

Department : Advanced Technologies in

Engineering

Program : Computer Science

İSTANBUL TECHNICAL UNIVERSITY INFORMATICS INSTITUTE

M.Sc Thesis by
Muzaffer Barış UYAR, B.Sc.

JUNE 2007

REAL TIME FPGA IMPLEMENTATION OF A TRAINING
BASED CONTENT ADAPTIVE VIDEO RESOLUTION UP-

CONVERSION ALGORITHM

İSTANBUL TECHNICAL UNIVERSITY INFORMATICS INSTITUTE

M.Sc. Thesis by
Muzaffer Barış UYAR, B.Sc.

(704031013)

Date of submission : 7 May 2007

Date of defence examination: 11 June 2007

Supervisor (Chairman): Prof. Dr. Bülent ÖRENCİK

Members of the Examining Committee Prof. Dr. Ali ZEKİ

Asst. Prof. Dr. D. Turgay ALTILAR

REAL TIME FPGA IMPLEMENTATION OF A TRAINING
BASED CONTENT ADAPTIVE VIDEO RESOLUTION UP-

CONVERSION ALGORITHM

JUNE 2007

 İSTANBUL TEKNİK ÜNİVERSİTESİ BİLİŞİM ENSTİTÜSÜ

EĞİTİM TABANLI, İÇERİK UYARLAMALI BİR VİDEO
ÇÖZÜNÜRLÜĞÜ DÖNÜŞTÜRME ALGORİTMASININ

GERÇEK ZAMANLI OLARAK, SAHADA
PROGRAMLANABİLİR KAPI DİZİLERİ(SPKD(FPGA)) İLE

GERÇEKLENMESİ

 YÜKSEK LİSANS TEZİ

 Müh. Muzaffer Barış UYAR

(704031013)

HAZİRAN 2007

Tezin Enstitüye Verildiği Tarih : 7 Mayıs 2007

 Tezin Savunulduğu Tarih : 11 Haziran 2007

 Tez Danışmanı: Prof. Dr. Bülent ÖRENCİK

Diğer Jüri Üyeleri Prof. Dr. Ali ZEKİ

 Yrd. Doç. Dr. D. Turgay ALTILAR

 iii

ACKNOWLEDGEMENT

First I would like to thank my supervisor Prof. Dr. Bülent Örencik, for his guidance
and support during this thesis study. I would also like to thank Toygar Akgün, and
Murat Sayinta for their technical support, my manager in Vestek R&D, Ali Sayinta for
his technical support, guidance and tolerance during this thesis work.

I would finally like to thank my grand mother and my family for their endless support
and love.

May 2007 Muzaffer Barış UYAR

 iv

CONTENTS

TABLE LIST v
FIGURE LIST vı
ÖZET vııı
SUMMARY ıx

1. INTRODUCTION 1
1.1 Motivation 1
1.2 Organization of Thesis 2

2. INTRODUCTION TO DIGITAL VIDEO 3
2.1 Digital Image Basics 3
2.2 Algorithms in Digital Video Processing 5

3. VIDEO RESOLUTION UP-CONVERSION ALGORITHMS 7
3.1 Sampling Structure Conversion 7

3.1.1 Reducing Sampling Rate by an Integer Factor 7
3.1.2 Increasing Sampling Rate by an Integer Factor 9
3.1.3 SD to HD Sampling Rate Conversion 10

3.2 Linear methods for up-scaling 11
3.2.1 Zero order hold interpolation 13
3.2.2 Linear Interpolation 13
3.2.3 Cubic Interpolation 14

3.3 Advanced Methods for up scaling 15
3.3.1 Content Adaptive Training Based Methods 15

3.3.1.1 Digital Reality Creation (Kondo’s method) 16
3.3.1.2 Resolution Synthesis (Atkins’ Method) 18
3.3.1.3 Example Based Super Resolution 21

3.3.2 Directional Interpolation Methods 21
3.3.3 Other Methods 23

3.4 Video Performance Evaluation of the Methods 23

4. MODIFIED RESOLUTION SYNTHESIS 26
4.1 Overview 26
4.2 Algorithm Description 27

4.2.1 Offline Training Phase 27
4.2.2 Online Content Adaptive Filtering Phase 29

4.2.2.1 Feature Extraction 31
4.2.2.2 Context classification 31
4.2.2.3 Filtering 32

4.3 Visual Quality Results 34
4.4 Complexity Analysis 35

4.4.1 Complexity of RS and Modified RS algorithms 35
4.4.1.1 Feature Extraction : 35
4.4.1.2 Context Classification 37
4.4.1.3 Interpolation 37

4.4.2 Complexity Comparison of RS and MRS algorithm 38

 v

5. PROPOSED HARDWARE ARCHITECTURE 40
5.1 Performance Requirements 40

5.1.1 Throughput Constraints 40
5.1.2 Logic Area Constraints 43
5.1.3 Resource Sharing Options 43

5.2 Hardware Blocks 44
5.2.1 Top Level 44
5.2.2 Control Unit (CU) 45
5.2.3 Color Space Conversion Unit (CSC) 46
5.2.4 Input Memory Unit (IM) 47
5.2.5 Feature Extraction Unit (FE) 48
5.2.6 Classification Unit (CL) 51
5.2.7 Interpolation Unit (IN) 52
5.2.8 Output Memory Unit (OM) 52
5.2.9 Asynchronous Buffers and DDR Frame Buffer 53

6. FUNCTIONAL VERIFICATION, FPGA MAPPING & REAL TIME TESTS 57
6.1 Functional Verification 57

6.1.1 Simulation Platform 57
6.1.2 Simulation Results 58

6.2 FPGA Mapping 59
6.2.1 FPGA Mapping Methodology 59
6.2.2 FPGA Mapping Results 60

6.3 Real Time Tests 63
6.3.1 Real Time Test Platform 63
6.3.2 Test Results 63

7. CONCLUSION AND FUTURE WORK 66
7.1 Concluding Remarks 66
7.2 Future Work 66

REFERENCES 68

BIOGRAPHY 70

 vi

 TABLE LIST

Page No
Table 3-1 : MSE performance evaluation performed in [3] 24
Table 4-1 : Number of arithmetic operations in RS and MRS algorithms 39
Table 6-1 : FPGA mapping results for rD values 2, and 4 61
Table 6-2 : Performance results of the implementation 61
Table 6-3 : Comparison of the implementation with previous work 62

 vii

FIGURE LIST

 Page No
Figure 2-1 : Structure of a digital image 3
Figure 2-2 : 8 bit coding of the image in Figure 2.1 4
Figure 3-1 :)(ωX , frequency spectrum of the []nx signal 8
Figure 3-2 :)(ωG , frequency spectrum of the intermediate signal []ng and)(' ωX ,

frequency spectrum of the decimated signal []nx' for 2=M 8
Figure 3-3 : a))(ωX ,frequency spectrum of the input signal []nx (Dotted lines

represent the antialising low pass filter) and)(' ωX , frequency spectrum of
the decimated signal []nx' . 9

Figure 3-4 : []ωX , frequency spectrum of the input signal []nx and)(ωG ,
frequency spectrum of the filled in signal []ng for 2=L 10

Figure 3-5: Frequency characteristics of decimation-interpolation process.
Frequency spectrum of A) The original signal B) Low pass filtered signal C)
Down sampled signal D) Up sampled signal E) Low pass filtered signal 12

Figure 3-6: []nh , the impulse response of the zero order hold interpolation function
for 3=L , and illustration of convolution using this kernel 13

Figure 3-7: []nh , impulse response of the linear interpolation kernel for 3=L and
illustration of convolution using this kernel 14

Figure 3-8: Impulse response of cubic interpolation function for 2=L 14
Figure 3-9: Training process performed in Kondo’s method 16
Figure 3-10: Aperture used in Kondo’s method. The HD pixels A,B,C,D are

interpolated using nine SD pixels, (F00 to F22) 17
Figure 3-11: 5x5 pixel neighborhoods identified as a vertical edge 18
Figure 3-12: Structure of the RS predictor. 19
Figure 3-13: Extraction of the y

r~ vector 20
Figure 3-14: Aperture used in NEDI 22
Figure 3-15 : Subjective evaluation performed in [3] (A : Cubic B-spline

interpolation, B: Kondo’s method, C: Li’s method, D: Tegenbosch’s
method) 24

Figure 4-1: Proposed training scheme in [1] 27
Figure 4-2 : Up conversion of SD resolution image to HD resolution image 29
Figure 4-3: Aperture used in Modified Resolution Synthesis 30
Figure 4-4 : Pseudo code of the Modified RS algorithm 33
Figure 4-5 : Input image with 200x200 resolution 34
Figure 4-6: MRS output image with 400x400 resolution 34
Figure 4-7 : Bicubic scaler output image with 400x400 resolution 35
Figure 5-1: Timing diagram for NTSC 480p@60 Hz video standard 41
Figure 5-2 : Timing diagram for 720p@60 Hz video standard 41
Figure 5-3: Top level block diagram of the proposed hardware 45
Figure 5-4 : Control unit block diagram 46
Figure 5-5 : Input memory unit block diagram 47

 viii

Figure 5-6 : Architecture of the feature extraction unit for 1=rD 49
Figure 5-7 : Architecture of the feature extraction unit for 4=rD 50
Figure 5-8 : Architecture of the context classification unit for 4=rD 51
Figure 5-9 : Architecture of the interpolation unit 52
Figure 5-10 : Output memory unit operation for 5.1=L 53
Figure 5-11 : DDR frame buffer and asynchronous buffers 55
Figure 6-1 : Functional verification platform 58
Figure 6-2 : 200x200 portion of the input image 59
Figure 6-3 : 300x300 portion of the scaled output image 59
Figure 6-5 : Real time test platform 65

 ix

EĞİTİM TABANLI, İÇERİK UYARLAMALI BİR VİDEO ÇÖZÜNÜRLÜĞÜ
DÖNÜŞTÜRME ALGORİTMASININ GERÇEK ZAMANLI OLARAK, SAHADA

PROGRAMLANABİLİR KAPI DİZİLERİ(SPKD (FPGA)) İLE GERÇEKLENMESİ

ÖZET

Bu çalışmada, eğitim tabanlı, içerik uyarlamalı bir video çözünürlük yükseltme
algoritması için, iş hattı ve kaynak paylaşımı kullanan yüksek performanslı bir
donanım mimarisi önerilmiş ve önerilen yapı, 480x720 çözünürlükteki videonun
720x1280 çözünürlükte videoya dönüştürülmesi uygulaması için düşük maliyetli bir
sahada programlanabilir kapı dizisinde (SPKD (FPGA)) gerçeklenmiştir. İçerik
uyarlamalı video çözünürlük yükseltme algoritmaları temel olarak alt örnekleme
işlemi sürecinde video sinyalinde kaybolan yüksek frekans bileşenlerinin, geçmişte
elde edilen istatistiksel bilgiden yararlanarak geri kazanılmasını hedefler. Bu
çalışmada donanım yapısı önerilen ve gerçeklenen, modifiye edilmiş çözünürlük
sentezi (MRS) algoritması, kaybolan yüksek frekans bilgisini geri kazanmak için
geniş bir video görüntü kümesi üzerinde yapılan eğitim sürecinden faydalanır. MRS
algoritması çıkış görüntüsünü oluşturan her piksel için 137 çarpma ve 120 toplama
işlemi içeren kompleks bir algoritmadır. 480x720 çözünürlükteki standart çözünürlük
(SÇ (SD)) videonun 720x1280 çözünürlükteki yüksek çözünürlük (YÇ (HD)) videoya
dönüştürülmesi problemi, 27 Mhz giriş saat çevriminde üretilen piksel datası ile
gerçek zaman kısıtları içerir. Önerilen donanım mimarisi, içerideki çekirdek blokların,
girişteki piksel saat frekansının tam sayı katı bir frekansta çalıştırılması yöntemi ile
kaynak paylaşımına olanak sağlar. Hedeflenen FPGA için, tasarım, giriş piksel saat
frekansının dört katı olan 108 Mhz saat frekansında çalışacak biçimde iş hattı yapısı
kurulmuştur. Bu sayede içerideki çarpma ve toplama işlemleri için kaynak paylaşımı
yapılmış ve, iş hattındaki saklayıcılarda ve kontrol lojiğinde küçük bir artış ile çarpıcı
ve toplayıcı sayısı dörtte birine indirilmiştir. Tasarım akışı sürecinde, donanım
kısıtları ve algoritma performansı gözönüne alınarak, algoritmanın kayan noktalı
yazılım modelinden, sabit noktalı yazılım modeli çıkarılmıştır. Önerilen yapının,
saklayıcı transfer seviyesindeki tanımı, VHDL dili ile yazılmış; sabit noktalı C modeli
ile VHDL modeli çıktıları karşılaştırılarak donanım yapısı doğrulanmıştır. Doğrulanan
tasarım, Xilinx XC3S2000 FPGA çipi kullanılarak gerçeklenmiş ve likit kristal ekranlı
TV üzerinde SD giriş videosunun HD videoya dönüştürülmesi uygulaması için test
edilmiştir. Gerçeklenen tasarım, 1.6 ms zaman içerisinde, SD çözünürlükteki
görüntüyü HD çözünürlükte görüntüye dönüştürerek video çözünürlük dönüştürme
probleminin gerçek zaman kısıtlarını sağlamaktadır. Tasarım, FPGA içerisinde 3533
dilim ve yaklaşık 60 KB blok RAM yapısı kullanmaktadır. Tasarımın lojik kapı sayısı
cinsinden karmaşıklığının, literatürdeki mevcut lineer video boyutlandırma
algoritmaları ile yaklaşık aynı ölçekte olduğu görülmüştür. TV üzerinde
gerçekleştirilen gerçek zamanlı testler sonucunda, uygulamanın geleneksek bikubik
interpolasyon tabanlı video boyutlandırıcılardan daha başarılı detay koruma
özelliğine sahip olduğu gözlenmiştir.

 x

REAL TIME FPGA IMPLEMENTATION OF A TRAINING BASED CONTENT
ADAPTIVE VIDEO RESOLUTION UP-CONVERSION ALGORITHM

SUMMARY
In this study, a high performance, pipelined, resource shared hardware architecture
was proposed for a training based content adaptive video resolution up-conversion
algorithm, and the proposed architecture was implemented in a low cost field
programmable gate array (FPGA), for a video standards conversion application
where the input resolution is 480x720 and the output resolution is 720x1280.
Content adaptive video resolution up-conversion methods aim to recover the
missing spectrum at the down sampled image, by using prior information obtained
by statistical analysis. Modified resolution synthesis (MRS), which was implemented
in this study is one such method, which makes use of statistical data obtained by
training with large set of images. Modified resolution synthesis is a complex
algorithm which requires 137 multiplications and 120 additions per output pixel. For
480x720 standard definition (SD) video to 720x1280 high definition (HD) video
conversion, the design is constrained by the input pixel rate which is 27 Mhz. The
proposed architecture can make use of resource sharing by running the core blocks
at an integer multiple of the input pixel rate. For the targeted FPGA, the design was
pipelined to work at 108 Mhz, which is four times the input pixel clock rate. Number
of multipliers and adders were reduced by a factor of 4, with a minor increase in the
pipeline stages and the control logic complexity. A fixed point model of the design
was generated from the floating point model, by considering the hardware
constraints imposed by the target FPGA, and by considering the performance of the
algorithm with different bit precisions. Register transfer level (RTL) description of the
proposed architecture was written in VHDL and RTL model was verified with fixed
point C model outputs. The verified design was mapped to Xilinx XC3S2000 FPGA,
and was tested on a 40 inch liquid crystal display (LCD) for 480p to 720p resolution
up-conversion. The implemented design performs scaling of a frame in 1.6ms, which
meets the real time constraints for target video up conversion application. The
design uses 3533 slices, and 60KByte of block RAMS available in the FPGA. The
logic gate count of the design is in the order of gate counts for bicubic scalers
proposed previously. Real time tests on LCD TV shows that the performance of the
algorithm is better in preserving the details when compared with conventional
bicubic interpolation based scalers.

 1

1. INTRODUCTION

1.1 Motivation

Recent advances in flat panel displays and the advent of high definition TV (HDTV)
standard led to more emphasis on several video processing issues. Spatial
resolution up-conversion of the input video is one such issue playing a more
important role with current technological advancements. Flat panel displays, with the
native resolution that supports high definition (HD) video input with resolution of
1080*1920 or 720*1280 are now starting to dominate the market, with many of the
high-end TV companies, investing only on flat panel displays rather than Cathode
Ray Tubes (CRT). However, those flat panel displays with HD resolution, lack from
appropriate input source compatible with the native resolution of the TVs. Although
the current TV sets are capable of displaying video signals on HD resolution, most
of the existing content and current video broadcasting is still in SD resolution, and
those high resolution flat panel displays are fed with SD video input. In such cases,
the resolution of the SD input video source must be up-converted to the native
resolution of the flat panel display using a mathematical method. The performance
of the up-conversion method used has a considerable effect on the video quality and
the effect is becoming more obvious with the fast growth rate of the size of the flat
panel displays, forcing the TV set manufacturers to focus more on the issue. Apart
from the video quality performance of the up-conversion algorithm, there are two
other constraints, namely the real time requirements and the cost. Video processing
standards are set considering the human visual system, and a pre-defined refresh
rate is listed in the standards that constraints the throughput of the video system.
The tight real time constraints and the need for a high performance, high complexity
scaling algorithm requires high performance processing elements capable of fast
parallel processing, eliminating the option of software based, sequential processing.
Therefore the video up-conversion algorithms are mostly implemented in fixed
hardware blocks, which are a part of the video processor inside the TV set. In this
work, several high complexity, high performance video up-scaling algorithms are
evaluated and Modified Resolution Synthesis (MRS) algorithm proposed in [1] is
chosen to be implemented in a high end flat panel display. A novel, resource shared,
pipelined hardware architecture is proposed to implement the algorithm in fixed

 2

hardware and the proposed architecture is implemented in a low cost FPGA family,
Xilinx XC3S2000 targeting the consumer electronics market.

1.2 Organization of Thesis

This thesis presents an optimized, pipelined, resource shared architecture for a
training based content adaptive video up-conversion algorithm, and utilizes that
architecture to implement a real time video up-conversion system integrated into a
flat panel LCD display with 768*1366 native resolution.

Chapter 2 presents basics of digital video and current trends in design and
implementation of video enhancement algorithms in flat panel displays.

Chapter 3 is a review of video up-conversion algorithms in the literature.
Performance evaluation of the algorithms obtained from previous work on the
subject is presented.

Chapter 4 describes the Modified Resolution Synthesis algorithm, which was
selected to be implemented in this thesis.

Chapter 5 presents the hardware architecture proposed for the Modified Resolution
Synthesis algorithm. Details of the proposed architecture are given for each sub
block.

Chapter 6 presents the simulation and implementation results in FPGA platform.
Real-time tests performed on TV are also presented.

Chapter 7 concludes the thesis giving a brief overview of the contribution of the
thesis study, and possible feature work.

 3

2. INTRODUCTION TO DIGITAL VIDEO

2.1 Digital Image Basics

Digital video is composed of digital image frames. The structure of a digital image is
illustrated in Figure 2-1. The image taken from [2] is acquired by microwave radar
from an orbiting space probe.

Figure 2-1 : Structure of a digital image

The image shown is represented by 256 samples arranged in a two-dimensional
array of 16 columns by 16 rows. In imaging jargon, each sample is called a pixel,
which is an abbreviation of picture element. The value of each pixel in the example
is between 0 and 255. When displaying this as a visual image, the value of each
pixel is converted into a grayscale, where 0 is black, 255 is white and intermediate
values are grey levels. The mapping of the grey levels in Figure 2-1 to 8 bit numbers
in the range of 0-255 is illustrated in Figure 2-2.

 4

Figure 2-2 : 8 bit coding of the image in Figure 2-1

A typical digital image is composed of about 500 rows by 500 columns. This is the
image quality encountered in television, personal computer applications, and
general scientific research. Images with fewer pixels, are regarded as having
unusually poor resolution. These low resolution images look noticeably unnatural,
and the individual pixels can often be seen. On the other end, images with more
than 1000 by 1000 pixels are considered exceptionally good. This is the quality of
the best computer graphics, high-definition television, and 35 mm motion pictures.
The strongest motivation for using lower resolution images is that there are fewer
pixels to handle which reduces both the transmission and processing complexity. It
is common for 256 grey levels (quantization levels) to be used in image processing,
corresponding to a single byte per pixel. This choice is mainly due to the fact that a
brightness step size of 1/256 is smaller than the human eye can perceive. However
some images are now stored with 10 bits, and current video processors start using

 5

10 bit processing as well .This is mainly done to reduce the undesired effects of 8 bit
processing(e.g. false contours, quantization noise) [2].

Color is added to digital images by using three numbers for each pixel, representing
the intensity of the three primary colors: red, green and blue. Mixing these three
colors generates all possible colors that the human eye can perceive. A single byte
is frequently used to store each of the color intensities, allowing the image to
capture a total of 256×256×256 = 16.8 million different colors [2].

2.2 Algorithms in Digital Video Processing

Raw video data at the inputs of a TV set pass through several processing steps in
the TV processors’ pipeline. The main stages in the video processing pipeline can
be listed as

• Video format conversion

• Interlaced to progressive conversion

• Resolution up-conversion

• Coding artifact reduction

• Contrast enhancement

• Sharpness enhancement

• Color saturation enhancement

• Spatial and temporal denoising

Video format conversion refers to the issue of converting video signals which are
recorded at different frame rates. Video cameras use a picture rate of 50 or 60Hz,
while movie films are recorded at 24, 25 or 30Hz. The picture rate of TV and PC
displays lie between 50 to 120Hz. High quality picture rate conversion methods
make use of motion estimation and compensation techniques to predict the missing
information [3].

With interlaced scanning, only half of the scanning lines of individual pictures are
transmitted and reproduced at a TV receiver. The first field is made of the odd
scanning lines and the second field is made of the even scanning lines. It has been
shown that interlaced video display matches the demands of the human visual
system very well however; the interlacing procedure is a complication for many
digital processing tasks and also most modern displays cannot handle interlaced
signals well. Therefore, de-interlacing, or interlaced-to-progressive conversion,

 6

doubles the vertical-temporal sampling density to produce a suitable signal for the
display [3].

With the introduction of HDTV-capable TV receivers, the transmission of SDTV
material does not stop immediately, which requires up-conversion at the TV set. A
similar situation occurs with PCs that have a screen resolution that is higher than
required for television. In general the price of high resolution screens has come
down to a level that it becomes affordable, even for TVs that have no HDTV
reception. Consequently, resolution up-conversion is a hot topic to provide HD
image quality from SD video source [3].

Coding artifacts and noise are two important issues apparent in video. Coding
artifacts are apparent in digital video if the video is coded with low bit rate. Noise is
introduced when either acquiring the video data, or in conversion steps (e.g. analog
to digital conversion, quantization etc.) Both coding artifact reduction techniques and
denoising techniques are also available in the current video processor chipsets. To
improve the perceived image quality, current video processors also have color,
contrast and sharpness enhancement blocks.

 7

3. VIDEO RESOLUTION UP-CONVERSION ALGORITHMS

3.1 Sampling Structure Conversion

Video up-conversion problem can be defined as a subset of “sampling structure
conversion” problem. A continuous time signal)(txc can be represented as a

discrete-time signal

[] []nTxnx c= (3.1)

where T is the sampling period. A 1D discrete time signal with sampling period of
T can be converted into a discrete time signal with sampling period of 'T

[] []'' nTxnx c= (3.2)

One approach to obtain []nx' from []nx is to reconstruct)(txc by using a

reconstruction filter, and a digital to analog converter, and than re-sampling the
resultant analog signal with sampling period 'T . However, this approach is usually
not preferred due to the non ideal characteristic of the reconstruction filter and A/D,
D/A filters [4].

3.1.1 Reducing Sampling Rate by an Integer Factor

Sampling rate of the discrete time signal, []nx , in equation (3.1), with sampling
period of T , can be reduced by a factor of M by down sampling []nx at a sampling

period of TMT .'= . This process is referred as decimation. Decimation process can

be modeled in two steps.

1. Multiplication by an impulse train to replace 1−M samples between every
thM sample with zero to obtain an intermediate signal []ng

[] []∑∞

−∞=
−=

k
kMnnxng)(δ (3.3)

2. Discarding the zero samples to obtain the down sampled signal

 8

[])(' Mngnx = (3.4)

Fourier transforms of the signals []ng and []nx' can be computed as,

∑ −

=
<≤−−=

1

0
)2(/1)(M

k
k

M
XMG πωππωω

(3.5)

∑ −

=
<≤−

−
=

1

0
),2(/1)(' M

k M
kXMX πωππωω

(3.6)

The frequency spectrum of the input, and decimated signals for 2=M , are
illustrated in Figure 3-1 and Figure 3-2 respectively. It must be noted that horizontal
axis ω in Figure 3-1 and Figure 3-2 is scaled with the sampling period T and T ′
respectively.

Figure 3-1 :)(ωX , frequency spectrum of the []nx signal

Figure 3-2 :)(ωG , frequency spectrum of the intermediate signal []ng and)(' ωX ,

frequency spectrum of the decimated signal []nx' for 2=M

 9

As it can be seen from Figure 3-2 the spectra of the intermediate signal, consists of
M replicas of the input signal spectrum in the interval []ππ ,− , and the frequency

spectrum of the decimated signal is expansion of the frequency axis of the
intermediate signal spectrum. If the bandwidth of the input signal is greater than

M2/1 , then aliasing is observed at the decimated signal. To prevent aliasing at the
decimated signal, either the input signal []nx which was sampled from)(txc must

have been over sampled by a factor of M (M times the Nyquist rate), or a digital
low pass filter with cut-off frequency of M2/1 must be applied to []nx prior to

decimation. Frequency spectrum of the decimated signal (with antialias filtering) is
illustrated in Figure 3-3. It must be noted that horizontal axis ω in Figure 3-3-a and

Figure 3-3-b is scaled with the sampling period T and T ′ respectively.

Figure 3-3 : a))(ωX ,frequency spectrum of the input signal []nx (Dotted lines represent

the antialising low pass filter) and)(' ωX , frequency spectrum of the decimated signal []nx' .

3.1.2 Increasing Sampling Rate by an Integer Factor

Sampling rate of the discrete time signal []nx in Eq. (3.1), with sampling period of
T , can be increased by a factor of L to obtain [] []'' nTxnx c= where LTT /'= . This

operation is referred as interpolation and using discrete-time operations, the process
can be performed in two steps.

1. Up-sampling by zero filling where 1−L zeros are filled between every sample of
the input signal. The operation can be modeled as,

g(n) = x[n/L], if n=k.L where k is an integer

 0, otherwise

(3.7)

2. Low pass filtering of the filled in signal.

 10

To analyze the frequency spectrum of the filled-in signal []ng , Fourier transform of
the []ng signal can be written as

)()(LXG ωω = (3.8)

The frequency spectrum of the input signal and the filled in signal for 2=L , is
illustrated in Figure 3-4. It must be noted that horizontal axis ω in Figure 3-4-a and

Figure 3-4-b is scaled with the sampling period T and T ′ respectively.

Figure 3-4 : []ωX , frequency spectrum of the input signal []nx and)(ωG , frequency

spectrum of the filled in signal []ng for 2=L

As it can be seen from Figure 3-4, the filled-in signal spectrum is a compressed
version of the input signal spectrum by a factor of L . To remove the replications
caused by zero filling, the signal must be filtered using the appropriate low pass filter
with cut off frequency of L2/1 .

3.1.3 SD to HD Sampling Rate Conversion

Spatial resolution up-conversion problem is basically the 2D version of the
interpolation problem discussed in section 3.1.2 . In the case of SD to HD resolution
up-conversion, the problem can be stated as “reverse process of the 2D decimation
performed when down scaling the HD video to SD resolution”. In theory, it is
possible to reconstruct the original HD signal, after decimation and interpolation
process, however there are practical limitations.

 11

1) To avoid antialising after decimation of the HD resolution signal to SD resolution
signal, the HD signal must be over sampled by a factor of M times the Nyquist rate
or it must be low pass filtered with Mfc 2/1= . In practice, it is not possible to over

sample the original signal by a factor M times the Nyquist rate since video signal is
not a band limited signal. Therefore to avoid anti-aliasing, it is common to pass the
original signal through a low pass filter, which will remove high frequency
components in the signal spectrum. It is not possible to recover these high
frequency components in the interpolation process.

2) Both decimation and interpolation process requires low pass filtering, and the
filtering operations mentioned in section 3.1.2 assume ideal low-pass filters
available. However the impulse response of an ideal low pass filter is a sinc function
and its implementation requires infinite number of input samples, which is not
possible in practice. The impulse response of the sinc function is approximated by
several methods, which are discussed in the following sections.

Figure 3-5 [3] illustrates decimation of a 1-D signal followed by interpolation. It must
be noted that the horizontal axis ω is scaled with the sampling period. It is clearly

seen that the high frequency part of the original signal spectrum is lost. HD - SD –
HD conversion is similar to the steps involved in Figure 3-5, the difference being the
video signals are 2D signals. The input signal at Figure 3-5a can be treated as the
HD signal acquired from a camera, and Figure 3-5c can be treated as the down
sampled SD signal which is broadcasted using an SD channel. The output signal at
Figure 3-5e can be treated as the HD signal reconstructed from the broadcasted SD
signal, using interpolation. Flat panel TV sets’ spatial resolution up- conversion
performance vary depending on the interpolation performed on the SD signal.
Spatial resolution up-conversion problem had been solved in theory [5, 6] and
approximations to the theory had been published in [7-10]. Several evaluations and
implementations of these approximations are also available in [6-13]. More recently,
more advanced methods on spatial resolution up-conversion problem had been
published in [14-23] to improve performance on either subjective metrics, or mean
squared error(MSE) performance. The conventional linear methods aim to
approximate the ideal low pass filter behavior discussed previously, and try to find
the optimal low-pass filter, while more advanced methods try recovering the missing
spectral component[3].

3.2 Linear methods for up-scaling

Linear up-scaling is performed by convolving an interpolation kernel []nh with the
sampled signal []nx .

 12

)()()(∑ −= knhkxnF (3.9)

Here, []nh is basically the time domain impulse response of the low pass filter

mentioned in section 3.1.2. For an ideal low pass filter, impulse response must be a
sinc function, however it is already mentioned that such a filter can not be
implemented at practice. Approximations to such a filter are obtained by
constructing the convolution kernel based on piecewise polynomial functions.

Figure 3-5: Frequency characteristics of decimation-interpolation process. Frequency

spectrum of A) The original signal B) Low pass filtered signal C) Down sampled signal D) Up

sampled signal E) Low pass filtered signal

 13

3.2.1 Zero order hold interpolation

This is the simplest method of spatial up-scaling. The 1-D impulse response of the
zero order hold interpolation kernel is given as

[]
⎩
⎨
⎧ −≤≤−

=
otherwise

Ln
nh

,0
15.0,1

(3.10)

where L is the scaling ratio.

Figure 3-6: []nh , the impulse response of the zero order hold interpolation function for

3=L , and illustration of convolution using this kernel

Impulse response of the zero order hold interpolation kernel is given in Figure 3-6.
As it can be easily seen from Figure 3-6, the result of performing convolution using
the zero older hold interpolation kernel with the SD signal, is the replication of the
SD pixels at the output image. Therefore the method is also known as pixel
replication. This method is rarely used in TV scalers due to its low image quality.

3.2.2 Linear Interpolation

Another low cost method is to use a first degree piecewise polynomial function,

which is obtained by convolving the nearest neighborhood kernel with itself. 1-D

impulse response of the linear interpolation kernel is given as;

[]
⎪⎩

⎪
⎨
⎧ −≤≤

−
=

otherwise

Lnif
L

nL
nh

,0

1||0,||

(3.11)

Figure 3-7 illustrates the impulse response of the linear interpolation kernel for
3=L . As it can be seen from the convolution of the impulse response with the input

signal, the interpolation process determines the missing signal value by taking the
weighted linear average of the neighbor pixels, and the weights of neighbor pixels
are proportional to the their distance to the interpolated pixel. For 2D applications,

 14

linear interpolation is referred as bilinear interpolation, and despite its rather low
image quality, it is widely used due to its low cost.

Figure 3-7: []nh , impulse response of the linear interpolation kernel for 3=L and

illustration of convolution using this kernel

3.2.3 Cubic Interpolation

In cubic interpolation, the impulse response of the ideal low pass filter is
approximated using three cubic polynomial pieces. The continuous interpolation
kernel of cubic interpolation given in [7] is,

⎪
⎩

⎪
⎨

⎧

≥
≤≤++

≤≤+−

=
2 |t| , 0

2 || ,1 2 |t| 4 - |t| 5/2 |t| 1/2-
1 || 0, ,1||2/5||2/3

)(23

23

t
ttt

th

(3.12)

Discrete time impulse response of the cubic convolution interpolation can be
obtained sampling)(th with 14 +L samples in the interval -2 ≤ t ≤ 2. Figure 3-8

shows the discrete time impulse response sampled in this manner for 2=L .

Figure 3-8: Impulse response of cubic interpolation function for 2=L

 15

3.3 Advanced Methods for up scaling

In section 3.2, conventional linear up-conversion methods were described. The main

idea behind these methods is to approximate the time domain impulse response of a

sinc function, which serves as a low pass filter in frequency domain. As mentioned

in section 3.1, even if the low pass filter used in the interpolation stage is ideal, there

is still loss of high frequency components, since an antialising low pass filter is used

prior to decimation. The main idea behind advanced methods is to recover the

missing spectrum at the down sampled image.

3.3.1 Content Adaptive Training Based Methods

The idea behind training based content adaptive methods is to use prior information
obtained from training with large sets of images in order to recover the missing
spectrum at the down sampled image. Natural images are structured signals and
they have considerably less variability than random signals [24]. Training based
methods try to exploit the spatial characteristics of image signals prior to
interpolation, using large sets of training images. This type of interpolation is
performed in two steps, namely the training and the filtering steps.

Computationally intensive training step can be performed offline to reduce
implementation complexity and cost. A large set of selected images are processed
to extract statistical information about the spatial image characteristics. The
information extracted consists of learned spatial structures, typically referred as
context classes, and the way these structures are distorted during HD to SD
conversion. Investigating the class specific distortions, one can design methods to
restore degraded image components (typically high frequency components). Least
Mean Square (LMS) method and Expectation Maximization (EM) algorithm are two
commonly used techniques in the training stage.

Filtering step is performed on the fly, and typically consists of feature extraction,
classification and interpolation stages. Appropriate type of filter kernel is selected at
the end of the feature extraction and classification stages, and the selected kernel is
used to interpolate the HD pixel from the SD pixel neighborhood.

Several training based interpolation methods are proposed in the literature. In [18]
Atkins et al proposed a training based method, whose optimization method at the
training step is based on expectation maximization algorithm. In [17], Kondo et al
proposed a training based method where coefficients are obtained based on LMS
criterion. In [25], Freeman et al proposed a method where HD image is synthesized

 16

block by block, where the blocks are chosen from a database generated during the
training step. These methods are briefly described in the following sections.

3.3.1.1 Digital Reality Creation (Kondo’s method)

Kondo’s method [17] is a training based, content adaptive interpolation method. The
coefficients used during interpolation depend on the local content of the image. A
classification is performed based on the pattern of the local neighborhood of the
processed pixel, and interpolation is performed using the coefficients for the
selected class. Filter coefficients are obtained by a training process performed
offline. Figure 3-9 illustrates the training process performed. Training process uses
the HD video and the SD video as the training material, and uses Least Mean
Squares (LMS) criterion to obtain the optimal coefficients. Training process is
computationally intensive; however it will not cause any trouble since it is performed
only once and offline.

Figure 3-9: Training process performed in Kondo’s method

Classification is performed using Adaptive Dynamic Range Coding (ADRC) [24] and
equation (3.13) is used when encoding each pixel into 1 bit Q.

 ,5.0 ⎥
⎦

⎥
⎢
⎣

⎢
+

−
−

=
MINMAX

MINSD

FF
FF

Q
(3.13)

where SDF is the SD pixel’s luminance value, and MAXF and MINF are the maximum

and minimum luminance values around the 3X3 neighborhood of the centre pixel. In
case no encoding was used, the number of classes for a 3X3 window would be (28)9
and using equation (3.13), the number of classes is reduced to 29.

 17

Figure 3-10 illustrates the aperture used in Kondo’s method. Gray circles in the
figure represent the input SD pixels, and the white circles represent the HD pixels
produced. For a scaling factor of 2=L , SD pixel F11 will be replaced with 4 HD
pixels denoted as A,B,C,D. Gray pixels F00 through F22 illustrate the 3X3 local
neighborhood of F11. The same local neighborhood of the centre pixel is used both
in the classification and interpolation steps.

Figure 3-10: Aperture used in Kondo’s method. The HD pixels A,B,C,D are interpolated

using nine SD pixels, (F00 to F22)

The interpolation of the HD pixels, is performed using equation (3.14);

)1)2(2),1)2(2())2(2),2(2(2

0

2

0 , ++++=++ ∑ ∑= =
ljkijiF

k l SDcklHI Fw (3.14)

where cklw , are the interpolation filter coefficients for class c .

 18

3.3.1.2 Resolution Synthesis (Atkins’ Method)

Atkins et al proposed a training based method, referred as Resolution
Synthesis(RS), in [18]. The main idea behind RS is stated in [1] as “In a large
training set, learn the high resolution image details that correspond to different
spatial structures observed at low-resolution, such as edges of different
orientations, uniform areas and texture regions, then use those learned relationships
to identify and restore the details in other images.” The approach is based on
recognizing that pixels in natural images can be classified as belonging to a limited
number of context classes. These classes are defined by pixel neighborhoods that
are visually identifiable such as shown in Figure 3-11. If the size of the local window
is 5x5, and each pixel luminance value is quantized at 8 bits, the number of possible
patterns is 28*25, which is practically not possible to deal with.

Figure 3-11: 5x5 pixel neighborhoods identified as a vertical edge

Fortunately, examination of the natural image signals show that number of
meaningful spatial structures is limited, and a great rate of the possible patterns can
be figured out as noise-like behavior. Even eliminating such noise-like patterns does
not reduce the space to be explored; hence one can make use of the dominant
spatial structure being the edge direction. If the optimum interpolation filters for the
neighborhoods in Figure 3-11 are derived, they would possibly be very close[18]. So
instead of assigning a context class to every pixel configuration, a context class can
be assigned to large number of configurations with similar spatial structure. In
resolution synthesis, number of context classes is fixed and is around 100. Structure
of the RS algorithm predictor is depicted in[1] as in Figure 3-12.

As it is seen in the figure, the structures of Kondo’s and Atkins’ methods are similar,
the difference being how classification blocks are implemented. While Kondo’s
method uses ADRC [24] in classification, Atkins’ method uses Expectation
Maximization algorithm [26].

 19

Figure 3-12: Structure of the RS predictor.

RS algorithm can be performed in 3 steps :

1) Feature Extraction : This is the first step of the algorithm to obtain the 8x1
classification vector yr which is defined as :

⎩
⎨
⎧ ≠

=
−

otherwise , 0
0~ , ||~||~ 75.0 yyy

y
vvv

v
(3.15)

The y
r~ vector is an 8x1 vector constructed by the difference of the centre pixel with

each neighbor pixel in the classification aperture in Figure 3-13 and yr vector is the

normalized version of the y
r~ vector, whose elements are given as :

[]p
j

i

y

y

∑ =

8

1
2~

~
v

v

(3.16)

where p is a parameter to control the amount of normalization. Feature vectors are
normalized to unit length when p is selected as 1 and no normalization is performed
when 0=p . In [18], p value is obtained as 0.75 experimentally.

 20

Figure 3-13: Extraction of the y
r~ vector

2) Context classification : In this step, classification vector yr is compared with

the representative vector cRV of the thc class to calculate)|(ycP v , the probability

that the current neighborhood belongs to class c , which is given as :

)
2

||||
exp(

)
2

||||
exp(

)|(2

0

2

VAR
RVy

CW

VAR
RVy

CW
ycP

dM

d d

c
c

−−

−−

=

∑ =

v

v

v

(3.17)

Representative vector, RV , represents the class, class weight, CW , indicates the
global probability of the class, and the variance, VAR , indicates the average

distance of the representative vector and the mean of the representative vector.
These parameters are obtained for each class using EM algorithm at training stage.

3) Filtering : High resolution pixels are calculated by first filtering the low resolution
block with filters from each class, and then taking the linear weighted average of the
filter outputs, where weighting coefficient of each filter is its corresponding)|(ycP v

value. The same aperture in Kondo’s method is used for Atkins’ method. From the
definition, high resolution pixel A is calculated as

∑∑∑
−

= = =

+++++=++
1

0

2

0

2

0
,,)|())1)2(2,1)2(2(())2(2),2(2(

M

c k l
ijcSDklcHI ycPbljkiFajiF v

 (3.18)

 21

Where a is a 4x9 matrix and b is a 4x1 matrix of class c , each row corresponding

to coefficients to interpolate high resolution pixels A,B,C,D.

3.3.1.3 Example Based Super Resolution

Example based super resolution is different from Kondo’s and Atkins’ method both
in the classification and reconstruction step. In example based super resolution, the
input image is decomposed into low frequency and high frequency components.
Low frequency image is obtained by first blurring and sub sampling the original high
resolution image and then scaling back this image to its original size using a linear
interpolation method. By this way, an image of desired size that lacks high resolution
detail is obtained. In the training set, the differences between the high resolution
image and linear interpolated image are stored. High resolution patches
corresponding to every possible low-resolution image patch, typically of 5x5 and 7x7
pixels, are stored. The detail component of the image is obtained by combining the
high resolution patches. The prior information obtained at the training step provides
statistical information on which low resolution patch typically corresponds to which
high resolution patch, and this information is used to reconstruct the high resolution
details of the image. For its constraints on huge storage of patches, cost of the
method is high for real time implementation.

3.3.2 Directional Interpolation Methods

New Edge Directed Interpolation (NEDI) proposed in [14] is the typical sample of a
directional interpolation method. NEDI aims to interpolate along edges rather than
across them to prevent blurring. NEDI differs from Kondo’s and Atkins’ method in
the place coefficient optimization is performed. The optimization of the interpolation
coefficients is performed by applying an LMS algorithm on-the-fly. The main
advantage on performance is that the local neighborhood does not need any
simplification. The disadvantage is that more calculations are required for
optimization since the original image is not available. Figure 3-14 shows the
aperture used in NEDI.

NEDI algorithm uses the following formulae for interpolation.

))2(2),2(2())1(2),1(2(
1

0

1

0
2 ljkiFwjiF

k l
SDlkHI ++=++ ∑∑

= =
+

(3.19)

where w coefficients in the formulae are computed at the runtime using LMS
criterion. The sum of squared errors over a set S in the optimization is written as

 22

the sum of squared differences between the original SD pixels and interpolated SD
pixels. Sum of squared error(SSE) is given as :

∑ ++−++=
ji

HISD jiFjiFSSE
,

2))22,22()22,22(((3.20)

Substituting HIF in equation (3.20) and writing the equation in matrix form, SSE is

written as :

2|||| CwySSE vv −= (3.21)

where yv is the vector of SD pixels in S , and C is a 4x S 2 matrix whose thk row
contains 4 diagonal SD neighbors of the thk SD pixel in yv vector. To find the

minimum SSE, the derivative of SSE over wv must be 0 hence wv is obtained as :

)()(1 yCCCw TT vv −= (3.22)

Figure 3-14: Aperture used in NEDI

 23

The computation of the coefficient matrix used at the interpolation step is more
costly than the interpolation step itself, which brings a major disadvantage for the
real-time implementation of the algorithm.

3.3.3 Other Methods

Other than the training based methods, and the directional interpolation based
methods, there exists other advanced algorithms proposed for video up-scaling
problem. In [19-21] image interpolation is performed using neural networks. In [16],
frequency domain operations are used. In [22], SD image is up scaled using a linear
scaling algorithm and a non linear sharpening method, Luminance Transient
Improvement (LTI) [27] is applied to the scaled image, to recover the high frequency
components lost during the decimation process. There are several other methods
which are either similar to or derived from the methods discussed in previous
sections. These are out of scope for this study, hence are not mentioned in this
section.

3.4 Video Performance Evaluation of the Methods

Evaluation of video enhancement algorithms is quite tricky since the aim of video
enhancement algorithms is to improve the perceived image quality which is
subjective. After all, the target is the human eye, and the success of the algorithm
might differ with the user’s taste. There exist subjective evaluation techniques which
usually make use of a group of trained and non-trained eyes, to evaluate an
algorithm’s performance; however such processes are expensive, slow and hard to
manage. Several image quality metrics have been proposed in the literature which
aims to correlate well with perceived image quality. Though not being closely
correlated with perceived image quality, some simple metrics like mean square error
(MSE), or Peak Signal to Noise Ratio (PSNR) are also widely used to evaluate an
algorithm’s performance. In many of the scientific researches, MSE is taken as the
major metric to compare the algorithms’ performance. In [3], the algorithms
discussed in previous sections (Example based super resolution in [25] being the
exception) are also compared and evaluated using MSE criterion and subjective
tests. In this evaluation, four still images and seven video sequences were used,
with several spatial characteristics. In objective evaluation, MSE criterion is used
with with the formulae:

∑ −=
ji

jiGjiF
N

MSE
,

2)),(),((1
(3.23)

 24

where),(jiF is the luminance value of the thi row, thj column in the original high
resolution image, and),(jiG is the luminance value of the same spatial location in

the up converted image. N is the number of pixels in the images. Table 3-1 shows

the results of objective evaluation, performed in [3].

Table 3-1 : MSE performance evaluation performed in [3]

 Bilin

ear

Int.

cubic

Int.

Keys

kernel

cubic int.

Mitchell

Netravali

kernel

Kondo’s

method

Atkins’

met.

Plaziac’s

met.

Li’s

met.

Greenspan’

s method

Tegen

bosch’

s met.

Average

MSE Score

120.

2

101.2 111.4 92.3 95.0 104.2 117.0 101.4 203.3

Figure 3-15 illustrates the results of subjective evaluation performed in [3].

Figure 3-15 : Subjective evaluation performed in [3] (A : Cubic B-spline interpolation, B:

Kondo’s method, C: Li’s method, D: Tegenbosch’s method)

 25

The subjective comparison is performed for four of the algorithms. In the figure,
higher value horizontal scale represents higher perceived image quality. In the
subjective evaluation, it is observed that optimal MSE score does not guarantee the
best perceived image quality, since Tegenbosch’s method [22], which gives poor
MSE scores can be found to have a better perceived image quality by user.
However it is also stated that MSE is the most appropriate start point for further
enhancement in the perceived image quality. It must be also noted that
Tegenbosch’s method performs LTI over a bicubic based linear interpolation method,
and further research on applying appropriate LTI over a training based interpolation
may have the potential to get better perceived image quality as well as MSE score.
More details on both subjective and objective evaluation of the algorithms, including
the test pictures for each image group can be found in [28].

 26

4. MODIFIED RESOLUTION SYNTHESIS

4.1 Overview

In chapter 3, it has been shown that scaling an image by linear filtering can not bring
back the high frequency components degraded (reduced to noise level, completely
filtered out or aliased) during sampling. This is where advanced resolution up-
conversion techniques (which are also referred as resolution enhancement
techniques) differ from linear scaling techniques. Resolution enhancement
techniques can recover the missing or aliased high frequency components to a
limited extent by estimating the missing high frequency components through
spatially adaptive filtering and use of prior information. The main improvement
offered by single frame resolution enhancement is observed around edges and
textured areas. Compared to the results obtained by linear scaling filters such as
bicubic interpolation combined with unsharpen filtering, techniques such as the
resolution synthesis [18] algorithm can offer much smoother, continuous edges with
sharp transitions, remove the blurry look from textured areas and rectify slight
aliasing artifacts (where aliased signal components can not disturb the dominant
spatial structure). Several content adaptive methods were considered to be a start
point for the work done in this thesis, and resolution synthesis [18] was taken as the
start point since it had performed well in terms of MSE and perceptive image quality.
The details of the algorithm had been given in section 3.3.1.2.

In its current form, resolution synthesis is computationally too demanding for
systems with limited computational resources and memory. The high computational
load is mainly due to the large number of classes required for satisfactory
performance (typically anywhere between 30-100) and the requirement for weighted
combination (soft filtering) in Eq. (3.18). Linear combination is especially demanding
since it requires repeating application of a 5×5 filter, implying 25 additional
multiplications and an additional accumulation for every class included in soft
filtering. In addition, the combination weights ()|(ycP v ’s in equation (3.17) must be

computed to obtain the final result. In [1] several trials were performed to reduce the
complexity of RS. It is observed that directly reducing the number of classes (below
~30) severely degrades performance. Also using only one class (the class with
maximum membership) to compute the high resolution pixels results in degraded
performance. It is found out that the discrimination power of the feature vectors

 27

defined by equation (3.15) was severely degraded as the number of context
classes was reduced below ~ 25. These shortcomings render resolution synthesis
useless for customer grade flat panel displays, where the computational complexity
must be kept below some threshold. The goal in [1] is to introduce some
modifications so that RS can operate satisfactorily with as low as 5 context classes
using hard decision (using a single class in filtering).

4.2 Algorithm Description

Modified RS scheme consists of two phases, namely the offline training phase, and
the online filtering phase.

4.2.1 Offline Training Phase

Proposed training method in [1] is shown in Figure 4-1.It is based on the observation
that interpolation filter design stage has direct access to the high resolution pixels. If
one can couple interpolation filters to the feature extraction and classification stages,
the resulting clustering should improve. Given the low and high resolution training
images, proposed method iteratively extracts the best interpolation filters and the
context class prototypes that are used to determine input pixel’s context.

Figure 4-1: Proposed training scheme in [1]

The iterative training works as follows.

0.Initialization :

After extracting the feature vectors of all the low resolution pixels in the training set,
class prototypes are initialized randomly. The prototype for class number 1 is
manually set to a vector of all zeros. This guarantees that a class is reserved for
uniform areas. All covariance matrices are set to identity matrices.

 28

1. Clustering with respect to features:

After initialization, the low resolution pixels are classified with respect to their feature
vectors. This is done by going through all low resolution pixels, computing the
weighted Euclidian distance (the weighting matrix is the inverse of feature
covariance matrix) between the pixel’s feature vector, which is a representative of
the local image characteristic of the low resolution pixel and the cluster prototypes,
which are representatives of different context classes. Then the input low resolution
pixel is labeled with the index of the cluster whose feature vector is the closest to the
low resolution pixel’s feature vector.

2. Filter update:

Once the low resolution pixels are clustered with respect to their feature vectors
(context) the interpolation filters for all clusters are updated with the filter that
minimizes the mean squared error between the interpolated and the true high
resolution pixels computed for all low resolution pixels in a specific cluster. While
preparing the training samples, a small amount of blurring prior to down sampling is
necessary to model the camera response and also to avoid aliasing. But completely
filtering out the high frequency components effectively creates an inverse problem
where the filters are asked to bring back completely removed signal components
(this is only possible in multi-frame case), resulting in bad filters.

3. Clustering with respect to filters :

After filter update, all the input pixels are clustered with respect to the minimum
mean-squared-error interpolation filter. This is accomplished by going through all
low-resolution training pixels, computing the interpolated high resolution pixels one
by one, and comparing the interpolated pixels to the available high resolution pixels.
The low resolution pixel is then labeled with the index of the interpolation filter that
gives the minimum mean-squared-error between the interpolated and real high
resolution pixels.

4. Class prototype update :

Once all the input pixels are classified, the feature vectors of the obtained clusters
are updated one by one. This update can be done in various different ways such as
taking the average of the median of the feature vectors. Class covariance matrices
are updated next. To reduce computational complexity, diagonal covariance
matrices are assumed. Then the algorithm steps back to step 1, clustering with
respect to features, and iterate in this fashion for predetermined times. In [1] the
experiments are done with 2 iterations.

 29

4.2.2 Online Content Adaptive Filtering Phase

At the end of offline training phase, for each class i ; an 8x1 representative vector

iC
v

, each of which represents a class, an 8x1 variance set, iσ , which indicates the

average distance of each representative vector and the mean of the representative
vectors, and four 5x5 interpolation filter kernels 11100100 ,,, iiii KKKK are calculated.

Figure 4-2 : Up conversion of SD resolution image to HD resolution image

 30

Once the offline training phase is completed and iC
v

, iσ and 11100100 ,,, iiii KKKK

values for each class is computed, online computations can be started to up-convert
an SD resolution image to an HD resolution image as shown in Figure 4-2.

The inputs to the algorithm are

• the image matrix Y of size VerHor xSDSD , with each element mnY of the

matrix representing the luminance value of thm row, thn column of the low

resolution image.

• representative vectors iC
v

 of size 8x1 for each class i .

• set of normalization constants iσ of size 8x1 for each class i .

• Four 5x5 filter kernels 11100100 ,,, iiii KKKK for each class i .

The output of the algorithm is

• The HorVer xHDHD image matrix Z with each element mnZ of the matrix

representing the luminance value of thm row, thn column of the high

resolution image.

The algorithm consists of three stages, namely, feature extraction, context
classification, and filtering. Feature extraction and context classification is performed
for every pixel of the input SD image, and filtering is performed for every pixel of the
output HD image. The aperture used in these stages, is shown in Figure 4-3

Figure 4-3: Aperture used in Modified Resolution Synthesis

 31

4.2.2.1 Feature Extraction

In the feature extraction stage, for every SD input pixel, the feature vector of the
pixel is extracted from a 3×3 local neighborhood. The feature vectors will be
denoted asφ . To obtain the feature vector, first, an 8x1 vector is obtained by
subtracting the centre pixel value 2,2 −− nmY from its 8 neighbors and taking the 4th

power of the difference. The elements of the 8x1 feature vector are given as,

4
1,32,21)(−−−− −= nmnm YYFV

4
2,32,22)(−−−− −= nmnm YYFV

4
3,32,23)(−−−− −= nmnm YYFV

4
1,22,24)(−−−− −= nmnm YYFV

4
3,22,25)(−−−− −= nmnm YYFV

4
1,12,26)(−−−− −= nmnm YYFV

4
2,12,27)(−−−− −= nmnm YYFV

4
3,12,28)(−−−− −= nmnm YYFV

(4.1)

Then the resultant vector FV is normalized obtain the normalized feature vector
φ .The following equation shows the mapping used to obtain each element of the
normalized feature vector φ

∑ =

= 8

1
75.02)(

j j

i
i

FV

FV
φ

(4.2)

4.2.2.2 Context classification

In the context classification stage, the feature vector φ obtained in the previous step
is compared to five predetermined iC

v
 vectors namely the representative vectors of

each class. The distance between the feature vector φ and the representative
vector of class i , iC

v
is computed as

∑
=

−
=−=

8

1 ,

2
,)(

||||
j ji

jij
ii

C
Cd

σ
φ

φ
v

 5,4,3,2,1=i
(4.3)

That is, the distance between φ and iC
v

is the sum of squared differences between

the corresponding entries of each vector divided by normalizing constants. The
context class that is closest to the φ vector (with minimum id) is declared as the
context of the current low resolution pixel 2,2 −− nmY , and its index cl is passed to the

 32

interpolation stage. It must be noted that the iC
v

vectors and the iσ normalizing

constants are different for every class and they are pre-computed in the training
phase.

4.2.2.3 Filtering

In the filtering stage, index passed by the context classification step is used to pick
the interpolation filter corresponding to the context class of the current low resolution
pixel. Interpolation is performed for every HD pixel, therefore the iteration is not
performed in the SD input image, but on the HD output image to be created. For
every output pixel at the HD output image, first the corresponding vertical and
horizontal SD image coordinates vy and hy , are computed using the following

formula :

⎥⎦
⎥

⎢⎣
⎢=⎥⎦

⎥
⎢⎣
⎢=

L
z

y
L
z

y h
h

v
v ,

(4.4)

where, vz and hz are the horizontal and vertical coordinates of the HD pixel and

L is the scaling ratio. Then the horizontal and vertical phases hp and vp of the

output pixel is computed using the following formula:

⎥⎦
⎥

⎢⎣
⎢ +−= ε)(h

h
h y

L
z

xQhp
(4.5)

⎥⎦
⎥

⎢⎣
⎢ +−= ε)(v

v
v y

L
z

xQvp
(4.6)

where vQ and hQ are the vertical and horizontal quantization values set as 2 in [1].

Using the context class index cl , horizontal phase hp and vertical phase vp , 5x5
interpolation kernel vphpclK ,, is selected for the output pixel, and the interpolation of

the output pixel is performed by convolving the 5x5 neighborhood of the
corresponding SD coordinates, with the selected kernel. For the output pixel
coordinate of)2(2),2(2 −− nmZ the corresponding SD input pixel will be 2,2 −− nmY ,from

Eq.(4.4) and hp and vp will be both zero from Eq.(4.5) and Eq.(4.6). The
selected filter will be 00,clK (denoted as K in Eq.(4.7)) and the interpolation output

will be computed by

 33

∑∑
−= −=

+−+−−− =
2

2

2

2
2,2)2(2),2(2

i j
ijjnimnm KYZ

(4.7)

Pseudo code of the online filtering phase of the modified resolution synthesis
algorithm is given in Figure 4-4.

Inputs:)(verhor xSDSDY = input image matrix, cC
v
(8x1 representative

vector for each class), cσ (8x1 normalization constant set for each

class), 11100100 ,,, cccc KKKK (four kernel of size 5x5 for each class),
c = 1,2,3,4,5

Output: HorVer xHDHDZ = output image matrix

 for m from 2 to 2−verSD do

 for n from 2 to 2−horSD do

 0:=SFV
 for i = -1 to 1 do
 for j = -1 to 1 do

 4
,,)1()1(3)(jnimnmji YYFV +++++ −=

 ()2)1()1(3 ++++= jiFVSFVSFV

 75.0SFVSFV =
 for i = -1 to 1 do
 for j = -1 to 1 do

 SFVFV jiji /)1()1(3)1()1(3 ++++++ =φ

 for c = 1 to 5 do
 for k=1 to 8 do

kc

kck
cc

C
dd

,

2
,)(

σ
φ −

+=

 clm,n = index_of(Min (cd)) c = 1,2,3,4,5

 for s from 2 to 4−verHD do

 for t from 2 to 4−horHD do
 compute SD coordinates m,n corresponding to s,t
 Select the class of the filter clm,n
 Select the vertical and horizontal phase of the filter
 Select the appropriate filter K using vp,hp, and clm,n
 for x = -2 to 2 do
 for y= -2 to 2 do

 yxynxmtsts KYZZ ,,,, *−−+=

Figure 4-4 : Pseudo code of the Modified RS algorithm

 34

4.3 Visual Quality Results

Prior to the implementation of the algorithm, several subjective benchmarks were
run on the algorithm, in Vestel Video Quality Lab. In industrial video and image
processing applications, it is mainly the perceived image quality that is targeted
hence MSE criterion is discarded. The images scaled with MRS algorithm were
compared with images scaled using bicubic scaling algorithm. MRS algorithm
performance was also compared with state of the art video processors. Figure 4-5
shows the input image with 200x200 resolution. The 400x400 output images scaled
by MRS and bicubic scaling algorithms are shown in Figure 4-6 and Figure 4-7

Figure 4-5 : Input image with 200x200 resolution

Figure 4-6: MRS output image with 400x400 resolution

 35

Figure 4-7 : Bicubic scaler output image with 400x400 resolution

4.4 Complexity Analysis

In this section, a hardware complexity analysis of the RS and MRS algorithms are
given. In computer science, time and space complexity of an algorithm is usually
given in terms of asymptotic complexity, and the common approach is to use the
order of n notation (e.g., “Big O”, “Big Theta” etc notations). Asymptotic complexity
analysis seeks to find the complexity of a problem, when the size of the problem
goes to infinity. Such an analysis will not make any benefit in this work since the
point of interest is the algorithms’ hardware complexity. Several metrics are
proposed to estimate the complexity of an algorithm in terms of its hardware
resources. In this study, the basic approach which is also used in [6] is used. The
algorithms are compared in terms of number of multiplications, additions and
memory elements required per output pixel.

4.4.1 Complexity of RS and Modified RS algorithms

4.4.1.1 Feature Extraction :
Feature extraction of the RS algorithm is given in Eq.(3.15). Discarding the control

logic and the registers inserted for pipelining or delaying the operands, the

 36

complexity of the feature extraction block in terms of adder, multiplier and memory

cells can be estimated in four steps :

i) Computation of the y
r~ vector

ii) Computation of || y
r~ || from y

r~

iii) Computation of || y
r~ ||-0.75

iv) Computation of y
r~ || y

r~ ||-0.75

Computation of the y
r~ vector in step i requires 8 additions. Computation of the norm

of the y
v~ vector in step ii requires 8 multiplications followed by 8 additions.

Assuming a piecewise linear implementation of the constant exponentiation

operation, step iii can be performed using a look up table of k2 words where k is

the size of the input operand. Finally step iv requires 8 multiplications to compute

the normalized feature vector. At total, the complexity of the feature extraction block

in RS can be given as

memorywordsadditionstionsmultiplicaComplexity k
FERS 2 16 16_ ++= (4.8)

Feature extraction module of the MRS algorithm given in Eq.(4.1) and Eq.(4.2) is

similar to the one in RS algorithm and can be estimated in four steps :

i) Computation of the FV vector

ii) Computation of || FV || from FV

iii) Computation of || FV ||-0.75

iv) Computation of FV || FV ||-0.75

Computation of FV differs from the RS algorithm, due to the additional squaring

operations, which will require 16 multiplications. The rest of the steps use the same

operations and hence have the same cost as in RS. At total, the complexity of

feature extraction stage in modified RS can be given as

memorywordsadditionstionsmultiplicaComplexity k
FEMRS 2 16 32_ ++= (4.9)

 37

4.4.1.2 Context Classification

Context classification stage of the RS algorithm is given in Eq.(3.17). The
expression in the nominator requires 8 additions for the 8x1 vector subtraction, 8
multiplications, 8 additions and 8 divisions for the vector norm computation, 2
multiplications for the division by a constant, and squaring operations, and at least
log N multiplications for the exponentiation operation where N is exponent. In the

denominator, the arithmetic operations mentioned for the nominator are done for M
times and finally M additions and a division is required to obtain the)|(ycP v value
for one class. To obtain the)|(ycP v values for M classes, one should only

compute the nominator since the denominator will be the same for all classes.
Therefore approximately, 2 M (16 additions + 10 Multiplications + log N

multiplications + 8 divisions) + M additions + M divisions are required . Using
basic assumptions (taking the complexity of a division operation and exponentiation
operation 10 times the complexity of a multiplication), the complexity of the
classification step can be estimated as

tionsmultiplicaMadditionsMComplexity CLRS 66 33_ +≈ (4.10)

Context classification stage of the MRS algorithm is given in Eq.(4.3). The

expression in the nominator requires 8 additions and 8 multiplications. Divisions by a

constant can be implemented by multiplication by the inverse of the constant hence

the division operation requires 8 multiplications and the summation operation

requires 7 additions at the final stage. Since the operations will be performed for

every class, these operations will be performed M times. To find the minimum

distance value, 5 class distances are compared with each other, which will require 4

comparators. Assuming the complexity of a comparator is the same with an adder,

total complexity of the classification step of the MRS algorithm can be estimated as

tionsmultiplicaMadditionsMComplexity CLMRS 16)116(_ +−≈ (4.11)

4.4.1.3 Interpolation
Interpolation stage of the RS algorithm is given in Eq.(3.18) Soft filtering requires a

5x5 convolution for each class and a linear combination of these convolutions,

therefore the number of multiplications required will be equal to 5*5* M for the

convolutions and M for the linear combinations. Number of additions will be (5*5 –

 38

1) * M for the convolutions and 1−M for the linear combinations. Total complexity

of the interpolation stage of the RS algorithm can be estimated as

tionsmultiplicaMadditionsMComplexity INRS 26)125(_ +−≈ (4.12)

Interpolation stage of the MRS algorithm is given in Eq.(4.7). Since hard

interpolation is performed in MRS instead of the soft interpolation operation in RS,

5x5 convolution is performed only for the selected class. Total complexity of the

interpolation stage of the MRS algorithm can be estimated as,

tionsmultiplicaadditionsComplexity INMRS 25 24_ +≈ (4.13)

4.4.2 Complexity Comparison of RS and MRS algorithm

Number of multiplications, additions and memory words required in RS and MRS
algorithms are listed in Table 4-1. The aim of the MRS algorithm had been
discussed in Section 4.1. MRS algorithm tries to reduce the complexity of the RS
algorithm by

• Replacing soft interpolation with hard interpolation

• Reducing the number of classes, M .

without sacrificing the performance, due to several modifications at the training
stage. The effect of replacing the soft interpolation with hard interpolation to the
hardware cost is obvious in Table 4-1. The complexity of the interpolation stage is
roughly reduced by a factor of M , and the complexity of the classification stage is
roughly reduced by a factor of 2, by the modifications performed to replace soft
interpolation with hard interpolation. In [1], another modification is done on the
number of context classes. It is reported that RS algorithm requires at least ~30
context classes, and MRS algorithm requires 5 context classes to perform
satisfactorily. Substituting 30=M in the RS complexity equation, and 5=M in the

MRS complexity equation, RS will require ~2400 multiplications + 1800 additions per
output pixel, whereas MRS will require 137 multiplications + 120 additions per
output pixel.

 39

Table 4-1 : Number of arithmetic operations in RS and MRS algorithms

 Multiplication Addition /

subtraction

Memory

words

RS Feature

Extraction

16 16 k2

RS

Classification

66M 33M

RS interpolation 26M 25M-1

RS Total 92M+16 55M+16 k2

MRS Feature

Extraction

32 16 k2

MRS

Classification

16M 16M-1

MRS

interpolation

25 24

MRS Total 16M+57 16M+40 k2

 40

5. PROPOSED HARDWARE ARCHITECTURE

The aim of this study is to find an efficient architecture to implement a content
adaptive video resolution up-conversion scheme in a low cost hardware that is
targeted for a high-end flat panel display product. The target application is video
standard conversion where the input is standard definition video and the output is
high definition video. Modified RS scheme, presented in chapter 4, is used for
interpolation. The computational complexity of the Modified RS scheme in terms of
multiplications and adders is given in chapter 4. In this chapter, an efficient
hardware architecture to implement Modified RS scheme is given. Since the
hardware is targeted to work on a real time platform, a detailed analysis of the
system requirements is necessary. Section 5.1 lists the performance requirements
to be considered in the design of the hardware architecture. The details of the
hardware architecture designed considering the requirements are given in Section
5.2.

5.1 Performance Requirements

5.1.1 Throughput Constraints

The constraint on the throughput arises from the input and output pixel rates of the
video standard to be converted. In this study, the input video standard is NTSC 480p
@60Hz, which has 480 lines of vertical resolution and 720 columns of horizontal
resolution, and the output video standard is NTSC 720p @60Hz which has 720 lines
of vertical resolution and 1280 columns of horizontal resolution. The details of the
input and output video specifications are given in Electronic Industries Alliance(EIA)
DTV resolution standards specification [28]

Figure 5-1 and Figure 5-2 illustrate the timing diagram for the input and output video
standards. The throughput and the pixel clock frequencies can be derived from the
video standards. Pixel clock period, clkT can be written as,

) (
) (

framevideooneforcyclesclockpixelofnumberN
framevideoonefortimeTotalT

T
cpf

frame
clk =

(5.1)

 41

858 Total Horizontal Clocks per Line

720 Clocks for Active Video138 Clocks
16

62
60

Progressive Frame: 45 Vertical Blanking Line 480 Active Vertical Lines

16
858 122

522 523 524 525 1 7 8 9 10 11 12 13 42 43 522 523 524 525

Data
Enable

HSYNC

Data
Enable

HSYNC

VSYNC

Figure 5-1: Timing diagram for NTSC 480p@60 Hz video standard

1650 Total Horizontal Clocks per Line

1280 Clocks for Active Video370 Clocks
110

40
220

Progressive Frame: 30 Vertical Blanking Line

110 1650 260

745 746 747 748 749 750 1 2 3 4 5 6 7 25 26 745 746 750

HSYNC

VSYNC

Data
Enable

Data
Enable

HSYNC

Figure 5-2 : Timing diagram for 720p@60 Hz video standard

 42

Since the input and output video has a frame rate of 60 Hz defined in the standards
specification [28] , the nominator will be equal to 1/60 seconds for both the input and
output. The denominator can be derived as,

) (
) (

frameperlinestimeblankingframeperlinesvideoactivex
lineperclockstimeblankinglineperclocksvideoactiveNcpf

+

+=

(5.2)

Substituting the values from Figure 5-1 into Eq. (5.1), input pixel clock period can
be found as,

=
++

=
)45480()138720(

60/1
_ x

T inclk 37seconds
(5.3)

and input pixel clock frequency can be found as

MhzTF inclkinclk 027.27/1 __ == (5.4)

Substituting the values from Figure 5-2 into Eq. (5.1), output pixel clock period can
be found as,

)30720()3701280(
60/1

_ ++
=

x
T outclk =13.468 seconds

(5.5)

and output pixel clock frequency can be found as,

MhzTF outclkoutclk 25.74/1 __ == (5.6)

At each 74.25Mhz output pixel clock, one interpolated output pixel must be available,
therefore the throughput of the system will be

ondpixelsMThrougputoutput sec/ 25.74=

(5.7)

In 480p to 720p standards conversion, the scaling ratio is less than 2, which is
chosen as an upper bound in the proposed architecture to reduce the complexity.
Setting an upper bound at the scaling ratio, the hardware implementation of the
proposed scaling algorithm can be performed in two different ways:

 43

• Output based flow: For each HD pixel coordinate, find the corresponding
5x5 low resolution window, and perform feature extraction, classification, and
interpolation on this neighborhood.

• Input based flow: For each SD pixel coordinate, find the corresponding
four HD pixel coordinates. Since these HD pixels are to be interpolated from
the same SD pixel neighborhood, perform feature extraction, and
classification steps only for once. Then perform interpolation for all four HD
pixels corresponding to the SD pixel, and arrange the interpolated pixels in
raster-scan order using line buffers. Discard redundant pixels at the
interpolation output if L is a non-integer value.

Since the complexity of the interpolation scheme is mainly on the feature extraction
and classification blocks, input based method is preferred in this work, thus
eliminating unnecessary computations for the feature extraction and classification
stages. When output based flow is followed, maximum of four pixels must be
available at every input pixel clock cycle, and therefore the throughput of the system
will be

ondMpixelsxThroughput sec/ 108 274 == (5.8)

5.1.2 Logic Area Constraints

The volume of the production of a flat panel display solution is in the order of million
units for the consumer electronics market, and this brings a constraint on the cost of
the solution, hence the logic area. In order the integrate the designed solution into
an industrial product, only the low cost FPGA families are feasible, which eliminates
the use of high performance FPGA families such as Xilinx Virtex-4 and Virtex -5
family, or Altera Stratix –II or Stratix-III family. The target platform was chosen from
the Xilinx low cost FPGA family, and the architecture was designed for a Spartan3
XC3S2000 FPGA, with equivalent gate count of 2Milllion system gates.

5.1.3 Resource Sharing Options

Modified RS algorithm introduces reduced implementation cost by replacing soft
filtering with hard filtering and by reducing the number of classes used in the
classification stage. The hardware cost can be further reduced by exploring the
design space. Two main factors that can affect the implementation efficiency are the
input/output data rate, and the target implementation platform. The optimum degree
of pipelining and resource sharing achievable may vary depending on these two
factors. An efficient implementation for a low cost FPGA family may result in an over

 44

pipelined, or over parallelized architecture, with low resource utilization for a high
performance FPGA family. Although the design is targeted for 480p SD to 720p HD
video conversion, a more flexible architecture is proposed to easily adapt to different
scaling ratios. To provide an efficient implementation for different data rates, and
different implementation platforms, the degree of resource sharing should be
variable. The degree of resource sharing in feature extraction and classification units
is defined as

unit) extraction featurein paths processing of (# N
 vector)feature in the elements of (#N

p

e=rD
(5.9)

Choosing a non integer rD value will result in ⎡ ⎤ epr NND −)*(slots of the

processing path to be idle at every ⎡ ⎤rD clock cycle. Choosing an integer rD value
will fully utilize the data path since ⎡ ⎤ rD=rD which implies no idle slots. To

achieve the desired data throughput with different resource sharing levels, core
clock frequency, coreclkF _ , must be related to the input pixel clock frequency, inclkF _

with the following formula

inclkrcoreclk FDF __ *= (5.10)

One can choose the degree of resource sharing, rD by investigating the input pixel

rate and the maximum core clock frequency achievable by the target FPGA

5.2 Hardware Blocks

5.2.1 Top Level

Top level block diagram of the hardware architecture designed for the modified RS
algorithm is shown in Figure 5-3. There are 6 main blocks; input memory (IM),
output memory (OM), feature extraction (FE), classification (CL), interpolation (IN),
and color space conversion units (rgb2ycbcr,ycbcr2rgb). Modified RS algorithm is
performed on the luminance (Y) path. Chrominance signal is interpolated
performing pixel replication. RGB input data is converted to YCbCr using ITU
equations. 4 rows of luminance data are stored in line buffers to provide the 5x5
pixel neighborhood required for interpolation step.

At each input pixel arrival, the control unit reads a 4x1 pixel column from the line
buffers, writes the incoming pixel to the line buffers and provides the 3x3 and 5x5
pixel windows to the feature extraction and classification units. Feature extraction

 45

unit operates on a 3x3 window and extracts an 8x1 feature vector which is used by
the classification unit. The classification unit calculates the distance between the
feature vector and the predetermined class vectors and outputs the index of the
class with minimum distance to the feature vector. Interpolation unit uses the class
index to address the filter coefficient LUT and select the appropriate filter for the
input pixel neighborhood. Convolution is performed using constant coefficient
multipliers. Interpolated outputs are stored at output line buffers. Since the input and
output sample rates are different, output memories are required to provide
appropriate rate and order of data at the outputs.

The proposed architecture supports scaling of video signals where the scaling ratio
2≤L . When scaling ratio 2=L , 4 HD pixels are interpolated for each SD pixel. For

non integer scaling ratios 21 << L , output pixel selector block finds the pixels to be
discarded using Eq.(4.4).

Figure 5-3: Top level block diagram of the proposed hardware

5.2.2 Control Unit (CU)

Control unit provides input data to the data path blocks at appropriate timing and
format. The functionality of the CU is illustrated in Figure 5-4.

The control unit

 46

• Generates the memory address and control signals for IM and OM blocks,
and pipeline control signals for other blocks.

• generates the synchronization signals defined at the video standards
(hsync,vsync,data enable).The porch time and sync time are defined as
generics in the RTL code, and the values corresponding to the input and
output video resolutions must be available before logic synthesis.

• Generates the hp and vp values used at interpolation stage.

• For scaling ratios less than 2, control unit selects the pixels to be omitted
using the low resolution pixel coordinate and the scaling ratio L .

Figure 5-4 : Control unit block diagram

5.2.3 Color Space Conversion Unit (CSC)

Color space conversion unit converts the RGB data to YCbCr data and vice versa
using the equations defined in ITU-R BT.601 standard specification. The equations
to convert gamma corrected RGB data, referred as R’G’B’ into YCbCr are

128')256/21(')256/110(')256/131(
128')256/131(')256/87(')256/44(

')256/29(')256/150(')256/77(

+−−=
++−−=

++=

BGRCr
BGRCb

BGRY

(5.11)

The equations to convert YCbCr data into R’G’B’ are

 47

)128(732.1'
)128(336.0)128(698.0'

)128(371.1'

−+=
−−−−=

−+=

CbYB
CbCrYG

CrYR

(5.12)

Both the RGB data and the coefficients have 8 bit precision. The multiplications in
the color space conversion block are implemented as shift-add operations since the
coefficients are always constant.

5.2.4 Input Memory Unit (IM)

IM unit operates at input pixel clock frequency inclkf _ . The block consists of 4 line

buffers, to provide a 5x1 pixel column to the CU. The length of the line buffers is
equal to the input video’s horizontal resolution. Block diagram of the IM unit is
shown in Figure 5-5.

Figure 5-5 : Input memory unit block diagram

 48

When the YCbCr data for thm row, thn column,)0:23(,nmYCbCr arrives at the IM

unit, it is bypassed to the last element of the 5x1 pixel column register at the outputs.
The remaining 4 pixels of pixel column registers are read from column n of the line

buffers. Finally the input pixel is written to one of the line buffers, selected by the
control unit. Line buffers are designed in the form of a circular buffer. thm row of the
image is written into line buffer)4(modm , therefore the 2 least significant bits of the

line counter can be decoded to serve as the write enable signal to the line buffers.
Since the order of rows at the line buffer are changing at every image row, the line
buffer outputs are switched to the appropriate column registers, with the multiplexer
logic controlled by the CU. In addition to 4 rows of luminance(Y) values, the
chrominance(CbCr) values must also be stored in line buffers to line align the
processed Y value and replicated CbCr values at the output. However 2 line buffers
are sufficient since the latency of the processed Y values will be equal to 2 lines + 5
columns + pipeline latency.

5.2.5 Feature Extraction Unit (FE)

FE unit operates at core clock frequency fclk_core defined at Eq.(5.10). Figure 5-6
shows the architecture of the feature extraction unit for resource sharing
value 1=rD . A fully parallel implementation where 1=rD , will use 15

adder/subtractors and 32 multipliers. Exponentiation with constant value, 0.75 is
performed using a look up table. For 1=rD , the core clock frequency of the FE unit

can be calculated from equation (5.10) to be equal to the input pixel clock frequency
which is 27.027 Mhz, for 480p to 720p conversion. Running the FE unit four times
the input pixel clock frequency, rD can be set to 4 to reduce the number of

adder/subtractors to 4 and the multipliers to 8, with an ignorable increase at the
number of pipeline registers. Figure 5-6 shows the architecture of the feature
extraction unit for 4=rD . Instead of computing each feature vector element in

parallel by inserting 8 pixels to the pipeline at every 27.027 Mhz clock, the vector
elements are computed in a serial parallel manner where two feature vector
elements are inserted into the pipeline at every 108 Mhz clock. The block will
generate 2 feature vector values at each 108 Mhz clock cycle, producing a
throughput of 8x1 feature vector per input pixel clock cycle. As long as the design
can be synthesized to work at faster clock frequencies, increasing the resource
sharing level reduces the total area, since the overhead introduced by such an
operation is only the increased number of pipeline stages, which is not a major issue
for an FPGA based design where usually the lookup tables are the critical resource.
The result of the FPGA synthesis for different resource sharing values is illustrated
in chapter 6.

 49

Figure 5-6 : Architecture of the feature extraction unit for 1=rD

The control signals are not illustrated in Figure 5-6 and Figure 5-7 for clarity of the
figures. For the fully parallel implementation in Figure 5-6, the control logic is
straightforward. Each register will require an enable signal, which can be generated
delaying the enable signal at the input of the design. For the serial-parallel
implementation in Figure 5-7 ,in addition to the enable signals, appropriate control
signals must be applied to the select inputs of the multiplexers, and synchronous
reset inputs of the accumulation registers.

 50

Figure 5-7 : Architecture of the feature extraction unit for 4=rD

 51

5.2.6 Classification Unit (CL)

CL unit operates at core clock frequency coreclkf _ . A fully parallel implementation

where 1=rD will use 75 adder/subtractors, and 80 multipliers. Setting 4=rD will

reduce the number of adders and multipliers to 20. Figure 5-8 shows the
architecture of the classification unit when 4=rD . An alternate implementation of

the classification unit can make use of the LUTs to implement the distance
computation part of the logic. The size of the required LUT can be given as

ocvk ***2 where k is the bit width of the feature vector element, v is the
dimension of the feature vector, c is the number of classes, and o is the output bit
width of the LUT output. For 5,8,9 === cvk and 13=o , the size of the LUT will

be approximately 265 Kbits.

Figure 5-8 : Architecture of the context classification unit for 4=rD

 52

5.2.7 Interpolation Unit (IN)

IN unit operates at core clock frequency coreclkf _ . Figure 5-9 shows the architecture

of the interpolation unit. For every pixel luminance value in the image the IN block
accepts the 5x5 window generated by the IM and CU, the class index from the CL,
vertical and horizontal phase of the high resolution pixels from the CU, and
generates 4 high resolution pixels using the selected interpolation filters.

XXXXP1 P23

5 X 9 WORDS

class_addr&vp&hp

+

Y_out(7:0)

Output
Pixel

Select

5x5 pixel
window

Control
signals

from CU

P24 P25

Figure 5-9 : Architecture of the interpolation unit

5.2.8 Output Memory Unit (OM)

OM unit also operates at core clock frequency coreclkf _ . It basically chooses the

appropriate pixels between the high resolution pixels generated by IN unit and
arranges them in raster-scan order according to the scaling ratio. There is a unique
mapping between low and high resolution image pixels for each scaling ratio. For
non-integer scaling ratios only a certain amount of high resolution pixels are used in

 53

output image. Eq. (4.4) shows the corresponding low resolution pixel for given high
resolution pixel.

For scaling ratios smaller than 2, output memory consists of 2 line buffers having the
size of high resolution image’s horizontal resolution. The line buffers are essential
as the two of four high resolution pixels generated from thm row ; thn column pixel
by IN unit belongs to the thm)2(line while the other two pixels belong to thm)12(+

line of high resolution image. These two latter pixels should be stored till all the high
resolution pixels prior to them in raster-scan mode are produced and sent to the
output.

In the case of scaling ratio 5.1=L , output memory unit chooses between high
resolution pixels produced from the low resolution pixel at coordinates),(nm in four

different ways depending on the values of m and n . Output memory unit operation

for scaling ratio of 1.5 is illustrated in Figure 5-10

m is even M is odd

n
is

 e
ve

n 2m
2n+1

2m+1
2n

2m+1
2n+1

2m+1
2n

n
is

 o
dd

2m+1
2n

2m+1
2n

Figure 5-10 : Output memory unit operation for 5.1=L

5.2.9 Asynchronous Buffers and DDR Frame Buffer

Output memory unit aims to order the interpolated pixel outputs in raster scan format,
which is the required format in an LCD panel input. For demonstration purposes, the
designed hardware does not directly drive the LCD panel, but it drives the video
processor inside the TV. In the case of driving an LCD panel directly, the vertical
and horizontal sync time of the output video can be modified to resolve the
asynchrony in line rates. However in the case of driving a video processor, the
design must output the video data in exactly the same timing illustrated at Figure 5-2.
Since the input and output pixel rates are different, there is an asynchrony in the
design. The output memory works at core clock frequency, coreclkf _ , which is

 54

different from the output resolution clock frequency, outclkf _ , hence there should be

an asynchronous buffer after the output memory unit. The buffer size needed can
be calculated examining the input and output relations at Figure 5-1 and Figure 5-2.
Since the input and output video have same frame refresh rates, it is easy to see
that the input and output are synchronized at each frame, hence a frame buffer may
guarantee to resolve the asynchrony. However, depending on the line rates of the
input and output video, a solution without a frame buffer would also be possible.

Vertical scaling ratio of the design is referred as verticalL .If the design can output

verticalL lines, at the time period where one input line arrives, the input and output

would be fully synchronized and there would be no need for buffering. In case this
condition is not met, the number of lines generated and written into the
asynchronous buffer at the time one output line is read from the buffer must be
computed to find the required buffer size. From the output video specifications, the
time, one output line is read from the output buffer will be

outclkoutline TxlineoutputperclocksT __) (= (5.13)

From the input video specifications, the time one input line arrives to the scaler will
be

inclkinline TxlineinputperclocksT __) (= (5.14)

At outlineT _ time interval, the number of interpolated output lines, which will be written

to the asynchronous buffer can be written as

vertical
inline

outline
wrlineasync xL

T
T

N
_

_
__ =

(5.15)

The number of output lines read from the asynchronous buffer at outlineT _ time

interval, is referred as rdlineasyncN __ and is equal to 1. For 480p to 720p video

resolution up-conversion, the number of interpolated output lines written to the
asynchronous buffer at outlineT _ time interval, which is referred as wrlineasyncN __ can

be computed using Eq. (5.13), Eq. (5.14), Eq. (5.15), Figure 5-1 and Figure 5-2.

 55

05.15.1

)45480()138720(
60/1)138720(

)30720()3701280(
60/1)3701280(

__ =

++
+

++
+

= x

x
x

x
x

N wrlineasync

(5.16)

Since at every output line, 1 line is read from the buffer, but 1.05 line is written to the
buffer, 0.05 lines must be stored. For 720p video output, the required buffer size will
be 720x0.05= 36 lines. In order to store 36 lines of output, the required memory size
will be 36x1280x24 = 1105920 bits. Since the internal line storage limit of the target
FPGA is 720Kbit, an external storage is required, and a DDR frame buffer was used.
Asynchronous buffers and DDR frame buffer controller design was not in the scope
of this study, and those design blocks were obtained from the development board
used for the project. Several modifications were made in the design to match the
read and write frequencies of the asynchronous buffers. Figure 5-11 illustrates the
frame buffer and asynchronous buffer structure used in the design.

Figure 5-11 : DDR frame buffer and asynchronous buffers

The MRS core generates interpolated output at 108 Mhz clock frequency. The
interpolated outputs are written into Fifo1 and are written to the DDR memory in

 56

bursts. DDR controller generates the DDR signaling for DDR write and read
operations. Ping pong architecture is used to read/write from the frame buffers.
When the nth frame is written to bank 1, (n-1)th frame is read from bank2. At the next
frame write operation, the ddr controller switches the banks, hence when nth frame is
read from bank 1, (n+1)th frame is written to bank2. FIFO 2 is an asynchronous FIFO
that inputs pixels from the DDR buffer at pixel clock frequency of 108 MHz and
outputs pixels at pixel clock frequency of 74.25 MHz.

 57

6. FUNCTIONAL VERIFICATION, FPGA MAPPING & REAL TIME TESTS

6.1 Functional Verification

6.1.1 Simulation Platform

The fixed point C model of the algorithm and the VHDL testbench is used to verify
the system prior to FPGA mapping. Figure 6-1 shows the structure of the functional
verification platform. Reference input and output stimuli files are generated by the
fixed point C model. Reference input stimuli file includes the RGB data for a
480x720 input image, and reference output stimuli file includes the RGB data for a
720x1280 output image which is up scaled using the MRS algorithm fixed point C
model. The testbench is written in VHDL. The aim of the testbench is not only to
test the datapath blocks but also to test whether the control unit correctly generates
the control signals, namely the horizontal and vertical sync signals and the data
enable signal in the desired format at the standards.

To test the functionality of the timing signals generated by the MRS_TOP module

• the hsync-vsync generator block generates the hsync-vsync-data_en signals
for 480p standard, the input stimuli is read from the text files, and applied to
the MRS_TOP module using these control signals.

• Output reference file is read using the hsync-vsync-data_en signals for 720p
standard generated by MRS_TOP module. The testbench checks whether
the control signals generated by the MRS_TOP module accurately matches
the timing defined for 720p standard

To test the data path,

• The testbench compares each MRS_TOP output pixel with the
corresponding pixel of the reference output file.

• The testbench writes each valid RGB output into an output file for visual
inspection. The output text file is converted to a bitmap image using a basic
matlab script, and the up scaled image is compared with the corresponding
image generated by the fixed point C model.

The simulations are run using the Modelsim simulator, on pre-synthesis register
transfer level VHDL code. Post place&route simulations are not performed, since it

 58

takes huge amount of computation time both to generate and simulate the post
place & route model, due to the size of the design. Static timing analysis is
performed instead to assure correct behavior after FPGA mapping. Since the
mapped design is tested on real time, the lack of computational power for post place
& route simulations does not introduce a major problem.

Figure 6-1 : Functional verification platform

6.1.2 Simulation Results

Using the platform described in section 6.1.1, the simulations are run for 5 video
frames. 5 input video frames (5 x 480 x 720 = 1.728.000 samples) are first
processed by the fixed point C model to generate the 5 reference output stimuli files
(5x720x1280 = 4608000 samples).

 Figure 6-2 and Figure 6-3 shows a 200x200 portion of the input bitmap image of
480x720 resolution and a 300x300 portion of the output image of 720x1280
resolution generated by functional simulations.

 59

Figure 6-2 : 200x200 portion of the input image

Figure 6-3 : 300x300 portion of the scaled output image

In addition to verifying the outputs of the MRS top level module, simulation
waveforms are examined in depth for a limited number of samples. To examine the
simulation waveforms, random samples are chosen from the output image, and all
the intermediate signal values are dumped into a text file from the fixed point c
model, to serve as a reference. In the simulation waveform, the fixed point model
references are compared with the signal values at the waveform.

6.2 FPGA Mapping

6.2.1 FPGA Mapping Methodology

In section 5.1, the input and output pixel rates are declared to be 27.027 MHz and
74.25 MHz respectively. Using Eq. (5.10), core clock frequency can be set to 27
MHz, 54 MHz, 108 MHz or 216 MHz, for rD values 1,2,4,8 respectively. For the

 60

target FPGA family (spartan3), running the modules at 216 MHz is above the
practical limits. After extensive synthesis efforts, it is found that internal clock
frequency of 108 MHz is an achievable target. Therefore rD is set to 4 to obtain the

maximum resource sharing possible for the target device. Running the internal
blocks at 108 MHz requires several efforts on the mapping flow. The required timing
is at the limits of the FPGA’s performance, therefore several modifications were
performed on the RTL code to meet the over constrained goals.

Logic synthesis is performed using Synplify Pro 8.5, and Place & Route operation is
performed using Xilinx ISE 8.1 platform.

6.2.2 FPGA Mapping Results

Design had been mapped to Xilinx XC3S2000 FPGA, for rD values of 2 and 4. To

optimize the area, several trial synthesis efforts were performed using different
FPGA resources in several blocks. One major architectural decision is to synthesize
the classification stage using multipliers or look up tables. Classification step
includes 80 multiplications, and as mentioned in section 5.2.6, the multiplication
operations can be performed using a lookup table of size 265 Kbits. The choice of
whether to use LUTs or multipliers depends on the rD value and the availability of
the logic resources as well. For higher rD values, the number of multipliers to
realize the operation will be reduced by a factor of rD however the size of the LUT

will not change if the implementation is realized using LUTs. Therefore it would be
meaningful to use multipliers instead of LUTs for higher rD values. Another

important issue that can affect the implementation result is to choose between
block/logic multipliers on any multiplication operation and to choose between
block/distributed RAMs in storage elements. As a rule of thumb, the logic
synthesizer uses logic multipliers for multiplications that have relatively small
operand size, and uses block multipliers for multiplications that have relatively large
operand size. The decision criterion is similar for RAM implementation. The
synhtesis tool infers block rams for large storage, and distributed RAM for smaller
storage. In this study, for particular cases where the timing could not be met, the
synthesis tool was forced to infer the desired FPGA resource by the user using
several synthesis constraints. The result of the FPGA mapping is listed in Table 6-1.
The FE,CL,CU and IN units are referred as core modules in the table.

 61

Table 6-1 : FPGA mapping results for rD values 2, and 4

 CL stage with BRAMs CL stage with multipliers

 Dr=2 Dr=4 Dr=2 Dr=4

Slices 6402 2360 9502 3198

BMULTs 40 34 40 40

co
re

BRAMs 16 16 0 0

Slices 8412 3533 10551 4623

BMULTs 40 34 40 40

to
ta

l

BRAMs 30 30 14 14

The results in Table 6-1 show that when the degree of resource sharing is increased
by a factor of 2, the slice count is approximately reduced by a factor of 2. Optimum
value of rD for the particular video scaling problem (480p to 720p) and for the

particular target FPGA platform(Xilinx XC3S2000) is found to be 4 after synthesis
efforts.

The performance results and timing constraints of the implementation is illustrated in
Table 6-2. The latency figures of the design is also illustrated in the table, however
the latency of the design is not of any concern since the human eye can not notice
such short time intervals. 2x1280 is the latency introduced from storing 2 lines,
which is required to start processing. Additional clock cycles are the pipeline latency.

Table 6-2 : Performance results of the implementation

 Dr=2 Dr=4

Clock Frequency(MHz) 54 108

Latency(clock cycles) 2*1280+21 2*1280+37

Throughput(MPixels/second) 74.25 74.25

Frame Processing Time(ms) 1.6 1.6

 62

The results obtained for 4=rD is compared with several work on literature. To the

author’s best knowledge, a hardware implementation for a classification based
resolution enhancement method has not been presented previously. Proposed
method is therefore compared with several FPGA implementations presented on
simpler linear scaling methods. In [29] a run time configurable, spline interpolation
system is implemented in a Xilinx XC4000 FPGA and for a 522x128 output image
an execution time of 35.5 ms is reported. In [30] bicubic interpolation is
implemented in Xilinx VirtexII-Pro FPGA, and for a 640x480 output image an
execution time of 3.5 ms is reported. In [31] adaptive Newton interpolation is
implemented in FPGA and it is verified on an LCD panel with output resolution of
1024x768. In [32] a video scaler with output video of 1024x768 @30fps was
presented. Results obtained from the previous work and the results obtained from
this work are given in Table 6-3. It must be noted that the results in the table are
given for a general idea on the proposed method’s complexity, and not to compare
scaling methods with the proposed resolution enhancement method, since the
approaches followed(linear scaling vs. content adaptive scaling), target FPGA
platforms and target application(input and output resolutions) are entirely different.

Table 6-3 : Comparison of the implementation with previous work

 Image Size Exec. time Freq FPGA Slices Block

RAMs

[29] 522x128 35ms 30 Mhz Xc 4000 na Na

[30] 640x480 3.5ms 100

Mhz

Virtex2

pro

~1700 56KB

[31] 1024x780 na na na na Na

[32] 1024x780 na 28 Mhz XCV 2600 ~7500 30KB

This

work

1280x720 1.6ms 108

Mhz

XC3S

2000

3533 60KB

 63

6.3 Real Time Tests

The design had been mapped to a Xilinx XC3s2000 FPGA and is tested on real time,
for a 480p to 720p standards conversion application. Real time test platform and test
results are explained in detail in the following sections.

6.3.1 Real Time Test Platform

In order to verify the implementation and evaluate the performance of the algorithm,
the design was integrated into a flat panel display product in Vestel R&D Labs.
Figure 6-4 illustrates the platform that was set to test the implementation.

Real time test platform is composed of a DVD player, a 40 inch LCD TV with native
resolution of 1366x768, and the Tora TB3S2000 development board. DVD player is
set up to output 480p NTSC video standard. DVDs are encoded with minimum
compression rate possible to prevent any ringing, or blocking artifacts that can be
caused by mpeg compression. DVD player outputs are bypassed to the FPGA via
the DVI interface. HDMI receiver and transmitter modules inside the development
board make the necessary voltage conversion for HDMI standard. The inputs to the
FPGA are the RGB data and synchronization signals (hsync, vsync, and data
enable). The FPGA receives the input video signal at 480p(480x720 @60 Hz),
scales the signal by a factor of 1.5 to obtain video at 720x1080 resolution, inserts
black pixels to the leftmost and rightmost 100 pixel columns to obtain 720x1280
video, generates the hsync, vsync and data enable signals for 720p(720x1280@60
Hz) and outputs the video through the DVI output interface of the TB3S board. In
order to evaluate the performance of the designed scaler, TV’s scaling function
must be bypassed. TV software is modified to bypass any data when the input
source is detected to be 720p. Therefore the TV does not try to scale up the
720x1280 input video (that was generated by the FPGA) into its native resolution
(1366x768) but instead it inserts black regions for the missing pixels.

6.3.2 Test Results

Once the platform was set up, two LCD TVs were put side by side to compare the
scaling performance of the scaler in this study, and the TV’s scaler inside the video
processor. Since there is no objective evaluation method for the algorithm’s
performance on TV platform, the algorithms were compared subjectively with “Vestel
Video Quality Group’s” comments. The implemented design was found to perform
much better on preserving details of the image , while the bicubic scaling based
method on the TV’s video processor had a more blurry output. Training of the filter

 64

coefficients were performed for several different training sets to obtain the filter
coefficients with optimum performance.

 65

DVD Player

DVI
interface

Dvi out

Dvi in

Dvi out

40 INCH LCD TV
(SW modified to bypass scaler at

720p)

Hdmi in

DVI
interface

Xilinx XC3S2000 fpga

DDR Memory

Configuration
memory
PROM

Tora TB3S Evaluation
Board

Figure 6-4 : Real time test platform

 66

7. CONCLUSION AND FUTURE WORK

7.1 Concluding Remarks

In this thesis, an area efficient, resource shared, pipelined architecture was
proposed for a training based content adaptive video resolution up conversion
algorithm. Floating point C model of the modified RS algorithm in [1] was converted
to its fixed point model, considering the target FPGAs area constraints and the
algorithm’s performance. A resource shared architecture was proposed by running
the classification, feature extraction and interpolation stages, four times the input
pixel clock. The multipliers and adders in the FE, CL and IN units were shared to
reduce the area. The proposed architecture was written in RTL level VHDL and
verified with functional simulations prior to logic synthesis. Verified design was
mapped to FPGA after several synthesis efforts, and several modifications on the
pipeline stages to meet the tight timing constraints imposed by the real time nature
of the video processing application. The design was mapped to a low cost FPGA
and the mapped design was tested on a TV platform bypassing the scaler of the TV
for the particular test resolutions. The performance of the algorithm was
satisfactorily better than an industry standard, bicubic based scaler. To the author’s
best knowledge, there exists no hardware architecture for any of the advanced
content adaptive resolution up-conversion algorithms listed in [3]. This study
demonstrates that better visual quality can be obtained using an advanced scaling
method, at a low cost FPGA. The design in this study was funded by Vestel, Vestek
R&D, and the results of the study were demonstrated in IFA 2006 Consumer
Electronics fair. Results of this work is accepted for publication in “Proceedings of
the IEEE 2007 Workshop on Signal Processing Systems(SIPS 2007)”.

7.2 Future Work

Scaler can be referred as the heart of the video processor inside a display unit. The
difficulty of the scaler design is due to the necessity of performing a complex
interpolation algorithm for better video quality and the necessity to support multiple
input and output resolutions. In this study, the interpolation algorithm’s complexity
was the key issue in the implementation, and the main concern was the algorithm’s
core rather than its interface. The resolution conversion designed in this study
supports several scaling ratios ranging from 1 to 2, but does not support resolution
up conversion for scaling ratios greater than 2. Furthermore, even if the scaling ratio
is ranging from 1 to 2, several modifications need to be performed in order to
support different standards at runtime. One other point that was not discussed on

 67

this study was video down-conversion. Although not so common, sometimes the
display unit may have to downscale the image instead of up scaling. The future work
of this study includes solving the issues mentioned in order to produce an industrial
video scaler chipset, from the proposed architecture.

 68

REFERENCES

[1] Akgun, T., Altunbaşak, Y., and Arici, T., 2006. Method and apparatus for
enhancing the resolution of a digital image, European Patent, No:
06251104.3, dated March 2006.

[2] Smith, S.W., 1999. The Scientist and Engineer's Guide to Digital Signal
Processing, California Technical Publishing, San Diego.

[3] Zhao, M., 2006. Video enhancement using content adaptive least mean square
filters, Phd Thesis, Eindhoven University of Technology, Eindhoven.

[4] Oppenheim, A.V., Schafer, R.V., and Buck, J.R., 1999. Discrete Time Signal
Processing, Prentice Hall, New Jersey.

[5] Jahne, B., 1997. Digital Image Processing, Concepts, Algorithms, and Scientific
Applications, Springer-Verlag, New Jersey.

[6] Lehmann, T.M., Gönner, C., and Spitzer, K., 1999. Survey : Interpolation
methods in medical image processing, IEEE Transactions on Medical
Imaging, 18, 1049-1075.

[7] Keys, R.G., 1981. Cubic convolution interpolation for digital image processing,
IEEE Transactions on Acoustics Speech, Signal Processing, 29, 1153-1160.

[8] Meijering, E., 2003. A note on cubic convolution interpolation, IEEE
Transactions on Image Processing, 12, 477-479.

[9] Mitchell, D.P. and Netravali, A.N. 1988. Reconstruction filters in computer
graphics, Proceedings of the International Conference on Computer
Graphics and Interactive Techniques, 22, pp. 221-228.

[10] Unser, M., 1999. Splines: a perfect fit for signal and image processing, IEEE
Signal Processing Magazine, 16, 22-38.

[11] Maelend, E., 1988. On the comparison of interpolation methods, IEEE
Transactions on Medical Imaging, 7, 213-217.

[12] Th`evenaz, P., Blu, T., and Unser, M., 2000. Image interpolation and
resampling, in Handbook of Medical Imaging, Processing and Analysis, pp.
393-420, Academic Press, San Diego CA.

[13] Th`evenaz, P., Blu, T., and Unser, M., 2000. Interpolation revisited, IEEE
Transactions on Medical Imaging, 19, 739-758.

[14] Li, X. and Orchard, M.T., 2001. New edge-directed interpolation, IEEE
Transactions on Image Processing, 10, 1521-1527.

[15] Ratakonda, K. and Ahuja, N. 1998. POCS based adaptive image
magnification, Proceedings of the IEEE International Conference on Image
Processing 3, pp. 203-207.

[16] Greenspan, H., Anderson, C.H., and Akber, S., 2000. Image enhancement by
nonlinear extrapolation in frequency space, IEEE Transactions on Image
Processing, 9, 1035-1048.

 69

[17] Kondo, T., Fujiwara, T., Okumura, Y., and Node, Y., 2001. Picture conversion
apparatus, picture conversion method, learning apparatus and learning
method, US-patent, dated November 27, 2001.

[18] Atkins, C.B., Bouman, C.A., and Allebach, J.P. 2001. Optimal image scaling
using pixel classification, Proceedings of the IEEE International Conference
on Image Processing, 3, pp. 864-867.

[19] Plaziac, N., 1999. Image interpolation using neural networks, IEEE
Transactions on Image Processing, 8, 1647-1651.

[20] Go, J., Sohn, K., and Lee, C., 2000. Interpolation using neural networks for
digital still cameras, IEEE Transactions on Consumer Electronics, 46, 610-
616.

[21] Carotenuto, R., Pappalardo, M., and Sabbi, G., 2002. Spatial resolution
enhancement of ultrasound images using neural networks, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 49,
1039-1049.

[22] Tegenbosch, P. and Hofman, M.B. 2004. Improving nonlinear up-scaling by
adapting to the local edge orientation, Proceedings of the SPIE Visual
Communications and Image Processing.

[23] Morse, B.S. and Schwartzwals, D. 2001. Image magnification using level-set
reconstruction, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1, pp. 333-340.

[24] Kondo, T. and Kawaguchi, K., 1995. Adaptive dynamic range encoding
method and apparatus, US-patent, dated August 22,1995.

[25] Freeman, W., Jones, T., and Pasztor, E., 2002. Example-based super-
resolution, IEEE Computer Graphics and Applications, 22, 56-65.

[26] Moon, T.K., 1996. The expectation-maximization algorithm, IEEE Signal
Processing Magazine, 13, 47-60.

[27] Bellers, E.B. and Caussyn, J. 2003. A high definition experience from
standard definition video, Proceedings of the SPIE, 5022, pp. 594-603.

[28] EIA/CEA-861B, 2002. A DTV Profile for Uncompressed High Speed Digital
Interfaces, Electronic Industries Alliance Technology Strategy & Standards
Department.

[29] Hudson, R.D., Lehn, D.I., and Athanas, P.M. 1998. A run time reconfigurable
engine for image interpolation, Proceedings of the IEEE Symposium on
FPGAs for Custom Configurable Computing Machines, Napa, California.

[30] Aurelio, M., Maganda, N., and Arias-Estrada, M.O. 2005. Real time fpga-
based architecture for bicubic interpolation : An application for digital image
processing IEEE International Conference on Reconfigurable Computing and
FPGAs(ReConfig'05).

[31] Xiao, J., Zou, X., Liu, Z., and Guo, X. 2006. Adaptive interpolation algorithm
for real time image resizing, Proceedings of the International Conference on
Innovative Computing Information and Control, 2, pp. 221-224.

[32] Ramachandran, S. and Srinivasan, S. 2003. Design and FPGA
implementation of a video scalar with on-chip reduced memory utilization,
Euromicro Symposium on Digital Systems Design, pp. p206.

 70

BIOGRAPHY
Muzaffer Barış Uyar was born in Alanya, TURKEY in 1979. He graduated from
Alanya Anatolian High School in 1997. In 2002, he received B.Sc. degree in
Electronics and Communication Engineering from Istanbul Technical University.He
started an M.Sc programme in Computer Science in Istanbul Technical University,
Informatics Institute in 2003. He had worked in ST Microelectronics Istanbul Design
Center during 2003-2005 and has been working as a design engineer at Vestek
Electronic R&D Center since 2006. His research interests are in the field of digital
VLSI design, energy efficient processor design and IC design for video processing.

