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A NEW APPROACH TO INVERSE KINEMATIC SOLUTIONS OF SERIAL 

ARMS BASED ON QUATERNIONS IN THE SCREW THEORY 

FRAMEWORK 

SUMMARY 

Screw theory is a way to express displacements, velocities, forces and torques in 

three dimensional space combining both rotational and translational parts. Any 

motion along a screw can be decomposed into a rotation about an axis followed by a 

translation along that axis. Any general displacement of a rigid body can therefore be 

described by a screw. In general, a three dimensional motion can be defined using a 

screw with a given direction and pitch. Four parameters are required to fully define a 

screw motion, the 3 components of a direction vector and the angle rotated about that 

line. In contrast, the traditional method of characterizing 3-D motion using Euler 

Angles requires 6 parameters, 3 rotation angles and a 3x1 translation vector. Several 

application of screw theory has been introduced in robot kinematic. Compared with 

other methods, screws theory method just establish two coordinates, its geometrical 

meaning is obvious and it avoids singularities due to the use of the local coordinates. 

Therefore, screw theory has regained importance and has become an important 

method in robot kinematic. 

The major intents of this thesis are to formulize inverse kinematic problem in a 

compact closed form and to avoid singularity problem. Non-singular inverse 

kinematic solutions are obtained by using screw theory. Quaternion algebra is used to 

formulize kinematic problem in a compact closed form. Quaternions are hyper-

complex numbers of rank 4, constituting a four dimensional vector space over the 

field of real numbers. Any rotation can be represented by unit-quaternion and also 

any screw motion can be defined by unit dual-quaternion. Screw motion can also be 

defined by using two quaternions however dual operators are the best way to 

describe screw motion and also the dual-quaternion is the most compact and efficient 

dual operator to express screw displacement. 

In this thesis, three inverse kinematic solution methods of 6-DOF serial robot 

manipulator, which are based on screw theory is presented. The first one is 

exponential mapping method. This method uses matrices as a screw operator. There 

are 16 parameters to describe screw motion in matrix operators while just 6 

parameters are needed. Thus, however this method is singularity avoding, it is not 

compact closed. And also two new formulations of the inverse kinematic solution of 

the 6-DOF serial robot manipulator are proposed by using quaternion algebra. In 

these two new formulation methods, one of them uses quaternions as a screw 

operator which combines a unit quaternion plus pure quaternion and the other one 

uses dual-quaternions as a screw operator. These three methods and also the D-H 

convantion, which is the most common method in robot kinematic are compared with 

respect to singularity, computation efficiency, design complexity and accuracy. 
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Simulation results are obtained by using Matlab and animation applications are 

obtained by using the virtual reality toolbox of MATLAB (VRML). Simulation 

experiments are made for single and cooperative working of Staubli TXL60 serial 

robot arm.  
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SCREW TEORİ ÇERÇEVESİNDE KUATERNİYONLAR KULLANILARAK 

SERİ ROBOT KOLLARININ TERS KİNEMATİK ÇÖZÜMÜNDE YENİ BİR 

YAKLAŞIM 

ÖZET 

Screw teori, üç boyutlu uzayda dönme ve öteleme hareketlerinin birleşimi ile oluşan, 

genel hareket, hız, kuvvet ve torkların ifade edilmesini sağlayan bir yöntemdir. Genel 

olarak screw hareketi bir doğru etrafında dönme ve yine aynı doğru boyunca öteleme 

hareketlerinin bir birleşimidir. Katı cisimlerin tüm hareketleri bu yaklaşımla ifade 

edilebilir. Genel olarak üç boyutlu uzayda screw hareketi bir doğru ve bir oran 

(pitch) kullanılarak ifade edilir. (Burada kullanılan oran (pitch), dönme başına 

meydana gelen öteleme miktarıdır). Genel screw hareketi toplamda dört eleman 

kullanılarak tanımlanabilir. Bunlardan üç tanesi dönme ve ötelemenin meydana 

geldiği doğruyu, bir tanesi de doğru etrafında meydana gelen dönme miktarını ifade 

etmek için kullanılır. Katı cisimlerin hareketinde kullanılan en geleneksel yöntem 

Euler açılarıdır. Euler açıları bir katı cismin hareketini 6 eleman kullanarak ifade 

eder. Bunlardan üç tanesi kartezyen koordinatlarda öteleme hareketinin ifadesinde 

kullanılırken, diğer üç tanesi de bu koordinat sistemlerinde meydana gelen 

dönmelerin ifadesinde kullanılır. Screw teorinin robot kinematiğinde çeşitli 

uygulamaları vardır. Diğer yöntemlere kıyasla screw teorinin robot kinematiğinde şu 

üstünlükleri vardır; yalnız iki koordinat sistemiyle kinematik analiz yapılır, 

geometrik olarak çok anlaşılırdır ve ters kinematik çözümlemede tekil nokta 

probleminden etkilenmez. Bu nedenlerden dolayı screw teorinin robot kinematiğinde 

çok önemli bir yeri vardır. 

En genel anlamda bu tezin amaçlarını iki temel başlık altında toplayabiliriz. 

Bunlardan birincisi seri robotların ters kinematiğinde tekil nokta problemlerinden 

etkilenmeden çözümlerin elde edilmesidir. Bunun için önerilen yöntemler screw teori 

tabanlı olarak seçilmiştir. İkinci temel amaç ise kinematik problemin etkin bir cebir 

kullanılarak ifade edilmesidir. Bunun içinde önerilen yöntemlerde kuaterniyon cebiri 

kullanılmıştır. Kuaterniyonlar rankı dört olan hiper-kompleks sayılardır. Kuaterniyon 

cebirinde bu dört eleman kullanılarak bir doğru tanımlanır ve bu doğru etrafında 

herhangi bir dönme temsil edilebilir. Fakat genel katı cisim hareketi tek bir 

kuaterniyon ile ifade edilemez. Bunun için ya iki kuaterniyon (bunlardan bir tanesi 

“birim kuaternion” dönmeyi ifade etmede, diğeri ötelemeyi ifade etmede kullanılır) 

ya da dual kuaterniyonlar kullanılmalıdır. Dual operatörler screw hareketi ifade 

etmede kullanılabilecek en iyi operatörlerdir. Aynı zamanda dual operatörlerin içinde 

de dual kuaterniyon operatörü screw hareketin temsilinde kullanılabilecek en verimli 

ve en az parametreli dual operatördür. 

Bu tezde seri robot kollarının ters kinematik çözümlerine yönelik screw teori tabanlı 

yöntemler incelenmiştir. Bunlardan ilki ekponensiyel haritalama yöntemidir. Bu 

yöntemde screw teori ve matris cebiri kullanılır. Bu nedenle tekil nokta problemi 

olmamasına karşın denklemler çok fazla parametre ile ifade edilmiştir. Bu durumu 

ortadan kaldırmaya yönelik iki farklı ters kinematik çözümü önerilmiştir. Bunlardan 
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birincisi birim kuaterniyon (dönme operatörü) ve bir kuaterniyon (öteleme oerpatörü) 

kullanılarak elde edilmiştir. İkinci çözüm ise dual kuaterniyonlar kullanılarak elde 

edilmiştir. Bu üç yöntem ve robot kinematiğinde en çok kullanılan yöntem olan D-H 

yöntemi tekil nokta problemleri, hesaplama verimi, dizayn zorluğu ve çözüm 

doğruluğu açısından karşılaştırılmışlardır. 

Simulasyon çalışmaları Matlab ortamında geçekleştirilmiştir. Animasyon 

uygulamaları ise Matlabın sanal gerçeklik araç kutusu kullanılarak 

gerçekleştirilmiştir (VRML). Simulasyon denemelerinde Staubli TXL60 seri 

robotunun tek ve kooperatif çalışma örnekleri yapılmıştır. 
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1. INTRODUCTION 

The problem of kinematic is to describe the motion of the manipulator without 

consideration of the forces and torques causing the motion. There are two main 

kinematic problems. First one is forward kinematic problem, which is to determine 

the position and orientation of the end effector given the values for the joint variables 

of the robot. The second one is inverse kinematic problem is to determine the values 

of the joint variables given the end effector’s position and orientation. Inverse 

kinematic problem is more complicated then forward kinematic problem [1].  

Several methods are used in robot kinematic. The most common method is Denavit 

and Hartenberg notation for definition of special mechanism [2]. This method is 

based on point transformation approach and it is used 4 x 4 homogeneous 

transformation matrix which is introduced by Maxwell [3]. Maxwell used 

homogeneous coordinate systems to represent points and homogeneous 

transformation matrices to represent the transformation of points. The coordinate 

systems are described with respect to previous one. For the base point an arbitrary 

base coordinate system is used. Hence some singularity problems may occur because 

of this description of the coordinate systems. And also in this method 16 parameters 

are used to represent the transformation of rigid body while just 6 parameters are 

needed to describe of rigid body motion.   

Another main method in robot kinematic is screw theory which is based on line 

transformations approach. The elements of screw theory can be traced to the work of 

Chasles and Poinsot in the early 1800s. Using the theorems of Chasles and Poinsot as 

a starting point, Robert S. Ball developed a complete theory of screws which he 

published in 1900 [4]. In screw theory every transformation of a rigid body or a 

coordinate system with respect to a reference coordinate system can be expressed by 

a screw displacement, which is a translation by along a λ axis with a rotation by a θ 

angle about the same axis [4]. This description of transformation is the basis of the 

screw theory. There are two main advantages of using screw theory for describing 

rigid body kinematics. The first is that it allows a global description of rigid body 
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motion that does not suffer from singularities due to the use of local coordinates. The 

second advantage is that the screw theory provides a geometric description of rigid 

motion which greatly simplifies the analysis of mechanisms [5]. 

There are many applications of screw theory in kinematic. Yang and Freudenstein 

were the first to apply line transformation operator mechanism by using the dual-

quaternion as the transformation operator [6]. Yang also investigated the kinematics 

of special five bar linkages dual  matrices [7]. Pennock and Yang extended 

this method to robot kinematics [8]. In these methods dual  matrices are used 

as a transformation operator to represent position and orientation of robot 

manipulators. This transformation operator has 18 parameters while just 6 parameters 

are needed to represent screw motion. Kumar and Kim obtained kinematic equations 

of 6-DOF robot manipulator by using dual-quaternion and D-H parameters [9]. 

(Dual-quaternion has 8 parameters. Thus dual-quaternion representation is more 

compact then matrix representation). Dual–quaternion parameters are obtained from 

D-H parameters. In inverse kinematic they used geometrical solution approach with 

D-H parameters. Thus they couldn’t avoid singularity problem. M. Murray solved 3-

DOF and 6-DOF robot manipulator kinematics by using screw theory with 4x4 

matrix operator [10]. Then J.Xie, W.Qiang, B.Liang and C.Li extended this method 

to 6-DOF space manipulator [11]. In this method non-singular inverse kinematic 

solutions are obtained using 4x4 matrix operator. This operator needs 16 parameters 

while just 6 parameters are needed for description of screw motion. J. Funda 

analyzed transformation operators and he found that dual operators are the best way 

to describe screw motion and also the dual-quaternion is the most compact and 

efficient dual operator to express screw displacement [12], [13]. Finally, E. Sariyildiz 

and H. Temeltaş gave solution of inverse kinematic problem using screw theory and 

quaternion / dual-quaternion operators [14], [15]. These solutions are singularity 

avoiding and also just eight parameters are used for description of screw motion. 

In this thesis, I gave two new solution methods of inverse kinematic problem of 

serial robot manipulator. Both of these methods are based on screw theory and 

quaternion algebra. The first one is solved by using unit-quaternion and the second 

one is solved by using dual-quaternion. These solutions are given in chapter five. 

This thesis also include mathematical preliminary of geometry of motion in chapter 

two, general representations of rigid body motion in chapter three, kinematic analyze 
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of serial robot manipulators using screw theory and exponential mapping in chapter 

four, simulation and animation results of kinematic solutions of serial robot arms in 

chapter six and conclusion in chapter seven.  

1.1 Purpose of the Thesis 

In this thesis I present two new formulation methods to solve kinematic problem of 

serial robot manipulators. In these methods my major aims are to formulize 

kinematic problems in a compact closed form and to avoid singularity problems. 

These formulations are based on screw theory.  Because, compared with other 

methods, screw theory has two main advantages in rigid body kinematic [5]. The first 

is that it allows a global description of rigid body motion that does not suffer from 

singularities due to the use of local coordinates. The second advantage is that the 

screw theory provides a geometric description of rigid motion which greatly 

simplifies the analysis of mechanisms [5]. Quaternion is used as a screw operator. 

Because, quaternion has four parameters and any rotational motion can be 

represented by using this four parameters in quaternion algebra however, nine 

parameters are needed to represent rotational motion in matrix algebra. And also at 

last dual-quaternions are used as a screw operator. Dual operators are the best way to 

describe screw motion and also the dual-quaternion is the most compact and efficient 

dual operator to express screw displacement [12], [13]. 
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2.  GEOMETRY OF A MOTION 

2.1 Objectives 

A rigid motion of an object is a motion which preserves distance between points. The 

study of robot kinematics has at its heart the study of the motion of the rigid objects. 

In this chapter I briefly introduce geometrical preliminary of motion. Firstly, some 

differential geometry concepts are introduced. Then a brief introduction to the basic 

of the lie group theory and its connections with the rigid body kinematics are given. I 

will end this chapter with lie algebra and its transformation to the lie groups 

(exponential mapping). 

2.2 Some Differential Geometry Concepts 

2.2.1 Differentiable manifolds and maps 

In mathematics, more specifically in differential geometry and topology, a manifold 

is a mathematical space that on a small enough scale resembles the Euclidean space 

(see App. A.2 for definition Euclidean space) of a certain dimension, called the 

dimension of the manifold. Thus a line and a circle are one-dimensional, a plane and 

the surface of a ball are two-dimensional, and so forth. Infinitely differentiable 

manifold ( ), also called a differentiable (smooth) manifold. A smooth manifold is 

a topological manifold together with its "functional structure" and so differs from a 

topological manifold because the notion of differentiability exists on it. Every 

smooth manifold is a topological manifold, but not necessarily vice versa [16].  

Let ,  be open sets and  is a smooth map.  is a smooth 

map if all partial derivatives of  exist and are continuous. If  and  is 

bijective and both  and  are smooth then  is called diffeomorphism and  and 

 are said to be diffeomorphic. A manifold of dimension n is a set  which is locally 

homeomorphic to . A manifold can be parameterized using a set of local 

coordinate charts. A local coordinate chart is a pair , where  is a function 
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which maps points in the set  to an open subset of . Let  and  

be two overlapping charts. They are  related if  is a diffeomorphism where 

it is defined. A collection of such charts with the additional property that ’s cover 

 is called a smooth atlas. A manifold  is a smooth manifold if it admits a smooth 

atlas. Let  be a mapping between two smooth manifolds and let  

and  be coordinate charts for  respectively. The mapping  is 

smooth if  is smooth for all choices of coordinate charts on  and 

 [10]. 

2.2.2 Tangent spaces and tangent maps 

Let  be a smooth manifold of dimension  and let  be a point in .  is real- 

valued functions on  for the set of smooth. Its domain of definition includes some 

open neighborhood of . A map  is called derivation if, for all 

 and , it satisfies: 

              (Linearity)                                        (2.1) 

            (Leibniz rule)                                    (2.2) 

The tangent space of  at a point , denoted , is the set of all derivations 

. Elements of the tangent space are called tangent vectors. Let 

 be a coordinate chart on  with local coordinates .  can be 

written as: 

                                                                (2.3) 

where  is a local coordinate representation of . 

Let  be a smooth map. The tangent map of  at  is defined as the linear 

map  defined b 

                                                                                               (2.4) 

where  and  and  is the tangent map of  at  [10].  
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Figure 2.1: Local topology of a surface 

We can define a surface uniquely by using two independent variables. A part of 

surface can be expressed by using its rectangular coordinates. It can be seen in figure 

2.1. Rectangular coordinates are  and  as functions of two Gaussian 

coordinates  and  in a certain closed interval: 

                (2.5) 

where  is the position vector of a point of the surface ;  and  are curvilinear 

(Gaussian) coordinates of the point on the surface;  are Cartesian 

coordinates of the point of the surface. 

If the parameters  and  are not independent, the point on the surface is singular. 

The parameters must be independent which means that the matrix M has rank 2. 

                                                                                            (2.6) 

Positions where the rank is 1 or 0 are singular points; when rank at all points is 1 

then equation 2.5 represents a curve. The first derivatives of  with respect to 
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Gaussian coordinates  and  are  and  tangent vectors of the point M on the 

surface P. Tangent vectors yield an equation of the tangent plane to the surface P at 

M [17]. 

2.3 Groups Lie Groups and Lie Algebra 

2.3.1 Groups 

The concept of a group was introduced into mathematics by Cayley in the 1860s, 

generalizing the older notion of substitutions [18]. A group is a set of symmetries 

operations. However, it is usual to define a group independently from the objects 

whose symmetry is being considered. Because, the same group may represent the 

symmetries of several different kind of object. So, a group can be defined, as a set 

with a binary operation. The binary operation or product is supposed to represent the 

composition of symmetries that is performing one symmetry followed by another. 

The binary operation must satisfy the following axioms [19], 

Let  be a set and  be the elements of . 

1. Closure: The product of two group elements is always another group element. 

 

2. Associativity: The product of group elements must be associative 

 

3. Identity element: The group must always contain a unique distinguished 

identity element  such that  

 

4. Inverses: For every element in the group there is a unique inverse element. 

 

If all group elements satisfy this commutativity, the group is said to be abelian. If 

there exist group elements for which , the group is said to be non-

abelian. 

The set of integers  with addition as the law of composition, form a group. The 

identity element is 0, the inverse of the integer n is the integer –n, and addition is 

closed in . This group is also commutative. Therefore it is an abelian group. 
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An example of a non-abelian group is the set of all real  matrices with non-

vanishing determinant, where the law of composition is matrix multiplication. The 

condition of nonvanishing determinant ensures that every group element a has an 

inverse (the usual matrix inverse ). However, matrix multiplication is non-

commutative, and so in general . 

2.3.2 Lie groups 

Continuous groups were first studied in great detail by the Norwegian mathematician 

Sophus Lie (1842-1899), [20]. One of his first examples was the group of isometries 

of three dimensional space. This could also be called the group of proper rigid 

motions in . This group is perhaps the most important one for robotics. 

A Lie group is a differentiable manifold obeying the group properties and that 

satisfies the additional condition that the group operations are differentiable. These 

group operations are as follows: 

1. The set of group elements  must form a differentiable manifold. 

2. The group product must be differentiable mapping. 

3. The map from group element to its inverse must be differentiable mapping. 

2.3.2.1 Examples of Lie groups 

Example 1: First example is the group of unit modulus complex numbers. Any 

element of the group can be represented as: 

                                                                                            (2.7) 

where  is between . 

The group operation is complex multiplication. Let  be two elements of 

group. Then the multiplication of two elements  

                                                 

 

                                                                        (2.8) 

is also continuous since addition and multiplication are continuous. 

The group of unit modulus complex numbers is a lie group. The inverse of the unit 

modulus complex number is its complex conjugate; therefore the identity element is 
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the complex number 1. Complex multiplication is commutative, thus it is an abelian 

group (A group for which the elements commute (i.e.,   for all elements  

and ) is called an Abelian group). The manifold underlying this group can be 

identified with the unit circle in the complex plane. 

Example 2: Second example is the unit modulus quaternions. (Quaternions will be 

investigated deeply in the next chapters. Here I will just focus on the group 

properties of unit modulus quaternions.) Hamilton's quaternions are numbers of the 

form 

                                                                   (2.9) 

where  is a scalar and  is a vector.  

Addition and multiplication of quaternions are a new quaternion. They can be 

represented as: 

                                                        (2.10) 

             (2.11) 

Notice that while addition is commutative, multiplication is not because of vector 

product. Note that . 

Conjugate and inverse of the quaternion can be expressed as: 

                                                               (2.12) 

                                                                         (2.13) 

A lie group can be obtained by restricting our attention to quaternions for which 

. When  or  we get an unit quaternion. The inverse of 

the unit quaternion is its conjugate and the identity element of the unit quaternion is 

the quaternion 1 ( ). The manifold underlying this group can be 

identified with the unit sphere in . 

2.3.3 Matrix groups 

Several matrix groups have been defined. These matrix groups are also known as the 

classical groups [21]. Since our group attention must be associative and have 

inverses, we are led to consider groups whose elements are square matrices. We 

should restrict our attention to  matrices that are invertible to obtain Lie groups. 
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These groups are usually denoted by  which means general linear group, 

with  the number of rows and columns in the matrices.  

If we multiply two matrices with unit determinant, the result is another matrix with 

determinant 1.  If we take all the  matrices with 

determinant 1, we get more examples of Lie groups. These groups are usually called 

special linear groups ( ). That is the element of the group lie on a non-

singular algebraic variety in . This variety is the group manifold and its 

dimension is  In this dimension formulization,  term comes from the 

dimension on  matrix which has  parameters and minus one comes from the 

non-singular case. Because in non-singular case there is not solution of the equation 

. Some matrix groups are as follow: 

(Note that: In  notation  refers to the field of scalar. For instance, for 

complex field  must be used.) 

2.3.3.1 Orthogonal and special orthogonal groups 

The orthogonal group  is the group of  orthogonal matrices. These matrices 

form a group because they are closed under multiplication and taking inverses. The 

effect of group element on the vector is given by 

                                                                                                                (2.14) 

where  is  orthogonal matrix. The scalar product of two vectors after 

transformation is same as before transformation.  

                  (2.15) 

Hence matrices of the orthogonal group must satisfy  

.                                               (2.16) 

where  is the  identity matrix.  

The product of two orthogonal matrices is again orthogonal. This property can be 

proved using equation 2.16  

                             (2.17) 

The determinant of an orthogonal matrix is either 1 or -1, and so the orthogonal 

group has two components. The component containing the identity is the special 
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orthogonal group . For example, the group  has group action on the plane 

that is a rotation:  

                               (2.18) 

The first of these correspond to anticlockwise rotation by  about the origin, while 

the second are reflection in a line through the origin at an angle  from the first 

axis. 

The special orthogonal group  is the subgroup of the elements of orthogonal 

group   with determinant 1.  and  are the most important special 

orthogonal groups, since they are the rigid body rotations about a fixed center in two 

and three dimensions. In three dimension rotation matrices can be written as: 

 

                                                                       (2.19) 

2.3.3.2 Unitary and special unitary groups: 

Unitary matrix is a  matrix  satisfying the condition 

                                                                                                   (2.20) 

where  is the identity matrix and  is the conjugare transpose of . Note this 

condition says that a matrix  is unitary if and only if it has an inverse which is equal 

to its conjugate transpose. 

                                                   (2.21) 

The unitary group  is the set of  unitary matrices. The special unitary groups 

consist of unitary matrices with unit determinant. For example  consists of 

matrices of the form:  

 

where the real parameters are  satisfy 

                (2.22) 
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Hence  can be identified with the points of a three-dimensional sphere in   

2.3.3.3 Euclidian and special Euclidian groups: 

Define an element of the Euclidean group  to be a pair  where  

and  Any elemen t gives a transformation of n-dimensional Euclidean 

space built from an orthogonal transformation and a translation. This is the group of 

transformation of the vector space  that preserves the Euclidean metric. Thus it is 

also known as isometry group. 

General rigid transformation on an arbitrary vector can be written as: 

                     (2.23) 

where  denote rotation and translation transformation respectively. 

Two successive transformations on a single vector can be written as: 

                                    (2.24) 

and then 

                                          (2.25) 

Thus the product of two transformations is  

                               (2.26) 

The group of rigid body motions in  is thus the semi-direct product (see App. B.3 

for definition semi-direct product) of the orthogonal group with  itself.  Thus 

Euclidean groups can be denoted as: 

                                           (2.27) 

where  denotes semi-direct product.  

Orthogonal matrices determinant 1 ( ) 

correspond to rotations about the origin in . Orthogonal matrices determinant -1 

correspond to reflections. Physical machines can not effect on rigid bodies. Thus we 

should use special-orthogonal matrices for rigid body transformation. Using special 

orthogonal matrices, special Euclidean groups can be written as: 

                                      (2.28) 
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There is a convention  dimensional representation of that is, an 

injective homomorphism . A general rigid body motion can be 

represented by using . That is given by 

 

Multiplication and inverse of these matrices are also special-Euclidean group 

elements. These are can be represented as: 

                 (2.29) 

                      (2.30) 

2.3.4 Subgroups 

In rigid body motion, generally Lie subgroups are used instead of Lie groups. For 

instance, special orthogonal groups are used for rotations. Because, while orthogonal 

matrices with  (Special Orthogonal matrices) indicate pure rotation, 

orthogonal matrices with  indicate improper rotation. Orthogonal 

matrices with determinant minus one are perfectly good rigid transformation but no 

machine can perform such an operation. Thus subgroups are very important for rigid 

body motions. 

A subgroup is a subset of elements of the original group that is closed under the 

group operation. That is, the product of any two elements of the subgroup is again an 

element of the subgroup. It is possible for subgroup not to be a Lie subgroup but we 

will consider only Lie subgroups. Some subgroups examples are given above. For 

instance any matrix group of  for the appropriate ,  (subgroup of  

),  (subgroup of  ) and  (subgroup of  ). 

Euclidean subgroups are very important to represent rigid body motion. Thus I will 

restrict attention to Euclidean subgroups. Finding all the subgroups of a Lie group is 

not generally possible; however we can find all the subgroups of Euclidean groups 

because of semi-direct product property. Let  be a subgroup of , and let  be 

any element of . If we conjugate every element of  by , we get an 

isomorphic subgroup to . The conjugate subgroup has elements of the form 
 

where , and is usually written, as . The conjugate (see App. B.1 for 
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definition conjugate) subgroup is a subgroup since the product of any pair of 

elements  and  is given by , in other words conjugation 

gives a homomorphism (see App. B.2 for definition homomorphism) between 

subgroups. This simplifies the classification of subgroups because we need only 

consider conjugacy classes of subgroups. Consequently we can find all subgroups of  

 a by using conjugation. For example, the subgroup of rotations about the 

origin is . In the Euclidean group , there are many copies of , 

since we could consider the subgroup of rotations about any point in space. The 

important point is that all these subgroups are conjugate to each other; the 

conjugation is by the translation which moves one centre to the other. 

2.3.5 Lie algebra 

The Lie algebra is an indispensable tool in studying matrix Lie groups. On the one 

hand, Lie algebras are simpler than matrix Lie groups, because (as we will see) the 

Lie algebra is a linear space. On the other hand, the Lie algebra of a matrix Lie group 

contains much information about that group. Thus many questions about matrix Lie 

groups can be answered by considering a similar but easier problem for the Lie 

algebra. 

Lie algebra can be defined many different but equivalent ways. It can be thought of 

as infinitesimal group elements, that is, group elements very near the identity. Let 

 be any elements of group. We can write these groups elements using 

identity elements and Lie algebra elements   as: 

 

                            (2.31) 

and  

                (2.32) 

where  is infinitesimal. Thus we can ignore . Hence we can obtain group product 

as: 

                  (2.33) 
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We can see that  and  are almost commutative and multiplication of  and  

almost correspond to addition of  and . And also it can be seen that  and  as 

analogous to logarithms of  and  respectively [22]. 

Lie algebra can also be defined as the tangent space (tangent vectors) to the identity 

element. Tangent space definition is more useful to understand the following lie 

algebra applications. Firstly, Lie algebra elements correspond to generalized 

velocities. Also it can be used to find position and orientation error. And at last it can 

be used as a linearization of the original group. 

To find a tangent vectors we should take the difference between nearby elements and 

divide by proceeding to the limit of zero difference in parameters value. To find 

instantaneous velocity, we can take time as parameter. Let’s first consider special 

orthogonal matrices , which satisfy  and . A path will 

be given by a matrix valued function . Here  is parameter of the path or time if 

we want to think velocity. For convenience, we will assume that , this 

simply means that we agree to measure time from the instant that the path passes 

through the identity. Taking the derivative of the relation  gives, 

                                      (2.34) 

When  we get 

                                       (2.35) 

Hence, the tangent space to the identity consists of anti-symmetric matrices. This 

gives a simple way to find the dimension of the groups, since the dimension of a 

manifold is the same as the dimension of a tangent space. Anti-symmetric matrices 

can be found by looking at rotations about the three coordinate axes. Let’s first 

consider rotation about  axis. Derivative of rotation about  axis is: 

                                                                    (2.36) 

and when  we get, 

                (2.37) 
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where  is the angular velocity vector parameter which is on the  axis and  is 

 anti-symmetric matrix. It can be represented by using same name as the Lie 

group but in lower case, so Lie algebra of  is  

For the other axes we have, 

 ,                                                  (2.38) 

A general Lie algebra element for the rotation group therefore has the form, 

                (2.39) 

where  is angular velocity vector. 

We can easily find Lie algebra of the group of rigid body transformation  using 

. A general  can be represented as, 

 

where R is special orthogonal matrix. Taking the derivative and setting  gives a 

typical element of lie algebra ( ), 

                        (2.40)   

where   is a characteristic linear velocity of the motion. If the motion 

is pure translation then  and  is the velocity of any point in space.  

These matrices form a six dimensional vector space, elements of this space are more 

commonly written as columns vectors, 

                     (2.41)   

2.4 Exponential Mapping 

In the theory of Lie groups the exponential map is a map from the Lie algebra of a 

Lie group to the group which allows one to recapture the local group structure from 
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the Lie algebra. If we extend exponential matrix of a Lie algebra element into a 

power series we can obtain first definition of Lie algebra. Let’s  be a matrix 

representing an element of Lie algebra. The power series of the exponential matrix  

is, 

              (2.42)   

where   is a matrix representing an element of the corresponding Lie group. 

Lie algebra elements is also left-invariant vector fields (see App. B.4 for definition 

left invariant vector field) on the group. So far, we have only mentioned vectors at 

the identity; for a vector field, we need a tangent at every group element. Let  be a 

matrix representing a tangent vector at the identity.  The tangent vector at the point g 

of the group can be given by . Hence, there is a one-to-one correspondence 

between, tangent vectors at the identity and left-invariant vector fields.  

Integral curves of these left-invariant vector fields play an important role in 

exponential mapping. Integral curve can be defined as, 

A smooth curve  is an integral curve of vector field , if               

 . For a left-invariant vector field such a curve would satisfy the 

following differential equation: 

                                                                (2.43) 

This equation has analytic solution. The solution which passes through the identity 

element is 

                                                                                (2.44)                      

For exponential matrices we have the following relation: 

              (2.45)   

Certainly the elements  commute. This means that the elements of the 

group of the form  form a subgroup 

                                                      (2.46)   

These are the one-dimensional or one parameter subgroup of the group. Each Lie 

algebra element generates a one-parameter subgroup in this way.  
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However, owing to the noncommutativity of the Lie group, it is not quite true that 

 equals  ; instead, the correct identity is the Baker–

Campbell–Hausdorff Formula 

    (2.47)   

where the missing terms consist of a moderately complicated infinite series involving 

the Lie bracket see App. B.5 for definition lie bracket). The exponential map that 

connects Lie algebras and Lie groups is closely related to the Lie bracket, and 

because of this it is possible to study and classify Lie groups by first  studying and 

classifying Lie algebras with their Lie bracket operation. 

For example, if the Lie group is then we can identify it with the unit circle in 

. The tangent to this circle at  is a vertical line, so we can identify the Lie algebra 

with the set  of purely imaginary numbers. The rotation through an angle  can 

then be written as  Note that this representation is not unique, since 
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3. RIGID BODY MOTION USING SCREW THEORY 

3.1 Objectives 

Any way of moving all the points in the plane such that the relative distance between 

points stays the same and the relative position of the points stays same is called rigid 

motion. Generally there are two main transformation approaches to define rigid body 

motion. The first one is point transformation approach. D-H (Denavit & Hartenberg) 

convention which is the most common method in robot kinematic is based on point 

transformation approach [1] and [23]. It is generally used 4 x 4 homogeneous 

transformation matrix which is introduced by Maxwell [3]. Maxwell used 

homogeneous coordinate systems to represent points and homogeneous 

transformation matrices to represent the transformation of points. For more detail 

about this method references [1] and [23] can be viewed. The second one is line 

transformation approach. Lines are very important in robotics because: 

 They model joint axes: a revolute joint makes any connected rigid body rotate 

about the line of its axis; a prismatic joint makes the connected rigid body 

translate along its axis line. 

 They model edges of the polyhedral objects used in many task planners or 

sensor processing modules. 

 They are needed for shortest distance calculation between robots and 

obstacles. 

In this chapter I will provide a description of rigid body motion using the tools linear 

algebra and screw theory which is based on line transformation. The elements of 

screw theory can be traced to the work of Chasles and Poinsot in the early 1800s. 

Using the theorems of Chasles and Poinsot as a starting point, Robert S. Ball 

developed a complete theory of screws which he published in 1900 [4]. In screw 

theory every transformation of a rigid body or a coordinate system with respect to a 

reference coordinate system can be expressed by a screw displacement, which is a 

translation by along a λ axis with a rotation by a θ angle about the same axis [4]. This 
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description of transformation is the basis of the screw theory. There are two main 

advantages of using screw, theory for describing rigid body kinematics. The first one 

is that it allows a global description of rigid body motion that does not suffer from 

singularities due to the use of local coordinates. The second one is that the screw 

theory provides a geometric description of rigid motion which greatly simplifies the 

analysis of mechanisms [5]. 

In this chapter I will introduce rigid body motion by using screw theory. Firstly, I 

will give rigid body transformation properties and its connection with Lie groups. 

Then exponential coordinates will be given for rotation and rigid motion 

transformations. I will end this chapter with screw motion. 

3.2 Rigid Body Motion 

All rigid body motion can be defined using translation and rotation transformations 

[24], [25]. Lets  be an object which is described as a subset of . Using Euclidean 

space properties we can define any object in Cartesian coordinates. A rigid motion of 

an object can be represented by a continuous family of mappings . 

This mapping describes how individual points in the body move as a function of 

time, relative to some fixed Cartesian coordinate frame. And also we can use vector 

definition instead of point. Given two points , the vector  connecting 

 is defined to be the directed line segment going from  

. Although both point and vector are defined using similar three 

components in Cartesian coordinates, they are conceptually quite different.  

A mapping  is a rigid body transformation if it satisfies the following 

properties 

1. Length preserved:  for all points   

2. The cross product is preserved:  

The first one gives us distance between points on a rigid body are not altered by rigid 

motions. However this condition is not sufficient since it allows internal reflections, 

which are not physically realizable. Thus a rigid body transformation must also 

satisfy second property to preserve orientation. The distance between points and 

cross product between vectors is fixed. This does not mean that particles in a rigid 

body can’t move relative to each other. However that particles in a rigid body can’t 
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translate, they can rotate with respect each other. Thus, to keep track of the motion, 

of a rigid body, we need to keep track of the motion of any one particle of the rigid, 

body and the rotation of the body about this point. In order to do this, we represent 

the configuration of a rigid body by attaching a Cartesian coordinate frame to  some 

point on the rigid body and keeping track of the motion of this body coordinate frame 

relative to a fixed frame. The motion of the individual particles in the body can then 

be retrieved from the motion of the body frame and the motion of the point of 

attachment of the frame to the body [10]. 

Let’s first consider pure rotation. It can be seen in figure 3.1. 
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Figure 3.1: Coordinate frames for specifying pure rotational motion 

As we mentioned chapter 1,  matrices are rotational transformation matrices. 

Any rotation matrices can be represented as: 

                                                                                        (3.1)   

where  denotes rotation frame  relative to frame  and 

denotes the coordinates of the principal axes of  relative to . When ,  

denotes planar rotation and ,  denotes rigid body rotation. Thus we will 

generally use  rotation matrices    Let  be the 

coordinates of  relative to frame . The coordinates of  relative to frame  can be 

computed given by 

                                                                         (3.2) 

In other words , when considered as a map from  to , rotates the coordinates 

of a point from frame  to frame . 
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In general rigid motions consist of rotation and translation. Representation of  pure 

rotation is given above and also representation of pure translation is very simple. To 

represent any translational motion we should just determine a point on the body and 

keep track of the coordinates of the point in the body relative to some known frame. 

However representation of general rigid motion, involving both rotation and 

translation is more involved. Let’s consider a rigid motion which is shown in figure 

3.2.  
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      Figure 3.2: Coordinate frames for specifying rigid motion (rotation and        

           translation)           

Here  and  are two frames,  be the position vector of the origin of frame 

 from the origin of frame  and   the orientation of frame  relative to 

frame . A configuration of the space of the system consists of the pair  

and the configuration space of the system is the product space of  with , 

which shall be denoted as  [2] (for special Euclidean group): 

                                             (3.3) 

Let  be the coordinates of  relative to frame . The coordinates of 

 relative to frame  can be computed given by 

                     (3.4)  

Using the equation 3.4, we may represent it in linear form by writing it as 

                                                                (3.5) 

The  matrix is called homogeneous representation (see App. A.1 for definition 

homogeneous transformation)  of .  matrix properties can be seen 

in chapter 2. 
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3.3 Exponential Coordinates For Rigid Motion  

Firstly I will just consider pure rotational motion to analyze exponential mapping by 

using exponential coordinates. Then both rotational and translational motion will be 

analyzed by using same approach as pure rotation. We can define any rotation by 

using unit vector which specifies the direction of rotation. Let’s analyze this motion 

using a robot which has two rotational joint as shown in figure 3.3.  Here,  is any 

point that is attached to the last link, are a unit vector which specify the 

direction of rotation joint1  and joint2  respectively and   is the 

angle of rotation about  axes respectively. 
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Figure 3.3: Tip point trajectory generated by rotation about the  axis 

If we rotate the body at constant unit velocity about the axis , the velocity of the 

point can be written as 

                                                                                  (3.6) 

Recall that the vector cross product ( ) can be represented as the product of a special 

skew-symmetric matrix, 

                                                                                    (3.7) 

with the vector, i.e.    

                                 (3.8) 
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So we have 

                                                                                                        (3.9) 

This is a first order differential equation with the solution 

                                                                                                   (3.10) 

where  is the initial position of the point ( ,  is current position and 

 is the matrix exponential 

                                                       (3.11) 

If we rotate about the axis  at unit velocity for  for units of time, then the net 

rotation is given by 

      where                                                                       (3.12) 

Given a skew-symmetric matrix and ,  

 matrices hold these relations 

                                                                                    (3.13) 

                                                                                            (3.14) 

Using these relations with  exponential of any skew-symmetric matrices  

can be represented as 

 

                                                                    (3.15) 

This formula commonly referred to as Rodrigues formula gives an efficient method 

for computing . 

So  is the rotation matrix which expresses rotation by  about axis . We 

can also find  and  for a given any  rotation matrices given by, 

                                                               (3.16) 

                                   (3.17) 



  
27 

                                    (3.18) 

The components of the vector  given by equation 3.17 and 3.18 are called 

exponential coordinates.  

Now we can find exponential mapping of general rigid motion (rotation and 

translation) by generalizing pure rotation. Let’s again analyze this motion using a 

robot which has four rotational joint as shown in figure 3.4. Here,  is any point that 

is attached to the last link, are a unit vector which specify the 

direction of rotation joint1 , joint2 , joint3  and joint4  respectively, 

  is the angle of rotation about  axes respectively and 

 is any point on the  axis. Assume that the robot has translational motion along 

the  axis with rotational motion about the same axis as shown in figure 3.4. 
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     Figure 3.4: General rigid motion (Translation along the  axis plus rotation  

   about the the  axis) 

The velocity of the tip point  is then 

                              (3.19) 

Using  as defined above, if we define 

                (3.20) 

and we express  and its derivative in homogeneous coordinates, 

                                                      (3.21) 
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This is a first order differential equation which has the solution: 

                                                                                                     (3.22) 

where  is the matrix exponential of  matrix  defined by 

                                                                (3.23) 

If we rotate about the axis  at unit velocity for  for units of time, then the net 

rotation is given by 

      where                                                                         (3.24) 

Here  is  matrix which has  and  is referred to as a twist, or a 

(infinitesimal) generator of the Euclidean group,  is twist coordinates 

for the twist . Twists also represent velocity of a body. It contains 6 

quantities . Three of them are for linear velocity  and the other three of 

them are for angular velocity .  

Given a skew-symmetric matrix and ,  

We can proof this by explicit calculation. In general form,  can be written 

as given in equation 3.20. Let’s first consider pure translation. In this case . If 

 then . Hence  

                                                                                     (3.25) 

Secondly assume that  Define a rigid transformation  by 

                                                                                                    (3.26) 

Using conjugation we can write another skew symmetric matrices as 

                     (3.27) 

Using  that 

                                                                    (3.28) 

Hence 

                                                                                            (3.29) 
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Using the inverse conjugation, we can find  as follow 

    (3.30)  

This transformation can be interpreted as mapping points from their initial 

coordinates,  to their coordinates after the rigid motion is applied 

. In this equation, both  and  are specified with respect to a single 

reference frame. Thus, the exponential map for a twist gives the relative motion of a 

rigid body. 

3.4 Screw Motion     

Screw motion is a specific class of a rigid body motion which is naturally associated 

with twist. A general screw motion can be defined as a rotation about an axis  with 

the direction  in space through an angle of  radians, followed by translation 

along the same axis by an amount  as shown in 3.5. 
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Figure 3.5: General screw motion  

where  is the direction vector of line ( and  is any point on the line. 

Translation can be defined in terms of  by given, . Here  that is the 

ratio of translation to rotation is called pitch. Using figure 3.5 we can define the 

motion of a point  associated with a screw given by 

                                                                             (3.31) 

or in homogenous coordinates 
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                                                            (3.32) 

Since the relationship must hold for all , the rigid motion given by the screw is 

                                                                         (3.33) 

Note that the rigid motion given by the screw is same as the exponential of a twist 

that is given in equation 3.30. Here  and  .  

We can define a twist which realizes the screw motion and has the proper geometric 

attributes. We can prove that by splitting the proof into usual cases: pure translation 

and translation plus rotation. 

Case 1:  . Let  and define 

                                                                                                            (3.34) 

The rigid body motion corresponds to pure translation along the screw axis by an 

amount d. 

Case 2:  . Let  and define 

                                                                                      (3.35) 

The fact that the rigid body motion is the appropriate screw motion is verified by 

direct calculation. 

These special cases of screw motion are very important for robotic. For instance we 

can define a zero pitch is a screw motion for which , corresponding to a pure 

rotation about an axis. We can use this definition for revolute joints. And also an 

infinite pitch is a motion for which , as previously mentioned. This case 

corresponds to a pure translation and is the model for the action of a prismatic joint. 

Finally the geometric meaning of a screw can be given by  

Chasles Theorem: Every rigid motion can be realized by a rotation about an axis 

combined with a translational parallel to that axis. [10] 
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4. KINEMATIC SOLUTION USING SCREW THEORY AND 

EXPONENTIAL MAPPING 

4.1 Objectives 

Kinematic is a branch of classical mechanics which describes the motion of objects 

without consideration of the causes leading to the motion. The kinematics problem 

has a wide research area in robotics.  

D-H notation is the most common method in robot kinematic however it has some 

disadvantages like singularity and analyzes complexity. Another main method is 

screw theory. Screw theory is a singularity avoiding method and it provides a 

geometric description of rigid motion which greatly simplifies the analysis of 

mechanisms. 

In this chapter I will give a description of the kinematics for a general n degree of 

freedom open-chain robot manipulator using screw theory and exponential mapping. 

Firstly M.Murray studied this method and proposed to solve the inverse kinematic 

problem [10], then J. Xie and W.Qiang applied this method to 6-DOF Space 

manipulator [11]. This method has an advantage that avoids a large amount of 

matrices inverse multiply operation, establish just two coordinates and the expression 

is simple that it is convenient for the trajectory planning and simulation. 

I will end this chapter by analyzing forward and inverse kinematic problem of 6-

DOF serial arm manipulators which is shown in figure 4.1. 



  
32 

d1
d2

d3
d4

d5

d6

Base 

Frame

pb

pw

pc
l0

l1

l2

link 0

joint 1

joint 2 link 1

joint 3

link 2

joint 4,5,6

Tool 

Frame

 

Figure 4.1: 6-dof serial arm robot manipulator in its reference configuration 

4.2 Forward Kinematic 

The forward kinematic problem is to determine the position and orientation of the 

end effector given the values for the joint variables of the robot. To find forward 

kinematic of serial robot manipulator we followed these steps: 

4.2.1 Notation 

1.  Label the joints and the links: 

Joints are numbered from number 1 to n, starting at the base, and the links are 

numbered from number 0 to n. The joints connect link i-1to link i.  

2. Configuration of joint spaces: 

For revolute joint we describe rotational motion about an axis and we measure all 

joint angles by using a right-handed coordinate system. For prismatic joint we 

describe a linear displacement along the direction of the axis. 

3. Attaching coordinate frames (Base and Tool Frames): 

Two coordinate frames are needed for n degree of freedom open-chain robot 

manipulator. The base frame can be attached arbitrary but in general it is attached 

directly to link 0 and the tool frame is attached to the end effector of robot 

manipulator. 
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This notation is given for 6-DOF serial robot manipulator in figure 4.1. 

4.2.2 Formulization  

1. Determining joint axis vector: 

First we attach an axis vector which describes the motion of the joint and determine 

the exponential coordinates. For the i.th revolute joint, the twist has the form 

                                                                                                      (4.1) 

where  is a unit vector in the direction of the twist axis and  is any 

point on the axis. For the i.th prismatic joints, 

                                                                                                                  (4.2) 

where  is a unit vector pointing in the direction of translation. All vectors and 

points are specified relative to the base coordinate frame. 

 2. Obtaining transformation operator: 

To obtain transformation operator, firstly exponential coordinates transform to  

matrices given by 

                                                                           (4.3) 

where  is a unit vector in the direction of the twist axis,  

is the moment vector (or translational part of twist) of the twist axis and   

is skew-symmetric matrix corresponding to  direction vector. 

Then the transformation matrix  of the i.th frame can be obtained using 

exponential mapping given by 

                                                                                                           (4.4) 

3. Formulization of rigid motion: 

Combining the individual joint motions, the forward kinematics map, 

 is given by 

                                                                        (4.5) 
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where  is the variable vector of joints. For revolute joints  

and for prismatic joints . The  must be numbered sequentially starting from 

the base, but  gives the configuration of the tool frame independently of the 

order in which the rotations and translations are actually performed. Equation 4.5 is 

called the product of exponentials formula for the manipulator forward kinematics. 

4.3 Inverse Kinematic 

The inverse kinematic problem is to determine the values of the joint variables given 

the end effector’s position and orientation. I will use Paden - Kahan subproblems to 

obtain inverse kinematic solution of serial robot manipulator. There are some Paden-

Kahan subproblems and also new extended subproblems [10], [11] and [26]. I will 

just give three of them which occur frequently in inverse solutions for common 

manipulator design. To solve the inverse kinematics problem, we reduce the full 

inverse kinematics problem into appropriate sub-problems. Here are some 

subproblems. 

1. Rotation about a single axis. 

2. Rotation about two subsequent axes. 

3. Rotation to a given distance 

These subproblem solutions are given at App C.5 

4.4 6-DOF Serial Robot Manipulator Kinematic Model 

In this section we will give an application. 6-DOF serial robot manipulators forward 

and inverse kinematic problem will be solved. The manipulator is shown in figure 

4.1. 

4.4.1 Forward kinematic of 6-dof serial robot manipulator 

First we must determine the axes for all joints. Then we will find the moment vector 

for all axes. The axes and the moment vectors can be written as: 

                      

                                                                  (4.6) 

Any point on these axes can be written as: 
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                                (4.7) 

Hence the moment vectors of these axes are obtained as: 

            

                                                    (4.8) 

We can find twist coordinates and  matrices by using direction and moment 

vectors. Now we can find forward kinematic by using equation 4.5 given by 

                                                   (4.9) 

where                                                                    (4.10) 

 is initial position. 

4.4.2 Inverse kinematic of 6-dof serial robot manipulator 

In the inverse kinematic problem of the serial manipulator, we have rotation and the 

position of the end effector   knowledge as:  

                                                                                                  (4.11) 

where   matrix denotes the orientation of robot and  denotes the 

position of robot. The equation we wish to solve is 

                                       (4.12) 

Post-multiplying this equation by  isolates the exponential maps: 

                                            (4.13) 

Apply both sides of equation 4.13 to a point  which is the common point of 

intersection for the wrist axes. Since exp(  if is on the axis of , this 

yields 

                                                                                   (4.14) 

Subtract for both sides of equation 4.14 a point  which is at the intersection of axis 

and  
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                (4.15) 

Using the property that the distance between points is preserved by rigid motions, 

take the norm of both sides of equation 4.15. 

                                                                       (4.16) 

This equation is in the form required for Subproblem 3 with  and 

. Applying subproblem 3, we solve for  

                                                                       (4.17) 

                                                                          (4.18) 

where      

                 (4.19) 

                                                                          (4.20) 

                                    (4.21) 

 is any point on the axis of . 

Since is known equation 4.14 becomes  

                                                                               (4.22) 

Applying subproblem 2 with  and  gives the values for  and 

. 

                                                                           (4.23) 

where                

                                                                              (4.24) 

                                                                               (4.25) 

where                      

                                                                    (4.26) 

                          (4.27) 
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                                                                                   (4.28) 

                                                                               (4.29) 

And is 

                                                                        (4.30) 

where         

                                                                              (4.31) 

                                                                               (4.32) 

where  is same as equation 4.26 and  is the intersection point of the axis one and 

axis two. 

The remaining kinematics can be written as 

                                      (4.33) 

Apply both sides of equation 4.33 to a point  which is on the axis of  but it is not 

on the  and  axes. This gives 

                                                                                        (4.34) 

Apply subproblem 2 to find  and . 

                                                                           (4.35) 

where 

                                                                              (4.36) 

                                                                               (4.37) 

where                   

                                                                    (4.38) 

                                                                                   (4.39) 

                                                                                   (4.40) 
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                                                                                (4.41) 

And is 

                                                                        (4.42) 

where 

                                                                              (4.43) 

                                                                               (4.44) 

The only remaining unknown is . Rearranging the kinematics equation and 

applying both sides to any point  which is not on the axis of , 

                               (4.45) 

Apply subproblem 1 to find . 

                                                                           (4.46) 

where 

                                                                              (4.47) 

                                                                              (4.48) 

where  is a new point which is not on the sixth joint axis and  is the intersection 

point of the wrist axes. 
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5. KINEMATIC SOLUTION USING SCREW THEORY AND 

QUATERNION ALGEBRA 

5.1 Objectives 

In 1843, the Irish mathematician W. R. Hamilton invented quaternions in order to 

extend three-dimensional vector algebra for inclusion of multiplications and 

divisions [27], [28]. However, quaternions have had a revival in the late 20th 

century, primarily due to their utility in describing spatial rotations. Representations 

of rotations by quaternions are more compact and faster to compute than 

representations by matrices [12] [13]. Several operators can be used in screw theory. 

However, quaternion is the best operator to describe screw motion. 

In this chapter, first I will briefly introduce quaternion algebra. Then line 

transformation by using dual-quaternions will be introduced. I will end this chapter 

by giving two different solution methods for 6-DOF serial robot manipulator which 

is shown in figure 4.1.  

5.2 Quaternion 

Quaternions are hyper-complex numbers of rank 4, constituting a four dimensional 

vector space over the field of real numbers [27]. A quaternion can be represented as: 

                                                  (5.1)  

where  is a scalar and  is a vector. A quaternion with , is 

called as a real quaternion, and a quaternion with , is called as a pure 

quaternion (or vector quaternion). Addition of two quaternions is simpler and it can 

be expressed as: 

                           (5.2) 

Multiplication of two quaternions is harder than addition and it can be expressed as: 

                             (5.3) 
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where “ ”, ”.”, ” ” denotes quaternion product, dot product and cross product 

respectively. The quaternion addition is associative and commutative. The quaternion 

multiplication is associative, and distributes over addition but it is not commutative. 

Conjugate of the quaternion can be expressed as: 

                                                                 (5.4) 

The above equations allow us to define the quaternion norm ||q|| as: 

                                                                     (5.5) 

When , we get a unit quaternion. Any quaternion  can be normalized by 

dividing by its norm, to obtain a unit quaternion.   

The inverse of a quaternion can be expressed as: 

                                                                          (5.6) 

that satisfies the relation                                                   (5.7) 

For a unit-quaternion we have  

                       (5.8) 

Unit quaternion can be defined as a rotation operator [29], [30]. Rotation about a unit 

axis  with angle θ is expressed as: 

                                                                                           (5.9) 

Further information about rotation representation of quaternion can be found in App 

D.5. 

5.3 Dual-Quaternion 

A dual-quaternion can be defined as: 

 or                                                                             (5.10) 

where  , is a dual scalar, ,  is a dual vector,  and are 

both quaternions,  is the dual factor. 

Addition of two dual-quaternions is simple and it is very similar as quaternion 

addition .It can be expressed as: 
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                                                                     (5.11) 

Multiplication of two dual-quaternions is also harder than addition and it can be 

expressed as: 

                            (5.12)  

where “ ”denotes quaternion and “ ” denotes dual-quaternion product. The dual-

quaternion addition is associative and commutative. The dual-quaternion 

multiplication is associative, and distributes over addition but it is not commutative. 

Conjugate, norm and inverse of the dual-quaternion is similar with quaternion. They 

can be expressed as: 

                                           (5.13) 

                                                                                                       (5.14) 

                                                                                                        (5.15) 

When , we get a unit dual-quaternion. For unit dual-quaternion these 

equations can be written as 

   and                                                                     (5.16) 

                                                                                       (5.17) 

Unit dual-quaternion is also rigid motion transformation operator. [31], [32] 

5.4 Line Transformation by Using Dual-Quaternions 

A general rigid transformation has 6 DOF. 3 DOF is for orientation and 3 DOF is for 

translation. Hence we need a transformation operator which has at least six 

parameters. A unit-quaternion can be used as a rotation operator. A point  can be 

transformed to a point  by using unit quaternions as follow: 

                                               (5.18) 

where  is unit-quaternion. Unit-quaternions can be used for transformation of a 

point but general rigid transformation can’t be implemented by using unit-

quaternions. A general rigid transformation has 6 DOF. Hence we need a 

transformation operator which has at least six parameters. We can use dual-
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quaternion for general rigid transformation [31]. Although it has eight parameters 

and it is not minimal, it is the most compact and efficient dual operator [12], [13].  

Now, we will explain how dual-quaternion allows a rigid-transformation. This 

transformation is very similar with pure rotation; however, not for a point but for a 

line. 

A line in plücker coordinates  can be expressed by using dual quaternios 

as: 

                                                     (5.19)  

After transformation of   (R: rotation and t: translation) we obtain a transformed 

line . Transformation of line can be expressed as: 

                                                                                                                (5.20) 

            

                                                                                                                               (5.21)                               

We change vector notations with quaternion notations by using pure quaternions as:   

                                                   (5.22)  

And the cross product can be written as: 

                            (5.23)  

where t is the translation and t=(0,t) is the quaternion notation of translation. Using 

equation 5.20 and 5.21 we obtain 

                                                       (5.24) 

                                      (5.25) 

where and t are pure quaternion notation of vectors. 

If we define a new quaternion  and dual quaternion   , 

equation 5.22 is equivalent to 

                     (5.26)  

If we denote the lines by dual quaternions we obtain a very similar formulization 

with pure rotation transformation: 
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                                                                                                      (5.27)  

Note that: 

 

                                                      (5.28)  

hence  is a unit dual-quaternion. 

5.5 Screw Motion with Quaternion 

In equation 3.30, screw motion is expressed by using 4x4 transformation matrices. It 

uses sixteen parameters while just 6 parameters are needed. We can express screw 

motion more compact form than transformation matrices by using quaternion. If we 

separate general screw motion as a rotation and translation, we have  

Rotation:                                                                                                   

Translation:                                                        (5.29) 

It can be expressed by using quaternion as follow: 

Rotation:                               

Translation:                                                                       (5.30) 

where  is the amount of translation and  is the position vector of some point on the 

line in pure quaternion form. 

5.6 Screw Motion with Dual Quaternion 

If we separate screw motion as a rotation and translation rotation will be equal to 

 and translation will be equal to . Assume that 

  then    and   . Using the Rodrigues formula (see App. D.4 

for Rodrigues formula), 

                                     (5.31)  

                                                                     (5.32) 



  
44 

The point  can not be defined if the angle  is either  or  Otherwise the 

moment vector can be written as: 

                                                    (5.33)  

If we use the unit quaternion notation which is given in equation 5.9 we derived the 

moment equation as: 

                                                  (5.34) 

If we use   equation and rewrite equation 5.34 we obtain: 

                                 (5.35) 

Equation 5.37 gives the vector part of the dual part of the dual quaternion. Using 

equation 5.9 as a rotation operator for the real part of the dual quaternion and  

 equation as a translation operator for the dual part of the dual quaternion 

we obtain a new dual quaternion as a rigid motion operator. A rigid motion operator 

can be written as: 

 

                                                  (5.36) 

Using equation A.37 and we obtain a new representation as: 

                                                                                (5.37) 

This representation is very compact and also it uses algebraically separates the angle 

( ) and pitch ( ) information. Hence it is very powerful [5]. Moreover if we write 

 and  equation 5.39 becomes [33]: 

                                                                                       (5.38) 

Let’s define a dual-quaternion for the i.th screw motion such that 
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                                                (5.39) 

Then real part and dual part of the i.th screw motion’s dual-quaternion can be 

represented given by 

                  

    or                                           (5.40) 

where i=1,2,…,m 

5.7 6-DOF Serial Robot Manipulator Kinematic Model Using Quaternion 

In this section, I will give two new methods to solve forward and inverse kinematics 

problem of serial robot arm which is shown in figure 4.1. First, forward and inverse 

kinematic problem will be solved by using quaternions. Then the same problem will 

be solved by using dual-quaternions and plücker coordinates (see App. C.2 for 

definition plücker coordinates). I will use same notation as exponential mapping 

method which is given in chapter 4. Thus, anyone who wants to see notation should 

look at chapter 4. Also formulization approaches of these two new methods are quite 

similar as exponential mapping method but formulas are based on quaternion 

algebra. 

5.7.1 Forward kinematic of 6-dof serial robot manipulator 

First we must determine the axes for all joints. Axes can be chosen as follow: 

                      

                                                                (5.41) 

Any point on these axes can be written as: 

                                                                   

                                  (5.42) 

Thus we can write quaternions by using axes and point vectors. Quaternions can be 

obtained from equation 5.29 and 5.30 where n = 6. To obtain translation, equation 

5.30 must be calculated six times. Our general forward kinematic equations are: 

                                     (5.43) 
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                        (5.44) 

where i = 1, 2,….6 and . And the position of the end effector 

is 

                                                                                      (5.45) 

5.7.2 Inverse kinematic of 6-dof serial robot manipulator  

In the inverse kinematic problem of the serial manipulator, we have orientation and 

position knowledge of the end effector. These are two quaternions and we will 

calculate all joint angles by using these quaternions. The first one gives us the 

orientation knowledge of the robot manipulator  and the second one gives us the 

position knowledge of the end effector . To find all joint angles complete 

inverse kinematic problem must be converted into the appropriate subproblems. First 

we put two points at the intersection of the axes. First one is which is at the 

intersection of the wrist axes and the second one is   which is at the intersection of 

the first two axes. The last three joints angles do not affect the point . Hence we 

can say the position of point  is free from the wrist angles. If we take the end 

effector position ( ) we get . Thus we can write  

                               (5.46) 

Using the property that distance between points is preserved by rigid motions; take 

the magnitude of both sides of equation 5.46 

                                                                     (5.47) 

We obtain subproblem3. can be found by using subproblem 3 that is given at App. 

C.5. 

If we translate by using known we obtain a new point . We get subproblem 2 

using the point  as the initial position of the subproblem 2 motion and the point  as 

the final position of the subproblem 2 motion. The points and  can be formulized 

as: 

  and                                                (5.48) 

 and  can be found by using subproblem 2 that is given at App. C.5. 
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To find wrist angles we put a point  which is on the  axis and it does not 

intersect with  axes. Thus the point  is not affected from the last joint 

angle. Fourth and fifth joints angles determine the position of the point . For 

known we can write 

                              (5.49)        

Equation 5.49 gives us subproblem 2. To obtain subproblem parameters we should 

find  and  points which are given at App. C.5. The point  is equal to . We 

should just find . The point  can be found given by 

                                                                                     (5.50) 

                       (5.51) 

where  

 

     (5.52) 

The parameters of subproblem 2 are 

   and                                                                   (5.53) 

Thus first five joints angles are obtained. Only the last joint angle is unknown. The 

last joint angle can be found from orientation part of input. We can write, 

                                                                 (5.54) 

                                                                          (5.55) 

We can find the last joint angle from equation 5.55. 

5.8 6-DOF Serial Robot Manipulator Kinematic Model Using Dual-Quaternions  

5.8.1 Forward kinematic of 6-dof serial robot manipulator  

First we must determine the axes for all joints. Then we will find the moment vector 

for all axes. The axes and the moment vectors can be written as: 

                      

                                                                (5.56) 

Any point on these axes can be written as: 
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                               (5.57) 

Hence the moment vectors of these axes are obtained as: 

            

                                      (5.58) 

Now we can write dual-quaternion by using axes and moment vectors. Dual-

quaternion can be obtained from equation 5.39 and 5.40 where i = 1,2….6. Finally 

forward kinematic equation of serial robot manipulator can be found by using dual-

quaternion product. The forward kinematic equation of serial robot manipulator is 

 

where   and n=6. Here  gives us orientation of the robot manipulator. 

The position of the robot manipulator can be found using equation A.35. 

    

where  and  are real vector parts and dual vector part of dual quaternion 

product respectively. 

5.8.2 Inverse kinematic of 6-dof serial robot manipulator  

In the inverse kinematic problem of the serial manipulator, we have rotation and the 

position of the end effector knowledge as:  

                                                    (5.59) 

where  is the real part (rotation knowledge), and 

( ) is the dual part (position knowledge) of the input knowledge. 

And we will calculate all joint angles by using rotation and the position of the end 

effector knowledge. Our general forward kinematic equation is: 

                                  (5.60) 

where                (5.61) 

We must convert the complete inverse kinematic problem into the appropriate 

subproblems. First we put two points at the intersection of the axes. First one is 

which is at the intersection of the wrist axes and the second one is   which is at 
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the intersection of the first two axes. The last three joints angles do not affect the 

point . Therefore, we can say that the position of point  is free from the wrist 

angles and we can formulize it as: 

 

(5.62)                 

We can write same equation for the point . 

                                    (5.63) 

The position of the point  is free from the angles first two joints. If we subtract 

equation 5.63 from both of side of the equation 5.62 we obtain  

                          (5.64) 

If we take the end effector position ( ) at the intersection of the 

wrist axes we have . Hence we can write  

                                                                                                                (5.65) 

Using the property that distance between points is preserved by rigid motions, take 

the magnitude of both sides of equation 5.65 we obtain subproblem 3.  can be 

written by using subproblem 3 that is given at App. C.5. 

If we translate  by using known we obtain a new point  and subproblem 2 that 

is given at App. C.5. The parameters of subproblem 2  are as follow: 

  and                               (5.66) 

where                                 (5.67) 

To find wrist angles we put a point  (initial point) which is on the  axis and it 

does not intersect with  axes. Two imaginer axes are used to find  (end 

point), that is, the position of the point  after rotation by . It can be found 

by using the intersection of two lines formula that is given at App. C.3. These two 

imaginer axes intersect on  and the point  is the intersection point of these 

imaginer axes. Its mathematical formulization can be written as follow: 
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  ,                                                                                   

  ,                                  (5.68) 

 ,                                                                                  (5.69) 

                                              (5.70) 

After making up two imaginer axes we can calculate the point . 

                                                 (5.71) 

                                                             (5.72) 

Hence we obtained the point . The point  is on the  axis. Hence it is not 

affected from the last joint angle. Fourth and fifth joints angles determine the 

position of the point . This gives us a subproblem 2. can be solved by 

using subproblem 2 that is given at App. C.5. The parameters of subproblem 2 are 

  and                                                                       (5.73) 

Hence first five joints angles are obtained. Only the last joint angle is unknown. To 

find last joint angle we need a point which is not on the last joint axis. We call it . 

The position of the point  after rotation by  can be found by using equations 

5.70 and 5.73. This gives us a subproblem1.  can be solved as follow: 

                                                                      (5.74) 

where  and  

where  is a new point which is the position of the point  after rotation by  and 

r is the intersection point of the wrist axes. 
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6. SIMULATION RESULTS 

6.1 Introduction 

Simulation experiments are made for Staubli TX60 serial robot manipulator which is 

shown in figure 6.1. This series robots feature an articulated arm with 6 degrees of 

freedom for high flexibility. It spreads a wide area in industrial robot applications. 

Also it is very similar as the serial robot manipulator which is analyzed in chapter 

four and chapter five. On this account, this robot has been chosen for simulation 

experiments. The only different part between Staubli TX60 robot manipulator and 

the serial robot manipulator that is given in chapter four is that Staubli TX60 serial 

robot manipulator has offset to avoid singularity.  

 

Figure 6.1: Staubli TX60 L serial robot manipulator 
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General specification of Staubli TX60 as follow: 

Table 6.1: Staubli TX 60 Specification 

 TX60 TX 60 L 

Numbers of DOF 6 6 

Nominal Load Capacity 3.5 2 

Maximum Load Capacity 9 5 

Reach at Wrist 670 920 

Repeatability ±0.02 mm ±0.03 mm 

Protection Class (*Wrist) IP 65 (*IP67) IP 65 (*IP67) 

This specification can be found from Staubli’s web page [Url-1]. 

Matlab is chosen for simulations of forward and inverse kinematic of serial robot 

manipulators because animation applications can be easily made by using virtual 

reality toolbox of Matlab. Also Staubli TX60 iges file which can be freely obtained 

from Staubli’s web page is used for animation application [Url-2]. Three different 

simulation experiments are made which are shown in figure 6.2, figure 6.3 and figure 

6.4. 

The first one is single working of serial robot manipulator. In this case single robot 

arm carries a box from its initial position to the target position as shown in figure 6.2. 

To implement this case, first a path is determined for the box. Then inverse 

kinematic of serial arm is solved by using this path.  
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(a) 

                                

 (b)   

 

(c)                                                                          (d) 

Figure 6.2: Single working (carrying box experiments) 

The second simulation experiment is cooperative working of serial robot arms. In 

this case two robot arms work together and they carry a ball from its initial position 

to the target position as shown in figure 6.3. To implement this case, first a path is 

determined for the ball. Then the inverse kinematic of serial robot arm is solved by 

using this path for both of robot arms. Orientations of robot arms are chosen 

adversely to each other. 
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 (a)      (b) 

 
(c) (d) 

Figure 6.3: Cooperative working (carrying ball experiments) 

The third simulation experiment is also cooperative working of serial robot arms. In 

this case, there is a master-slave mode working. The first robot arm which has a ball 

at the end effector moves by a given path and the second robot arm follows the tip 

point of the first robot arm as shown in figure 6.4. To implement this case, first a 

path is determined for the first robot arm. Then the orientation and the position data 

of the first robot arm is sent to the second robot arm and inverse kinematic of second 

robot arm is solved by using these data. The first robot arm which sends its position 

and orientation data works as a master and the second robot arm which follows the 

tip point of the first robot arm works as a slave. Similarly, orientations of robots are 

chosen adversely to each other.  
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(a)  (b) 

 (c)  (d) 

Figure 6.4: Cooperative working (master slave mode working) 

6.2 Computational Cost and Comparative Study 

Here, a comparative study of the presented methods is worked out. And also D-H 

method is included in this comparison because it is currently the most common 

method in robot kinematic. Forward and inverse kinematic solutions of 6-dof robot 

arm can be found in B. Siciliano and L. Sciavicco book [40].  

In D-H method, there is a need for storing the transformation matrix or the 

orientation vector of every coordinate system with respect to its previous one from 

the beginning. In screw theory method, the storage cost is minimum because it is not 

necessary to store all the transformation from the beginning, as they are not needed 

to be known. And also the dual-quaternion requires eight memory locations, while 
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the homogeneous transformation matrix 16. The storage requirement affects the 

computational time because the cost of fetching an operand from memory exceeds 

the cost of performing a basic arithmetic operation. 

Table 6.2: Performance comparison of rotation operations 

Method Storage Multiplies Add/Subtracts Total 

Rotation matrix 9 27 18 45 

Quaternion 4 16 12 28 

Table 6.3: Performance comparison of rigid transformation operations 

Method Storage Multiplies Add/Subtracts Total 

Homogenous matrix 16 64 48 112 

Dual-Quaternion 8 48 34 82 

In order to determinate the position and the orientation of the end effector for n link 

serial arm robot manipulator: 

  multiply and  addition must be done if D-H 

method is used. 

  multiply and  addition must be done if screw theory with 

exponential mapping method is used. 

  multiply and 

addition must be done if screw theory with quaternion method is 

used. 

  multiply and  addition must be done 

if screw theory with dual-quaternion method is used. 

If we take n=6 we get 320 multiply and 240 addition for D-H method, 384 multiply 

and 288 addition for screw theory with exponential mapping method, 432 multiply 

and 335 addition for screw theory with quaternion method, 336 multiply and 238 

addition for screw theory with dual-quaternion method.  

If we optimize our transformation algorithms we get for n link 
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  multiply and  addition must be done if D-H 

method is used. 

  multiply and  addition must be done if screw theory with 

exponential mapping method is used. 

  multiply and 

 addition must be done if screw theory with quaternion 

method is used. 

  multiply and  addition must be done 

if screw theory with dual-quaternion method is used. 

If we take n=6 we get 240 multiply and 180 addition for D-H method, 288 multiply 

and 216 addition for screw theory with exponential mapping method, 200 multiply 

and 156 addition for screw theory with quaternion method, 280 multiply and 168 

addition for screw theory with dual-quaternion method.  

Simulation results of these methods are as follow: 

 

Figure 6.5: Simulation times (second) of the forward kinematic solutions                     

 

Figure 6.6: Simulation times (second) of the inverse kinematic solutions 

Running environment is as table 6.4. 
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Table 6.4: Running environment 

Cpu Cpu 

Memory 

Operating 

System 

Simulation 

Software 

Intel Core 2 Duo  

2.2 GHz 
2 GB Windows XP Matlab 7 

Inverse kinematic solutions of D-H convention and screw theory can be analyzed 

from table 6.4 and table 6.5. As it can be seen from table 6.5 screw theory solutions 

are more accurate then D-H convention solution. And also as it can be seen from 

table 6.6 screw theory is a singularity avoiding method while D-H convention suffers 

from singularity. 

Table 6.5: Inverse kinematic solutions in nonsingular case 

Real Angle Screw   

Solutions 

Screw       

Error 

D-H   

Solution 

D-H       

Error 

θ1=0.6283 θ1=0.6283 0 θ1=0.6283 0 

θ2=0.5236 θ2=0.5236 0 θ2=0.5236 0 

θ3=0.4488 θ3=0.4488 0 θ3=0.4488 0 

θ4=0.5236 θ4=0.5236 0 θ4=0.5255 0.0019 

θ5=0.2856 θ5=0.2856 0 θ5=0.2855 0.0001 

θ6=1.0472 θ6=1.0471 0.0001 θ6=1.0474 0.0001 

Table 6.6: Inverse kinematic solutions in singular case 

Real Angle Screw   Solutions D-H   Solution 

θ1=0.6283 θ1=0.6283 Unreal 

θ2=0.5236 θ2=0.5236 Unreal 

θ3=1.5708 θ3=0 Unreal 

θ4=0.5236 θ4= 0.6434 Unreal 

θ5=0.2856 θ5= 1.5555 Unreal 

θ6=1.0472 θ6= 1.1669 Unreal 
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Note that in singular case some solutions are not same as real angle, because there 

are infinite solutions in singular case and one solution is found from infinite 

solutions.  
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7. CONCLUSION 

In this thesis, three methods for the formulation of the kinematic equations of robot 

manipulators have been presented. Two of them are new formulation methods which 

based on screw theory and quaternion algebra. In these two new formulation 

methods, one of them uses quaternions as a screw operator which combines a unit 

quaternion plus pure quaternion and the other one uses dual-quaternions as a screw 

operator.  The other method is also based on screw theory however it uses 4x4 

matrices as a screw operator. Using screw theory in robot kinematics has several 

advantages. Screw theory based on line transformation. It is an effective way to 

establish a global description of rigid body and avoids singularities due to the use of 

the local coordinates. The main advantage of this method lies in its geometrical 

representation of link and joint axes of a manipulator, giving better understanding of 

its configuration in the workspace and avoiding singularities due to the use of the 

local coordinates. Two coordinate frames are needed for n degree of freedom open-

chain robot arms. These coordinate systems are established at the base frame which 

is arbitrary frame and at the end effectors frame. The other joints are represented by 

using single axes. All joint axes and end effectors coordinate frame are represented 

with respect to base coordinate frame. This representation simplifies description of 

mechanism and avoids singularities due to the use of the local coordinates. 

These three methods and also the D-H convention are compared with respect to 

singularity, computation efficiency and accuracy. The D-H convention is added in 

this comparison, because it is the most common method in robot kinematic. The D-H 

convention uses homogenous transformation matrices as a transformation operator 

and it based on point transformation. In this method, coordinate systems are 

described with respect to previous one. For the base point an arbitrary base 

coordinate frame can be used. Hence some singularity problems may occur because 

of this description of the coordinate frames. And also in the D-H representation n 

coordinate frames are needed for n link robot manipulator. This representation gives 

rise to complexity. Hence, we can say that screw theory methods are singularity 
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avoiding methods and their geometrical descriptions are quite simple however the D-

H convention suffers from singularities and its geometrical description is complex. 

Comparison with respect to computation efficiency is based on two main factors. The 

first one is the used theory and the second one is the selected transformation 

operator. However the D-H convention is more computationally efficient than screw 

theory methods in the forward kinematics, screw theory methods are more 

computationally efficient than the D-H convention in the inverse kinematics. Screw 

theories with quaternion and dual-quaternion results are very close to the D-H 

convention in the forward kinematics. If we consider only screw theory methods we 

can understand the affect of the transformation operators on the computation 

efficiency easier. Screw theories with quaternion and dual-quaternion methods are 

more computationally efficient than exponential mapping method in both of the 

forward and inverse kinematics. If we compare screw theory with quaternion and 

dual-quaternion methods we will get similar results for low degrees of freedom of 

robot arms however dual-quaternion is more computationally efficient when the 

degrees of freedom of robot arms grow up. And also in screw theory more accurate 

solutions are obtained in the inverse kinematics. 

On this account, the wider use of the screw theory methods into the robotics 

community has to be considered. Nevertheless homogenous transformations with the 

D-H convention applications are more common than screw theory. Because point 

transformation can be understood easier than line transformation, mathematical 

substructure of the DH convention is simpler than screw theory and also the D-H 

convention is well defined method.   

Screw theories with quaternion or dual-quaternion describe robot kinematics by 

using eight parameters without suffering singularities. I believe that these properties 

are more useful for hyper-degrees of freedom systems like humanoid, quadruped vs. 

than lower-degrees of freedom like robot arms. Since, there are much more 

singularity points in hyper-dof systems and these singularity points control is more 

difficult because of increasing of singularity point numbers. And also lower 

parameters representation of hyper-degrees of freedom systems is more useful for 

computational efficient. Thus, in the future works screw theory with quaternion 

methods should apply to hyper-degrees of freedom systems. In addition the trajectory 
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generation, velocity and dynamic analysis based on screw theory with quaternion 

should be studied. 
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APPENDIX A.1 

Suppose we have a point  in the Euclidean plane. To represent this same point 

in the projective plane, we simply add a third coordinate of  at the end: .
 

Overall scaling is unimportant, so the point (x,y,1) is the same as the point 

, for any nonzero . In other words,  

                            (A.1) 

for any . (Thus the point  is disallowed). Because scaling is 

unimportant, the coordinates  are called the homogeneous coordinates of the 

point. 

To transform a point in the projective plane  back into Euclidean 

coordinates, we simply divide by the third coordinate:  =  

Immediately we see that the projective plane contains more points than the Euclidean 

plane, that is, points whose third coordinate is zero. These points are called ideal 

points, or points at infinity. 

A general rigid body transformation (rotation and translation) is defined by using 

homogeneous transformation matrices. Generally it is represented using  

matrices as follow 

                                                                                                  (A.2) 

Homogeneous matrices have the following advantages [25]: 

  Simple explicit expressions exist for many familiar transformations  

             including rotation 

  These expressions are n-dimensional  

  There is no need for auxiliary transformations, as in vector methods                            

             for rotation 

  More general transformations can be represented (e.g. projections,  

             translations) 

  Directions (ideal points) can be used as parameters of the  

              transformation, or as inputs 

  If nonsingular matrix  transforms point  by , then hyperplane   

             is transformed by  

  The columns of  (as hyperplanes) generate the null space of  by  

             intersections 

  Many homogeneous transformation matrices display the duality  

             between invariant axes and centers. 
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APPENDIX A.2 

Euclidean  sometimes called Cartesian space or simply , is the 

space of all  of real numbers, . It is commonly denoted by 

. Elements of  are called . Euclidean n-space is the most 

elementary example of an n dimensional manifold.  is the set of real numbers 

(i.e., the real line), and  is called the Euclidean plane. In Euclidean space, 

covariant and contravariant quantities are equivalent so  . [34] 

Euclidean Space can also be defined by Euclid’s postulates. These postulates are: 

1. A straight line may be drawn from any one point to any other point  

             (any 2 points determine a unique line).  

2. A finite straight line may be produced to any length in a straight line.  

3. A circle may be described with any centre at any distance from that  

             centre. 

4. All right angles are equal.  

 

5. If a straight line meets two other straight lines, so as to make the two  

            interior angles on one side of it together less than two right angles, the 

            other straight lines will meet if produced on that side on which the 

            angles are less than two right angles. [34] 

Euclidean vector space 

An ordered triple  can be interpreted geometrically as a point or a vector. 

In Euclidean space vectors have these properties: Let  be vectors and k be 

scalar. 

1)  

2)  

3)  

4)  if and only if  

Norm and distance in Euclidean n-space 

Euclidean norm:                                      (A.4) 

Euclidean length: 

                 (A.5) 

Properties of Euclidean space 

 There is no preferred origin in Euclidean space. Any point would be    

            as good as any other as a choice for the origin. 
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 There is no preferred direction in Euclidean space.  

 There is no specific way to define a point at infinity.  

 The 'metric' for Euclidean space. That is a function, for a given space,  

            that defines the distance between points. For Euclidean space, if   

            and  are two points then: 

                                                                  (A.6) 

 Euclidean space is flat, linear and  continuous (differentiable) [9] 
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APPENDIX B.1 

Let  be a general linear group element and it acts on  which is the space 

of all n x n matrices. This space is in fact a vector space and it satisfied vector space 

axioms. Similarity transformation can be expressed as: 

                                                                                                 (A.7) 

This is an action since it satisfies three axioms which are given in semi direct 

product. We can use the same representation for any subgroup of  by 

restricting the maps to the subgroup. In group theory the operation which sends a 

group element  to  is called conjugation, where  is another group element. 

There is also another action which is called congruence. It can be represented as: 

                                                                                                   (A.8) 

If we take  as symmetric matrix, that is, if it satisfies  then the transformed 

matrix will also be symmetric. Hence we will restrict our attention on symmetric 

matrices for congruence action. Using arguments analogous to the ones above, we 

can easily show that this action satisfies our three axioms and thus gives another 

representation of .  

Note that the orthogonal matrices are defined as the set of matrices that preserve die 

identity matrix under congruence transformations. Orthogonal groups are the set of 

matrices which satisfy . However, for symmetric matrices, it doesn't 

matter whether we define the congruence as  or  [18], [19]. 
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APPENDIX B.2 

A group homomorphism is a map  between two groups such that the group 

operation is preserved:  for all , where the product 

on the left-hand side is in  and on the right-hand side in . For lie groups this 

mapping must be differentiable. 

A simple consequence of this definition is that the identity element of a group is 

always mapped to the identity element in the other group by a homomorphism. To 

see this notice that: 

  for all                                                              (A.9) 

The inverse element of an element g is always mapped to the inverse of the image of 

. That is . To see this consider: 

                                                                  (A.10) 

For instance, the group of rotation  can be mapped into the general rigid motion 

group  by sending each rotation  to a rotation about the origin . 

Also rotation can be mapped to rotation about any other point in space. [10], [19] 
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APPENDIX B.3 

Given two groups G and H, elements of their direct product, written  are pairs 

of elements  where  and . The group operation is:  

                                                                          (A.11) 

Many of the groups we have defined above have been described as groups of sym-

metry operations on certain spaces. Consider a group  and a manifold .  acts on 

 if there is a differentiable map 

 

that satisfies 

     for all             (axiom 1)             (A.12) 

and 

     for all    and     (axiom 2)     (A.13) 

Take  to be die group manifold of  itself, then  acts on itself by left 

multiplication: . Right action of  on itself, given by 

. Suppose  is a vector space,  say. The matrix groups now act on this space 

by matrix multiplication: 

                                                                                                      (A.14) 

where  and  . Linear actions of groups on vector spaces are called 

representations, that is, actions which satisfy 

   for all   and all    (axiom 3)    (A.15) 

Now suppose we have a group  and a commutative group  together with a linear 

action of  on . That is, a map  given by  satisfying all three 

axioms given above. The semi-direct product of  and , written , has the 

same elements as the direct product, that is, pairs of the form , where   

and  [5]. However, the product of two elements is defined as 

                                                                 (A.16)    
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APPENDIX B.4 

Let left translation be    (Left translation by   ) 

Clearly, La is diffeomorphisms of G onto itself. The corresponding differentials will 

be denoted by : 

                                (A.17) 

We shall use the same notation for the differential at a fixed point : 

                                                                                                  (A.18) 

A vector field  is called left invariant, if it is preserved under left translations. For 

instance, for any : 

                                                                                (A.19) 

In other words, if we consider the values  and  of our vector field at two 

distinct points  and , then they must be related by the linear 

operator [35] 

,i.e.                                               (A.20) 

Properties of left invariant vector fields 

 The space of left invariant vector fields is naturally isomorphic (as a vector  

   space) to the tangent space  at the identity. 

 Left  invariant vector fields are complete 

 Integral curves of left invariant vector fields through the identity  aree  

   exactly one-parameter subgroups 

 The space of left invariant vector fields is closed under the Lie bracket 
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APPENDIX B.5 

Besides the left and right actions of  on itself, there is the conjugation action 

 

Unlike the left and right actions which are transitive, this action has fixed points, 

including the identity. 

Adjoint Representation:  The differential of the conjugation action, evaluated at the 

identity, is called the adjoint action 

                                                                    (A.21) 

Identifying with and invoking the chain rule to show that 

                                                 (A.22) 

this gives a homomorphism 

 is called the adjoint representation. 

For the matrix group case, the adjoint representation is just the conjugation action on 

matrices 

                                                                                           (A.23) 

since one can think of the Lie algebra in terms of matrices infinitesimally close to the 

unit matrix and carry over the conjugation action to them. 

To find the product we look at the derivative of the adjoint representation.We look at 

group elements near the identity so that they can be approximated by  

and its inverse by . This is used to adjoint representation of  

                                                      (A.24) 

differentiating and setting  gives the Lie algebra element . This is 

Lie bracket or commutator of pair of elements, it is usually written using square 

bracket [19], 

                                                                                         (A.25) 
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APPENDIX C.1 

A line can be completely defined by the ordered set of two vectors as shown in figure 

A.1. First one is point vector (p) which indicates the position of an arbitrary point on 

line, and the other vector is free direction vector (d) which gives the line direction. A 

line can be expressed as: 

 

X

Y

Z

d

p

L(p,d)
m

 

Figure A.1: A line in Cartesian coordinate-system 

The representation  is not minimal, because it uses six parameters for only 

four degrees of freedom. With respect to a world reference frame, the line's 

coordinates are given by a six-vector. 
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APPENDIX C.2 

An alternative line representation was introduced by A. Cayley and J. Plücker. 

Finally this representation named after Plücker [20]. Plücker coordinates can be 

expressed as  

     where                                                                             (A.26) 

Both  and  are free vectors:  and  have the same meaning as before (they 

represent the direction of the line and the position of an arbitrary point on the line 

respectively) and  is the moment of  about the chosen reference origin. Note that 

 is independent of which point  on the line is chosen: 

                                                                                     (A.27) 

The two three-vectors  and  are always orthogonal,                       (A.28)               

A line has still four degrees of freedom while it is represented by plücker 

coordinates. Hence plücker coordinates representation is not minimal. The advantage 

of plücker coordinate representation is that it is homogeneous:  represents 

same line as , where  
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APPENDIX C.3 

Two intersect lines are shown in figure A.2. 

X

Y

Z La

Lb

r

P

ra

rb

pa

pb

 

Figure A.2: Two intersection lines in Cartesian coordinate-system 

                                                                       (A.29) 

We can write these equations for two intersect lines as 

   and                                                              (A.30) 

We can write 

  where                           (A.31) 

                                    (A.32) 

If we multiply first and second equations in A.32 by  and  respectively we 

obtain: 

                                                       (A.33) 

                                                         (A.34)  

 

Note that:                                                                           (A.35) 

Hence we can write: 

  or       
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APPENDIX C.4 

The dual number was originally introduced by Clifford in 1873 [36], [37]. In analogy 

with a complex number a dual number can be defined as: 

                                                                                                         (A.36) 

where   are real numbers,  

Every function f of the dual numbers obeys the rule 

(a)                                                                                (A.37) 

Hence 

   and                   (A.38) 

We can use dual numbers to express plücker coordinates. We can write orientation 

vector ( ) and moment vector ( ) as: 

                                       (A.39) 

Hence a line can be expressed in plücker coordinates by using dual number as: 

                                                                                                        (A.40) 
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APPENDIX C.5  

Subproblem 1. Rotation about a single axis: 

A subproblem 1 is a point rotation formulization [38]. It can be easily explained by 

using figure A.3. 

p

q

r d

u

v

θ θ

uı

vı

 

Figure A.3: Rotate p about the axis of d until it is coincident with q 

A point  rotates about the axis of  until it is coincident with point as shown in 

figure 5. Let r be a point on the axis of ,  and  are two vectors. 

We can write general rotation formula for this motion as: 

                                                    (A.41) 
and 

                                                                                     (A.42) 
where        and                                                           (A.43) 
If  then there are infinite number of solutions since in this case  and both 

points lie on the axis of rotation. 

Subproblem2. Rotation about two subsequent axes 

This problem correspond to rotating a point  first about the axis of  by and then 

about the axis of  by , hence the final location of  is coincident with the point 

. It can be easily explained by using figure A.4. 

 

p

c

d1

d2θ1

θ2

r

 

Figure A.4: Rotate p about the axis of d1 followed by a rotation around the axis   

                     of d2 until it is coincident with q 



  
84 

Two axes must be intersected. If two axes are coincide, this problem reduce to 

subproblem 1. If two axes are not parallel , i.e. , then let c be a point such 

that 

                                                                             (A.44) 

In other words  represents the point to which  is rotated about the axis of  by . 

Let r be the point of intersection of the two axes so that 

                                               (A.45) 

As before, define vectors  ,  and z . Substituting these 

expressions into equation A.45 gives 

                                                                          (A.46) 

Since  and  are linearly independent, we can write 

                                                                                (A.47) 

where   

                                                             (A.48) 

and 

                                                                                             (A.49) 

In the case that a solution exists, we can find z- and hence c- given  and . To 

find and , we solve 

   and                                                                (A.50) 

using subproblem 1 [38]. 

Subproblem 3. Rotation to a given distance 

This problem correspond the rotating a point  about the axis  until the point is a 

distance  from  as shown in figure A.5.  

p

q

r
d

u

v

θ

q

δ

dT(p-q)   
 

Figure A.5: Rotate p about the axis of d until it is a distance  from q 

To find the explicit solution, we again consider the projection of all points onto the 

plane perpendicular to , the direction of the axis of . Let r be a point on the axis of 

 and define   and   . The projections of  ,  and  are  

     and     
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,                                                             (A.51) 

If let  be the angle between the vectors  and  we have 

                                                                             (A.52) 

Hence 

                                                                             (A.53) 

Equation A.53 has either zero, one or two solutions, depending on the number of 

points in which the circle of radius  intersects the circle of radius   [38]. 
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APPENDIX D.1 

There are two types of rotation transformation that we want to consider: 

1. Finite rotations that is a change from one angular orientation to another.  

2. Continuous and infinitesimal rotations, such as when an object is continuously 

rotating.  

When we first think of these types of rotation we might guess that one of these would 

be the rate of change of the other and that they would obey similar rules. 

However it turns out that continuous and infinitesimal rotations are easily combined 

using vector addition. However finite rotations are more complicated and require 

other types of algebra. 
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APPENDIX D.2 

The idea behind Euler angles is to split the complete rotation of the coordinate 

system into three simpler constitutive rotations, in such a way that the complete 

rotation matrix is the product of three simpler matrices. Euler angles presentation is 

not unique and in the literature there are many different conventions are used. (There 

are  possible definitions for Euler Angle rotations, but not all of them 

are real.) These conventions depend on the axes about which the rotations are carried 

out, and their sequence (since rotations are not commutative). For instance, the 

engineering and robotics communities typically use Euler angles [Url-3]. 

Advantages / disadvantages of Euler representation 

Advantages: 

  Three-angle orientation representations have two advantages: 

 They use the minimal number of parameters. 

 One can choose a set of three angles that, by design, feels natural or    

      intuitive for a given application. 

Disadvantages  

 No set of three angles can globally represent all orientations without  

     singularity, 

 A small rotation about the -axis requires large rotations of the joints in a  

      wrist. 
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APPENDIX D.3 

From Euler's rotation theorem we know that any rotation can be expressed as a single 

rotation about some axis. The axis is the unit vector (unique except for sign) which 

remains unchanged by the rotation. The magnitude of the angle is also unique, with 

its sign being determined by the sign of the rotation axis. The axis can be represented 

as a three-dimensional unit vector , and the angle by a scalar . 

Combining two successive rotations, each represented by an Euler axis and angle, is 

not straightforward. It is usual to convert to direction cosine matrix or quaternion 

notation, calculate the product, and then convert back to Euler axis and angle. Euler 

angle representation can be analyzed using figure A.6. 

x
X

Y

Z

y
z

 

Figure A.6: Euler angles.(XYZ fixed coordinate-system, xyz rotated frame  

                 coordinate-system) 
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APPENDIX D.4 

Rodrigues' rotation formula gives an efficient method for computing the rotation 

matrix   corresponding to a rotation by an angle   about a fixed axis 

specified by the unit vector . Then  is given by  

 

 

(A.54) 

where  is  identity matrix and  denotes the skew-symmetric matrix with 

entries 

                                                                                 (A.55) 

Note that , so applying the rotation matrix given by Rodrigues’ formula to 

any point on the rotation axis returns the same point [Url-4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/RotationMatrix.html
http://mathworld.wolfram.com/RotationMatrix.html
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APPENDIX D.5  

It is quite difficult to give a physical meaning to a quaternion, it is just a quantity 

which represents a rotation. If you need a physical meaning then this is probably the 

best way to think of it: 

                                              (A.56) 

where  angle of rotation and   vector representing axis of rotation. So it is closely 

related to the axis angle representation of rotations. But the physical meaning of 

quaternion is some more complicated then axis angle representation [39]. 

Any rotation in three dimensions is a rotation by some angle about some axis. When 

the angle is zero the axis does not matter, so rotation by zero degrees is a single point 

in the space of rotations (the identity rotation). For a tiny but nonzero angle, the set 

of possible rotations is like a small sphere surrounding the identity rotation, where 

each point on the sphere represents an axis pointing in a particular direction 

(compare the celestial sphere). Rotations through increasingly large angles are 

increasingly far from the identity rotation, and we can think of them as concentric 

spheres of increasing radius. Thus, near the identity rotation, the abstract space of 

rotations looks similar to ordinary three-dimensional space (which can also be seen 

as a central point surrounded by concentric spheres of every radius). However, as the 

rotation angle increases past 180°, rotations about different axes stop diverging and 

become more similar to each other, becoming identical (and equal to the identity 

rotation) when the angle reaches 360°. 

We can see similar behavior on the surface of a sphere [Url-5]. If we start at the 

north pole and draw straight lines (that is, lines of longitude) in many directions, they 

will diverge but eventually converge again at the south pole. Concentric circles of 

increasing radius drawn around the north pole (lines of latitude) will eventually 

collapse to a point at the south pole once the radius reaches the distance between the 

poles. If we think of different directions from the pole (that is, different longitudes) 

as different rotation axes, and different distances from the pole (that is, different 

latitudes) as different rotation angles, we have an analogy to the space of rotations. 

Since the sphere's surface is two dimensional while the space of rotations is three 

dimensional, we must actually model the space of rotations as a hypersphere; 

however, we can think of the ordinary sphere as a slice through the full hypersphere 

(just as a circle is a slice through a sphere). We can take the slice to represent, for 

example, just the rotations about axes in the x,y plane. Note that the angle of rotation 

is twice the latitude difference from the north pole: points on the equator represent 

rotations of 180°, not 90°, and the south pole represents a rotation of 360°, not 180°. 

The north pole and the south pole represent the same rotation, and in fact this is true 

of any two antipodal points: if one is a rotation by  around the axis , the other is a 

rotation by 360°  around the axis . In fact, then, the space of rotations is not 

the (hyper)sphere itself but the (hyper)sphere with antipodal points identified. But for 

many purposes we can think of rotations as points on the sphere, even though they 

are twofold redundant (a so-called double cover). 

We can parameterize the surface of a sphere with two coordinates, such as latitude 

and longitude. But latitude and longitude are ill-behaved (degenerate) at the north 
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and south poles, though the poles are not intrinsically different from any other points 

on the sphere. It can be shown that no two-parameter coordinate system can avoid 

such degeneracy (the hairy ball theorem). We can avoid such problems by 

embedding the sphere in three-dimensional space and parameterizing it with three 

Cartesian coordinates , placing the north pole at  

the south pole at , and the equator at  

Points on the sphere satisfy the constraint w
2
 + x

2
 + y

2
 = 1, so we still have just two 

degrees of freedom though there are three coordinates. A point (w,x,y) on the sphere 

represents a rotation around the  axis by an angle 

. 

In the same way the hyperspherical space of 3D rotations can be parameterized by 

three angles (Euler angles), but any such parameterization is degenerate at some 

points on the hypersphere, leading to the problem of gimbal lock. We can avoid this 

by using four Euclidean coordinates  with . The 

point  represents a rotation around the  axis by an angle 

 or . Quaternion representation can be analyzed 

using figure A.7. 
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Figure A.7: Rotation representation using complex numbers and two dimensional  

             sphere surface 
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