sharing level reduces the total area, since the overhead introduced by such an 
operation is only the increased number of pipeline stages, which is not a major issue 
for an FPGA based design where usually the lookup tables are the critical resource. 
The result of the FPGA synthesis for different resource sharing values is illustrated 
in chapter 6.  
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Figure 5-6 : Architecture of the feature extraction unit for 1=rD  

The control signals are not illustrated in Figure 5-6 and  Figure 5-7 for clarity of the 
figures. For the fully parallel implementation in Figure 5-6, the control logic is 
straightforward. Each register will require an enable signal, which can be generated 
delaying the enable signal at the input of the design. For the serial-parallel 
implementation in Figure 5-7 ,in addition to the enable signals,  appropriate control 
signals must be applied to the select inputs of the multiplexers,  and synchronous 
reset inputs of the accumulation registers.   
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Figure 5-7 : Architecture of the feature extraction unit for 4=rD  
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5.2.6 Classification Unit (CL) 

CL unit operates at core clock frequency coreclkf _ . A fully parallel implementation 

where 1=rD  will use 75 adder/subtractors, and 80 multipliers. Setting 4=rD  will 

reduce the number of adders and multipliers to 20. Figure 5-8 shows the 
architecture of the classification unit when 4=rD . An alternate implementation of 

the classification unit can make use of the  LUTs to implement the distance 
computation part of the logic. The size of the required LUT can be given as 

ocvk ***2  where k  is the bit width of the feature vector element, v  is the 
dimension of the feature vector, c is the number of classes, and o is the output bit 
width of the LUT output. For  5,8,9 === cvk and 13=o , the size of the LUT will 

be approximately 265 Kbits. 

 

Figure 5-8 : Architecture of the context classification unit for 4=rD  
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5.2.7 Interpolation Unit (IN) 

IN unit operates at core clock frequency coreclkf _ . Figure 5-9 shows the architecture 

of the interpolation unit. For every pixel luminance value in the image the IN block 
accepts the 5x5 window generated by the IM and CU, the class index from the CL, 
vertical and horizontal phase of the high resolution pixels from the CU, and 
generates 4 high resolution pixels using the selected interpolation filters.  
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Figure 5-9 :  Architecture of the interpolation unit 

5.2.8 Output Memory Unit (OM) 

OM unit also operates at core clock frequency coreclkf _ . It basically chooses the 

appropriate pixels between the high resolution pixels generated by IN unit and 
arranges them in raster-scan order according to the scaling ratio. There is a unique 
mapping between low and high resolution image pixels for each scaling ratio. For 
non-integer scaling ratios only a certain amount of high resolution pixels are used in 
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output image. Eq. ( 4.4 ) shows the corresponding low resolution pixel for given high 
resolution pixel.  

For scaling ratios smaller than 2, output memory consists of 2 line buffers having the 
size of high resolution image’s horizontal resolution.  The line buffers are essential 
as the two of four high resolution pixels generated from thm row ; thn  column pixel 
by IN unit belongs to the thm)2(  line while the other two pixels belong to thm )12( +  

line of high resolution image. These two latter pixels should be stored till all the high 
resolution pixels prior to them in raster-scan mode are produced and sent to the 
output. 

In the case of scaling ratio 5.1=L , output memory unit chooses between high 
resolution pixels produced from the low resolution pixel at coordinates ),( nm  in four 

different ways depending on the values of m  and n . Output memory unit operation 

for scaling ratio of 1.5 is illustrated in Figure 5-10 
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Figure 5-10 : Output memory unit operation for 5.1=L  

5.2.9 Asynchronous Buffers and DDR Frame Buffer 

Output memory unit aims to order the interpolated pixel outputs in raster scan format, 
which is the required format in an LCD panel input. For demonstration purposes, the 
designed hardware does not directly drive the LCD panel, but it drives the video 
processor inside the TV.  In the case of driving an LCD panel directly, the vertical 
and horizontal sync time of the output video can be modified to resolve the 
asynchrony in line rates. However in the case of driving a video processor, the 
design must output the video data in exactly the same timing illustrated at Figure 5-2. 
Since the input and output pixel rates are different, there is an asynchrony in the 
design. The output memory works at core clock frequency, coreclkf _ , which is 
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different from the output resolution clock frequency, outclkf _ , hence there should be 

an asynchronous buffer after the output memory unit.  The buffer size needed can 
be calculated examining the input and output relations at Figure 5-1 and Figure 5-2.  
Since the input and output video have same frame refresh rates, it is easy to see 
that the input and output are synchronized at each frame, hence a frame buffer may 
guarantee to resolve the asynchrony. However, depending on the line rates of the 
input and output video, a solution without a frame buffer would also be possible. 

Vertical scaling ratio of the design is referred as verticalL .If the design can output 

verticalL  lines, at the time period where one input line arrives, the input and output 

would be fully synchronized and there would be no need for buffering. In case this 
condition is not met, the number of lines generated and written into the 
asynchronous buffer at the time one output line is read from the buffer must be 
computed to find the required buffer size. From the output video specifications, the 
time, one output line is read from the output buffer will be 

outclkoutline TxlineoutputperclocksT __   )   (=  ( 5.13 )

From the input video specifications, the time one input line arrives to the scaler will 
be 

inclkinline TxlineinputperclocksT __   )   (=  ( 5.14 )

At outlineT _  time interval, the number of interpolated output lines, which will be written 

to the asynchronous buffer can be written as  

vertical
inline

outline
wrlineasync xL

T
T

N
_

_
__ =  

( 5.15 )

The number of output lines read from the asynchronous buffer at outlineT _  time 

interval, is referred as rdlineasyncN __  and is equal to 1. For 480p to 720p video 

resolution up-conversion, the number of interpolated output lines written to the 
asynchronous buffer at outlineT _  time interval, which is referred as wrlineasyncN __  can 

be computed using Eq. ( 5.13 ), Eq. ( 5.14 ), Eq. ( 5.15 ), Figure 5-1 and Figure 5-2.  
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Since at every output line, 1 line is read from the buffer, but 1.05 line is written to the 
buffer, 0.05 lines must be stored. For 720p video output, the required buffer size will 
be 720x0.05= 36 lines. In order to store 36 lines of output, the required memory size 
will be 36x1280x24 = 1105920 bits. Since the internal line storage limit of the target 
FPGA is 720Kbit, an external storage is required, and a DDR frame buffer was used. 
Asynchronous buffers and DDR frame buffer controller design was not in the scope 
of this study, and those design blocks were obtained from the development board 
used for the project. Several modifications were made in the design to match the 
read and write frequencies of the asynchronous buffers. Figure 5-11 illustrates the 
frame buffer and asynchronous buffer structure used in the design.  

 

 

Figure 5-11 : DDR frame buffer and asynchronous buffers 

The MRS core generates interpolated output at 108 Mhz clock frequency. The 
interpolated outputs are written into Fifo1 and are written to the DDR memory in 
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bursts. DDR controller generates the DDR signaling for DDR write and read 
operations. Ping pong architecture is used to read/write from the frame buffers. 
When the nth frame is written to bank 1,  (n-1)th frame is read from bank2. At the next 
frame write operation, the ddr controller switches the banks, hence when nth frame is 
read from bank 1, (n+1)th frame is written to bank2. FIFO 2 is an asynchronous FIFO 
that inputs pixels from the DDR buffer at pixel clock frequency of 108 MHz and 
outputs pixels at pixel clock frequency of 74.25 MHz.   



 57

6. FUNCTIONAL VERIFICATION, FPGA MAPPING & REAL TIME TESTS 

6.1 Functional Verification 

6.1.1 Simulation Platform 

The fixed point C model of the algorithm and the VHDL testbench is used to verify 
the system prior to FPGA mapping. Figure 6-1 shows the structure of the functional 
verification platform. Reference input and output stimuli files are generated by the 
fixed point C model. Reference input stimuli file includes the RGB data for a 
480x720 input image, and reference output stimuli file includes the RGB data for a 
720x1280 output image which is up scaled using the MRS algorithm fixed point C 
model. The testbench is written in VHDL.  The aim of the testbench is not only to 
test the datapath blocks but also to test whether the control unit correctly generates 
the control signals, namely the horizontal and vertical sync signals and the data 
enable signal in the desired format at the standards.  

To test the functionality of the timing signals generated by the MRS_TOP module 

• the hsync-vsync generator block generates the hsync-vsync-data_en signals 
for 480p standard, the input stimuli is read from the text files, and applied to 
the MRS_TOP module using these control signals. 

• Output reference file is read using the hsync-vsync-data_en  signals for 720p 
standard generated by MRS_TOP module. The testbench checks whether 
the control signals generated by the MRS_TOP module accurately matches 
the timing defined for 720p standard 

To test the data path,  

• The testbench compares each MRS_TOP output pixel with the 
corresponding pixel of the reference output file. 

•  The testbench writes each valid RGB output into an output file for visual 
inspection. The output text file is converted to a bitmap image using a basic 
matlab script, and the up scaled image is compared with the corresponding 
image generated by the fixed point C model. 

The simulations are run using the Modelsim simulator, on pre-synthesis register 
transfer level VHDL code. Post place&route simulations are not performed, since it 
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takes huge amount of computation time both to generate and simulate the post 
place & route model, due to the size of the design. Static timing analysis is 
performed instead to assure correct behavior after FPGA mapping. Since the 
mapped design is tested on real time, the lack of computational power for post place 
& route simulations does not introduce a major problem.  

 

Figure 6-1 : Functional verification platform 

6.1.2 Simulation Results 

Using the platform described in section 6.1.1, the simulations are run for 5 video 
frames. 5 input video frames ( 5 x 480 x 720 = 1.728.000 samples) are first 
processed by the fixed point C model to generate the 5 reference output stimuli files 
(5x720x1280 = 4608000 samples).   

 Figure 6-2 and Figure 6-3 shows a 200x200 portion of the input bitmap image of 
480x720 resolution and a 300x300 portion of the output image of 720x1280 
resolution generated by functional simulations. 
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Figure 6-2 : 200x200 portion of the input image 

 

Figure 6-3 : 300x300 portion of the scaled output image 

In addition to verifying the outputs of the MRS top level module, simulation 
waveforms are examined in depth  for a limited number of samples. To examine the 
simulation waveforms, random samples are chosen from the output image, and all 
the intermediate signal values are dumped into a text file from the fixed point c 
model, to serve as a reference. In the simulation waveform, the fixed point model 
references are compared with the signal values at the waveform.  

6.2 FPGA Mapping 

6.2.1 FPGA Mapping Methodology 

In section 5.1, the input and output pixel rates are declared to be 27.027 MHz and 
74.25 MHz respectively. Using Eq. ( 5.10 ), core clock frequency can be set to 27 
MHz, 54 MHz, 108 MHz or 216 MHz, for rD  values 1,2,4,8 respectively. For the 
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target FPGA family (spartan3), running the modules at 216 MHz is above the 
practical limits. After extensive synthesis efforts, it is found that internal clock 
frequency of 108 MHz is an achievable target. Therefore rD  is set to 4 to obtain the 

maximum resource sharing possible for the target device. Running the internal 
blocks at 108 MHz requires several efforts on the mapping flow. The required timing 
is at the limits of the FPGA’s performance, therefore several modifications were 
performed on the RTL code to meet the over constrained goals.  

Logic synthesis is performed using Synplify Pro 8.5, and Place & Route operation is 
performed using Xilinx ISE 8.1 platform.  

6.2.2 FPGA Mapping Results 

Design had been mapped to Xilinx XC3S2000 FPGA, for rD  values of 2 and 4. To 

optimize the area, several trial synthesis efforts were performed using different 
FPGA resources in several blocks. One major architectural decision is to synthesize 
the classification stage using multipliers or look up tables. Classification step 
includes 80 multiplications, and as mentioned in section 5.2.6, the multiplication 
operations can be performed using a lookup table of size 265 Kbits. The choice of 
whether to use LUTs or multipliers depends on the rD  value and the availability of 
the logic resources as well. For higher rD  values, the number of multipliers to 
realize the operation will be reduced by a factor of rD  however the size of the LUT 

will not change if the implementation is realized using LUTs. Therefore it would be 
meaningful to use multipliers instead of LUTs for higher rD  values. Another 

important issue that can affect the implementation result is to choose between 
block/logic multipliers on any multiplication operation and to choose between 
block/distributed RAMs in storage elements. As a rule of thumb, the logic 
synthesizer uses logic multipliers for multiplications that have relatively small 
operand size, and uses block multipliers for multiplications that have relatively large 
operand size. The decision criterion is similar for RAM implementation. The 
synhtesis tool infers block rams for large storage, and distributed RAM for smaller 
storage. In this study, for particular cases where the timing could not be met, the 
synthesis tool was forced to infer the desired FPGA resource by the user using 
several synthesis constraints. The result of the FPGA mapping is listed in Table 6-1. 
The FE,CL,CU and IN units are referred as core modules in the table. 
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Table 6-1 : FPGA mapping results for rD  values 2, and 4 

  CL stage with BRAMs CL stage with multipliers 

  Dr=2 Dr=4 Dr=2 Dr=4 

Slices 6402 2360 9502 3198 

BMULTs 40 34 40 40 

co
re

 

BRAMs 16 16 0 0 

Slices 8412 3533 10551 4623 

BMULTs 40 34 40 40 

to
ta

l 

BRAMs 30 30 14 14 

The results in Table 6-1 show that when the degree of resource sharing is increased 
by a factor of 2, the slice count is approximately reduced by a factor of 2.  Optimum 
value of rD  for the particular video scaling problem (480p to 720p) and for the 

particular target FPGA platform(Xilinx XC3S2000) is found to be 4 after synthesis 
efforts.  

The performance results and timing constraints of the implementation is illustrated in 
Table 6-2. The latency figures of the design is also illustrated in the table, however  
the latency of the design is not of any concern since the human eye can not notice 
such short time intervals. 2x1280 is the latency introduced from storing 2 lines, 
which is required to start processing. Additional clock cycles are the pipeline latency.  

Table 6-2 : Performance results of the implementation 

 Dr=2 Dr=4 

Clock Frequency(MHz) 54 108 

Latency(clock cycles) 2*1280+21 2*1280+37 

Throughput(MPixels/second) 74.25 74.25 

Frame Processing Time(ms) 1.6 1.6 
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The results obtained for 4=rD  is compared with several work on literature. To the 

author’s best knowledge, a hardware implementation for a classification based 
resolution enhancement method has not been presented previously. Proposed 
method is therefore compared with several FPGA implementations presented on 
simpler linear scaling methods. In [29] a run time configurable, spline interpolation 
system is implemented in a Xilinx XC4000 FPGA and for a 522x128 output image 
an execution time of 35.5 ms is reported.  In [30] bicubic interpolation is 
implemented in Xilinx VirtexII-Pro FPGA, and for a 640x480 output image  an 
execution time of  3.5 ms is reported. In [31] adaptive Newton interpolation is 
implemented in FPGA and it is verified on an LCD panel with output resolution of 
1024x768. In [32] a video scaler with output video of 1024x768 @30fps was 
presented.   Results obtained from the previous work and the results obtained from 
this work are given in Table 6-3. It must be noted that the results in the table are 
given for a general idea on the proposed method’s complexity,  and not to compare 
scaling methods with the proposed resolution enhancement method, since the 
approaches followed(linear scaling vs. content adaptive scaling), target FPGA 
platforms and target application(input and output resolutions) are entirely different.  

 

Table 6-3 : Comparison of the implementation with previous work 

 Image Size Exec. time Freq FPGA Slices Block 

RAMs 

[29] 522x128 35ms 30 Mhz Xc 4000 na Na 

[30] 640x480 3.5ms 100 

Mhz 

Virtex2 

pro 

~1700 56KB 

[31] 1024x780 na na na na Na 

[32] 1024x780 na 28 Mhz XCV 2600 ~7500 30KB 

This 

work 

1280x720 1.6ms 108 

Mhz 

XC3S 

2000 

3533 60KB 
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6.3 Real Time Tests 

The design had been mapped to a Xilinx XC3s2000 FPGA and is tested on real time, 
for a 480p to 720p standards conversion application. Real time test platform and test 
results are explained in detail in the following sections. 

6.3.1 Real Time Test Platform 

In order to verify the implementation and evaluate the performance of the algorithm, 
the design was integrated into a flat panel display product in Vestel R&D Labs. 
Figure 6-4 illustrates the platform that was set to test the implementation.  

Real time test platform is composed of a DVD player, a 40 inch LCD TV with native 
resolution of 1366x768, and the Tora TB3S2000 development board. DVD player is 
set up to output 480p NTSC video standard. DVDs are encoded with minimum 
compression rate possible to prevent any ringing, or blocking artifacts that can be 
caused by mpeg compression. DVD player outputs are bypassed to the FPGA via 
the DVI interface. HDMI receiver and transmitter modules inside the development 
board make the necessary voltage conversion for HDMI standard. The inputs to the 
FPGA are the RGB data and synchronization signals (hsync, vsync, and data 
enable). The FPGA receives the input video signal at 480p(480x720 @60 Hz), 
scales the signal by a factor of 1.5 to obtain video at 720x1080 resolution, inserts 
black pixels to the leftmost and rightmost 100 pixel columns to obtain 720x1280 
video, generates the hsync, vsync and data enable signals for 720p( 720x1280@60 
Hz) and outputs the video through the DVI output interface of the TB3S board. In 
order to  evaluate the performance of the designed scaler, TV’s scaling function 
must be bypassed. TV software is modified to bypass any data when the input 
source is detected to be 720p. Therefore the TV does not try to scale up the 
720x1280 input video (that was generated by the FPGA) into its native resolution 
(1366x768) but instead it inserts black regions for the missing pixels.  

6.3.2 Test Results 

Once the platform was set up, two LCD TVs were put side by side to compare the 
scaling performance of the scaler in this study, and the TV’s scaler inside the video 
processor. Since there is no objective evaluation method for the algorithm’s 
performance on TV platform, the algorithms were compared subjectively with “Vestel 
Video Quality Group’s” comments. The implemented design was found to perform 
much better on preserving details of the image , while the bicubic scaling based 
method on the TV’s video processor had a more blurry output. Training of the filter 
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coefficients were performed for several different training sets to obtain the filter 
coefficients with optimum performance.  
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Figure 6-4 : Real time test platform 
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7. CONCLUSION AND FUTURE WORK 

7.1 Concluding Remarks 

In this thesis, an area efficient, resource shared, pipelined architecture was 
proposed for a training based content adaptive video resolution up conversion 
algorithm. Floating point C model of the modified RS algorithm in [1] was converted 
to its fixed point model, considering the target FPGAs area constraints and the 
algorithm’s performance. A resource shared architecture was proposed by running 
the classification, feature extraction and interpolation stages, four times the input 
pixel clock. The multipliers and adders in the FE, CL and IN units were shared to 
reduce the area. The proposed architecture was written in RTL level VHDL and 
verified with functional simulations prior to logic synthesis. Verified design was 
mapped to FPGA after several synthesis efforts, and several modifications on the 
pipeline stages to meet the tight timing constraints imposed by the real time nature 
of the video processing application. The design was mapped to a low cost FPGA 
and the mapped design was tested on a TV platform bypassing the scaler of the TV 
for the particular test resolutions. The performance of the algorithm was 
satisfactorily better than an industry standard, bicubic based scaler. To the author’s 
best knowledge, there exists no hardware architecture for any of the advanced 
content adaptive resolution up-conversion algorithms listed in [3]. This study 
demonstrates that better visual quality can be obtained using an advanced scaling 
method, at a low cost FPGA. The design in this study was funded by Vestel, Vestek 
R&D, and the results of the study were demonstrated in IFA 2006 Consumer 
Electronics fair. Results of this work is accepted for publication in “Proceedings of 
the IEEE 2007 Workshop on Signal Processing Systems(SIPS 2007)”. 

7.2 Future Work 

Scaler can be referred as the heart of the video processor inside a display unit. The 
difficulty of the scaler design is due to the necessity of performing a complex 
interpolation algorithm for better video quality and the necessity to support multiple 
input and output resolutions. In this study, the interpolation algorithm’s complexity 
was the key issue in the implementation, and the main concern was the algorithm’s 
core rather than its interface. The resolution conversion designed in this study 
supports several scaling ratios ranging from 1 to 2, but does not support resolution 
up conversion for scaling ratios greater than 2. Furthermore, even if the scaling ratio 
is ranging from 1 to 2, several modifications need to be performed in order to 
support different standards at runtime. One other point that was not discussed on 
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this study was video down-conversion. Although not so common, sometimes the 
display unit may have to downscale the image instead of up scaling. The future work 
of this study includes solving the issues mentioned in order to produce an industrial 
video scaler chipset, from the proposed architecture. 
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