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Nomenclature 

q   Manipulator configuraion vector. (Joint positions) 

( )J q   Manipulator Jacobian matrix. 

q   l2-norm (euclidian norm) of vector q . 

U   A unitary matrix. 

D   A diagonal matrix. 

T   A triangular matrix. 

*
A   Complex-conjugate transpose (hermitian) of matrix A . 


A   Generalized Moore-Penrose inverse (pseudo-inverse) of matrix A . 

T
A   Transpose of matrix A . 

, ,U V  Orthogonal, diagonal, orthogonal matrices for SVD. 

m   Row count of the related matrix. 

n   Column count of the related matrix. 

i   i-th eigenvalue of the related matrix. 

i   i-th singular value of the related matrix. 

jv   j-th vertex of a polytope. 

iu   i-th column vector for matrix U . 

S   Eigen-vector matrix of EVD. 

Λ   Eigen-value matrix of EVD. 

P   Projection matrix. 

( )R A   Range of matrix A . 

iω   Angular velocity vector of origin of i-th joint. 

iv   Linear velocity vector of origin of i-th joint. 

iV   Spatial velocity vector of origin of i-th joint. 

1,j jl   link vector for manipulator link between joints j-1 and j. 
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FAZLALIK EKSENLİ ROBOT KOLLARDA HAREKETLİLİK 

ÖLÇÜTLERİ: ELİPSOİD VE POLİTOP 

 

ÖZET 

 

Bu çalışmada hareketlilik elipsoidi, SVD, genel matris tersi ve hareketlilik politopu 

yöntemleri matematiksel açıdan detaylı olarak incelenmiştir. Fazlalık eksenli 

robotlarda iş ayrıştırma metodu işlenmiş ve her iki hareketlilik yöntemi kullanılarak 

fazlalık eksenli ve normal robot kollar için görsel ve sayısal sonuçlar elde edilmiş ve 

kıyaslanmıştır. 



 vii 

A STUDY ON KINEMATIC MANIPULABILITY MEASURES FOR 

REDUNDANT ARMS: ELLIPSOIDS AND POLYTOPES 

 

ABSTRACT 

This text describes the theory behind manipulability ellipsoids, singular value 

decomposition, pseudo-inverse and manipulability polytopes in mathematical aspect. 

Examines task decomposition approach for redundant control and compares results 

obtained from both manipulability measures on three types of robots covering 

ordinary and redundant manipulators. 
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1. Introduction 

Manipulability ellipsoids, introduced by Yoshigawa [1], has been used to analyze 

manipulator dexterioty by many researchers, while manipulability polytopes input a 

more applicable joint space constraint and results a wider solution set when 

compared to ellipsoids. 

This text describes both methods in mathematical aspect. Singular value 

decomposition method used in computation of ellipsoid geometry is covered with its 

proof, geometrical interpretation and relation with eigen-value decomposition.  

Both methods are applied on a real world case and a comparative examination of 

results for both are included as a conclusion. 

First chapter covers task decomposition approach for the control of redundant 

manipulators and describes two types of solution for the additional tasks to perform 

when redundancy exists for initial joint configuration. 

Second chapter focuses on how to evaluate manipulability for any type of 

manipulator and describes two major methods, manipulability ellipsoid and 

manipulability polytope. 

Third chapter describes the forward kinematics computations for robots and applies 

the manipulability measure for a two link planar and, a Puma-560 type robot and to a  

Mitsubishi PA10 manipulator. 

Finally, as a conclusion the numerical results from both approaches are compared. 
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2. Control of Redundant Manipulators. 

If the degree of freedom of a manipulator is higher than the count necessary for the 

task it will perform, then it’s possible to simultaneously override the target task with 

additional jobs and the manipulator is said to have redundancy. 

Redundancy lets more complicated tasks to be performed such as obstacle avoidance, 

reaching behind objects, tracing trajectories require penetration with limited 

deviations in grip orientation which might not be possible without it. Additionally it 

enhances manipulator’s workspace by widening mechanical limitations and assists in 

improving the balance  in distribution of load on individual joints. 

Though the additional possibilities that redundancy supply, it’s optimal to select a 

non-redundant manipulator unless its advantages are utilized. This is because 

redundancy is expensive in computation, mechanical complexity, weight and cost 

when compared to non-redundant manipulation. 

 

2.1. Task Decomposition 

An approach to utilize capabilities supported by redundant axii of the manipulator is 

decomposing a task into subtasks with different priorities and perform the less prior 

subtask only if degree of freedom is left. For example controlling the tip position and 

tip orientation, avoiding from obstacles can be different subtasks. Tip position and 

obstacle avoidance subtasks might be critical and so with high priority, while 

orientation control is less important and with a lower priority, so orientation control 

will be implemented only if degree of freedom remains after position and obstacle 

avoidance control. It’s also possible to have priorities dynamic as importance of 

subtasks might vary. 
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Check if redundancy left

Solve coefficient vector 

to perform the subtask

Sort Tasks by priority

[All subtasks processed]

[Yes]

[No]

 

Figure 2.1: Composing a task by merging subtasks 

 

We will formulate subtasks in two forms. In first form, subtasks defines a desired 

trajectory. In second form, subtask defines a criterion function which we desire to 

maximize. Latter is used when the desired trajectory is unknown while its evaluation 

is definable; for example joint limit and singularity avoidance. For the sake of 

simplicity, in this text we will limit the explanation by a task with two subtasks, 

whose prior subtask is in first form. 

Let  1, ,
T

nq qq K  denote the configuration of a manipulator with n  degrees of 

freedom, 1m -dimensional vector 1 1( )y f q  to describe the first subtask and 1 ( )d ty  to 

describe the desired trajectory. By definition, a vector which is suitable for 

describing a manipulation task is called a manipulation vector. 

Differentiating first subtask gives 

1 1( )y J q q&&                      (0.1) 

where 1J  is the Jacobian matrix of 1y  with respect to q . For the desired trajectory of 

the first subtask the general solution of q& is  

1 1 1 1 1( )d

   q J y I J J k& &                    (0.2) 
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where 1k  is and arbitrary n -dimensional vector. Formulation of the null-space of a 

matrix is described in section 3.1.4 and the general solution for a set of simultaneous 

equations is described in section 3.1.5. 

The first term of the right hand side of the equation gives the joint velocities to 

perform the desired trajectory. If multiple solutions for q& exists this term gives the 

solution with the minimum euclidian norm. If no solution exists, this term minimizes 

1 1d y J q& which can be counted as the best approximation to the desired trajectory. 

The second term gives the redundancy left after performing the first subtask. 

For first case we examine a second task given by desired trajectory 2dy . We will 

solve 1k  so that (0.2) realizes 2dy  with minimum euclidian norm of error. 

2 2y J q&&                     (0.3) 

If we rearrange (0.2) and (0.3) in form 1A Bk& &  to obtain the general solution of 1k  

2 2 1 1 2 1 1 1( )d d

   y J J y J I J J k                   (0.4) 

Let 2 2 1 1( ) J J I J J  for simplicity, then the general solution of 1k  is 

1 2 2 2 1 1 2 2 2( ) ( )d d

     k J y J J y I J J k& &                  (0.5) 

1 1( )I J J  is symmetric and idempotent so 1 2 2 2( ) I J J J J  holds. The desired 

joint velocity is 

1 1 2 2 2 1 1 1 1 2 2 2( ) ( )d d d d

         q J y J y J J y I J J J J k& & & &                (0.6) 

If the factor of 2k  is non-zero then there’s still some redundancy left and we can 

solve 2k  so that dq&  performs additional tasks. 

If second subtask is formulated in second form, the we will solve teh coefficients to 

maximize the criterion function. [7] is an approach for determination of 1k . 

1 pkk ξ                      (0.7) 

Where pk  is a positive constant and  1, n ξ K  and, 

( )
i

i

V







q

q
                     (0.8) 
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The desired joint velocity, dq&  is given by, 

1 1 1 1( )d d pk   q J y I J J ξ& &                    (0.9) 

Hence 

1 1 1 1( )T T

d pk  p ξ J y x I J J ξ& &                 (0.10) 

The second term on the right hand side is always non-negative since 
1 1( )I J J  is 

non-negative definite, causing the value of p to increase quickly under the condition 

that dq&  doesn’t become excessively large. [1,7] 
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3. Kinematic Manipulability Measures 

3.1. Manipulability Ellipsoid 

Manipulability ellipsoid is an approach to quantitatively evaluate the ease of 

arbitrarily changing the position and orientation of the end effector of the tip of the 

manipulator. If joint velocities are applied with the constraint to have an euclidian 

norm less than 1 then the transformed output in task space is geometrically an 

ellipsoid. This is shown and proven in section 2.1.1. The orientation and the radii of 

the volume bounded by the ellipsoid shows end-effector velocities (in task space) 

realizable by the manipulator.  

If we denote the joint variables of a manipulator with n  degrees of freedom by an n  

dimensional vector, q  and an m  dimensional vector 1[ , , ]T

mr rr K  to describe the 

position and/or orientation of the end-effector, then the kinematic relation between q  

and r  is assumed to be: 

Equation Section (Next) 

( ) rr f q                     (1.1) 

we differentiate and get 

( )v J q q&                     (1.2) 

Where ( )J q  is the jacobian matrix. Now we consider the set of all end-effector 

velocities v  which are realizable by joint velocities such that the euclidian norm of 

q&, 

1/ 2

2

1

1
n

i

i

 
  
 
q q&                     (1.3) 

This set is an ellipsoid in m  dimensional euclidian space. Since this ellipsoid 

represents the ability of manipulation, it is called the manipulability ellipsoid. 

 

J ( ) ( J ( ) J( ))   q q q I q q k& &                   (1.4) 

§ ¨
2 Tq q q&                      (1.5) 
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every point in the ellipsoid holds § ¨ 1q& .  [1] 

In his study Yoshikawa [1] shows that the direction of the principal axis of the 

manipulability ellipsoid is iu , and the radius in that direction is i  where subscript i 

denotes the dimension index and iu  is the i-th column vector of matrix U  and i  is 

the i-th singular value in SVD form representation of manipulator jacobean. Figure 

below illustrates this property. 

  

 

Figure 3.1: Manipulability ellipsoid of an arbitrary manipulator. 

 

3.1.1. Singular Value Decomposition 

For sets of equations that are either singular or else numerically very close to 

singularity where Gaussian elimination and LU decomposition fail, Singular Value 

Decomposition will diagnose the problem and in some cases it will also solve it, in 

the sense of giving a useful numerical answer. [5] 

This subsection describes the singular value decomposition theorem and its proof [2], 

its relation with eigen-value decomposition theorem and geometrical interpretation 

[3]. 

SVD methods are based on the following theorem of linear algebra:  

Let A  be a real m n  matrix. Then there exist orthogonal matrices U  and V  such 

that 

1 1 u  

2 2 u  
n n u  
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1 0

0 0

T  
  
 

Σ
U AV Σ                    (1.6) 

Where 1Σ  is a nonsingular diagonal matrix. The diagonal entries of Σ  are all 

nonnegative and can be arranged in nonincreasing order. Then number of nonzero 

diagonal entries of Σ  equals the rank of A . [2] 

 

The geometrical interpretation of singular value decomposition shown by Strang [3] 

is represented in figure below. 

 

 

Figure 3.2: Geometrical representation of the singular value decomposition. U and 

V  are rotations and reflections, Σ  is a stretching matrix. [3] 

 

To compute U , Σ  and V  matrices of SVD, we will use EVD described in section 

3.1.2. 

TA UΣV                      (1.7) 

T T T T

T T





AA UΣV VΣ U

UΣΣ U
                   (1.8)

T T T T

T T





A A VΣ U UΣV

VΣ ΣV
                   (1.9) 

V  

T
V  Σ  U  

2v  

1v  

j  

i  

2σ j  

1σ i  

2 2σ u  

1 1σ u  

A  
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Then from (1.32), matrix U  is the eigen-vector matrix of T
AA , matrix V  is the 

eigen-vector matrix of T
A A  and finally matrix Σ  is the diagonal matrix containing 

the square root of eigen-values of T
AA  or T

A A  as both are equal. 

 

Before the proof of the SVD theorem we need to prove the theorem below: 

Theorem 2.1: Let A  be a Hermitian matrix. Then, 

1. There exists a unitary matrix U such that 

* U AU D                   (1.10) 

is a diagonal matrix. 

2. The eigenvalues of A  are real. 

3. The eigenvectors of A  may be chosen to be orthonormal. 

 

Proof of 1: By the schur triangularization theorem we have 

* U AU T                    (1.11) 

where T  is triangular. We now show that T  is diagonal. We have 

* * *( ) U AU T                   (1.12) 

* * *U A U T                   (1.13) 

* *U AU T  (since * A A )               (1.14) 

*T T                    (1.15) 

This shows that T  is Hermitian. Because T  is triangular and Hermitian, it must be a 

diagonal matrix. 

 

Proof of 2 : Because the eigenvalues of A  are the diagonal entries of T and  the 

diagonal entries of a Hermitian matrix must be real, it follows that the eigenvalues of 

A  are  real. 

Remark: Note that if A  is real, then * A A  implies that A  is symmetric ( T A A ). 

The eigen-values of a real symmetric matrix are also real. 

 

Proof of 3 :  Denote the columns of U  by 1u  thorugh nu , Then from 

* U AU D                   (1.16) 

AU UD                   (1.17) 

1 2 1 2 1 2( , , , ) ( , , , ) ( , , , )n n ndiag d d d A u u u u u uK K K             (1.18) 
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we see that iu  is an eigenvector of A  corresponding to the eigenvalue id . Since U  

is unitary, the eigenvectors 1 2, , , nu u uK  are orthonormal. 

 

Let A  be real and symmetric, then, because  its eigenvalues are real and 

eigenvectors can be chosen to be real, the unitary matrix U  in Theorem 2.1 can be 

orthogonal. 

 

If A is a real symmetric matrix, then there is an orthogonal matrix U such the 

T U AU D , where D is diagonal. [2] 

 

Proof of SVD Theorem : 

Consider the matrix T
A A . It is an n n  symmetric positive semidefinite matrix; 

therefore its eigenvalues are nonnegative. Denote the eigenvalues of T
A A  by 

2 2 2

1 1 1 1 1 1, , ,       K . Assume that these have been ordered such that 

1 2 0r     K , and 1 2 0r r n      K  

 

Above we have proved that a symmetric matrix has a set of orthonormal 

eigenvectors. Denote the set of orthonormal eigenvectors of T
A A  corresponding to 

1  through n  by 1, , nv vK : that is, 1v  through nv  are orthonormal and satisfy 

2T

i i iA Av v , 1, ,i n K                (1.19) 

2 0T T

i i i v A Av ,  1, ,i r K                (1.20) 

0T T

i j v A Av , 1, , ;i r j i K               (1.21) 

1 1( , , )rV v vK                   (1.22) 

2 1( , , )r nV v vK                  (1.23) 

where 1v  through rv  are the eigenvectors associated with the nonzero eigenvalues 

1  through r  and 1, ,r nv vK  correspond to the zero eigenvalues. Then 

   2 2 2 1 2, , 0,0, ,0 0T T T T

r n  V A AV V A A v v VK K             (1.24) 

This implies that 2 0AV , or 

0k Av , 1, 2, ,k r r n   K                (1.25) 

Define now a set of nonzero vectors  iu  by 
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1
i i

i
u Av , 1, ,i r K                 (1.26) 

The iu ’s  1, ,i r K , then form an orthonormal set, because 

 

1 1
( ) ( )

1

0 when

1 when

T T

i j i j

i j

T T

i j

i j

i j

i j

 

 






 



u u Av Av

v A Av                 (1.27) 

Define  1 1, , rU u uK , and choose  2 1, ,r rU u uK  such that  1 2,U U U  is 

orthogonal. Then, for any k r , we have 

0T T

k i i k i u Av u u , 1, ,i r K   (Note that by (1.26), i i iAv u ) 

(by orthogonality of the vectors of U ), and 

0T

k i u Av ,  1, ,i r n  K                 (1.28) 

by (1.25). 

Let  1 2,V V V , then 

   

1

1

1

11

2

1 1

1

1

1

2

1

1

2

2

2 1

2

1

1

, , , ,
1

1
0

1

0

0 0

1

0 0

T T

T T

T

T

T

n n
T T

T

m
T

r

T

m

r

r


















 
 
 
 
 

   
 

 
    
   
    
   

 
 
 
 
 

 
 

 
 

 
         

 
 
 
 
 

v A

v A
u

u
U AV A v v A v v

v A
u

u

u

Σ
Σ

M
K K

M

M

O

                     (1.29) 

where 1 1( , , )rdiag  Σ K  
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The statement about the rank is obvious, ( ) ( ) ( )Trank rank rank r  A UΣV Σ . 

The decomposition TA UΣV  is known as the singular value decomposition (SVD) 

of A . 

The diagonal entries of the matrix Σ  are called the singular values of A . The 

numbers 1 2, , , r  K  are the positive singular values of A . 

The columns of U  are called left singular vectors and those of V are called right 

singular vectors. [2] 

 

Uniqueness of the Singular Value Decomposition 

There are min( , )k m n  singular values of A . Let r  be the rank of A . Then there 

are r  positive singular values. These are the positive square roots of the nonzero 

eigen-values o T
A A  (of T

AA ). The remaining ( )k r , if r k , singular values are 

zero. Thus, the singular values are unique. However, the singular vectors are not 

unique. For example, if A  has a multiple singular value 0  , then the 

corresponding columns of the matrix V  can be chosen as any orthonormal basis of 

the space spanned by the eigenvectors associated with the multiple eigenvalue 

2   of TA A . [2] 

3.1.2. Diagonalization of a matrix 

Let S  be a matrix whose columns are the n  linearly independent eigenvectors of a 

matrix n nR A  and let   be eigenvalue matrix of A  with  

of ,if

0, if

i

ij

i j

i j

 
 



A
Λ                  (1.30) 

   

 

1 1 1

1

1

, , , ,

0

, ,

0

n n n

n

n

 





 

 
 

 
 
  

AS A x x x x

x x SΛ

K K

K O
               (1.31) 

1A SΛS                   (1.32) 

[3] 
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3.1.3. Pseudo-inverse. 

In robotics, inverting singular and/or non-square matrices is necessary in cases like 

identification of manipulator dynamics and control of redundant manipulators. That’s 

why a more general inversion named pseudoinverse is employed in these cases.  [1] 

 

Let 
A  denote the generalized inverse of A , if 

 AA A A                    (1.33) 

then A  is said to be a generalized inverse of A . If a generalized inverse also 

satisfies 

  A AA A                   (1.34) 

then 
A  is a reflexive generalized inverse. A reflexive generalized inverse with  

*( ) A A A A                  (1.35) 

is called as a left weak generalized inverse. Finally a pseudo-inverse or Moore-

Penrose generalized inverse 
A  of a matrix A  is a left-weak generalized inverse 

which also holds for  

*( ) AA AA                  (1.36) 

Where * denotes complex conjugate transpose (hermitian). The generalized inverse 

covers ordinary inverse of square non-singular matrices so that 1 A A   

[4] 

 

For every finite m n  real matrix A , there is a unique n m  real matrix 
A  

satisfying (1.33), (1.34), (1.35) and (1.36). 

 

Proof of existence: 

Let A  be an m n  real matrix. If 0A , then 0 A  is an obvious solution of 

equations (1.33) to (1.36). If we assume 0A  and decompose A  to multiplication 

of m r  matrix B  and r n  matrix C , where r rank A , in form, 

A BC                   (1.37) 

1 1( ) ( )T T T T  A C CC B B B                 (1.38) 

Satisfies equations (1.33) to (1.36) and this proves the existense of pseudoinverse. 

 

Proof of uniqueness: 
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Let any two matrices 
1


A  and 

2


A  satisfy equations (1.33) to (1.36). Then, 

1 2 1 1 2 2

       A A A AA A AA                (1.39) 

If we substitute 
1


A A  with 

1

T T
A A  using (1.36) and 

2


AA  with 

2

T T
A A  using 

(1.35) then, 

1 1 2 2

T T T T T   A A A A A A                 (1.40) 

Using equation (1.33) we replace T

iA  with 
3 i



AA A for {1,2}i   , 

2 1 1 2 2 1( ) ( )T T T T      AA A A A A A AA A               (1.41) 

2 1 1 2 2 1

T T T T T T T T      A A A A A A A A A A               (1.42) 

Next we substitute 1 1

T T 
A A A  with 1


A   using (1.34), (1.36) and 2 2

T T 
A A A  with 

2


A  using (1.34) and (1.35), 

2 1 2 1

T T T T    A A A A A A                 (1.43) 

Finally 2

T T
A A  is replaced with 2


A A  using (1.36) and 1

T T
A A  with 1


AA , 

1 2 2 1 2 1 0        A A A AA A AA               (1.44) 

This proves the uniqueness of the pseudoinverse. 

[1] 

3.1.4. Formulating the Null-Space of a Matrix 

Let an n -dimensional subspace S  is spanned by n linearly independent vectors 

, 1i i na K  and let vector x  denote the closest point to vector k  in subspace S . 

 

Figure 3.3: Projection of a vector onto a subspace 

 

e

 

k  

 p Ax Pk  
2columna  

1

1

0

0

( ) 0

T

T

T T





  

a e

a e

A e A k Ax
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The error vector k x  is perpendicular to the subspace S  to, 

   
1

1

( ) 0

0

( ) 0

, ( )

T

i

T

T

n

T

T T T T

 

 
 

  
 
 

 

 

a k Ax

a

k Ax

a

A k Ax

A Ax A k x A A A k

M
               (1.45) 

Then the projection matrix that produces p Pk  is 

1( )T TP A A A A                  (1.46) 

[3] 

 

Null-space of a matrix A  can be expressed as the union of all error vectors, 

( )

( ( ) ) )

( )

T -1 T



 

 

 

 

e k Ax

I P k

I A A A A k

I AA k

                (1.47) 

where k  is an arbitrary vector. 

3.1.5. Generalized Solution 

The generalized solution of a system of simultaneous linear equaions given by 

Ax b , if ( )b R A , Then 

 x A b h                   (1.48) 

Where h  is any vector in the null-space of 
A . Then using eq.1 the generalized 

solution is  

( )   x A b I AA k                 (1.49) 

where k  is an arbitrary vector. 
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3.2. Manipulability Polytope 

Manipulability ellipsoid approach derives its output from a region in joint velocity 

space described by 
2

1q&  which does not transform the exact joint constraints. A 

more accurate definition is maxmaxi i
 q q q& & &  ( l  norm sense). In this section, 

computation of polytope vertices corresponding to the constraints given in joint 

space are derived. If we rearrange ( )v J q q& as 

  1

1

, , , ,n i n

n

i i

i





v j j q q

q j

& &K K

&
                (1.50) 

Where ij  is the i-th column vector of J , we can interpret the v  as a linear 

combination of column vectors of J  with coefficients whose bounds are given by 

1i q& . 

[6] 

3.2.1. Computation of vertices: 

Pseudo-code of the algorithm for computing the vertices of the polytope derived 

from initial manipulator jacobian is listed below. 

Array=zero_vector 

For each column j in manipulator jacobian: 

 for each vector v in Array: 

  new_array.insert v+j 

  new_array.insert v-j 

 end 

end 

Array=new_array. 

Array.remove_interior_vertices. 
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Figure 3.4: Construction of manipulability polytopes in 2-dimensional task space for 

a 3 joint robot. (a) Polytope made of two vectors. (b) Polytope after adding 

one more vector. 

 

3.2.2. Derivation of a Manipulability Index Based on Polytope 

Let , 1, ,j Vj NV K  be the vectors representing the vertices of a polytope in n-

dimensional task space, and VN  be the count of vertices.  Then a vector set  

 , 1, ,
ik i nV K  is called primary vertex set if there are no elements of the polytope 

represented by 

1 1

, 0, 1
i i i i

n n

k k k k

i i

  
 

  V                 (1.51) 

the region described by the following equation is called Cone-cellK. 

1 1

, 0, 1
i i i i

n n

k k k k

i i

  
 

  V                 (1.52) 

and the plane described by 

1 1

, 0, 1
i i i i

n n

k k k k

i i

  
 

  V                 (1.53) 

is called the bottom plane of Cone-cellK. 

 

1j  

2j  

3j  

(a) 

(b) 
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Figure 3.5: Examples of Cone-cell in (a) 2-dimensional task space and (b) 3 

dimensional task space and non-Con-cell in (c) 2-dimensional task space and (d) 3 

dimensional task-space. 

 

If we denote the volume of the k-th cone-cell as kS  then 

 
1

1
det

nk k k

n

S
d

   V VK ,                (1.54) 

where nd  is a constant determined by the dimension of task space [10]. Note that 

1 nk k
 
 V VK  is n n  square matrix. With above equation for volume, we define a 

manipulability measaure related to the ability of moving along arbitrary direction as 

p kw S                   (1.55) 

[6] 

(a) 

(b) 

(c) (d) 
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4. Simulation Results 

4.1. Computation of manipulator Jacobian 

This section describes the formulation used for the computation of manipulator 

jacobian used in the computation of manipulability ellipsoid and manipulability 

polytopes. 

Let  iω  denotes angular velocity  of origin of joint i, iv  denotes linear velocity of 

origin of joint i and 
i

i

i

 
  
 

ω
V

v
 denotes the spatial velocity.  

 

 

Figure 4.1: Geometric layout of links and h vectors. 

1

1 1 1,

j j k k

j j j j j



  

 

  

ω ω h θ

v v ω l

&
                (1.56) 

If we denote 

3 2

3 1

2 1

0

ˆ 0

0

x x

x x

x x

 
 

 
 
  

x                (1.57) 

The cross-product of two vectors x  and y  can also be formulated in form, 

3 2 1

3 1 2

2 1 3

0

ˆ0

0

x x y

x x y

x x y

   
   

   
   
      

x y xy                (1.58) 

Then 

j,j+1l  

jh  

jθ  

jO  
j+1O  

j+1h  

j+1θ  
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1 1, 1

1 1, 1
ˆ

j j j j j

j j j j

  

  

  

 

v v l ω

v l ω
                (1.59) 

So in matrix form, 

 

For a revolute joint 

{ {
1, 1

1

11,

0

ˆ

jj jj j

j j j

j

j jj j







      
       

       
HV Vφ

Iω ω h
θ

v v 0l I
&

1 2 31 4 2 4 3

              (1.60) 

, 1 1j j j j j j  V φ V H θ&                 (1.61) 

1 1 1

2,12 2 2

3,1 3,23 3 3

,1 ,2 , 1

1 1

,1 ,2 ,

0

( , )

n n n nn n n

n n n n n

n n



    
    
    
    
    
    
        

 
      
  

IV H θ

f IV H θ

f f IV H θ

f f f IV H θ

H θ

V q q φ φ φ

H θ

L

M

M OM M

L

& L M

              (1.62) 

,0 0t t n

t t

t t

t

   



 



σ

V σ V

V σ φHθ Jθ

J σ φH

K

& &
                (1.63) 
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4.2. Results from manipulability ellipsoids and manipulability polytopes 

with comparative results. 

This section contains the plots of case studies used for comparison of the 

manipulability ellipsoid and manipulability polytope approaches.  Three type of 

manipulators are chosen to populate the result set and for simplicity only 

translational results are drawn in the plots.  

 

The first type of manipulator is a simple 2 link planar arm with no redundancy. Its 

links are length of 1 unit. Figure below shows the translation manipulability polytope 

of this manipulator for both joint angles of / 4 . Its in shape of a parallelogram and 

this parallelogram gets narrower and close to a form of line as joint angles get closer 

to 0. 

 

Figure 4.2: Manipulability polytope of a two link planar arm. 
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Figure below illustrates both the manipulability polytope and manipulability 

ellipsoids for the 2 link planar arm for the same configuration. The edges of the 

polytope is tangential to the ellipsoid and covers a wider solution set. 

 

Figure 4.3: Manipulability ellipsoid and polytope of a two link planar arm for the 

same configuration 
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Figure below plots the translational manipulability ellipsoid and manipulability 

polytopes of MPA10 robot arm for configuration vector  

 0 / 4 0 / 4 0 / 4 0  q . 

In this configuration the polytope is in shape of extrusion of an improper hexagon 

and ellipsoid covers a smaller volume while orientations of the polytope and 

ellipsoid are equal. 

 

 

Figure 4.4: Manipulability ellipsoid and polytope of a MPA10 for the same joint 

configuration. 
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Last case is for a P560 type robot manipulator. Figure below shows both the 

manipulability ellipsoid and manipulability polytope for configuration vector 

 / 4 / 4 / 4 / 4 / 4 / 4     q  

 

Figure 4.5: Manipulability ellipsoid and polytope of a P560 for the same 

configuration. 

 

This case also shows that the manipulability polytope covers a wider solution set 

than the manipulability ellipsoid. 
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5. Conclusion 

In this study the control of redundant manipulators using task decomposition 

approach, manipulability measures for rendundant and non-redundant manipulators 

are examined. Manipulability ellipsoid and manipulability polytope approaches and 

their formulation are described. Singular value decomposition theorem which is used 

in finding the axii of manipulability polytope is described, its existance and 

uniqueness are proven. Generalized Moore-Penrose inverse (pseudo-inverse) of a 

matrix is described, its existance and uniqueness is proven. Eigen-value 

decomposition which is used in computation of singular value decomposition, and 

generalized solution of simultaneous linear equations employed in calculations of 

task decomposition and manipulability ellipsoid methods are described. 

Finally both manipulability measures are illustrated for three types of manipulators. 

Plots are generated with MATLAB r14 using the Robotics toolbox and MPT toolbox 

which are freely downloadable on internet. 

As a future study this text is planned to be expanded from kinematic aspect to 

dynamical aspect. Further, for experimenting the results obtained on MPA10, a 

driver application that will communicate with the robot arm via ARCNET protocol is 

being developed. Some of the UML diagrams of this application are illustrated in 

Appendix-A. 
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Appendix A. UML Diagrams of the communications library 

Protocol

+SyncSend( Msg : ProtocolMsg ) : ProtocolMsg

Controller

AbstractValue

PhysicalValue

ProtocolMsg

Robot

-state : byte

Actuator Sensor

Joint

Link Driver

2

1..2

 

Figure A.1: Class diagram for the irlroot 
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: Controller: AbstractValue : PhysicalValue: Protocol : Driver: Robot

limit freq3: 

request4: 

request13: 

return update20: 

update2: 

request9: 

return 21: 

actuated10: 

return measured17: 

compute message5: 

transmit6: 

ok12: 

compute message14: 

transmit15: 

return ok19: 

actuate7: 

ok11: 

measure16: 

return ok18: 

update1: 

get8: 

 

Figure A.2: Sequence diagram for protocol driver abstraction. 

 

Protocol

+SyncSend( Msg : ProtocolMsg ) : ProtocolMsg

ARCNET

-SequenceCounter : byte = 0

-ReceiverID : byte

-SenderID : byte

+SyncSend( Tx : ARCNETMsg ) : ARCNETMsg

PA10Joint

-MechanicalBrakeStatus : boolean

-TorqueSpeedSel : boolean

-DeadManSwitch : boolean

-ServoStatus : boolean

-Torque : double

-Speed : double

PA10UpperController

Robot

-state : byte
ControllerJoint

PA10

 

Figure A.3: Class diagram for ARCNET communication driver. 
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running

idle

timeout

arcnet off[command E]
arcnet off

[ARCNET On]

[command S]

[command C]

 

Figure A.4: ARCNET state diagram for MPA10. 

 

 

Protocol

+SyncSend( Msg : ProtocolMsg ) : ProtocolMsg

ARCNET

-SequenceCounter : byte = 0

-ReceiverID : byte

-SenderID : byte

+SyncSend( Tx : ARCNETMsg ) : ARCNETMsg
-SequentialNo Address : byte

-Buffer : byte [256] = 0

-ReceiverID : byte

-SenderID : byte

-DataType : byte

ARCNETMsg

ProtocolMsg

 

Figure A.5: Class diagram for concrete ARCNET protocol and message classes. 
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