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ÖZET

Kartezyen robotlar, endüstride geniş kullanım alanı bulmaktadır. Birden fazla

kartezyen robotun ortak bir iş yapmasına gerek duyulan durumlar vardır. Bu

tezde yapılan çalışmanın temeli, aynı çalışma uzayındaki kartezyen robotların

çarpışma olmaksızın yörünge planlamasıdır. Bu çalışmanın amacı, aynı çalışma

uzayındaki kartezyen robotların konumlandırılması için gerekli algoritmaları bul-

mak veya türetmektir.Çarpışma sakınımlı yörünge planlaması algoritmalarını kul-

lanarak istenen işın başarılması uzaysal işlem cebriyle kinematik olarak model-

lenmış robotık sısteme dayanır. Yörünge planlaması metodları kartezyen robot-

lara uygulanarak çarpışma olmayan yörüngenin bulunması için algoritmalar ge-

liştirilir.
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SUMMARY

Cartesian robots are already being widely used in industry and their use will

substantially increase as the developing technology brings the prices down of

high payload and high precision linear motors. There are applications where

more than one cartesian robots are required to perform a common task. The

focus of the research presented in this thesis is the collision free path planning

for multiple cartesian robots sharing the same task space. The objective of this

research is to obtain or derive necessary algorithms to coordinate multiple carte-

sian robots sharing the same workspace. Using path planning algorithms with

collision avoidance, the desired task is achieved based on the kinematic model

of the complete robotic system which is rooted in the spatial operator algebra.

Path planning methods are applied to the cartesian robots and the algorithms to

find collision-free path for the cartesian robots are developed.
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CHAPTER 1

Introduction

The field of robotics has been rapidly growing ever since its first conceptual

introduction in 1920. Advances in electric machinery and materials made a big

impact on the hardware of the robots today as the payload capacity to weight

ratio substantially increased. As conventional motors provide rotary motions,

revolute joints became more popular than the prismatic ones. However, recent

technology gives rise to high precision linear actuators. Therefore, it is reasonable

to expect in near future that prismatic joints will claim the same popularity

as the revolute ones have. Cartesian robots are already being widely used in

industry, and their use will substantially increase as the developing technology

brings the prices down of high payload and high precision linear motors. There

are applications where more than one cartesian robots are required to perform a

common task. The focus of the research presented in this thesis is the collision

free path planning for multiple cartesian robots sharing the same task space.

1.1 Background and Motivation

Gantry robots or cartesian robots in general have a large application area such as

“pick and place” type of use. When there are multiple cartesian robots needed to

perform a task, the coordination among them has to be provided. This coordina-

tion also needs to cover collision avoidance problem. This research concentrates

on the very same issue.

1.2 Objective of the Research

The objective of this research is to obtain or derive necessary algorithms to coordi-

nate multiple cartesian robots sharing the same workspace. Using path planning

algorithms with collision avoidance, the desired task is achieved based on the

kinematic model of the complete robotic system which is rooted in the spatial

operator algebra. This objective is carried through by the following two stages:

1



• Path planning algorithms on the kinematic model of a single cartesian

robot using spatial operator algebra.

• Collision free path planning algorithms for a robotic system consisting of

multiple cartesian robots.

1.3 Work Completed

Two 6 DOF Cartesian robots were kinematically modeled using Spatial Opera-

tor Algebra. Joint velocities were propagated from base to the tip point yielding

frame independent linear and angular velocity vectors of the tip point. Path plan-

ning, on the other hand, was done to make sure the desired position and orienta-

tion were achieved at the desired time while the motion is smooth. Smoothness

here implies that the accelerations (second derivatives) are continues. The devel-

oped paths were then applied to the multiple robot system and were corrected

to avoid collision, based on the collision-avoidance algorithm. The planned path

which became free of collision was checked last for joint acceleration limits. To do

that, joint velocities were calculated using inverse kinematics, yielding the joint

accelerations by taking time derivative of calculated joint velocities.

1.4 Remaining Work

The work described in this thesis will be applied to a real system to be manufac-

tured. This will be possible by the grant under a project with TUBITAK.

1.5 Literature Review

Spatial operator algebra is used for kinematic and dynamic modeling of rigid

multibody systems and allows a systematic formulation of the dynamical equa-

tions of motion of multibody systems and the development of efficient computa-

tional algorithms. Featherstone [1], presents a work on the computation of robot

dynamics using articulated body inertias. After that, the works on spatial oper-

ator algebra continues by Rodriguez. Rodriguez[2], states in its paper that the

inverse and forward dynamic of problems for multi-link serial manipulators are

solved by using recursive techniques from linear filtering and smoothing theory.

The dynamics of multibody systems is covered in the book of Kane and Levinson

with the formulation and applications[3]. Jain[4], states in its paper that a unified

formulation about serial rigid multibody systems can be developed. Rodriguez

et. al., propose usage of spatial operator algebra in manipulator dynamics, mass

matrix computation and the application of the method to perform high-level ma-

2



nipulation in [5]. Other works of Rodriguez et al. on spatial operator algebra are

mentioned in [6],[7],[8], [9], [10],[11], [12], [13], [14].

There are a number of methods for path planning of robot manipulators, which

are classified into two major approaches: the joint interpolated approach and

cartesian space approach. The joint interpolated approaches plans polynomial

trajectories that yield smooth trajectories. The methods for polynomial trajec-

tory generation is mentioned in [15],[16]. In addition to these, the polynomial

curve fitting methods’ comparison by simulation is explained in [17],[18] and

[19]. On the other hand, there are sampling- based path planning methods and

combinatorial path planning methods which are discussed in various works in

literature [20], [21],[22],[23],[24]. The Cartesian space approaches cover Homoge-

neous transformation matrix approach, planning straight line trajectories using

quaternion representation and bounded deviation joint path [25],[26].

In the case that, more than one robot operate simultaneously in a common

workspace, the problem of avoiding potential collisions between the robots should

be considered carefully. For collision avoidance problem, zone blocking methods

can be used to avoid collision problem. Besides zone-blocking methods, some

other collision avoidance methods are proposed in [20], [27], [28],[29] and [30].

Lee et al [27], presented several time adjusting methods for two robots by colli-

sion map. In the paper, robot arm is modeled by a sphere. Chang [31] , proposes

an effective collision avoidance method for two robot manipulators which are

approximated by polyhedra as the extend of Lee et al.This paper determines

minimum time delay needed for avoiding collisions between the robots by using

distance functions.In a similar method, in which the complex 3D problems are

changed to simple 2D ones, Wu et. al. [32] proposed that links of robots in

3D can be simplified to a 2D Space/Time graph. Robots can move with the

proper velocity to avoid potential collisions with obstacles or with other robots

by constructing an optimal path on the Space/Time graph [32].

1.6 Organization of the Thesis

In Chapter 2, the derivation of kinematical model of multiple robots sharing the

same workspace is given. How the path planning is done is the topic of Chapter 3.

Collision avoidance is being covered in Chapter 4. Chapter 5 is for the simulation

results. Finally, Chapter 6 concludes the thesis.
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CHAPTER 2

Kinematic Modeling of Multiple Cartesian Arms with Common Task
Space

2.1 Spatial Operator Algebra

Spatial operator algebra is a recursive method that uses coordinate-free vectorial

notation. It is useful for both kinematic and dynamic modeling of manipulators.

Dynamical modeling, however, is not in the scope of this thesis. The main advan-

tage of spatial operator algebra, as far as this research is concerned, is the fact

that it brings a systematic way while keeping the physical insight to the model.

Let ~hk be the axis of rotation vector of the link k. Ok is a point located on ~hk.

The link vector from Ok to Ok+1 is given by ~̀
k,k+1. Angular velocity vector of

link k is ~ωk, and the linear velocity of link k at point Ok is ~vk.

LINK k

h
k

θ
k

kO

k,k+1

k+1
O

θ
k+1

h
k+1

Figure 2.1: Link k
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A rigid link is depicted in figure 2.1. The link velocities are propagated from base

to tip.

~ωk = ~ωk−1 + ~hkθ̇k (2.1)

~vk = ~vk−1 − ̂̀
k−1,k × ~ωk−1 (2.2)

When we put the equations (2.1) and (2.2) into the matrix form, we get

Vk = φk,k−1Hkθ̇k (2.3)

where

Vk =


 ~ωk

~vk


 (2.4)

φk,k−1 =


 I 0

− ̂̀k−1,k I


 (2.5)

Hk =




~hk

0


 (2.6)

Equation (2.6) is used for revolute joints. If the joint is prismatic then Hk is

defined as equation (2.7).

Hk =


 0

~hk


 (2.7)

The rigid recursion operator φ is defined as;

φk−1,k =




I

φ2,1 I

φ3,1 φ3,2 I

· · · ·
φn,1 · · φn,n−1 I




(2.8)

where k is the kth link and k − 1 is k-1. previous link (k is starting from zero

to the number of joints) and φk−1,k can be used to compute spatial recursions

starting from the base to tip. The operator H, converts the scalar rotational rates

along the joint axes into 6-dimensional spatial velocities across the joints. H is a

diagonal matrix and is expressed as; H = diag[H1, H2, ...Hn]. [33].
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2.2 Kinematic Modeling of 6 DOF Cartesian Manipulator using
spatial vectors

In the cartesian robot, there are four joints; first three of them are prismatic and

the last one is spherical joint. Hk is a diagonal matrix and formed by the spatial

vectors of the joints according to the base frame.


 ~ωk

~vk


 =


 I 0

− ̂̀k−1,k I




 ~ωk−1

~vk−1


+


 0

~hk


 θ̇k (2.9)

In the spatial operator algebra, the equation 2.9 is the velocity expression for

prismatic joint. First matrix Vk is the velocity matrix which is produced by the

angular velocity ωk and linear velocity vk. The second matrix is known as the

propagation matrix,φk,k−1, which propagates from the link k to k − 1. The last

matrix in the equation 2.9 is formed by spatial vectors whose first row is zero for

prismatic joint, since there is no angular rotation.

The ~Hk is diagonal of ~H1, ~H2, ~H3 and ~H4. In equation 2.10, spatial vectors of

the four joints is expressed.

~Hk =




~H1 0

~H2

~H3

0 ~H4




(2.10)

The ~H1, ~H2 and ~H3 are shown in equation 2.11 and since, first three joints are

prismatic joint, the first row of the H matrixes of the joints are zero.

~H1 =


 0

~h1


 , ~H2 =


 0

~h2


 , ~H3 =


 0

~h3


 (2.11)

The fourth joint is 3 DOF spherical joint and its H vector is modeled as the ~H4

shown in 2.12. In here, ~hx, ~hy and ~hz are unit spatial vectors which are chosen

according to the frame assignments and the vectors expresses the rotation in x,

y and z axes. It is one 3 DOF joint composed of three revolute joints.

~H4 =




~hx
~hy

~hz

0 0 0


 (2.12)

Since hx = [1; 0; 0], hy = [0; 1; 0], and hz = [0; 0; 1] ; the first three row of the

~H4 will be equal to the identity matrix.
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~H4 =


 I

0


 (2.13)

The identity in in 2.13 is 3 × 3 and then the ~H4 is 6 × 3. Since, the size of ~H1,

~H2 and ~H3 are each 6 × 1, the size of ~Hk is 24 × 6.

2.3 Frame Assignment and Kinematic Model for Cartesian
Robot

The frame assignment for cartesian robot 1 is shown in equations and spatial

vectors are chosen in the initial configuration of the robots are shown in appendix.

~h1 = ~y1 , ~h2 = ~z1 , ~h3 = ~x1 (2.14)

~l1,2 = 2~y1 , ~l2,3 = −~z1 , ~l3,4 = −0.5~z2 , ~l4,t = 0.5 = ~z3 (2.15)

The frame assignment and unit vectors for cartesian robot 2 are also expressed

in the equations above.

~h1 = ~z1 , ~h2 = ~x1 , ~h3 = ~y1 (2.16)

~l1,2 = 1~z1 , ~l2,3 = 2~y1 , ~l3,4 = 0.5~y2 , ~l4,t = 0.5~z2 (2.17)

A φ matrix, known as propagation matrix, is generally Φk−1,k and shown in 2.9

is expressed in equation 2.18 and 2.19 for the four joints of cartesian robot.

φ2,1 =


 I 0

− ̂̀1,2 I


 φ3,1 =


 I 0

− ̂̀1,3 I


 φ3,2 =


 I 0

− ̂̀2,3 I


 (2.18)

φ4,1 =


 I 0

− ̂̀1,4 I


 φ4,2 =


 I 0

− ̂̀2,4 I


 φ4,3 =


 I 0

− ̂̀3,4 I


 (2.19)




v1

v2

v3

v4




=




I 0

φ2,1 I

φ3,1 φ3,2 I

φ4,1 φ4,2 φ4,3 I







H1 0

H2

H3

0 H4







θ̇1

θ̇2

θ̇3

θ̇4

θ̇5

θ̇6




(2.20)
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Since equation 2.20 represents φ ·H · θ, the obtained matrix is the joint’s velocity

matrix of the cartesian robots.[5]. The size of the propagation matrix φ is 24×24,

the size of ~H is 24 × 6 and the size of θ̇ matrix is 6 × 1, then the size of joint’s

velocity matrix is 24 × 1. Therefore, ~v1 , ~v2 , ~v3 and ~v4 have both angular and

linear velocity components, which both have size 3 × 1 and then the size of the

velocity matrix for one joint is 6 × 1.

2.4 Jacobian Computation for Cartesian Arms

The Jacobian of the Cartesian robot can be found by the help of propagation

matrix φ, spatial vector matrix H and σt.[8]

J = σt φ H (2.21)

From the equation 2.21, jacobian of the robot can be computed directly. σt

matrix shown in 2.22, is composed of φt,4 matrix which is the propagation from

fourth joint to the tip and the zero matrix in 2.23. When the ~̀
t,4, which means

the distance between the tip point and joint 4 is zero, the propagation matrix,

φt,4, becomes an identity matrix whose size is 6 × 6. The number of zeros in the

σt matrix represents the total number of joints except the last joint.

σt =
[

0 0 0 φt,4

]
(2.22)

The φ matrix in 2.23, is 6× 6 matrix and σt matrix in 2.22 is 6× 24 matrix. So,

the jacobian matrix for the cartesian arm will be 6 × 6 matrix.

φt,4 =


 I 0

− ̂̀t,4 I


 (2.23)

2.5 Rotation of Frames, Rotation Matrix and Velocity Compu-
tation for Cartesian Arms

The Propagation matrix φ, the H matrix are written for the initial frame assign-

ment in previous sections. With the given θ the propagation matrix and the H

matrix is changed by the help of the rotation matrix R.

R = I + sin(∆θ)k̂ + (1 − cos(∆θ))k̂2 (2.24)

8



For calculating the rotation matrix R, Rodriguez’s Formula as seen in the equa-

tion 2.24 is used [34]. k̂ in the equation is the skew symmetric matrix of calculated
~Hk vectors.

θk = θk−1 + dt × θ̇k−1 (2.25)

According to the equation 2.25, the angle of the link k is equal to sum of the

angle of the link k-1 which is the previous link, and the change in the angle which

is θ̇k−1 × dt. Thus, the θk − θk−1 is the change of the angle of link k-1 to link k

which is ∆θ.

The Rotation matrix is changed by the given θ and ~x; ~y; ~z spatial vectors change

the φ and H matrix.

The θ̇ is given to the system as input and ∆θ and θ is calculated in given condi-

tions. Then, the tip point’s velocity is calculated from 2.26 using Jacobian and

θ̇ and can be given as;

Vt = J · θ̇ (2.26)

This Vt, have size of 6× 1 and is composed of angular and linear velocity compo-

nents both have size of 3 × 1. First three of the components is angular velocity

vectors and the last three components are linear velocity components.
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CHAPTER 3

Path Planning

3.1 Path Planning Methods

Path Planning is often formulated by transforming the workspace volume occu-

pied by the robot into a single vector or point in the robot configuration space.

(C-space). The workspace obstacles are transformed into the forbidden regions of

the C-space. As a result, a collision-free robot path is a curve, which circumvents

the forbidden regions in the C-space.

Before moving the robot arm, it has to be known whether there are any obstacles

present in the path that the robot arm has to traverse (obstacle constraint) and

whether the arm’s end effector needs to traverse along a specified path(path con-

straint). The control problem of a manipulator can be divided into two subprob-

lems: the trajectory planning subproblem and the motion control subproblem

[25].

The goal of trajectory planning is to generate the reference inputs to the mo-

tion control system which ensures that the manipulator executes the planned

trajectories. Planning consists of generating a time sequence of the values at-

tained by a polynomial function interpolating the desired trajectory. There are

two ways of trajectory planning which is in joint variable space and in the carte-

sian space [35].For Cartesian space planning,the time history of the end effector’s

position, velocity and acceleration are planned and the corresponding joint po-

sitions, velocities and accelerations are found from the tip point’s information

[25].Trajectory planning in cartesian space, allows accounting for the presence of

path constraints, these are due to the regions of workspace, which are forbidden

to the arm, eg. due to the interference with the obstacles. If it is desired to plan

a trajectory in the joint space, the values of joints have to be determined from

the end effector’s orientation and position information [35]. Planning in the joint

variable space has three advantages:

• the trajectory can be planned directly during motion,

• the trajectory planning can be done in near real time,

10



• the joint trajectories are easier to plan [25].

In general; the basic algorithm for generating joint trajectory set points is quite

simple. When t = t0, there is a loop: wait for the next control interval. t = t+∆t;

h(t) is found which is the manipulator joint position should be at time t. If

t = tf , then exit and go to loop. In here; ∆t is the control sampling period

for the manipulator. From the algorithm; we see that computation consists of a

trajectory function h(t) that should be updated in every control interval.

Thus, there are four constraints that are effective on the planned trajectory.

These are;

• the trajectory set points must be readily calculable in a non-iterative

manner,

• intermediate positions should be specified deterministically,

• the joint position and its first and second derivatives must be continuous

• the planned path is smooth and finally undesirable motions, such as “wan-

dering” must be minimized [25].

3.2 Joint Space Path Planning

The planning algorithm generates a function h(t) interpolating the given vectors

of joint variables at each point, due to the constraints. In general, this algorithm

is required to specify the following features:

- The generated trajectories must not be demanding from a computational view.

- Joint positions, velocities and accelerations must be continuous of time.

- Undesirable effects such as non-smooth trajectories on the path must be mini-

mized [35].

The basic principles in joint space path planning is summarized below.

1) When picking up an object, the motion of the hand should be directed away

from an object. Otherwise the hand may crash to the object.

2) If we specify a departure position (lift-off) along the normal vector to the sur-

face out from the initial position and we require the end-effector to pass through

this position, then admissible departure motion is occurred. If we specify the

time required for this motion, we should control the speed at which the object to

be lifted.
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3) The same set of lift-off requirements for the arm motion are also true for the

set-down point of the final position motion.

4) There are four positions for each arm motion : initial, lift-off, set-down and

final.(Figure 3.1).

5) Position constraints are initial position, lift-off position, set-down position and

final position. At initial position velocity and acceleration is usually given as

zero, at lift-off position the motion is continuous for the intermediate points.

Set-down position is same as the lift-off position. At the final position, velocity

and accelerations are normally zero.

Joint i

θ(   )t2

tfθ(   )

θ(   )t1
θ(   )t0

t0 t1 t2 tf

Final

Set down

Lift−offInitial

Time

Figure 3.1: Position conditions for a joint trajectory

In addition, the extrema of all joint trajectories must be within the physical and

geometric limits of each joint.[25].

According to these constraints, we select a class of polynomial functions of degree

n or less such that the required joint position, velocity, and acceleration at the

knot points,(initial, lift-off, set-down and final positions) are satisfied and the

joint position, velocity and acceleration are continuous on the time interval [t0, tf ].

(Figure 3.1).

One method is to specify a seventh degree of polynomial for each joint i,

hi(t) = a7t
7 + a6t

6 + a5t
5 + a4t

4 + a3t
3 + a2t

2 + a1t + a0 (3.1)
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where the unknown coefficients aj can be determined from the known positions

and continuity conditions. However, it is difficult to find the extrema of the

high degree polynomial in equation (3.1), and it also has undesirable motion. An

alternative method to this, to split the trajectory into several trajectory segments.

So that, lower degree polynomials can be used to interpolate in each trajectory

segments.

There are different ways for splitting a joint trajectory and the most common

methods are 4-3-4 Trajectory, 3-5-3 Trajectory and 5-Cubic Trajectory. In 4-3-4

Trajectory, each joint has three segments. the first segment is a fourth degree

polynomial from initial position to the lift-off position. The second segment is

the third-degree polynomial from the lift-off position to the set-down position.

The last segment is the fourth-degree polynomial from the set-down to the final

position. In 3-5-3 Trajectory, each joint has three segments. the first segment is a

thirth- degree polynomial from initial position to the lift-off position. The second

segment is the fifth-degree polynomial from the lift-off position to the set-down

position. The last segment is the third-degree polynomial. In 5-Cubic Trajectory,

cubic spline polynomials of third-degree are used with five trajectory segments.

3.2.1 4-3-4 Polynomial Trajectory

When time varying from t = 0(initial time) to t = 1(final time), we determine N

joint trajectories in each segment and a normalized time variable, t ∈ [0, 1] which

allows us to treat equations of each trajectory segments for each joint angle in

the same way. The variables are defined as,

t = normalized time variable, t ∈ [0, 1].

τ = real time in seconds.

τi = real time at the end of the ith trajectory segment.

ti = real time required to travel through the ith segment.

ti = τi − τi−1 (3.2)

t =
τ − τi−1

τi − τi−1

(3.3)

The 4-3-4 trajectory consists of polynomial segment hi(t) which forms the joint

trajectory for joint i.The polynomial equations for each segments shown in equa-

tions (3.4), (3.5), (3.6). h1(t) is the first segment, h2(t) is the second segment

and hn(t) indicates the last trajectory segment.

h1(t) = a14t
4 + a13t

3 + a12t
2 + a11t + a10 (3.4)
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h2(t) = a23t
3 + a22t

2 + a21t + a20 (3.5)

hn(t) = an4t
4 + an3t

3 + an2t
2 + an1t + an0 (3.6)

The boundary conditions of the polynomials are shown below;

1) Initial position is θ0 = θ(t0).

2) Magnitude of the initial velocity is v0.

3) Lift-off position is θ1 = θ(t1).

4) Continuity in position, velocity and acceleration at t1.

5) Set down position is θ2 = θ(t2).

6) Continuity in position, velocity and acceleration at t2

7) Final position is θf = θ(tf), magnitudes of final velocity and acceleration are

vf and af .

The first and second derivatives of these polynomial equations can be written as

in (3.7) and (3.8);

vi(t) =
dhi(t)

dτ
=

dhi(t)

dt

dt

dτ
=

1

τi − τi−1

dhi(t)

dt
=

1

ti
ḣi(t) (3.7)

ai(t) =
d2hi(t)

dτ 2
=

1

(τi − τi−1)2

d2hi(t)

dt2
=

1

t2i
ḧi(t) (3.8)

For the first polynomial shown in equation (3.4),

v1(t) =
ḣ1(t)

t1
=

a14 + a13 + a12 + a11 + a10

t1
(3.9)

a1(t) =
ḧ1(t)

t21
=

12a14t
2 + 6a13t + 2a12

t21
(3.10)

For t = 0 ;

a10 = h1(0) = θ0 (3.11)

v0 =
ḣ1(0)

t1
=

a11

t1
which gives a11 = v0t1 (3.12)

a0 =
ḧ1(0)

t21
=

2a12

t21
which gives a12 =

a0t
2
1

2
(3.13)
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In the second polynomial shown in equation (3.5), for t = 0 ;

a20 = h2(0) = θ2(0) (3.14)

v1 =
ḣ2(0)

t2
=

a21

t2
, which gives a21 = v1t2 (3.15)

a1 =
ḧ2(0)

t22
=

2a22

t22
which gives a22 =

a1t
2
2

2
(3.16)

Since the velocity and acceleration at this point should be continuous with end

of the first segment’s velocity and acceleration;

ḣ2(0)

t2
=

ḣ1(1)

t1
(3.17)

ḧ2(0)

t22
=

ḧ1(1)

t21
(3.18)

For the last fourth degree polynomial, which is the last trajectory segment in

(3.6); when the boundary conditions are applied;

an0 = hn(0) = θf (3.19)

vf =
ḣn(0)

tn
=

an1

tn
which gives an1 = vf tn (3.20)

af =
ḧn(0)

t2n
=

2an2

t2n
which gives an2 =

af t
2
n

2
(3.21)

For t = −1, which is the beginning position of the segment, from the velocity

and acceleration continuity condition;

ḣ2(1)

t2
=

ḣn(−1)

tn
and

ḧ2(1)

t22
=

ḧn(−1)

t2n
(3.22)

The change of the angles between the trajectory segments can be represented as,

δ1 = θ1 − θ0 = h1(1) − h1(0) = a14 + a13 + a12 + a11 (3.23)

δ2 = θ2 − θ1 = h2(1) − h2(0) = a23 + a22 + a21 (3.24)

δn = θf − θ2 = hn(0) − hn(−1) = −an4 + an3 − an2 + an1 (3.25)

When we rewrite all the equations in the matrix form,

y =




δ1 − a12 − a11

−a0t1 − v0

a0

δ2

−af tn + vf

af

δn + an2 − an1




x =




a13

a14

a21

a22

a23

an3

an4




(3.26)
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C =




1 1 0 0 0 0 0

3/t1 4/t1 −1/t2 0 0 0 0

6/t21 12/t21 0 −2/t21 0 0 0

0 0 1 1 1 0 0

0 0 1/t2 2/t2 3/t2 −3/tn 4/tn

0 0 0 2/t22 6/t22 6/t2n −12/t2n

0 0 0 0 0 1 −1




(3.27)

From the matrixes of (3.26) and (3.27), accepting that y = Cx, the solution of

the 4-3-4 path planning is found by x = C−1y. The boundary conditions for the

last trajectory segment was changed from [0,1] to [-1,0] and used in the matrix

equations above, writing t = t + 1 the obtained polynomial is;

hn(t) = an4t
4 + (−4an4 + an3)t

3 + (6an4 − 3an3 + an2)t
2

+(−4an4 + 3an3 − 2an2 + an1)t + (an4 − an3 + an2 − an1 + an0)
(3.28)

After finding the coefficients of hn(t), the coefficients are put in the equation

(3.28) and the last trajectory segment’s polynomial is found.

3.2.2 3-5-3 Polynomial Trajectory

In 3-5-3 Trajectory, each joint has three segments. the first segment is a thirth-

degree polynomial from initial position to the lift-off position. The second seg-

ment is the fifth-degree polynomial from the lift-off position to the set-down

position. The last segment is the third-degree polynomial.

h1(t) = a13t
3 + a12t

2 + a11t + a10 (first segment) (3.29)

h2(t) = a52t
5 + a42t

4 + a32t
3 + a22t

2 + a12t + a02 (second segment) (3.30)

hn(t) = an3t
3 + an2t

2 + an1t + an0 (third segment) (3.31)

The 3-5-3 trajectory consists of polynomial segment hi(t) which forms the joint

trajectory for joint i.The polynomial equations for each segments shown in equa-

tions (3.29), (3.30), (3.31). h1(t) is the first segment, h2(t) is the second segment

and hn(t) indicates the last trajectory segment same as in 4-3-4 trajectory.

The first and second derivatives of these polynomial equations can be written as

in (3.32) and (3.33);
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vi(t) =
1

ti
ḣi(t) (3.32)

ai(t) =
1

t2i
ḧi(t) (3.33)

For 3-5-3 Joint Trajectory, the initial velocity, v0, and initial acceleration, a0, are

zero and also the final velocity, vf , and the final acceleration, af , are zero. All

three segments of the polynomial are in the normalized time variable t ∈ [0, 1].

For the first segment,

h1 (0) = a10 = θ0 (initial position) (3.34)

v0 =
ḣ1(0)

t1
=

a11

t1
(initial velocity) (3.35)

a0 =
ḧ1(0)

t21
=

(
6a31t + 2a21

t21

)

t=0

=
2a21

t21
(initial acceleration) (3.36)

Then;

a11 = v0t1 , a21 =
a0t

2
1

2
(3.37)

For the second segment;

h2 (0) = a10 = θ1 (3.38)

v1 =
ḣ2(0)

t2
=

(
5a52t

4 + 4a42t
3 + 3a32t

2 + a22t + a12

t2

)

t=0

(3.39)

v1 =
a12

t2
(3.40)

a1 =
ḧ2(0)

t22
=

2a22

t22
(3.41)

For the last segment;

hn (0) = an0 = θf (final position) (3.42)

vf =
ḣn(1)

tn
=

4an4 + 3an3 + 2an2 + an1

tn
(3.43)

af =
ḧn(1)

t2n
=

12an4 + 6an3 + 2an2

t2n
(3.44)

The first and second derivatives of the polynomials at one’s initial and other’s

final point should be equal.
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ḣ1(1)

t1
=

ḣ2(0)

t2
(3.45)

ḧ1(1)

t21
=

ḧ2(0)

t22
(3.46)

ḣ2(1)

t2
=

ḣn(0)

tn
(3.47)

ḧ2(1)

t22
=

ḧn(0)

t2n
(3.48)

Since we know the values of polynomials at t=0 and t=1; we can write these

equations above.

θ1 − θ0 = h1(1) − h1(0) = a31 + a21 + a11 (3.49)

θ2 − θ1 = h2(1) − h2(0) = a52 + a42 + a32 + a22 (3.50)

θf − θ2 = hn(1) − hn(0) = an4 + an3 + an2 (3.51)

From all these equations,

C =




3/t1 −1/t2 0 0 0 0 0 0 0

0 1/t2 2/t2 3/t2 4/t2 5/t2 0 0 −1/tn

0 0 2/t22 6/t22 12/t22 20/t22 0 −2/t2n 0

6/t22 0 −2/t22 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 1 1 1 1 0 0 0

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 3/tn 2/tn 1/tn

0 0 0 0 0 0 6/t2n 2/t2n 0




(3.52)

y =




−2a21/t2 − a11/t1

0

0

−2a21/(t1)
2

θ1 − θ0 − a21 − a11

θ2 − θ1

θf − θ2

0

0




x =




a31

a12

a22

a32

a42

a52

an4

an3

an2




(3.53)

From the matrixes of C and y, accepting that y = Cx, the solution of the 3-5-3

path planning is found by x = C−1y.
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3.2.3 Cubic Spline Trajectory ( Five Cubics)

A spline curve is a polynomial of degree k with derivative of order k-1 at the

interpolation points. The reason to use cubic spline functions is that preserving

continuity in first and second derivative at the interpolation points. Also, the

degree of approximation and smoothness is achieved. In Cubic spline case, the

first derivative represents continuity in velocity and the second derivative repre-

sents continuity in acceleration. The advantage of the cubic spline is that it is the

lowest degree polynomial that represents continuity in velocity and acceleration.

Thus, the effort for computation and the possibility of numerical calculations

instability is reduced.

t0 t1 t tft t tn

Time

q(t)

θ

θ

θ
θ

θ

2 3 4

V2

1

0V

0

1

2
4

n
0a

1a

θ3

V3

a3

nV
na

4V
4

a

V

a2

hn(t)h4
(t)h3

(t)(t)2
h(t)h1

Figure 3.2: Boundary conditions for a 5-cubic joint trajectory

hj(t) = aj3t
3 + aj2t

2 + aj1t + aj0 j = 1, 2, 3, ....n (3.54)

The general equation of a five cubic polynomial for jth joint trajectory segment

is seen in (3.54). Here, aji represents the ith coefficient of joint j and n represents

the last trajectory segment.In the five-cubic interpolation, six interpolation points

and five trajectory segments is used. Since we have four interpolation points(

initial, lift-off, set-down and final), we have to select extra two interpolation

points to provide boundary conditions for solving the unknown coefficients of the

polynomial function.

The first and second derivatives of these polynomial equation with respect to

time are;

vj(t) =
ḣj(t)

tj
=

3aj3t
2 + 2aj2 + aj1

tj
(3.55)

ai(t) =
ḧj(t)

t2j
=

6aj3t + 2aj2

t2j
(3.56)
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3.3 Planning of Cartesian Path Trajectories

When it is desired that the end-effector’s motion in a robot manipulator follows a

geometrically specified path in the cartesian space, it is necessary to plan this tra-

jectory in the same space [35]. Although manipulators’ joint variables represents

the position and orientation of the end-effector, they are not convenient for spec-

ifying a path because of non-orthogonality of joint coordinates and inseparability

of position and orientation [25]. Due to these reasons, other kinematic trajec-

tory planning approaches are used for cartesian path plan such as Quaternion

Approach and Cubic Polynomial Joint Trajectories with Torque Constraint.

3.3.1 Planning Straight Line Using Quaternion

Quaternions are an interesting mathematical concept with a deep relationship

with the foundations of algebra and number theory. They are invented by

W.R.Hamilton in 1843. In practice, they are most useful to us as a means of

representing orientations [36]. Quaternions can be used to represent the orienta-

tion of a manipulator for planning a straight-line trajectory [25].

Quaternions consist of complex numbers and are used to represent rotations in

the same way as complex numbers n the unit circle can represent planar rota-

tions. Unlike Euler Angles, quaternions give all prametrization of special or-

togonal cartesian space, by using four numbers instead of three for representing

rotations [34].

A Quaternion vector is represented as;

Q = q0 + q1i + q2j + q3k , qi ∈ R , i = 0, 1, 2, 3 (3.57)

where q0 is the scalar component of Q and ~q = (q1, q2, q3) is the vectoral com-

ponent. Shortly, it can be expressed as; Q = (q0, ~q) when q0 ∈ R and ~q ∈ R3.

The conjugate of a Quaternion Q = (q0, ~q) is given by Q∗ = (q0,−~q) and the

magnitude of a quaternion represented as ;

‖Q‖2 = Q · Q∗ = q2

0 + q2

1 + q2

2 + q2

3 (3.58)

The inverse of quaternion is Q−1 = Q∗/‖Q‖2. The unit quaternion has the

magnitude ‖Q‖ = 1, meaning that q2
0 + q2

1 + q2
2 + q2

3 = 1 [34].
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The multiplication of two quaternions, Q = (q0, ~q) and P = (p0, ~p), can be

represented as;

Q · P = (q0p0 − ~q · ~p , q0~p + p0~q + ~q × ~p) (3.59)

The rotation about axis n by an angle θ is represented by quternion;

Q(θ, n) = cos(θ/2) + sin(θ/2)n (3.60)

Our aim is to move the end-effector of the manipulator along a straight line path

between two knot points, specified by F0 and F1 in time T, where F0 and F1 are

homogeneous transformations represented as in equation (3.61);

Fi =


 Ri pi

0 1


 (3.61)

The motion along the path in which the origin of tool frame is translated from

p0 to p1 coupled with the rotation of tool frame orientation part from R0 to R1.

If λ(t) is the remaining fraction of motion, it is expressed for the uniform motion

as;

λ(t) =
T − t

T
(3.62)

where T is the total time for the motion and t is the start time of the motion.

The tool frame’s position and orientation is given as;

p(t) = p1 − λ(t)(p1 − p0) (3.63)

R(t) = R1 Q(−θλ(t), n) = R−1

0 R1 (3.64)

If the end-effector of the manipulator moves from one segment to another with

constant acceleration, it must accelerate or decelerate. In order to achieve this,

the transition should start at time τ before the arm reaches the intersection of

two segments and after the intersection complete its motion to the new segment

at time τ .

The Boundary conditions are;

p(T1 − τ) = p1 −
τ∆p1

T1

(3.65)

p(T1 + τ) = p1 +
τ∆p2

T2

(3.66)
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dp(t)

dt
|t=T1−τ =

∆p1

T1

(3.67)

dp(t)

dt
|t=T1+τ =

∆p2

T2

(3.68)

∆P1 = p1 − p2 , ∆P2 = p2 − p1 (3.69)

For constant acceleration;

d2p(t)

dt2
= ap (3.70)

Integrating the equation (3.70) twice and boundary conditions are applied;

p(t′) = p1 −
(τ − t′)2

4τT1

∆p1 +
(τ + t′)2

4τT2

∆p2 (3.71)

where t′ = T1 − t is the time from the intersection of two segments.

The orientation can be found as;

R(t′) = R1 Q[
−(τ − t′)2

4τT1

θ1, n] Q[
(τ + t′)2

4τT2

θ2, n] (3.72)

22



CHAPTER 4

Collision Avoidance Problem

Depending upon how efficient robots are utilized in a factory environment, there

may be a great deal of improvement in productivity, over-all cost reduction and

quality of the products. Cartesian robots are mostly used for simple repetitive

jobs, such as pick-and-place, machine loading and unloading, spray painting, and

spot welding. Only one robot in a workspace may limit the type of tasks that

can be performed. Two or more robots in a common workspace may be required

to perform a common task or just to improve the performance. For example,

multiple robots are needed to transport an object beyond the payload capability

of a single robot. The underlined idea here is to provide a practical methodology

that can make several robots operate safely in a common workspace. In the case

that more than one robot operate simultaneously in a common workspace, Hence,

the problem of avoiding potential collisions among the links of the robots should

be carefully considered.

To solve the collision avoidance problem, zone-blocking methods have been pro-

posed by several researchers such as Chang [31]. In such methods, only one

robot is assumed to operate at a time. So, this semaphore mechanism is not

efficient because of not providing the parallel tasking feature. Besides the zone-

blocking methods, there are other collision avoidance methods proposed for mul-

tiple robots. These methods can be divided into two categories:

(1) time adjusting methods while maintaining the given geometric path

(2) trajectory modification methods which modifies given geometric path

The former adjusts the time evolution representing the moving speed of robots

while the geometrical paths of the robots are fixed. The robot path, which

guarantees a robot not to collide with stationary obstacles, can be obtained using

some existing methods. One of the major features of time adjusting approaches

is that the number of variables to be considered for collision avoidance does not
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exceed the number of robots because one variable, usually the time, is enough to

express the moving speed for each robot. For instance, in the case of two robots,

at most two variables are needed for solving the collision avoidance problem.

This fact suggests that a collision avoidance problem in multiple robots can be

easily solved comparing with a collision avoidance problem for a single robot and

stationary.

4.1 Collision Types

Analyzing the collision conditions, five collision types are found for any two

straight-line moving objects when collision occurs in general. The possible colli-

sion types are described below:

Let a be the angle measured from the intersection of any two straight-line paths:

(1) Acute collision: collision of two objects with 0o < a < 90o;

(2) Obtuse collision: collision of two objects with 90o < a < 180o;

(3) Perpendicular collision: collision of two objects with a = 90o;

(4) San-Diego collision: collision of two objects when they are moving along

the same path and in the same direction, i.e., a = 0o, and the speed of

the object behind is higher than the speed of the object ahead; and

(5) Head-On collision: collision of two objects when they are moving along

the same path but in opposite directions, i.e., a = 180o.

Collision types (1), (2) and (3) can be avoided by simply changing the velocities

of the objects. Collision types (4) and (5) result when two moving objects have

parts of paths which coincide. We cannot avoid this collision by only adjusting

their speeds; the assigned path must be changed [37].

4.2 Collision Avoidance Methods

Many methods have been proposed in recent years to solve the problems of

collision-avoidance. Chang and his colleagues have proposed a simple time delay

method avoid collisions between two robot arms In their work, links of robots
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were approximated geometrically using polyhedra. The danger of collisions be-

tween two robots is expressed by a distance function associated with the robots

in a working space. The collision map scheme in the form of a 2D Traveling

Length v.s. Sampling Time (TLVST) graph can describe collisions between two

3D robots effectively [31].In a similar method in which the complex 3D prob-

lems are changed to simple 2D ones, Wu et. al. proposed that links of robots

in 3D can be simplified to a 2D Space/Time graph. Robots can move with the

proper velocity to avoid potential collisions with obstacles or with other robots

by constructing an optimal path on the Space/Time graph [32].

4.3 Collision Detection

4.3.1 Geometric Modeling of Robot Links

A robot can be modeled by a proper superquadric equation if there is a sufficient

number of given points on its links.Since an ellipse can be generalized to the su-

perquadric form (n-ellipse), a robot link can be modeled as an ellipse by applying

the fitting technique of superquadric modeling. In this way, the representation

of a link can be described in a simple mathematical equation. [37]. The general

equation of an ellipse is;

F (x, y) =
x2

r2
x

+
y2

r2
y

= 1 (4.1)

To examine whether a point, (xo, yo), resides in an ellipse or not, F(x, y) should

be calculated at that point. If F (xo, yo) > 1 , the point is located outside the

ellipse; otherwise the point is inside the boundary. The axes of the ellipse are

the controllable parameters when an ellipse is fitted to a link. The best fitting

function can be written as;

min
N∑

i=1

[R(xi, yi, rx, ry)]2 R(xi, yi, rx, ry) =
√

rxry(1 − F ) (4.2)

where xi, yi, i = 1, 2..N are the points on the modeled object; rx and ry are the

axes of the modeling ellipse. To solve the optimization equation, the parameters

rx and ry are searched in the limited range.

4.3.2 Distance Measure

To detect the collision between two robots, the distance between the links must be

computed and compared every instance of time. For the success of this process,

the robots should be modeled properly. Here, as the robots are 6 DOF cartesian
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robots, the distance measure computation between two robots are easier than

a serial manipulator. Because, there is no collision between the first two links

and it is enough to measure the distance between their third links with the tip

point which are perpendicular to each other. Thus, we only detect the distance

between the third links of the robot’s position to avoid collision [38].

4.3.3 Minimum Distance Functions

For collision avoidance of the 6 DOF Cartesian Robot system, the distance be-

tween the links should be calculated every instance of time and the minimum

distance between the links should be obtained. Minimum distance is calculated

by minimum distance functions. [28].

As d is the minimum distance between the robot links, it can be formulated as;

r = min‖pa − pb‖ (4.3)

In equation 4.3, pa − pb is the Euclidean distance between the two points pa

and pb. Since the third links of the cartesian robots are perpendicular to each

other, the distance between the links can be calculated easily. [16]. According

to the hardware made by Matlab, the distance between the links is calculated

simultaneously during the given trajectory and when the distance is smaller than

the value we obtain as the minimum distance, one of the robot’s links change its

trajectory.
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CHAPTER 5

Simulation Studies

5.1 System Description

Real life application of the research presented in this thesis is considered for two

6 DOF cartesian robotic arms sharing the same work space which is a pool less

than half of which is full of sand. One of the arms will be carrying the sender

antenna while the other arm will be carrying the receiver antenna so that the

collected data via electromagnetic waves can be used to construct 3 dimensional

image of the object burried under the sand forming an invisible object for a naked

eye.

As said before, the robots are 6DOF cartesian robot and have four joints; three

of them are prismatic joints and one of them is a spherical joint.

Figure 5.1: Virtual Reality Model of Cartesian Robots

The system is used for the determination of orientation of the bodies buried in

the sand which is in the base, also the electromagnetic waves sent to the sand

can help to predict the shape of the sand surface. The buried objects which are

in rough surfaces reflects the electromagnetic waves so that the orientation of the

objects can be screened by various methods. The goal of the project is to apply

these methods for determining the position of the buried objects. In robotic
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view, the cartesian robots in the common taskspace should move in the desired

trajectories without collision. Kinematic modeling, path planning and collision

avoidance are the works to be done.

5.2 Kinematic Model

H matrix is found as;

H =




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1.0000 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1.0000 0 0 0

0 0 0 0 0 0

0 0 0 0.9996 0.0161 0.0237

0 0 0 −0.0168 0.9994 0.0318

0 0 0 −0.0232 −0.0322 0.9992

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(5.1)

According to the frame assignments and from the equation J = σtφH , jacobian

of the cartesian robot 2 is calculated as in the following. The jacobian in (5.2) is

full rank, its determinant is not zero and it is not singular. So it has an inverse.
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J =




0 0 0 1.0000 0 0

0 0 0 0 1.0000 0

0 0 0 0 0 1.0000

0 1.0000 0 0 −0.5000 0

0 0 1.0000 0.5000 0 0

1.0000 0 0 0 0 0




(5.2)

When we give θ̇ as sinusoidal input, the tip velocity changes like the figure 5.2.In

the figure 5.2, the first three are angular velocities ωx, ωy and ωz and other three

are linear velocities of vx, vy and vz.
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Figure 5.2: The Tip Point’s Velocity

The joint velocities are found from V = φHθ̇, and for each joint there are three

angular velocity, (~ωx, ~ωy, ~ωz) and three linear velocity components( ~vx, ~vy , ~vz) .

In the figure 5.3, joint 1 has only linear velocity in z direction(vz) and all of other

components are zero. The angular and linear velocity components of the joint 2

are all zero as it is a prismatic joint and has linear velocity in x and z direction

as shown in figure 5.4. ~vz is linear velocity component coming from joint 1 and

~vx is linear velocity component of joint 2.

As seen in the first figure in 5.5, joint 3’s angular velocity components are zero

and there are three linear velocity components of joint three coming from joint

1(~vx), coming from joint 2(~vz) and linear velocity component of the joint 3(~vy).
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Figure 5.3: 6 axis velocity of Joint 1
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Figure 5.4: 6 axis velocity of Joint 2
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In the same figure right 5.6, joint 4 has both linear velocity and angular velocity

components in both directions because it is a spherical joint.
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Figure 5.5: 6 axis velocity of Joint 3

5.3 Path Planning

In the path planning of the cartesian robot, two path planning methods 4-3-4 and

3-5-3 path planning methods are used. As comparing this methods, a trajectory

is applied to the tip point for x, y and z direction. Then, the first and second

derivative of this trajectory gives us the velocity and acceleration of the tip point.

From the equation (5.3), multiplication of jacobian inverse with the derivative of

the trajectory(tip point’s velocity) gives us the joint’s velocity.

θ̇ = J−1Vtip (5.3)

5.3.1 4-3-4 Polynomial Trajectory

For 4-3-4 trajectory, the change of velocity and position according to the given

position (4-3-4 trajectory) is seen in figures 5.7,5.10. These trajectories were made

by fitting polynomials from one point to another point. The position change in x

axes is from 0 to 10 ,the position change in y axes is from 0 to 4 and the position

change in z axes is from 0 to 6. When we apply linear velocity to the tip point,

we can find the joint’s velocities from the equation (5.3).
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Figure 5.6: 6 axis velocity of Joint 4
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Figure 5.7: Position of Tip point for 4-3-4 trajectory
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Figure 5.8: Velocity of Tip point for 4-3-4 trajectory
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Figure 5.9: Acceleration of Tip point for 4-3-4 trajectory
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The figure 5.7,5.8 and 5.9 shows the position,velocity and acceleration of the

tip point for 4-3-4 polynomial trajectory. When we take the derivative of this

trajectory, velocity of the tip point is found. Second derivative of the polynomial

trajectory is the acceleration of the tip point.
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Figure 5.10: Position of Joints for 4-3-4 trajectory

In the figures 5.10, 5.11 and 5.12, the velocity and acceleration is continuous and

smooth. Initial and final values of the velocity and acceleration is zero. The

derivative and integral of the joint angle can be calculated from (5.4) and (5.5).

θ(k + 1) = θ(k) + dt · θ̇(k) (5.4)

θ̈(k − 1) = (θ̇(k − 1) − θ̇(k))/dt (5.5)

For joint angles, we can integrate the velocity of the joint as seen in (5.4) and

for the acceleration of joints, we derivate the θ̇ using equation (5.5). Since we

apply linear velocity, the acceleration and velocity we found are prismatic joints’

velocity and acceleration seen in the figures 5.10, 5.11 and 5.12.

5.3.2 3-5-3 Polynomial Trajectory

For 3-5-3 trajectory, the change of velocity and position according to the given

position (3-5-3 trajectory) is seen in figures 5.13, 5.14 and 5.15 . Joint velocities
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Figure 5.11: Velocity of Joints for 4-3-4 trajectory
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Figure 5.12: Acceleration of Joints for 4-3-4 trajectory
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can be found from (5.3), and velocities, acceleration and the position of the joints

are shown in figure 5.16.

In the figures 5.16, the velocity and acceleration is continuous and smooth. Initial

and Final values of the velocity and acceleration is zero. The derivative and

integral of the joint angle can be calculated from (5.4) and (5.5).
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Figure 5.13: Position of Tip point for 3-5-3 trajectory

For joint angles, we can integrate the velocity of the joint as seen in (5.4) and

for the acceleration of joints, we derivate the θ̇ using equation (5.5). Since we

apply linear velocity, the acceleration and velocity we found are prismatic joints’

velocity and acceleration seen in 5.16.

5.4 Collision Avoidance

To apply the method of collision avoidance, cartesian robots were modeled by

Matlab’s Virtual Reality Toolbox and method’s simulations were made by Mat-

lab’s software and the results were visualized by Virtual Reality. The applied

method used for the robots is minimum distance functions. The trajectories

given to the robots are 4-3-4 polynomial trajectories.

The program written in Matlab measures the distance between the cartesian

arm’s third links. If the distance between the robot links is zero, the collision

occurs. As seen in the figure 5.18, the collision occurs in the given trajectory

when the distance between the links is zero.

For collision avoidance, we obtain a minimum distance between the links and

when the robots are near to each other as near as the minimum distance Robot 2
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Figure 5.14: Velocity of Tip point for 3-5-3 trajectory
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Figure 5.15: Acceleration of Tip point for 3-5-3 trajectory
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Figure 5.16: Position, Velocity and Acceleration of Joints for 3-5-3 trajectory

Figure 5.17: Catia Model of the Cartesian Robots

38



changes its position and then continues to its old trajectory. Thus, the collision

avoidance is successfully applied to the system. The robots position change is

related with the minimum distance to make the arm far enough from the other

arm. It can be understood in figure 5.19, that the collision is prevented using

this method of minimum distance functions.
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Figure 5.18: Collision occurs in the given trajectory

When two different trajectories which we know collision occurs are given to the

system and collision avoidance technique are applied to the system, the collision

avoidance is observed seen in the figures 5.20.

It is seen in example virtual reality simulation in Appendix C.1 and C.2 that

two robots are going towards them and become closer at time t=t0 and t=t1. In

the other scene, at time t=t2 one of the robots changes its link orientation not

to collide with the other one. At time t=tf , the robot which avoided collision

returns to its original path and continues to its motion.
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Figure 5.20: Collision Avoidance for given trajectories
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CHAPTER 6

Conclusion

Two 6 DOF cartesian robotic arms sharing the same work space were modeled

using spatial operator algebra. Collision free path planning algorithms were de-

veloped using polynomial based paths. Time derivative of the obtained trajec-

tory for the tip point position and orientation was taken. Under a reasonable

assumption that neither of the arms is at a singular configuration, unique inverse

kinematic solution was achieved. This yielded the joint velocities. Taking the

time derivative of that gave us joint accelerations which was made sure to be

bounded so that while following the desired trajectory, the joints would not be

over loaded. The results were found to be satisfactory and displayed in Chapter

5. Visualization of the system was done using the “Virtual Reality Toolbox” of

MATLAB software.

The extend of this work is to apply these methodologies to a real system to be

manufactured. This will be possible by the grant under a project with TUBITAK.
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APPENDIX A

Initial Configuration of The Cartesian Robot 1
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Figure A.1: Cartesian robot 1
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APPENDIX B

Initial Configuration of The Cartesian Robot 2
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Figure B.1: Cartesian robot 2

46



APPENDIX C

Collision Avoidance in Virtual Reality Toolbox

Figure C.1: Collision Avoidance for given trajectories at time=0 and time=t1

Figure C.2: Collision Avoidance for given trajectories at time=t2 and time = tf
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