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YATAY EKSENLİ ÇAMAŞI R MAKİ NALARI NDA YARI- AKTİ F 

SÜSPANSİ YON KONTROL METODU KULLANI LARAK  

Tİ TREŞİ Mİ N SÖNÜMLENMESİ  

ÖZET 

Ça maşır  maki nal arı nda tambur  i çerisi nde ça maşırın düzgün dağıl ma ması  nedeni yl e 

ortaya çı kan dengesi z yük dağılı mı  mer kezkaç bir et ki  ol uşt ur makt adır.  Dengel enme mi ş 

yük dağılı mı yl a ol uşan merkezkaç et ki ni n büyükl üğü t a mbur un hı zı yl a artan titreşi ml ere 

neden ol ur.  Genli ği  en yüksek ol an titreşi ml er  sı kma  devri ne geçiş  sırası nda ol makt adır. 

Bu çalış mada,  titreşi m genli ği ni  azalt mak i çi n şu ana kadar  ça maşır maki nası nı n 

süspansi yon siste mi nde kullanılan kur u sürt ünmeli  sönü ml eyi ci  yeri ne manyet oreol oji k 

MR özelli kli  sönü ml eyici  kullanıl ması  öneril di. Süspansi yon siste mi ni n i ki  serbestli k 

dereceli  modeli ne literatür den alı nan MR sönü ml eyi ci  modeli  mont e edilerek yarı-aktif 

süspansi yon siste mi  ol uşturul du.  İki  serbestli k dereceli  yarı-aktif  ve pasif süspansi yon 

modelleri ni n perfor mansları,  titreşi m genli kleri  ve di key doğr ult uda il etilen kuvvetler 

göz önüne alı narak i ncel endi.  Bundan sonra açı k çevri m yarı-aktif  kontrol  met odu 

kullanılarak MR sönü ml eyi cili  süspansi yon modeli ni n davranışı  el e alı ndı.  Daha sonra 

yay,  sönü ml eyi ci  ve kütleden ol uşan i ki  serbestlik dereceli  pasif  süspansiyon modeli ne 

değişi k aktif  titreşi m kontrol  t ekni kl eri  uygul andı. Son  ol arak el e alı nan her  bir  kontrol 

met odunun,  dengel enmemi ş  yük dağılı mı yl a ol uşan titreşi ml eri  gi der medeki  et ki nli ği 

değerlendiril di.  
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VI BRATI ON SUPPRESSI ON AND REDUCTI ON OF WALK TENDENCY I N 

HORI ZONTAL AXI S WAS HI NG MACHI NES USI NG SEMI- ACTI VE AND 

ACTI VE SUSPENSI ON CONTROL METHODS  

SUMMARY 

The mai n source of  vi brati on pr obl e ms  i n washing machi nes  i s  due t o t he centrifugal 

forces  of  t he r ot ati ng unbal anced l aundr y.  These centrifugal  forces  generat e vi brati ons 

whose a mplit udes  i ncrease wit h t he r ot ational  speed of  t he dr um and reach a  peak 

duri ng t he transi ent  period from washi ng t o spi n-extracti on.  The use of  magnet o-

rheol ogi cal  da mpers  i n t he dr um suspensi on is consi dered here i n pl ace of  t he 

cust omaril y used passi ve da mpers  t o enhance vi brati on suppressi on.  I n t hi s t hesis,  a MR 

da mper  model  t aken from t he literat ure i s  used al ong wit h a li near  si ngle degree of 

freedom model  of  t he suspensi on syst e m of  t he washi ng machi ne.  Perfor mances  of  bot h 

passi ve and se mi -acti ve suspensi on syst e m models of  t he washi ng machine regar di ng 

displ ace ment  a mplit ude and t he verticall y trans mitted f orce are i nvesti gated first.  Aft er 

that,  an open-l oop se mi -acti ve control  met hod is i mpl e ment ed on t he linear  si ngl e 

degree of  freedom model  of  t he suspensi on syst em i ncl udi ng MR da mper i n pl ace of 

vi scous  da mper.  Fi nall y, acti ve vi brati on control met hods  are applied t o t he passi ve 

suspensi on model  consisting of  a  spri ng,  vi scous  da mper  and mass  and effecti veness  of 

each control  met hod i n suppressi ng t he vi brations  creat ed by unbal anced l aundr y i s 

eval uat ed.  
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1.  I NTRODUCTI ON 

The washi ng machi nes in t he mar ket can be classified as horizont al axis and vertical 

axis accordi ng t o t he axis of rotation of t heir drums. The horizont al axis washers are 

mor e common i n European countries while vertical axis washers are more popul ar i n 

the USA and far east countries. The wal k probl e m of bot h horizont al and vertical axis 

washers was i nvesti gat ed usi ng si mpl e models by Conrad and Soedel (1995). It was 

shown t hat the vertical axis washers tend t o walk in a bounded regi on whil e t he 

horizont al ones tend t o wal k i n an unbounded fashi on. Hori zont al axis washers are, 

nevert hel es, preferred i n several countries as t hey consume less wat er, detergent and 

el ectrical energy. Bei ng space savers, the horizont al axis washers are also very 

suitabl e for i nstallati on under kitchen or bat hroom count ers. To take full advant age of 

horizont al axis washers, their wal k tendency has t o be mi ni mi zed. Conrad and Soedel 

(1995) consi der t he si mplified horizont al axis washi ng machi ne for t he constant spi n 

speed and unbal anced laundr y over t he ti me. In their wor k, they assumed a Coul omb 

dr y fricti on model wit h a const ant coefficient of fricti on and assumed t hat t he 

washi ng machi ne re mai ns i n cont act wit h t he fl oor. In fact, for t he 3D model of t he 

washi ng machi ne, coeffici ent of fricti on present on each foot of t he washi ng machi ne 

changes accordi ng t o t he fl oor properties. Moreover, the reacti on forces applied t o 

each foot of t he washi ng machi ne alter wit h respect t o t he positi on of t he unbal anced 

laundry. As a result, the wal ki ng directi on of t he washi ng machi ne changes by t he 

above menti oned fact ors. However, to si mplify the t heoretical anal ysis, the si ngl e 

degree of freedom suspensi on model of t he horizont al axis washi ng machine is used 

for i nvesti gati ng t he wal k tendency of t he horizont al axis washer t hrough t he 

washi ng cycle. 

The mai n source of vibrati on probl e ms i n washi ng machi nes are due t o t he 

centrifugal forces of t he rot ating unbal anced laundry. The magnit ude of t hese 

centrifugal forces depends on t he locati on and t he wei ght of t he unbalanced laundr y 

as well as t he rot ational speed of t he drum. All these fact ors affecti ng t he magnit ude 

of t he centrifugal forces vary duri ng t he operati on of t he washi ng machi ne. To da mp 
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the vi brati ons generat ed by t he centrifugal forces, fricti on t ype shock absor bers are 

bei ng used. However, these shock absorbers fail to compensat e for vi brations whose 

a mplit udes change during t he operati on of t he washi ng machi ne. Duri ng t he 

resonance conditi on (t he begi nni ng and at the end of t he spi n cycl e) at whi ch 

vi brati ons and forces t hat are trans mitted t hrough t he suspensi on unit reach t heir 

maxi mu m val ues, increased da mpi ng is needed to attenuate vi brati ons generat ed and 

to reduce t he a mount of the horizont all y trans mitted forces whi ch can cause sli di ng 

( wal k) of t he cabi net. On t he ot her hand, opti mum da mpi ng is required for mi ni mal 

force trans mi ssi on after the drum reaches spin speed.  To sol ve t he conflicti ng 

require ment of hi gh dampi ng duri ng t he resonance conditi on and l ow da mpi ng 

duri ng t he spi n cycl e t he use of variabl e da mpi ng devi ces li ke MR da mpers can be 

used. In a magnet orheological ( MR) da mper, a magnet orheol ogi cal fl uid whose 

rheol ogy varies wit h t he applied magnetic fiel d is used. Nu mer ous models have been 

devel oped for MR da mpers and correspondi ng mechani cal models have also been 

pr oposed for t he m.  

These thesis concentrates on se mi -acti ve and active suspensi on control met hods for 

vi brati on suppressi on and for reduci ng t he wal k tendency of horizont al axis washers. 

In t his t hesis, the si ngl e degree of freedom model of t he washi ng machi ne suspensi on 

syste m is used i n order to si mplify t he theoretical anal ysis for passi ve, se mi -acti ve 

and acti ve suspensi on syst e ms. First, perfor mances of bot h an opti mum passi ve 

suspensi on syst e m model availabl e i n t he literature and a se mi -acti ve suspensi on 

syste m model consisti ng of a spri ng and MR damper are i nvasti gat ed concentrati ng 

on displ ace ment a mplitude and t he verticall y trans mitted force. Aft er that, se mi -

acti ve and acti ve vi bration control met hods are i mpl e ment ed i n a si mul ati on st udy t o 

the washi ng machi ne suspensi on syste m and t he effecti veness of each met hod i n 

suppressi ng t he vi brations creat ed by unbal anced laundr y is eval uat ed.  

The organi zati on of t he thesis is as follows. In Chapt er 2, infor mati on on bot h t he 

physi cal and mat he mati cal models of a washi ng machi ne suspensi on syste m and t he 

control al gorithms developed for se mi -acti ve syst e ms is gi ven. Usi ng the si ngl e 

dgree of freedom model of a washi ng machine suspensi on syste m for med by 

reduci ng t he syste m t o a set of masses, spri ngs and shock absorbers, the effect of t he 

charact eristics of t he suspensi on syst e m on t he washi ng machi ne perfor mance is 

exa mi ned. In Chapt er 3, the effects of t he unbalance on t he vi brati on of the t ub and 
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on t he mot or of t he washi ng machi ne are discussed.  In Chapt er 4, infor mation about 

bot h controllabl e fl ui ds and t he devi ces whi ch make use of t heir uni que properties is 

gi ven and models devel oped for t hese controllable devi ces are i nvesti gat ed i n det ail. 

Co mparison of passi ve and se mi -acti ve vi bration control is anal yzed first in Chapt er 

5 and t hen acti ve control al gorithms are i mpl e ment ed on t he si ngl e dgree of freedo m 

model. The t hesis ends with t he concl usi ons summarized i n Chapt er 6.  
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2.  MODELLI NG PRIMARY SUSPENSI ON AND VI BRATI ON CONTROL 

Thi s  secti on gi ves  i nformati on on bot h t he physical  and mat he matical  models  of  a 

washi ng machi ne suspensi on syst e m and control  al gorithms  devel oped f or  se mi -

acti ve syst e ms.  

The si mplified physi cal  model  of  a  washi ng machi ne suspensi on syst e m has  been 

for med by reduci ng t he syst e m t o a  set  of  masses, spri ngs  and shock absorbers  usi ng 

si mplifyi ng assumpti ons by Tür kay and Taşpı nar  ( 1995).  The si mplified physi cal 

model  i s  present ed i n Figure 2. 1.  The t ot al  mass  of  t he oscillati ng parts co mposed of 

the t ub,  drum,  pulley,  motor,  heat er,  count er wei ghts and t he l aundr y i s  denot ed by M.  

The mass  of  t he unbal anced l oad whi ch det er mi nes  t he magnit ude of  t he centrifugal 

force i s  denot ed by m u .  The ext ernal  forces  on t he oscillati ng mass  are trans mitted 

by t he suspensi on spri ngs,  shock absorbers  and front  door  bell ows.  The tot al  f orce 

can be deco mposed i nto spri ng and vi scous  da mper  el e ment  f orces.  The  mot or 

generat es  a t orque t hat  usuall y r ot ates  t he dr um wi t h a  pulley and belt  arrange ment. 

Not e t hat  t he mot or  dri ves  t he dr um directl y i n a direct  dri ve arrange ment  whi ch i s 

also consi dered i n t his  thesis.  The t orque pr oduced at  t he dr um shaft  rotat es  t he 

dr um.  

 

Fi gure 2. 1. Si mplified physi cal model of t he syst em 

The t ub of  t he washi ng machi ne syst e m has  si x degrees  of  freedo m of  rigi d body 

moti on.  To si mplify t he theoretical  anal ysis for  impl e ment ati on of  vi bration control 
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al gorithms,  a si ngl e degree of  freedo m ( SDOF)  suspensi on model  t hat  parallels t hat 

pr oposed by Tür kay and Taşpı nar  ( 1995)  i s used t hroughout  t his  thesis,  and 

expl ai ned i n det ail in subsequent secti ons.  

2. 1.  Physi cal Model  

The hori zont al  axis  front l oadi ng washi ng machi ne syst e m consi dered i n t his st udy i s 

sche maticall y represent ed as i n Fi gure 2. 2 

 

Fi gure 2. 2. Sche matic view of the washi ng machi ne (from Türkay and Taşpı nar, 1995)  

In general,  t he washi ng machi ne syst e m can be investi gat ed i n t hree main gr oups. 

These are t he washi ng unit,  suspensi on unit  and the body or  cabi net.  The washi ng 

unit  consists of  a  hori zont al  t ub,  an el ectric mot or  l ocat ed at  t he bott om,  concret e 

count er  wei ghts  l ocat ed at  t he front  and t op,  a hori zont al  dr um whi ch r otates  on its 

axis  and i n alternati ng directions,  a shaft  whi ch i s  connected t o t he t ub by beari ngs 

and ri gi dl y connect ed t o the dr um,  a belt-pulley mechanis m l ocat ed at  t he back and a 

heat er  l ocat ed bet ween t he t ub and t he dr um.  The suspensi on unit  supporti ng t he 

dr um-t ub- mot or  asse mbl y i s  co mposed of  t wo dr y fricti on shock-absorbers,  f our 

spri ngs  and circul ar  pl astic bell ows.  The cabi net  consists of  a  control panel,  a 

det ergent  di spenser  whi ch rese mbl es  a dra wer  locat ed at  t he front  of  t he washi ng 

machi ne,  a pu mp,  a drain hose and circul ar  door t hrough whi ch l aundr y is pl aced. 

The cabi net  st andi ng with f our  pl astic supports  (or  feet)  on t he gr ound encl oses  t he 

suspensi on,  washi ng uni t  and t he ot her  el ectrical  and mechani cal  el e ment s  of  t he 

washi ng machi ne.  
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2. 1. 1  Shock absorbers 

The dr y fricti on shock absorbers  are connect ed t o the t ub and t he cabi net  by revol ut e 

joi nts.  They are used t o di ssi pat e energy t o modify t he response of  t he syst e m t o 

shocks  and excitati on forces.  They are consi dered t o operat e wit h a co mbi ned 

viscous  and Coul omb f ricti on pri nci pl e.  The resisti ve f orce generat ed by t hese 

absorbers was expressed in ( Türkay, 1993) as;  

 )( CVA FFF   (2. 1) 

where VF  is the viscous dampi ng force and CF  is the coul omb fricti on force.  

 

Fi gure 2. 3. Shock absorber model (from Tür kay, 1993)  

Vi scous  da mpi ng pr ovi ded by t hese devi ces  i s  due t o t he di ssi pati on of  energy t hat 

occurs  as  t he syst e m i s  resisted by a  f orce t hat  has  a magnit ude pr oportional  t o t he 

magnit ude of  t he vel ocity and a  directi on opposite t o its  directi on.  Thi s  effect  occurs 

when t he pi st on of  t he damper  decreases  t he vol ume  and i ncreases  t he pressure of  t he 

fl ui d i n t he da mper.  The flui d tries  t o pass  fr om a  narrow space and exerts a resisti ve 

force.  The Coul omb fricti on f orce results from t he rel ati ve moti on of  t wo soli ds 

me mbers hel d toget her under pressure and opposes t he intended directi on of moti on.  

2. 1. 2 Bell ows 

The bell ows  i s  a  circul ar  component  t hat  connects t he washi ng machi ne tub t o t he 

out er  body at  t he front  door  of  t he machi ne and mai nt ai ns  t he wat er  i n t he t ub.  It  act s 

as a non li near spri ng and da mpi ng el e ment.  
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2. 2  Si mplified Mat he matical  Model  of  t he Was hi ng Machi ne Sus pensi on 

Syste m 

The act ual  model  of  t he washi ng machi ne shown i n t he Fi gure 2. 2 i s  si mplified f or 

vi brati on control  i n t he l ight  of  assumpti ons  t hat  are backed by experi mental  results 

( Tür kay and Taşpı nar,  1995).  A si ngl e degree of freedom model  ( SDOF)  consisti ng 

of  a mass,  a spri ng,  and an equi val ent  vi scous  da mper  i s  f or med f or  si mplicit y of 

initial  anal ysis rat her  t han usi ng a  model  havi ng si x degrees  of  freedom ( Tür kay, 

1995). 

The si mplified model  of  t he washi ng machi ne r epl aci ng t he dr y fricti on shock 

absorbers wit h an equi valent viscous da mpi ng is shown i n Fi gure 2. 4 

 

Fi gure 2. 4. Si mplified SDOF Li near Model  

The equati on of moti on of the si ngle degree of freedo m model is gi ven as 

 )(tFxkxcxM eqeq    (2. 2) 

where M,  ceq   and keq   denot e equi val ent  mass,  da mpi ng and stiffness  para met ers  of 

the si mplified syst e m,  respecti vel y.  In t his  equation,  F(t)  represents  t he centrifugal 

force generat ed by t he unbal anced laundry and is given by 

 tSinmtFtF uo  2sin)(   (2. 3) 

Where mu and   are t he unbal anced eccentricity ( unbal anced mass  ti mes 

eccentricit y) and t he drum spi n speed, respecti vely.  
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Model  para met ers  of  t he si mplified si ngl e degree of  freedom syst e m are t aken from 

the wor k of Türkay and Taşpı nar (1995) and are listed i n Tabl e 2. 1 

Tabl e 2. 1. Para met ers for the si mplified model (fro m Tür kay and Taşpı nar, 1995)  

PARAMETER VALUE 

Tub- drum mass, M 61 kg 

Eccentric mass, mu 0. 7 kgm 

Stiffnes, keq  16000 N/ m 

Equi val ent da mpi ng, ceq  515 Ns/ m 

Unda mped nat ural frequency, n  16 rad/sec 

Non- di mensi onal spi n-dry speed, n/r                                                             54/ 16 = 3. 4 

Equi val ent da mpi ng factor,  

 eq eq eqc k M / 2  

0. 26 

2. 3  Passi ve Suspensi on and Passi ve Vi brati on Suppressi on  

Until  now,  vi brati on control  of  washi ng machi nes  has  been i mpl e ment ed i n a  passi ve 

manner  by adj usti ng t he mass,  stiffness  and da mpi ng para met ers  of  t he suspensi on 

unit.  To suppress  t he a mplitude of  excitati ons  creat ed by unbal anced l aundr y,  a  l arge 

a mount  of  mass  i n t he for m of  concret e or  cast  iron are added t o t he syst e m t o 

increase t he t ot al  mass  of  t he t ub-drum asse mbl y.  The mai n pr obl e m encount ered i n 

the washi ng machi ne i s wal ki ng of  t he washi ng machi ne caused by horizont all y 

trans mitted f orces.  Fr om equati on ( 2. 2)  t he steady st ate (static)  response of  t he 

syste m t o f orces  generat ed by unbal anced l aundr y can be  obt ai ned assumi ng a 

sol uti on: 

 x t x ei t( ) ( )    (2. 4) 

and substit uting ( 2. 4)  i nto equati on ( 2. 2).  Aft er  some al gebrai c mani pulati ons  and 

letti ng F(t) equal F eo
i t  we get the steady state a mplitude as; 

 x
F

k
H j

F
k

r req

eq

eq

( ) ( )
( ) ( )

 


 
 

0

0

2 2 21 2
 (2. 5) 
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 )t.sin().(x)t(x    (2. 6) 

where 

 
2

1

r1

r2
tan


  

  (2. 7) 

Aft er  obt ai ni ng t he st eady st ate a mplit ude of  t he syste m,  we  can co mput e t he f orce 

trans mitted t o t he base of  t he washi ng machi ne.  Fr om fi gure 2. 4,  it  i s  deduced t hat 

the verticall y trans mitted force can be acquired as: 

 )t(xk)t(xc)t(F eqeqver    (2. 8) 

Putti ng t he val ue of  x(t) from equati ons  ( 2. 5)-(2. 7)  i nt o equati on ( 2. 8),  the  st eady 

state a mplit ude of t he verticall y trans mitted force is found t o be   
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uver
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)r2(1
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  (2. 9) 

Fi gure 2. 5 illustrates a typi cal wash cycl e for a horizont al axis washi ng machi ne i n 

ter ms of drum rot ati onal speed i n revol uti ons per mi nut e ( RP M) versus ti me. The 

cycl e from T1 t o T2 represents a wash cycle i n whi ch t he rotati ng me mber (drum 

asse mbl y) execut es reci procati ng rot ations. As the drum rot ation accel erates i nt o t he 

spi n cycl e, represent ed by t he peri od from T3 to T4, the drum asse mbl y passes 

through a resonance conditi on (critical speed), whi ch is shown i n Fi gure 2. 6 bet ween 

speed poi nts A and B that results in t he largest trans mitted force. The washi ng 

machi ne operati on may incl ude more wash and spi n-extracti on cycl es dependi ng on 

its model and t he washing progra m t hat is chosen. The critical speed may, t hus, be 

reached more t han once duri ng a washi ng operation.  

 

Fi gure 2. 5. A t ypical wash cycl e for a horizont al axis washi ng machi ne 
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Fi gure 2. 6. Hori zont all y trans mitted force versus spi n speed 

The sli di ng of  t he cabi net  i s  li kel y t o happen during t he resonance condi tion of  t he 

wash cycl e,  si nce duri ng t his  conditi on,  t he horizont al  forces  trans mitted t o t he 

cabi net  t hrough t he suspensi on of  t he washi ng machi ne can exceed t he fricti onal 

force i n t he sa me  direction.  The hori zont all y trans mitted f orce i s  assumed t o be 

appr oxi mat el y one quarter  of  t he verticall y transmi tt ed one.  Usi ng equation ( 2. 9),  t he 

horizont all y trans mitted forces  f or  t wo da mpi ng val ues  are obt ai ned and plotted as  i n 

Fi gure 2. 6.  It  can be seen t hat  i ncreased dampi ng i s  advant ageous duri ng t he 

resonance conditi on (t he begi nni ng and at  t he end of  t he spi n cycl e)  whi ch i s  shown 

in Fi gure 2. 6 bet ween speed poi nts 10 rad/s  and 25 rad/s.  Ho wever, i ncreased 

da mpi ng will  cause t he cabi net  t o sli de after  t he dr um r eaches  spi n speed,  so l ow 

da mpi ng i s  required f or mi ni mal  f orce trans mi ssi on after  t he dr um r eaches  spi n 

speed.  As  a  result,  t he passi ve suspensi on syst e m pr ovi des  desi gn si mplicity and cost 

effecti veness, but t he perfor mance li mitations menti oned above are also i nevitabl e.  

 

 

 

 

A                    B 



 12 

2. 4.  Vi brati on Suppressi on Mechanis ms  

To reduce undesirabl e vi brati ons  i n mechani cal  syst e ms  generat ed by ext ernal 

di st urbances,  nu mer ous vi brati on suppressi on mechanis ms  are developed and 

i mpl e ment ed.  In t his  st udy,  we  menti on passi ve,  se mi -acti ve and acti ve suspensi on 

syste ms and vi brati on absorbers. 

2. 4. 1 Vi brati on absorbers 

Among t he possi bl e ways  of  reduci ng undesirable vi brati ons  i n mechani cal  syst e ms, 

vi brati on absorbers  are used when i nt ernal  modificati on t o t he mai n syst e m are 

difficult to carry out.  

The passi ve vi brati on absorber  i s  itself  a passi ve vi brati ng syst e m,  whi ch consists  of 

a mass,  a spri ng and perhaps  a da mper.  The model  of  a  passi ve vi brati on absorber  i s 

shown i n Fi gure 2. 7 

 

Fi gure 2. 7. Passi ve Vi bration Absorber 

Passi ve vi brati on absorbers  attached t o pri mar y struct ures  have l ong been used t o 

suppress  vi brati ons  generated by ext ernal  dist urbances.  They are quite effecti ve 

wit hi n a narrow band of  frequenci es  t hat  are t uned f or  ( El mali,  Renzulli  and Ol gaç, 

2000).  For  t he vi bration creat ed by excitati ons  (i.e.,  of  si ngl e har moni c),  the  gr ound 

rule of  absorpti on i s  t hat t he pri mar y struct ure can be br ought  t o rest  if  t he vi brati on 

absorber  attached t o it  has  i deal  resonance pr operties  at  t he frequency of  excit ati on 

( El mali,  Renzulli  and Ol gaç,  2000).  The i deal  resonance can be achi eved onl y if  t he 

absorber  has  no da mpi ng,  whi ch i s  oft en not  feasibl e because every physi cal  syst e m 

has  some  degree of  dampi ng.  As  a  result,  passi ve vi brati on absorbers  can not 
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compl et el y suppress  t he t onal  vi brations  ( Elmali,  Renzulli  and Ol gaç,  2000). 

Furt her more,  passi ve vi bration absorbers  are not  effecti ve if  a wi de frequency range 

of  excitati on i s  present  since co mbi ned syst e m ( pri mar y syst e m + passi ve vi brati on 

absorber)  exhi bits l arge r esonance response at  ot her  frequenci es  ( Soom and Lee, 

1983) 

Recentl y,  t here i s  a growi ng i nt erest  i n acti ve vi brati on absorbers.  However,  a 

common desi gn met hodology f or  general  usage of acti ve vi brati on absorbers has  not 

been est ablished yet  ( Elmali,  Renzulli  and Ol gaç,  2000).  El mali,  Renzulli and Ol gaç 

(2000)  devel oped an acti ve vi bration absorption t echni que called t he Del ayed 

Resonat or  ( DR)  t hat  uses  a ti me del ayed positi on feedback as  control  l ogi c.  When 

the pr oporti onal  gai n and t he feedback del ay are pr operl y sel ect ed,  thi s  si mpl e 

control  adj usts t he absorber  t o become  a  resonat or  at  a  desired frequency t hat  i s 

tunabl e i n real  ti me ( El mali,  Renzulli  and Ol gaç,  2000).  When attached t o a  pri mar y 

struct ure,  t he resonat or  re moves  all  oscillati ons at  t he resonance frequency at  t he 

poi nt  of  attachment.  A s ingle degree of  freedo m syste m wit h a  del ayed resonat or  i s 

shown i n Fi gure 2. 8.  

 

Fi gure 2. 8. SDOF Pri mary Syst e m wit h PR Resonat or (from Ol gaç, 2000)  
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2. 4. 2  Se mi-acti ve suspensi on and se mi -acti ve vibrati on control  

Se mi -acti ve suspensi on syst e ms  co mbi ne t he best  feat ures  of  bot h acti ve and passi ve 

control  syst e ms  and t hus offer  t he reliability of  passi ve syst e ms  by mai ntai ni ng t he 

versatility and adapt ability of full y acti ve syste ms.  

Was hi ng machi nes  e mpl oyi ng ne w controllabl e da mpers  of  t he el ectrorheol ogi cal 

and magnet orheol ogi cal t ype have been developed recentl y.  These da mpers  are 

cl assified as  se mi -acti ve da mpers  si nce t hey can onl y pr ovi de di ssi pative f orces 

pr oporti onal  t o t he voltage applied t o t he m.  These controllabl e devi ces  have a 

relati vel y si mpl e mechanis m and s mall  response ti me.  The f urt her  develop ment  of 

these devi ces  has  t herefore been pr ogressi ng rapi dl y.  Moreover,  t he mai n 

charact eristic of  t hese devi ces  i s  t hat  t hey vary t heir  dyna mi c pr operties  wit h a 

mi ni mal  a mount  of  power  ( Spencer  and Sai n,  1997).  Al so,  t hey are expected t o offer 

effecti ve perfor mance over  a  variet y of  a mplit ude and frequency ranges.  The ot her 

attracti ve feat ures  are t heir  si mpl e mechanis m,  reliability and st abilit y ( Dyke,  Launa 

and Jansen, 1997). 

In t his  st udy,  a se mi  active suspensi on syst e m consisti ng of  t he conventi onal  spri ng 

el e ment  and a  controllabl e da mper,  MR da mper  is  used.  Se mi  acti ve suspensi on 

syste m of t he si mplified washi ng machi ne model is illustrated in Fi gure 2.9.  

 

Fi gure 2. 9. The Se mi -active Suspensi on 

In t his  t ype of  se mi-acti ve suspensi on syst em,  t he fl ui d’s  magnet orheol ogi cal 

pr opert y all ows  t he effective vi scosit y of  t he worki ng fl ui d i nsi de t he damper  t o be 

altered by varyi ng t he applied magnetic fi el d.  The l evel  of  da mpi ng present  i n t he 
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syste m can be det er mi ned and adj usted by an el ectroni c controller  duri ng t he 

operati on of t he washi ng machi ne.  

Si nce a decade,  t here have been moder n vi bration control  t echni ques  t hat  have f ound 

commercial  applications. These devel opments  have been due t o t he possibilit y of 

el ectroni call y controlling t he charact eristics of  ne w act uat ors such as 

el ectromagnetic,  pi ezoelectric,  se mi -acti ve hydraulic and ER or  MR flui d based 

devi ces.  Among t hese,  piezoelectric act uat ors  are not  applicable t o syst ems  havi ng 

large vi brati on a mplit ude such as  t he case of  a washi ng machi ne.  The hydraulic 

shock absorbers  usi ng el ectromagnetic act uat or t o vary val ve openi ng need a 

hydraulic syst e m t o be operat ed.  The hydraulic syst e m consisti ng mai nl y of  pressure 

control  val ves,  accumul ator,  oil  reservoir,  check val ves,  et c adds  additi onal  cost  t o 

the washi ng machi ne syste m,  so t he se mi -acti ve hydraulic shock absorbers  are not 

applicable f or  washi ng machi nes.  On t he ot her  hand,  MR devi ces  can generate f orces 

up t o 3000 N wi t h a peak power  of  l ess  t han 10 Watts  and are si mpl er  t o desi gn and 

manufact ure and l ess  costly t han t heir  count erparts.  Therefore,  i n t hi s  st udy,  t he MR 

devi ces  are i ncorporat ed i nt o t he washi ng machine suspensi on syst e m i n or der  t o 

pr ovi de t he required da mpi ng val ues for t he whol e spectrum of speeds used. 

Se mi -acti ve vi brati on control  met hod relies  on changi ng t he charact eristic of  t he 

act uat or  usi ng a l ow control  energy i nput.  This control  can be i mpl e ment ed i n an 

open-l oop or  cl osed-l oop manner  dependi ng on the dyna mi cs  and excitation of  t he 

syste m t o be controlled.  

Nu mer ous  control  al gorithms  have been adopt ed f or  se mi -acti ve syst e ms.  The one 

concerni ng t he washi ng machi ne syst e m i s  Taşpınar’s  (1992)  wor k t hat  presents  a 

open-l oop se mi -acti ve vibrati on control  met hod of  a  si mplified si ngl e degree of 

freedom model  of  a  horizont al-axis  washi ng machi ne.  In t his  wor k,  t he se mi  acti ve 

control  t echni que i s  f or mul at ed off-li ne t o opti mi ze t he da mpi ng and stiffness 

variabl es  i n or der  t o mini mi ze t he vi brati on amplit ude of  a  si mplified washi ng 

machi ne model  subj ect  to resisti ve sli di ng f orce constrai nt  of  t he cabi net.  Then,  t hese 

opti mu m val ues  are st ored and applied on-li ne to t he t ub e mpl oyi ng an open-l oop 

strategy.  
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2. 5.  Se mi- Acti ve Vi bration Control of the Washi ng Machi ne Suspension Syste m 

In t his  opti mi zati on pr obl e m,  avoi di ng t he sli ding of  t he cabi net  wit h respect  t o 

gr ound was  t aken as  a constrai nt.  Sli di ng woul d occur  if  t he resultant  of  horizont al 

forces  trans mitted t o t he gr ound i s  great er  t han t he resultant  of  t he fricti onal  f orce i n 

the sa me directi on. The resisti ve sli di ng force vector is defi ned i n Taşpı nar (1993) as; 

 F F Frsf ver hor .  (2. 10) 

 F Fver hor  

Frsf  0 

where  ,  Fver ,  and Fhor  are t he fricti on coefficient  bet ween t he base of  t he 

machi ne and t he fl oor  and t he resultant  of  verticall y and hori zont all y trans mitted 

dyna mi c force vect ors, respecti vel y.  

In or der  t o det er mi ne t he coefficient  of  fricti on,  an experi ment al  st udy was  made at  a 

manufact urer  of  a washing machi ne co mpany.  The machi ne was  pulled horizont all y 

wi t h an i ncreasi ng f orce applied parallel  t o t he floor  The t ot al  mass  of  the  washi ng 

machi ne used was  about  77 kg.  On a  dr y characteristic bat hroom fl oor,  t he machi ne 

started t o move i n t he horizont al  directi on when the applied f orce was  about  355 N.  

On t he ot her  hand,  t he moti on was  acti vat ed wi th 225 N when t he fl oor was  wet. 

Thus, t he wet and dry floor coefficient of fricti on were calculat ed as  
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77 981
0298 ~ 0. 3 (2. 11) 
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047=~0. 5 (2. 12) 

The coefficient  of  fricti on will  be t aken as  0. 4 here i n or der  t o obt ai n more realistic 

results. 

The cabi net  of  t he washing machi ne will  not  move if  t he resisti ve sli ding f orce i s 

positi ve,  Frsf  ≥0.  By usi ng equati on ( 2. 10)  we  can co mput e t he resisti ve slidi ng f orce 
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for  t he act ual  washi ng machi ne.  For  t he si mplified model,  we  have already cal cul at ed 

the st atic val ue of  t he vertically trans mitted f orce as  i n equati on ( 2. 9).  Based on t he 

experi ment al  observati ons  i n a manufact urer  of  washi ng machi nes,  t he horizont all y 

trans mitted f orce was  seen t o be appr oxi matel y one quart er  of  t he verticall y 

trans mitted one.  Thus,  the resisti ve sli di ng f orce of  t he si ngl e degree of  freedo m 

model can be obt ai ned as 

 F W Frsf ver( ) . ( )    025  (2. 13)  

 

   
F W m

r

r r
rsf u( ) .

( )
 

 


 



 

025
1 2

1 2

2 2

2 2 2
 (2. 14)  

where W denot es  t he t ot al  wei ght  of  t he washi ng machi ne syst e m and i s  used i nst ead 

of Fver  in (2. 10) assumi ng static conditi ons.  

The st atic di spl ace ment  a mplit ude and resisti ve slidi ng f orce Fr sf   of  t he model  t hat 

are comput ed f or  different  da mpi ng and stiffness val ues  usi ng equati ons  (2. 5)  and 

(2. 14)  are di spl ayed i n Figures  2. 10 t o 2. 13.  In Figure 2. 10 and 2. 11,  it  i s seen t hat 

hol di ng t he da mpi ng at  its no mi nal  val ue and i ncreasi ng t he stiffness  i ncreases  t he 

di spl ace ment  a mplit ude and causes  sli di ng of  t he cabi net  for  k = 32000 N/ m.  Hence, 

a soft  spri ng gi ves  a better  perfor mance t han a hard spri ng regardi ng t he amplit ude of 

vi brati on and wal ki ng of  t he cabi net.  Ho wever,  t his  may not  be per mi ssi bl e i n a 

gi ven desi gn si nce a t hreshol d val ue of  mi ni mu m stiffness  i s  necessary t o provi de t he 

static l oad carryi ng capacity of  t he suspensi on syste m.  On t he ot her  hand,  hol di ng t he 

stiffness  at  its  no mi nal val ue and i ncreasi ng the da mpi ng decreases t he st atic 

di spl ace ment  a mplit ude.  Ho wever,  t he da mpi ng val ues  of  c  = 750 Ns/ m and c  = 1000 

Ns/ m,  at  around   400 r p m ( 42 r ad/sec)  and   500 r pm ( 52 rad/sec),  respecti vel y 

cause t he cabi net  t o sli de.  Consequentl y,  from Fi gure 2. 12 and 2. 13,  it  i s  underst ood 

that  whil e i ncreased da mpi ng i s  advant ageous  during resonance,  i ncreased da mpi ng 

wi ll  cause more f orce t o be trans mitted after  t he drum r eaches  spi n speed.  Therefore, 

low da mpi ng i s  required f or  mi ni mal  f orce transmi ssi on after  t he dr um r eaches  spi n 

speed.  

To fi nd t he appr opriate da mpi ng and stiffness  values  f or  mi ni mu m f orce trans mi ssi on 

throughout  t he washi ng machi ne cycl e,  Tür kay and Taşpı nar  ( 1995)  f or mul at ed an 

opti mi zati on pr obl e m by t aki ng t he di spl ace ment  a mplit ude as  t heir obj ecti ve 
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functi on and t he resisti ve sli di ng f orce as  a  constrai nt.  Consi deri ng t he r obust ness  of 

the cabi net  and t he possibl e changes  whi ch may occur  i n t he mechani cal  para met ers 

due t o wear,  t her mal  effects,  change i n fricti on coefficient  a safet y mar gin of  50 N 

( Frsf ≥50N) was i ncl uded in t heir constrai nt equation.  

Tür kay and Taşpı nar  ( 1995)  opti mi zed t he da mpi ng val ue as  a  f uncti on of  t he spi n 

speed by hol di ng t he stiffness  and all  ot her  para met ers  const ant  at  t heir  no mi nal 

val ues.  The opti mu m dampi ng val ues  wit h respect  t o r ot ati onal  speed of  dr um f ound 

by Tür kay and Taşpı nar  (1995)  and correspondi ng graphs  f or  t he opti mum da mpi ng 

case are di spl ayed i n Fi gure 2. 14.  It  i s  seen from Fi gure 2. 10 and Fi gure 2.14 t hat  t he 

resonant  peak of  0. 023 m of  passi ve suspensi on syst e m havi ng t he da mpi ng of  515 

Ns/ m and stiffness  of  16000 N/ m (see Fi gure 2. 10)  i s  da mped suffici entl y if 

maxi mu m da mpi ng i s  applied until  250 rpm (see Fi gure 2. 14).  Aft er  t he drum speed 

of  250 rpm,  decreasi ng the da mpi ng reduces  t he a mount  of  hori zont all y t rans mitted 

forces t o t he cabi net. 
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Fi gure 2. 10. St atic displ ace ment a mplit ude vs drum r ot ati onal speed  
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Fi gure 2. 11. Resisti ve slidi ng force vs drum rot ational speed 
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Fi gure 2. 12. St atic displ ace ment a mplit ude vs drum r ot ati onal speed 
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Fi gure 2. 13. Resisti ve slidi ng force vs drum rot ational speed 

 

 

Fi gure 2. 14.  Opti mu m da mpi ng,  displ ace ment  a mplit ude and Fr sf  val ues  vs  dr u m 

rotational speed (from Taşpı nar, 1993)  

2. 6.  Skyhook Control Policy 

In one of  t he first  exa mi nati ons  of  se mi -acti ve control,  Kor nopp ( 1974)  proposed t he 

‘skyhook’  da mper  control  al gorithm f or  a  vehi cle suspensi on syst e m.  The skyhook 
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met hod offers  i mpr oved perfor mance over  a  passive syst e m when appli ed to a  SDOF 

syste m.  

The skyhook control  adjusts t he da mpi ng l evel t o i mit ate t he effect  of a  da mper 

connected from t he vehi cle t o a stati onary ground, as shown i n Fi gure 2. 15.  

 

Fi gure 2. 15. Quarter car model wit h Skyhook Damper  

Mat he mati call y, the skyhook control is descri bed as,  

    x x x1 1 2 0    c = hi gh da mpi ng 

    x x x1 1 2 0    c = l ow da mpi ng 

In t his  equati on x1  i s  t he vel ocit y of  t he upper  mass.  And x2  i s  t he vel ocit y of  l ower 

mass.  This  t ype of  skyhook control  is  called on-off,  or  bang- bang control  si nce t he 

da mper  s wit ches  back and f ort h bet ween t wo possi bl e da mpi ng st ates.  When t he 

upper  mass  i s  movi ng up and t he t wo masses  are getti ng cl oser,  t he da mpi ng const ant 

shoul d i deall y be zero.  Due  t o t he physi cal  li mi tati ons  of  a  practical  damper,  a  l ow 

da mpi ng const ant  is  used i nst ead.  When t he upper mass  i s  movi ng down and t he t wo 

masses  are getti ng cl oser,  t he skyhook control  ideall y calls for  an i nfi nite da mpi ng 

const ant.  An i nfi nite da mpi ng const ant  i s  not  physically attai nabl e,  so i n practice,  t he 

adj ustabl e da mpi ng constant  i s  set  t o a  maxi mu m.  The obj ecti ve of  t he skyhook 

control  sche me  i s  t o mi nimi ze t he absol ut e vel ocity of  t he upper  mass.  Thi s i s  shown 

in Fi gure 2. 16.  
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Fi gure 2. 16. Skyhook Control Sche me 

Mor e recentl y,  a control  strategy based on Lyapunov st ability t heory has  been 

pr oposed f or  el ectrorheological  da mpers  ( Br ogan,  1991,  Leit mann,  1994). The goal 

of  t his  al gorithm i s  t o reduce t he response by mi ni mi zi ng t he rat e of  change of  a 

Lyapunov f uncti on.  McCl a mr och and Gavi n (1995)  used a si mil ar  appr oach t o 

devel op a decentralized bang- bang controller. Thi s  control  al gorithm act s  t o 

mi ni mi ze t he t ot al  energy i n t he struct ure.  In additi on t o t hat,  cli pped-opti mal 

controllers  have been pr oposed and i mpl e ment ed for  se mi -acti ve syst e ms  by Spencer 

et. al. (1996). 

The above menti oned control  al gorithms  were e mpl oyed t o control  a  seis mi call y 

excited struct ure wit h n MR da mpers.  Assumi ng t hat  t he f orces  pr ovi ded by t he 

control  devi ces  are adequat e t o keep t he response of  t he pri mar y struct ure from 

exiti ng t he li near regi on, the equati on of moti on was obtai ned as: 

 M x C x K x Uf M Gxs s s s g
       (2. 14) 

where 

x : vect or of t he relati ve di spl ace ments of t he fl oors of t he  struct ure.  

x g : 1D ground accel eration 

 f  f f fn
T

1 2, ,....., :  da mpers  vect or  of  measured control  forces  generat ed by t he 

n MR.  
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 G:  col umn vect or of ones 

U : vect or det er mi ned by the place ment  of t he MR da mpers i n t he struct ure  

Equati on (2. 14) can be written i n state space for m as  

  z Az Bf Ex g    (2. 15) 

 y Cz Df v    (2. 16) 

where 

z : state vect or 

y : vect or of measured outputs 

v : measure ment noise vect or 

2. 7. Control Based on Lyapunov Stability Theory 

Leit mann ( 1994)  applied Lyapunov’s  direct  appr oach f or  t he desi gn of  a  se mi -acti ve 

controller.  The appr oach requires  t he use of  a Lyapunov f uncti on,  denot ed V( z), 

whi ch must  be a positi ve defi nite functi on of  t he states  of  t he syst e m z.  The ori gi n i s 

assumed t o be a  st abl e equili bri um poi nt.  Accor ding t o Lyapunov st ability t heory,  if 

the rat e of  change of  the Lyapunov f uncti on ( )V z  is negati ve se mi -defi nite,  t he 

ori gi n i s  st abl e i n t he sense of  Lyapunov.  Thus,  in devel opi ng t he control  l aw,  t he 

goal  i s  t o choose control  i nputs  f or  each devi ce t hat  will  result  i n maki ng V  as 

negati ve as  possi bl e.  An infi nite nu mber  of  Lyapunov f uncti ons  may be select ed,  t hat 

may result in a variet y of control laws.  

In t his approach, a Lyapunov functi on is chosen of the for m:  

 V z p( )
1

2

2
z  (2. 17) 

 z z Pz
p

T
1 2/

 

where  

z
p
 : P-nor m of t he states defined by 

P : real, symmetric, positive defi nite matri x.  
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In t he case of  a  li near  syste m,  t o ensure V is negative defi nite,  t he matri x P is f ound 

usi ng t he Lyapunov equation: 

 p

T
QPAPA   (2. 18) 

for  a  positi ve defi nite mat ri x Qp .  The deri vati ve of  t he Lyapunov f unction f or  a 

sol uti on of (2. 15) is 

 g

TT

p

T xV  PEzPBfzzQz 
2

1
 (2. 19) 

The onl y t er m t hat  can be directl y affect ed by a change i n t he control  voltage i s  t he 

mi ddl e t er m t hat  cont ains  t he f orce vect or,  f.  Thus,  t he control  l aw whi ch will 

mi ni mi ze V  is 

 )f)((HV ii

T

maxi PBz  (2. 20) 

where  

H(. ) : Heavisi de step functi on  

f i  : measured  force produced by t he i th MR da mper 

B i  : i th col umn of t he B matri x i n (2. 15) 

Thi s  al gorithm i s  cl assified as  a  bang- bang controller  and i s  dependent  on t he si gn of 

the measured control  force and t he st ates  of  t he syst e m.  To i mpl e ment  t his  al gorit hm, 

a Kal man filter  is  used to esti mat e t he st ates  based on t he availabl e measure ments. 

(i. e.,  devi ce di spl ace ments,  devi ce f orces,  and struct ural  accel erati ons).  Thus,  i n t hi s 

al gorithm,  better  performance i s  expected when measure ments  of  t he responses  of 

the f ull  struct ure are used.  Ho wever,  one challenge i n t he use of  t he Lyapunov 

al gorithm is i n t he selection of an appropriate Qp  matrix. 

2. 8  Decentralized Bang- Bang Control  

Mc Cl a mr och and Gavi n (1995)  used a  si mil ar  appr oach t o devel op t he decentralized 

bang- bang control  l aw for  use wit h an el ectrorheol ogi cal  da mper.  In t his  appr oach, 

the Lyapunov f uncti on was  chosen t o represent t he t ot al  vi brat ory energy i n t he 

struct ure (ki netic pl us potential energy), as i n 
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 )x()x(V gs

T

gs

T  GxMGxxKx 
2

1

2

1
 (2. 21) 

Usi ng equati on (2. 14), the rate of change of t he Lyapunov functi on is t hen 

 )xx()x(V ss

T

gs

T
UfKCGxxKx  

2

1
 (2. 22) 

In t his  expressi on,  t he onl y way t o directl y effect  V  i s  t hrough t he l ast  t erm 

cont ai ni ng t he f orce vector  f.  To control  t his  t er m and make V  as  l arge and negati ve 

as  possi bl e ( maxi mi zi ng the rat e at  whi ch energy is dissi pat ed),  t he f oll owi ng control 

law is chosen:  

 )f)x((HV ii

T

gmaxi UGx   (2. 23) 

where  

Ui  : i th col umn of t he U matri x 

Si nce t he onl y non-zero t er ms  i n t he U matri x are those correspondi ng t o t he l ocati on 

of  t he MR da mpers,  t his control  l aw requires onl y measure ments  of t he fl oor 

vel ocities  and applied f orces.  Int erestingl y,  when any of  t he se mi -acti ve devi ces  are 

locat ed bet ween t he gr ound and first  fl oor,  t he absol ut e vel ocit y of  t he first  fl oor  i s 

required.  When t he control  devi ce i s  l ocat ed in t he upper  fl oors,  t he i nt erst ory 

vel ocit y i s  needed.  Therefore,  t o i mpl e ment  t his control  al gorithm,  one woul d 

appr oxi mat e t he absol ute vel ocit y ( obt ai n t he pseudovel ocit y)  by i nt egrati ng t he 

absol ut e accel eration (Spencer et al., 1997b) usi ng 

 
1898539

539
2 


s.s.

s.
)s(H  (2. 24) 

2. 9  Cli pped- Opti mal Control  

The ot her  al gorithm t hat  has  been shown t o be effecti ve f or  use wit h t he MR da mper 

is a cli pped-opti mal  control  appr oach,  pr oposed by Dyke et  al.  (1996 c, d, e). The 

cli pped opti mal  control  appr oach i s  t o desi gn a  l inear  opti mal  controller  Kc s( )  t hat 

cal cul ates  a vect or  of  desired control  forces   fc c c cn

T

f f f 1 2, ,........,  based on t he 
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measured struct ural  responses  y and t he measured control  force vect or  f  appli ed t o 

the struct ure; that is : 

 f L K s L
y

fc c 1{ ( ) { }} (2. 25) 

where L.  represents Lapl ace transfor m.  

Because t he f orce generated i n t he MR da mper  i s  dependent  on t he l ocal  responses  of 

the struct ural  syst e m,  t he desired opti mal  control  force fci  cannot  al ways  be  produced 

by t he MR da mper.  Onl y t he control  voltage  i  can be directl y controlled t o i ncrease 

or  decrease t he f orce pr oduced by t he devi ce.  Thus,  a f orce feedback l oop i s 

incorporat ed t o i nduce the MR da mper  t o penetrate appr oxi mat el y the desired 

opti mal control force fci . 

To i nduce t he MR damper  t o generat e appr oxi mat el y t he corresponding desired 

opti mal  control  force fci ,  t he co mmand si gnal   i  i s  select ed as  f oll ows.  When t he  i  t h 

MR da mper  pr ovi des  t he desired opti mal  f orce (i.e.  f i  = fci ),  t he voltage applied t o 

the da mper  shoul d re main at  t he present  l evel.  If  the magnit ude of  t he f orce pr oduced 

by t he da mper  i s  s maller  than t he magnit ude of  t he desired opti mal  f orce and t he t wo 

forces  have t he sa me  si gn,  t he voltage applied t o the current  dri ver  i s  i ncreased t o t he 

maxi mu m l evel  t o i ncrease t he f orce pr oduced by t he da mper  t o mat ch the  desired 

control  force.  Ot her wi se,  t he co mmanded voltage i s  set  t o zero.  The al gorit hm f or 

selecti ng t he co mmand signal  f or  t he i  t h MR damper  i s  graphi call y represent ed i n 

Fi gure 2. 17 and can be stat ed as 

)f}ff({HV iicimaxi   (2. 26) 

Al t hough a  variet y of  appr oaches  may be  used to desi gn t he opti mal  controller,  H2 

and Li near  Quadratic Gaussian met hods  are advocat ed because of  t heir  successful 

application i n previ ous  studies.  The appr oach t o opti mal  control  desi gn i s di scussed 

in det ail in Dyke (1996).  
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Fi gure 2. 17. Graphi cal Represent ati on of Al gorithm f or selecti ng command signal  

2. 10  Acti ve Suspensi on and Vi brati on Control  

In an acti ve suspensi on,  the passi ve da mper  or  bot h t he passi ve da mper  and spri ng 

are repl aced wit h a force act uat or as illustrated i n Fi gure 2. 18.  

 

Fi gure. 2. 18. Acti ve suspensi on 

The f orce act uat or  i s  able t o bot h add and di ssi pate energy from t he syst em,  unli ke a 

passi ve da mper,  whi ch can onl y di ssi pat e energy.  Wi t h an acti ve suspensi on,  t he 

force act uat or  (e. g.,  a hydraulic pi st on,  a pi ezoel ectric devi ce,  an el ectric mot or)  can 

appl y f orce i ndependent  of  t he rel ati ve di spl ace ment  or  vel ocit y acr oss  t he 

suspensi on.  

Acti ve vi bration control  relies  on pr ovi di ng l arge reacti ve f orces  t hrough t he act uat or 

usi ng cl osed-  l oop control.  There are vari ous  active control  met hods  pr oposed i n t he 
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literat ure each havi ng t heir  own merits.  Acti ve vibrati on control  achi eves hi gh-l evel 

of  control  wit h versatility and better  perfor mance i n t he desi gn of vi brati on 

suppressi on syste ms.  

The acti ve and se mi -active syst e ms  have better  vi brati on suppressi on perfor mance 

than t he passi ve ones  that  are not  adapt abl e t o t he di st urbances.  The se mi -acti ve 

syste m i s  advant ageous  over  t he acti ve one i n t hat  it  occupi es  l ess  space,  consu mes 

less  energy and guarant ees  st ability.  Practicall y,  by usi ng t he pr oper  real  time  control 

al gorithm,  t he se mi -active suspensi on syst e m can achi eve perfor mance l evels  cl ose 

to t he acti ve one.  Mor eover,  se mi -acti ve syst ems  not  onl y have a  l ess danger ous 

fail ure mode,  but  are also l ess  co mpl ex,  l ess  pr one t o mechani cal  fail ure and have 

much l ower power require ments as compared t o acti ve syste ms.  
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3.  THE ORI GI N OF UNBALANCE AND THE NECESSI TY FOR 

ESTI MATI ON OF THE UNBALANCED MASS I N WAS HI NG MACHI NE 

SYSTEMS  

Looseness  i n r oller  beari ngs,  shaft  eccentricity,  bendi ng i n shafts  and non-

ho mogeneous  parts are the mai n fact ors  causi ng unbal ance i n r ot ati ng machi nes.  I n 

additi on t o t hese,  i n washi ng machi nes,  duri ng t he spi n cycl e t here i s  a  t endency f or 

the l aundr y t o bunch up and gat her  on one si de of  t he dr um,  t hus  causi ng unbal ance 

in t he r ot ating syst e m.  Thi s  unbal ance creat ed i n t he r ot ating syst e m gener at es 

centrifugal  forces,  t he magnit udes  of  whi ch are directl y pr oporti onal  t o t he a mount  of 

unbal anced l aundr y,  t he square of  t he dr um spi n speed,  and t he di stance bet ween t he 

rotational axis of t he drum and t he unbal anced laundr y.  

The centrifugal  f orces  creat ed by t he unbal anced l aundr y are trans mitted t o t he 

supporti ng unit  and t he base ment.  If  t he horizontally trans mitted f orces  due t o t he 

centrifugal  forces  are greater  t han t he fl oor  fricti onal  forces,  t hen sli ding of  t he 

cabi net  occurs  t his  pheno menon i s  observed especi ally at  hi gh spi n speeds.  The 

centrifugal  f orces  t hat  occur  while t he spi n speed t raverses  t he nat ural  frequency of 

the suspensi on unit  (critical  frequency)  cause t he suspensi on unit  to stri ke its 

supporti ng unit.  Therefore,  t he most  severe vi brations  are pr oduced by t he centrifugal 

forces  t hrough t he spi n cycl e and whil e traversing t he critical  speed.  As a  r esult  of 

these severe vi brations, so me  parts of  t he washi ng machi ne such as t he r oller 

beari ngs can be da maged. 

The unbal ance i n washi ng machi nes  i s  t o be i nvestigat ed i n t his  Chapt er.  These are: 

the effects  of  t he unbalance on t he vi brati on of t he t ub and t he esti mat ion of  t he 

unbal ance a mounts  present ed i n secti on 3. 1 and the effects  of  t he unbal ance on t he 

mot or of t he washi ng machi ne discussed i n secti on 3. 2.  
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3. 1.   The  Effects  of  the  Unbal ance on t he Vi brati on of  t he Tub and t he 

Esti mati on of the Unbalance Amount  

The unbal ance a mount  in a  washi ng machi ne  i s  det ect ed by i nvesti gati ng t he effects 

of t he unbal ances on t he vi brati on of t he tub especially for spi n speeds over 800 rpm.  

The t ub of  t he act ual  washi ng machi ne has  si x degrees  of  freedo m as  a  ri gi d body.  To 

see t he effect  of  t he unbalance on t he t ub,  one can use t he si mplified si ngl e degree of 

freedom model  of  t he t ub devel oped by Tür kay and Taşpı nar  ( 1995).  The equati on of 

moti on of t he si mplified si ngl e degree of freedom model is gi ven as 

 tFxkxcxM oeqeq sin   (3. 1) 

Here,  M,  eqc ,  eqk ,  oF  and   r epresent  t he t ot al  mass  of  t he washi ng unit,  equi val ent 

vi scous  da mpi ng coefficient,  equi val ent  stiffness,  t he magnit ude of  t he centrifugal 

force and t he r ot ational speed of  t he dr um,  respecti vel y.  The magnit ude of  t he 

centrifugal force caused by t he unbal anced laundry is equal t o 

 2uo mF   (3. 2) 

where um and  denot e t he unbal ance eccentricit y whi ch i s  equal  t o unbalance 

laundry mass  ti mes  t he dr um r adi us  and t he dru m spi n speed,  respectivel y.  Aft er 

substit uting x Xe i t    i nt o equati on ( 3. 1)  and sol vi ng f or  x,  the di spl ace ment  a mount  

subj ect t o t he unbal anced load is found as 
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The above equati on i s  transfor med i nt o t he f oll owi ng f or m by di vi di ng bot h si des  of 

the equati on (3. 3) by 
2

n  which is equal t o 
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where X and   r epresent  the st eady st ate a mplit ude and phase angl e,  respectivel y.  I n 

equati on ( 3. 3),  n  denot es  t he unda mped nat ural  frequency of  t he syste m.  I n 

equati on (3. 4)  

Mk

c

eq

eq

eq
2

  

and 

n

r



  

indi cat e t he equi val ent da mpi ng fact or  and t he non- di mensi onal frequency, 

respecti vel y.  If  we  rearrange t he equati on ( 3. 4) f or  t he st atic a mplit ude t hen we 

obt ai n the foll owi ng form  
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 (3. 5) 

where H(r)  i s  called t he dyna mi c fact or.  Fi gure 3. 1 i ndi cat es  t he pl ot  of  t he dyna mi c 

fact or wit h respect t o t he non- di mensi onal excitation frequency r.  
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Fi gure 3. 1. Dyna mi c factor versus t he non-di mensional excitati on frequency (r) 
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It  i s  not ed from Fi gure 3.1 t hat  for  hi gh spi n speeds  t he dyna mi c fact or  H(r)  does  not 

depend on any syst e m para met ers  and goes  t o unit y.  That  i s,  when rpm800 , 

H r
MX

mu
( )   i s  equal  t o 1.  It  i s  seen t hat  t he unbal anced l oad can be esti mat ed by 

measuri ng t he vi bration a mplit ude f or  hi gh spin speeds  by usi ng t he foll owi ng 

equati on 

 
MX

mu

1
  (3. 6) 

3. 2.   The  Effect  of  Unbal ance on t he Mot or of  t he Was hi ng Machi ne and i ts 

Esti mati on 

A washi ng machi ne has  three basi c f uncti ons.  These are:  wash,  ri nse and spi n dr y. 

Duri ng washi ng onl y t he l ower  one t hird porti on of  t he dr um i s  filled wi t h wat er 

mi xed wit h det ergent,  and l aundr y ite ms  bei ng washed are repeat edl y lifted by t he 

paddl es  l ocat ed on t he edge of  t he dr um.  These items  fall  agai n i nt o t he wat er  f or 

rene wed soaki ng,  rubbi ng and co mpacti ng.  Duri ng ri nsi ng and spi n-dryi ng,  t he dr um 

and its  cont ent  are spun about  t he machi ne axis  of  symmetry and wat er  i s graduall y 

drai ned.  Duri ng t he spi n cycl e,  t here i s  a  t endency f or  t he l aundr y t o bunch up and 

gat her  on one si de of  the dr um.  Thus,  unevenly di stri buted l aundr y i n t he dr um 

causes  unbal ance i n t he r ot ating syst e m.  Duri ng t he spi n cycl e,  while descendi ng 

down war ds  t he pot ential energy of  t he unbal anced l aundr y ( PE)  decreases  duri ng 

down war d moti on whil e its ki netic energy ( KE)  increases.  On t he ot her  hand,  whil e 

ascendi ng upwar ds, PE increases and hence KE decreases.  

  m g h m rdengesiz dengesiz upper lower  
1

2

2 2 2   (3. 9) 

Cl ot hes  i n t he dr um stick on t he dr um’s  wall  pr operl y after  traversi ng t he r ot ati onal 

speed val ue of 70 rpm.  This result is deter mi ned fro m t he bel ow equati on 

 mg m r  2  (3. 10) 

  
g

r
 (3. 11) 
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where r  represents  t he unbal ance distance and g i s  t he gravitati onal  accel erati on. 

Nat ural  frequency of  t he washi ng machi ne suspensi on syst e m corresponds  t o nearl y 

170 rpm.  It  i s  underst ood t hat  100 rpm i s  t he reliabl e spi nni ng cycl e si nce 100 rpm i s 

well  beyond t he nat ural  frequency of  t he syst e m and l aundr y sticks  at  t his  speed on 

the drum wall properl y.  

So me  assumpti ons  are made f or  t he esti mati on of  t he l oad t orque pr oduced i n t he 

syste m.  First,  t he unbal anced mass  i s  consi dered as  a  poi nt  mass.  Second,  the r ot ati ng 

syste m i s  assumed t o be symmet ric about  its  axis  of  r ot ati on.  At  t he r ot ati onal  speed 

of  100 rpm,  it  i s  also accept ed t hat  t he unbal anced mass  on t he dr um’s  wall  properl y. 

In ot her  wor ds,  t he r ot ating unit  of  t he washi ng machi ne and t he unbal anced mass  are 

consi dered as  a  si ngl e syste m.  Fi nall y,  t he unbal anced mass  i s  considered t o be 

locat ed at  t he cent er  of  the r ot ati ng axis  of  t he dru m.  Foll owi ng t he above menti oned 

assumpti ons,  t he l oad t orque pr oduced by t he unbal anced l aundr y can be cal cul at ed 

as, 

 )cos( tgrmT dengsizL   (3. 12) 

where g denot es  t he gravitati onal  accel erati on.  It i s  not ed from equati on (3. 12)  t hat 

the l oad t orque or  mo ment  i s  directl y pr oportional  t o t he unbal anced eccentricit y 

( um )  and har moni c f uncti on of  t he dr um r ot ati onal speed.  Mor eover,  t he required 

torque t hat  must  be generated t o be abl e t o hol d t he reference speed at  100 rpm i s 

increased by t he a mount  of  )cos( tgrmdengsiz   due  t o t he unbal anced l aundr y.  Thi s 

conditi on creat es  fl uct uations  on t he reference speed as  t o be i nferred fr om equati on 

(3. 9).  The sche matic of  the r ot ati ng syst e m gi ven i n Fi gure 3. 2 i s  dra wn here i n t he 

light of assumpti on making above.  

The mot or  mo ment  i s  directl y pr oporti onal  t o t he dri vi ng current  for  br ushless  direct 

dri ve mot ors.  As  t he unbal anced mass  i s  goi ng up and down,  t he needed t orque from 

the mot or  changes  har moni call y and so does  t he current.  Therefore,  t he unbal anced 

mass  a mount  can be det ect ed by exa mi ni ng t he mot or  current.  This requires 

additi onal  sensors  and an anal og t o di gital  converter  card.  Al so,  t o sense t he si gnal 

exactl y and t o refi ne t he si gnal  from noise,  additional  filters  must  be used.  Therefore, 

esti mati on of  t he unbal ance existi ng i n t he syst em  i s   perfor med by  mani pul ati ng 

the rot ational speed dat a. The rot ational  speed  values  are  gat hered  from  the rot ary 
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Fi gure 3. 2. The sche matic of t he rotating syste m 

encoder  l ocat ed on t he mot or.  The r ot ary encoder  pr oduces  a si gnal  whose frequency 

is equi val ent  t o t he mot or  frequency.  A cl osed-l oop control  al gorithm i s  used t o keep 

the r ot ational  speed at  the preset  speed val ue of 100 rpm so as  t o see t he effect  of 

unbal ance on t he speed.  The esti mati on of  t he unbal anced l oad i s  based on t he 

mani pul ati on of  t he speed dat a.  If  t he cl osed-l oop controller  does  not  respond qui ckl y 

enough,  t he speed val ues  fl uct uat e about  t he reference speed i n pr oportion t o t he 

unbal anced l oad.  The upper  and l ower  bounds  of  speed dat a depend on t he 

unbal anced l oad.  The dru m i s  r ot at ed at  100 rpm about  20 seconds  t o be abl e t o get 

enough dat a f or  t he estimati on of  t he unbal anced l oad a mount.  Fi gure 3. 3 i ndi cat es  a 

wavef or m creat ed on t he mot or speed due t o t he unbal ance.  

Aft er  t he dr um r eaches  steady st ate,  t he speed inf or mati on t aken from t he  r ot ary 

encoder  i s  mani pul ated so as  t o obt ai n meani ngful  i nfor mati on t hat  i ndicat es  t he 

degree of  unbal ance.  To achi eve t his,  t he absol ut e val ue of  each speed val ue i s  t aken 

initiall y and t hen t he difference from t he reference speed i s  det er mi ned for  each of 

the speed val ues.  This  i s done f or  nearl y 200 speed dat a poi nts  successi vely and t he 

standard devi ati on is cal cul ated as 

 
  2

1

1

2
100













 



n
std

n

i
 (3. 13) 

Here n has  t he val ue of  200 and   i s  t he mot or  speed i n r pm.  The st andard devi ati on 

result corresponds t o a value directl y proporti onal to t he unbal anced l oad amount.  
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Fi gure 3. 3. Rot ati onal speed of t he drum versus nu mber of t he dat a poi nts 

Fi gure 3. 4 obt ai ned usi ng HP VEE dat a acquisition pr ogra m shows  t he mot or  speed 

behavi or  f or  an unbal anced mass  val ue of  800g.  The st andard devi ati on i s  f ound t o 

be 10. 37 for t his unbalanced l oad a mount.  

 

 

Fi gure 3. 4.  The mot or  speed behavi our  of  t he washi ng unit  at  t he dr um speed of  100 

rpm 
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3. 3.  Si mul ati on 

In t his  wor k,  our  ai m i s  to f or m a  l ook-up t abl e or  an i nference syst e m f or each pair 

of  bal anced and unbal anced mass  usi ng dyna mic model  of  t he r ot ati ng syst e m i n 

or der  t o esti mat e t he unbal ances  creat ed i n t he washi ng machi ne syst e m usi ng t hi s 

look-up t abl e.  This  i s  done by f or mi ng bl ock di agra m perfor mi ng vel ocity control  at 

100 rpm usi ng SI MULI NK package of t he MATLAB soft ware progra m.  

The st andard devi ati on dat a f or  each co mbi nati on of  bal anced and unbal anced mass 

is experi ment all y obt ai ned usi ng dat a acquisition hardware wit h HP VEE soft ware 

pr ogra m.  Speed i nfor mation co mi ng from r ot ary encoder  connected t o t he mot or 

shaft  i s  submitted t o t he PC by t he DAQ har dware i ncl udi ng HP E1332A count er 

card.  Then,  t he devi ati on of  t he r ot ational  speed val ues  from t he reference rotati onal 

speed of  100 rpm i s  st ored on-li ne t o a  file by e mployi ng HP VEE soft ware pr ogra m. 

Appr oxi mat el y 250 speed dat a poi nts  are obt ai ned wit hi n 200 seconds  t o det er mi ne 

the st andard devi ati on for  a  bal anced and unbalanced mass  pair  and t he result  i s 

di spl ayed on t he monit or. 

The bl ock di agra m of  t he cl osed-l oop vel ocit y control  syst e m i s  shown i n Figure 3. 5. 

Thi s  bl ock di agra m i s  to be i nvesti gat ed i n f our  secti ons.  These are:  deri vi ng t he 

dyna mi c model  of  t he rot ati ng syst e m t hat  is  t o be  menti oned i n secti on 3. 3. 1;  t he 

cal culati on of  t he t ot al  inertia and da mpi ng existing i n t he r ot ati ng syst em t hat  i s  t o 

be t al ked about  i n section 3. 3. 2;  t he PI  controller  used i n t he cl osed-l oop control 

syste m t o hol d t he reference speed at  100 r pm t hat  is  t o be di scussed i n section 3. 3. 3; 

the pl ots  of  t he st andard devi ati on graphs  f or  each bal anced mass  of  0,  3,  6 and 9 kg 

wi t h t he unbal anced mass  i ncreased each ti me 50 g up t o t he 1600 g t hat  i s  t o be 

menti oned i n secti on 3. 3.4 

Si mul ati on of  t he real  syst e m i s  made f or  t he sa mpli ng ti me of  77 ms.  Thus,  we 

compare whet her  si mulati on results mat ch wit h experi ment all y obt ai ned ones  f or 

each pair  of  bal anced-unbal anced mass  co mbi nation.  Si mul ati on peri od i s  t aken as 

160 seconds and for each 10 sec t he unbalanced mass a mount is increased by 100 g.  
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Fi gure 3. 5. The cl osed-l oop vel ocit y control system 

3. 3. 1 Modeli ng of the rotati ng syste m of the washi ng machi ne 

The co mpl et e mat he mat ical  model  of  t he r ot ating syst e m i s  obt ai ned by deri vi ng 

transfer  functi on bet ween t he mot or  voltage and dr um r ot ati onal  speed once volt age 

is supplied t o t he mot or.  The si mul ati on i s  realized under  t he assumpti on t hat  t he 

rotating unit  of  t he washing machi ne woul d be driven by a  direct  dri ve br ushl ess  DC 

mot or.  The r ot or  is  assumed t o be i nitiall y strai ght  and t orsi onall y ri gi d.  The circuit 

di agra m of  t he br ushl ess  direct  dri ve mot or  i s  gi ven i n Fi gure 3. 6 ( Philli ps  and 

Har bor, 1996). 

 

Fi gure 3. 6. The circuit diagra m of t he brushl ess direct dri ve mot or  

In t his Fi gure,  )(tea  i s  t he armat ure voltage,  whi ch i s consi dered t o be  t he syst e m 

input.  The resistance and i nduct ance of  t he ar mat ure circuit  are mR  and mL , 

respecti vel y.  The voltage )(tem is t he voltage generat ed i n t he ar mat ure coil  because 
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of  t he moti on of  t he coil  in t he mot or’s  magnetic fiel d,  and i s  usuall y called t he back 

el ectro mot or force ( EMF). The back EMF is expressed as 

 
dt

d
Ktem


)(  (3. 14) 

where K i s  a  mot or  paramet er,    i s  t he fi el d fl ux,  and   i s  t he angl e of  t he mot or 

shaft;  t hat  is,  
dt

d
 i s  t he angul ar  vel ocit y of  t he shaft.  It  i s  assumed t hat  t he flux   

re mai ns const ant; hence 

 
dt

d
Kte mm


)(  (3. 15) 

The Lapl ace transfor m of equati on (3. 15) yiel ds 

 )()( ssKsE mm   (3. 16) 

For t he ar mat ure circuit, we can write  

   )()()( sEsIRsLsE mamma   (3. 17) 

Aft er sol vi ng equati on (3. 17) for )(sIa  we obt ai n  

 
mm

ma
a

RsL

sEsE
sI






)()(
)(  (3. 18) 

The equati on for t he devel oped t orque is 

 T t K i t K i ta T a( ) ( ) ( ) 1  (3. 19) 

The Lapl ace transfor m of the above equati on yi el ds 

 )()( sIKsT aT  (3. 20) 

In Fi gure 3. 6,  t he mo ment  of  i nertia J  i ncl udes  the t ot al  i nertia of  t he mot or-shaft-

dr um asse mbl y and t he inertia of  cl ot hes,  and B i ncl udes  t he air  fricti on,  the  vi scous 

fricti on i n t he dr um and t he beari ng fricti on.  Thus,  t he t orque equation f or  t he 

rotating syste m becomes 
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dt
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 (3. 21) 

Here,  LT  denot es  t he l oad tor que pr oduced by t he unbal anced l aundr y transmi tt ed t o 

the mot or level and is a har moni c functi on of t he drum rot ational speed.  

Aft er  substit uting )(t  i n pl ace of  
dt

d
 and t aki ng t he Laplace transfor m of  equati on 

(3. 21) we get 

   )()()( sBJssTsT L   (3. 22) 

Consequentl y,  t he transfer  f uncti on bet ween t he effecti ve mot or  t orque and t he dr u m 

rotational speed is obt ai ned as 

 
BJssTsT

s
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)()(
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 (3. 23) 

3. 3. 2 Cal cul ati on of the total i nerti a and da mpi ng present i n the rotating syste m 

The t ot al  i nertia of  t he r otating syst e m J  i ncl udes  the i nertia of  t he mot or-shaft-drum 

asse mbl y  dsmJ and t he i nertia of  cl ot hes.  The i nertia of  cl ot hes  i s  si mul at ed usi ng 

raw r ubber  wei ghts  f or t he bal anced l aundr y )( dengJ  and l ead wei ghts  f or  t he 

unbal anced l aundr y  dengsizJ .  Thus,  t he t ot al  i nertia of  t he r ot ating syst e m i s 

expressed as  

 dengsizdengdsm JJJJ   (3. 24) 

The i nertia of  t he ra w r ubber  wei ghts  f or  each bal anced mass  of  3,  6 and 9 kg i s 

cal cul ated usi ng ADAMS soft ware pr ogra m.  Si nce l ead wei ghts  can be t aken t o be 

poi nt  masses,  t he unbalance distance r  re mai ns const ant  for  all  unbal anced mass 

a mounts  and i s  equal  to 198 mm.  Therefore,  the i nertia of  t he unbal anced mass 

changi ng bet ween 0 and 1600 g is cal cul ated as 

 J m rdengsiz dengsiz 2  (3. 25) 
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Si mul ati on pr ogra m of  the cl osed-l oop vel ocit y control  syst e m i s  r un f or  each 

bal anced mass  a mount  of  0,  3,  6 and 9 kg and f or each 10 seconds  of  t he si mul ati on 

peri od of  160 seconds.  At  t he sa me  ti me,  t he unbal anced mass  a mount  is  raised by 

100 g until  reachi ng t he unbal anced mass  a mount  of  1600 g.  The f oll owi ng fi gure 

indicat es  t he effects of  t he unbal anced mass  changing bet ween 0 and 1600 g by 100 g 

on t he rot ational speed of the rot ating unit. 
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Fi gure 3. 7. The rot ational speed of t he rotating unit versus t he number of dat a poi nts 

Consi deri ng a st ep effective t orque of  magnit ude To  i n equati on ( 3. 23),  and sol vi ng 

for speed   and taki ng t he inverse Lapl ace transform results i n 

 


















t

o eTt 1)(  (3. 26) 

Here,   is the ti me const ant of t he rot ating syste m given by  

 
B

J
  (3. 27) 
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  i s  an i ndi cat or  showi ng when t he syst e m reaches  st eady st at e.  In general,  first 

or der  syst e ms  reach st eady st at e conditi on aft er  a peri od of  4 .  Response speed of 

the syst e m i s  i nversel y proportional  t o t he ti me const ant  of  t his  syst e m;  t hat  i s,  a  bi g 

ti me const ant  val ue corresponds  t o a sl ow s yst em whereas  a s mall  ti me const ant 

val ue corresponds  t o a rapi d syst e m.  If  we  l eave the washi ng machi ne r ot ating at  o  

freel y, then t he rotating unit slows down i n accordance t o t he foll owi ng equati on 

 
t

oet



)(  (3. 28) 

Aft er  di vi di ng bot h si des  of  t he above equati on by o  and t aki ng its  l ogarit hm we 

obt ai n 

 o

t
t 


 ln)(ln   (3. 29) 
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Fi gure 3. 8. The rot ational speed of t he drum versus ti me 

It  i s  not ed from equation ( 3. 29)  t hat  t he sl ope of  t he )(ln t versus  ti me  graph 

depi ct ed i n t he Fi gure 3.8 gi ves  t he ti me const ant  of  t he r ot ating unit  and t hus  t he 

da mpi ng present  i n t he syste m i s  cal cul ated using equati on ( 3. 27).  As  a r esult,  t he 

da mpi ng existi ng i n t he r ot ati ng syst e m f or  each val ue of  t he bal anced mass  i s 

cal cul ated appr oxi mat el y from decel eration graphs  of  t he r ot ati ng syst e m.  To obt ai n 

the ti me const ant  of  t he rotating syst e m f or  each bal anced mass,  t hree experi ment s 

are made and t he arit hmetic mean of  t he results is  taken.  Hence,  t he ti me const ant  f or 

         ti me (s) 
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each bal anced mass  of  0,  3,  6 and 9 kg i s  acquired t o be 3. 2,  5. 3,  7. 6 and 10. 5 sec, 

respecti vel y. 

3. 3. 3 Cl osed-l oop vel ocity control syste m   

Cl osed l oop vel ocit y control  is  realized usi ng PI  controller.  The anal og PI  controller 

out put is gi ven by  

 
t

Ip dt)t(eK)t(eK)t(u
0

 (3. 30) 

where e t t( ) ( ) 100   i s  t he controller i nput  si gnal,  u(t)  i s  t he controller  out put 

si gnal,  and Kp  and KI  are t he PI  controller  gai ns.  Response of  t he r ot ati ng syst em t o 

the st ep i nput  val ue of 100 rpm i s  det er mi ned by adj usti ng t he controller  gai n 

const ants.  Kp  and KI  val ues  yiel di ng mi ni mu m overshoot  and respondi ng rat her  fast 

are f ound t o be 5 and 25,  respecti vel y.  We  al so incor porat e a sat urati on box i nt o t he 

cl osed-l oop vel ocit y control  bl ock di agra m due t o t he current  li mitation of  the mot or 

used.  The maxi mu m current  supplied t o t he mot or  i s  7 A.  Si nce t he si mul ati ons  are 

perfor med at  t he dr um r otational  speed of  100 rpm f or  each co mbi nati on of  bal anced-

unbal anced masses,  t he upper  li mit  of  t he sat uration box can be det er mi ned usi ng t he 

foll owi ng equati on.  

 mmmaxmax KRiV   (3. 31) 

where maxV  r epresents  maxi mu m voltage t hat  can be supplied t o t he mot or.  Here,  Rm, 

Km  and   i ndi cat e t he resistance of  t he mot or ar mat ure circuit,  t he back 

el ectromot or  f orce ( EMF)  const ant  and t he r ot ati onal  speed of  t he dr um,  respecti vel y. 

Aft er  substit uting Rm  12 ,  im a x 7  A,  100  rpm and 4mK  i nt o t he above 

equati on, we obt ai n the maxi mu m voltage applied t o t he mot or as  
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 (3. 32) 

3. 3. 4  Si mul ati on results 

The si mul ati on pr ogram i s  r un f or  each balanced mass  and meanwhil e t he 

unbal anced mass  a mount  i s  i ncreased by 100 g f or each 10 sec  and si mul ation results 
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(rot ational  speed val ues  of  t he r ot ati ng syst e m)  are recorded t o files  such as  3kg. mat. 

Lat er,  t he st andard devi ation graphs  f or  each balanced mass  are pl otted.  Fi gure 3. 9 

indicat es t he standard devi ati on graphs obt ai ned for each bal anced mass.  
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Fi gure 3. 9.  The st andard devi ati on a mount  f or  each bal anced mass  versus  the a mount 

of unbal ance 

As  expected it  i s  seen fro m t he Fi gure 3. 9 t hat  the st andard devi ati on i ncreases  i n 

pr oporti on t o t he unbal anced mass  a mount.  On t he ot her  hand,  t he st andard devi ati on 

a mount decreases while the bal anced mass a mount increases.  

3. 4 Measure ment System and Experi ment al Results 

Esti mati on of  t he unbalance a mount  i n t he washi ng machi ne i s  realized wit h a 

mi croprocessor  based controller  arrange ment.  Fi gure 3. 10 ill ustrates  a  bl ock di agra m 

of a drum dri vi ng circuit in t he washi ng machi ne.  

speed sensing

unit

motor

motor driving

unit

computing and

controlling unit

 

Fi gure 3. 10. A drum dri ving circuit in t he washi ng machi ne 

e mpt y 
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The co mputi ng-controlling unit  recei ves  t he r ot ational  speed of  t he mot or  thr ough t he 

speed sensi ng unit  (rot ary encoder).  Then,  t he computi ng-controlli ng unit cal cul at es 

standard devi ation a mount  at  100 rpm and co mpares  t his  val ue t o t he preset  val ue 

det er mi ned beforehand.  Accor di ng t o t he co mparison results,  t he controlli ng unit 

det er mi nes the spi n profile t o be foll owed.  

The measure ment  set up i s  co mposed of  a  PC based Dat a Acquisiti on syst em ( DAQ). 

In our  measure ment  setup,  we  use a pl ug-i n board t o acquire dat a and transfer  it 

directl y t o t he co mput er. Si gnals  co mi ng from t he r ot ary encoder  connected t o t he 

mot or  are transferred t o t he co mput er  by HP E1332A count er  card and t hen by usi ng 

HP VEE application software pr ogra m we  t ransfor m t he el ectrical  si gnal generat ed 

by t he rot ary encoder t o the required rot ational speed val ues.  

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

14
experimental results

S
ta

n
d
a
rd

 d
e
vi

a
ti
o
n
s
 o

f 
0
,3

,6
 a

n
d
 9

k
g
 b

a
la

n
c
e
d
 m

a
s
s

The amount of unbalance

bos 
3 kg
6 kg
9 kg

 

Fi gure 3. 11.  The st andard devi ati on a mount  for  each bal anced mass versus  t he 

a mount of unbal ance 

The controlli ng unit  of  t he washi ng machi ne r ot ates  t he mot or  i n a regul ar  or  reverse 

directi on repeat edl y at  52 rpm until  an entire washi ng i s  compl et ed.  Then,  t he 

rotational  speed of  t he dru m i s  i ncreased from 52 rpm t o 100 rpm and t he rotati onal 

speed i s  hel d at  t his speed f or  a  preset  ti me peri od of  20 seconds  i n or der  to acquire 

the needed speed dat a t o esti mat e t he unbal ance amount existi ng i n t he system.  

e mpt y 
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To obt ai n t he st andard devi ati on val ues  f or  each bal anced mass,  experiment s  are 

perfor med wit h unbal anced mass i ncreased from 0 to 1600 g by 100 g each ti me.  
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4.  CONTROLLABLE FLUI DS AND MODEL PROPOSED FOR THESE 

FLUI DS 

Thi s  secti on gi ves  i nformati on about  bot h controllabl e fl ui ds  and t he devi ces  t hat 

make use of t heir uni que pr operties. 

4. 1. Controll abl e Fl ui ds 

A controllabl e fl ui d i s a  fl ui d whose r heol ogi cal  behavi or  can be ext ernall y 

controlled,  t ypi call y by t he applicati on of  eit her  an el ectric or  a  magnetic fi el d.  The 

yi el d strengt h,  and hence effecti ve vi scosit y of  these fl ui ds  can be changed by t he 

application of  t he appropriate energy fi el d.  Flui ds  changi ng t heir  vi scosit y and 

stiffness  charact eristics wit h t he applicati on of  an el ectric fiel d are call ed 

el ectrorheol ogi cal  ( ER)  flui ds.  On t he ot her  hand,  fl ui ds  t hat  can be controlled by t he 

application of  a  magnetic fi el d are called Bi ngha m magnetic fl ui ds  or 

magnet orheol ogi cal  ( MR)  fl ui ds.  Of  t hese t wo t ypes  of  controllabl e fl ui ds,  MR fl ui ds 

are currentl y consi dered t o be more suitabl e f or vari abl e da mper  appli cati ons.  MR 

flui ds  can pr ovi de l arger yi el d stress,  and t hus  are abl e t o generate great er  da mpi ng 

forces  up t o 3000N.  Al so,  t he wor ki ng t e mperat ure range of  MR fl ui ds  i s  wi der  and 

they are i nsensiti ve t o cont a mi nati on.  Therefore,  their  mechanis m i s  si mpl er  t han ER 

flui ds t hat are more sensitive to cont a mi nati on and thus require compl ex parts.  

Bot h ER and MR fl ui ds  were i nitiall y devel oped i n t he 1940’s.  ER flui ds  were 

devel oped by Wi nsl ow as  a “met hod and means  for  t ransl ati ng el ectric i mpulses  i nt o 

mechani cal  f orces”.  MR fl ui ds  were devel oped by Rabi now.  I nitiall y, ER fl ui ds 

recei ved t he most  attention,  but  f ound t o be not  as  well  suited t o most  applicati ons  as 

the MR fl ui ds. 

In t heir  non-acti vat ed or “off  ” st ate,  bot h MR and ER fl ui ds  t ypi call y have si mil ar 

viscosit y,  but  MR fl ui ds  exhi bit  a much greater  i ncrease i n yi el d strengt h,  and 

therefore viscosit y, than their electrorheol ogi cal count er parts, as shown i n Tabl e 4. 1 
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Tabl e 4. 1. Summar y of MR and ER properties (taken from Si mon, 2000)  

Property ER Fl ui d MR Fl ui d 

Yi el d Strengt h (Fi el d) 2- 5 kPa (3-5 kV/ mm)  

fiel d li mited by breakdown 

(failure or endi ng) 

50- 100 kPa ( 150- 200kA/ m) 

fiel d li mit ed by sat urati on 

Vi scosit y (no fiel d) 0. 2-0. 3 Pa. s  (at 25C) 0. 2-0. 3 Pa. s  (at 25C) 

Operati ng 

Te mperat ure 

+10 t o +90C (i oni c t o DC)  

-25 t o +125C ( non-i onic t o 

AC)  

-40 t o +150C  

(li mit ed by t he carrier fl uid) 

Current Densit y 2- 15 mA/ 2cm  ( 4 k V/ mm,  

25C) 

can energi ze wi t h 

per manent magnets 

Specific Gravit y 1- 2. 5 3- 4 

( Additional) 

Ancillary Mat erials 

Any (conducti ve surfaces) Iron/steel 

Col or Any, opaque or transparent  Br own, black, gray, opaque 

A devi ce based on an ER fl ui d will  have r oughl y the sa me overall  power  require ment 

as  si mil ar  devi ces  based on an MR fl ui d.  The ER devi ce will  require high voltage, 

low current  power,  whi le t he MR devi ce will  require l ow voltage,  high current 

power.  The extre mel y hi gh voltage requirement s  f or  ER fl ui ds  make  t he m 

i mpractical  for  most  co mmer ci al  applicati ons.  An additi onal  advant age of  MR fl ui ds 

over  ER fl ui ds  i s  t hat  ER fl ui ds  are sensiti ve t o cont a mi nants  whereas  MR flui ds  are 

not. Also, MR fl ui ds have a much broader useful te mperat ure range t han ER fl ui ds.  

4. 1. 1. Typi cal characteristics of ER fl ui ds 

An ER fl ui d consists of  a suspensi on of  fi ne se mi -conducti ng particles  i n a di el ectric 

liqui d ( Bl ock and Kell y,  1988).  An applicati on of  hi gh el ectric fiel d to t he fl ui d 
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induces  a change i n t he rheol ogy of  di spersi ons  and t he ER fl ui d shows  an i ncreased 

resistance t o fl ow,  and i n some  cases  conversi on from fl ui d t o soli d.  This i ncreased 

resistance t o fl ow i s  cl osel y associ ated wit h i ncrease of  vi scosit y,  and t he rheol ogi cal 

behavi or  rese mbl es  t hat  of  Bi ngha m pl astic when subj ect ed t o an el ectric fiel d ( Kl ass 

and Matirek,  1967).  The change i n fl ui ds  pr operties  occurs  wit hi n milliseconds,  and 

is compl et el y and i mmediatel y reversi ble when t he el ectrical  fiel d i s  re moved ( H.  P. 

Gavi n,  2001).  Si nce t he voltages  required t o pr oduce t he required el ectrical  fiel ds  are 

hi gh,  ER fl ui ds  dra w very little current  and it  i s  possi bl e t o regul ate several  hundred 

kil o- Ne wt ons of force wi th a few Watts. 

The ER effect  is  pri marily due t o t he pol arizati on and fi brati on of  particles  t hat  are 

10 t o 100 m i n di amet er,  suspended i n diel ectricall y mi s mat ched di spersant 

(t ypicall y a paraffi n oil). The mat erials t hat  can be used as  t he particl e phase i n ER 

suspensi ons  are di verse and i ncl ude al umi na silicat es,  zeolites,  sulfonat ed pol ymers, 

and carbonaceous  particles.  When an el ectric field i s  applied t o t hese suspensi ons, 

the particles  beca me  polarized and i nt eract  wit h each ot her  as  mi croscopic di pol es, 

for mi ng chai ns  of  particles  bet ween t he el ectrodes.  When energi zed,  ER mat eri als 

are sheared at s mall strains and t he fibrated mi crostruct ure behaves viscoelasticall y.  

At  l arger  strai ns,  t he mi crostruct ure yi el ds.  At  s mall  dyna mi c strai ns,  t he shear  stress 

is rel ated t o t he shear  strai n vi a a co mpl ex modulus.  At  l arger  strai ns  t hat  are great er 

than r oughl y 0. 5,  t he material  yi el ds;  t he shear  stress  i s  i n phase wit h t he shear  rat e, 

and at  i nt er medi ate strains,  t he mat erial  exhi bits a  co mbi nati on of  vi scoel astic and 

yi el di ng behavi or. 

Under  quasisteady i nt ernal  fl ow conditi ons,  t he shear  stresses,  ,  i n an ER suspensi on 

are resisted by a  fi el d-dependent  yi el di ng co mponent  y( E)  where E r epresents  t he 

applied el ectric fiel d and a  t e mperat ure-dependent  Ne wt oni an viscous  component 

  ( ).  The Bi ngha m vi sco-plastic mat erial  model  commonl y used t o model  ER 

mat erial under quasisteady fl ow is gi ven as,  

        (, , ) ( )sgn  ( )  y  (4. 1) 

It  can be  mechani call y represent ed by a  dash-pot  parallel  t o a  fricti onal  el ement.  The 

yi el d stress  i ncreases  appr oxi mat el y wit h E
2
,  and t he vi scosit y i s  r oughl y fi el d 
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independent  and decreases  wit h t e mperat ure.  Stresses  i ncrease by a f act or  of 

1




y

( )
 when t he el ectric fiel d is  applied.  Therefore,  t o pr ovi de a l arge dyna mi c 

range,  it  i s  of  i mport ance t o mai nt ai n l ow vi scous  stresses  ( ) .  Thi s  can be 

accomplished by usi ng mat erials wit h a l ow zero-fiel d vi scosit y  and by desi gni ng 

devi ces i n whi ch t he shear rates   are l ow.  

Under  oscillat ory fl ow conditi ons,  t he behavi or  of  ER mat erials i s  more co mpl ex.  At 

s mall  strai ns  t hat  i s  l ess  than 0. 1,  t he ER mat erial  behavi or  i s  l argel y vi scoel astic,  and 

at  l arger  strai ns  t hat  i s  great er  t han 0. 5 t he mat erial  foll ows  a Bi ngha m vi sco-pl astic 

constit utive l aw.  The transiti on from vi scoel astic behavi or  t o yi el di ng behavi or  has 

been st udi ed by several  researchers  f or  a vi de variet y of  ER mat erials. 

D. J. Kli ngenberg ( 1993)  showed t hat  at  s mall  shear  strai ns  ( 10
- 4

)  preyi eld behavi or 

was  f ound t o f oll ow a  Kel vi n vi scoel astic model  ( D.  J.  Kli ngenberg,  1993).  At  l arger 

strai ns,  t he st orage modul us  l ost  its frequency dependence and decreased 

exponentiall y wit h i ncreasi ng strai n.  That  i s,  t he loss  modul us  was  f ound to i ncrease 

monot oni call y wit h frequency over  a  range of  strai n a mplit udes  from 10
- 4

 t o 10
1

 ( D. 

J.  Kli ngenberg,  1993).  The rapi d decrease i n elasticit y i s  rel ated t o di srupti on and 

refor mati on of  t he fabricat ed mi crostruct ure i n a pr ocess  responsi bl e f or  the  observed 

yi el d stresses  i n t hese mat erials.  Quantitati vel y,  these results are ti ghtl y linked t o t he 

confi gurati on of  t he microstruct ure,  but  t he qualitati ve preyi el d behavi or  was 

consistent  a mong a  wi de set  of  mi crostruct ures i nvesti gat ed ( D.  J.  Klingenber g, 

1993).  Si nce mi crostruct ural  det ails  are not  controllabl e i n practical  devi ces, 

si mul ati on results are used t o moti vat e a pheno menol ogi cal  model  f or  t he behavi or  of 

the ER vi brati on control devi ce.  

Nu mer ous  models  have been devel oped t o describe t he behavi or  of  MR and ER i n 

recent  years  f or  different appli cati ons.  For  exa mple,  St anway pr oposed an i dealized 

mechani cal  model  based on t he Bi ngha m vi scoplastic model  f or  t he behavi or  of  ER 

flui ds  and i dentified t he para met ers  of  t he Bi ngha m pl astic model  f or  an ER ( Henri 

P.  Gavi n,  2001).  Al so,  Ga mot a and Filisko devel oped a model  consisting of  t he 

Bi ngha m model  (a frictional  el e ment  i n parallel wi t h a dashpot)  i n series  wit h a 

standard model  of  a  li near  soli d.  Spencer  et.  al.  (1997)  used a co mbi nati on of  spri ngs 

and dashpots  wit h a Bouc- Wen hyst eretic el e ment  t o model  a MR damper.  The 
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Bouc- Wen hyst eresis equati on i s  frequency i ndependent  of  ER and MR mat eri als 

over broad frequency ranges.  

These devel oped models were also used i n struct ural  syst e ms  f or vi brati on 

suppressi on.  For  exa mpl e,  Dyke et.  al.  (1996)  has  used a  MR da mper  t o 

experi ment all y control  t he moti on of  a  seis mi call y excited t hree st ory buil ding model 

by usi ng a  cli pped Li near  Quadratic Gaussi an ( LQG)  al gorit hm,  and showed t hat  by 

i mpl e menti ng t he control wit h a MR da mper,  t he perfor mance coul d exceed t hat  wit h 

full y acti ve i mpl e ment ation.  Guoguang Zhang et .  al.  (2000)  used an ER devi ce t o 

suppress  vi brati ons  of  industrial  robots  f or  t he precise control  of  r obot  ar ms. 

Y. S. Jean et.  al.  (1997) used t he Bi ngha m model  of  ER fl ui ds  t o sol ve vi brati on and 

noise pr obl e ms  due t o t he dyna mi c moti on of  auto moti ve engi ne.  Besi des, S.  B.  Choi 

et.  al.  (1997)  devel oped a  ne w met hod f or  t he positi on control  of  a  movi ng t abl e 

syste m usi ng ER brake and ER cl ut ch and i mpl e ment ed a  sli di ng mode controller 

that has i nherent robust ness t o para met er uncertainties and ext ernal dist urbances.  

4. 1. 2. Typi cal characteristics of MR fl ui ds 

MR fl ui ds  are t he magnetic anal ogs  of  el ectrorheol ogi cal  ( ER)  fl ui ds  and t ypi call y 

consist  of  mi cron-sized magneticall y pol arizable particles  di spersed i n a  carrier 

medi um such as  mi neral  or  silicone oil.  When a magnetic fiel d i s  appl ied t o t he 

fl ui ds,  a particle chai n for ms,  and t he fl ui d becomes  a  se mi -soli d,  exhi biting pl astic 

behavi or  si mil ar  t o t hat of  ER fl ui ds.  Transiti on r heol ogi cal  equili bri um can be 

achi eved i n a fe w milliseconds  and t hese fl ui ds  become  devi ces  wit h hi gh bandwi dt h. 

Additi onall y,  t he achi evabl e yi el d stress  of  modern MR fl ui ds  i s  i n excess  of  80 kPa,  

all owi ng f or  devi ces  capabl e of  generati ng l arge f orces  required f or f ull -scal e 

installati ons.  Mor eover,  The MR fl ui d can be readil y controlled wit h a l ow volt age 

(e. g.,  12–24 V), current–dri ven power suppl y produci ng onl y  1–2 A.  

4. 1. 3 MR da mper behavi our and model chosen  

Ma gnet orheol ogi cal  ( MR)  da mper  i s  a ne w se mi -acti ve control  devi ce t hat  uses  MR 

flui ds  t o pr ovi de controllabl e da mpers.  A MR da mper  can be vi e wed as a  r egul ar 

da mper  whose da mpi ng pr operties  can be changed duri ng operati on t hrough t he 

adj ust ment  of  t he applied magnetic fi el d.  The magnetic fiel d act s  directl y on t he MR 

flui d through t he acti vation of t he coil.  
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Dyke,  Spencer,  Sai n and Carlson ( 1997)  obt ai ned a pr ot ot ype MR da mper  from Lor d 

Cor p.  i n or der  t o eval uat e t he pot ential  of  an MR da mper  i n struct ural  control 

applications. The sche matic of t his MR da mper is shown i n Fi gure 4. 1.  

 

Fi gure 4. 1 Sche mati c of the MR da mper  

The da mper  i s  21, 5 c m l ong i n its  ext ended position,  and t he mai n cyli nder  i s  3, 8 c m 

in di a met er.  The mai n cyli nder  houses  t he pi st on,  t he magnetic circuit,  an 

accumul at or,  and 50 ml  of  MR fl ui d,  and t he damper  has  a 2, 5 c m stroke.  The t ot al 

axi al  l engt h of  t he fl ow channel  i s  15 mm,  of  whi ch 7 mm are exposed t o the  appli ed 

magnetic fiel d ( Spencer  et. al.,  1997).  Thus,  t he t ot al  vol ume of  fl ui d t hat  sees  t he 

magnetic fiel d at  any i nstant  i s  about  0. 3 ml.  The magnetic fiel d can be  varied from 0 

to 200 kA/ m f or  currents of  0–1 A i n t he el ectromagnet  coil  ( Spencer  et. al.,  1997). 

For  t his  syst e m,  t he current  for  t he el ectromagnet  is  pr ovi ded by a  li near  current 

dri ver.  This  li near  current  dri ver  generates  a 0–1 A current  t hat  is  pr oporti onal  t o a 

commanded direct  current  i nput  voltage i n t he range of  0- 3 V ( Spencer  et. al.,  1997). 

Forces  up t o 3000 N can be generat ed wit h t his devi ce.  The rise ti me i n t he f orce 

generat ed by t he MR damper  duri ng a const ant  vel ocit y t est  when a  st ep volt age i s 

applied t o t he current  driver  i s  appr oxi mat el y 8 ms.  This  behavi or  i s  pri maril y due t o 

the ti me t hat  t he MR fl uid i n t he da mper  t akes  t o r each r heol ogi cal  equilibri um and 

the ti me l ag associ ated wi t h t he dyna mi cs  of  drivi ng t he el ectromagnet  i n t he MR 

da mper (Spencer et. al., 1997).  

As  menti oned i n Chapt er  2,  a shock absorber  havi ng i ncreased da mpi ng duri ng t he 

resonance conditi on (t he begi nni ng and at  t he end of  t he spi n cycl e)  reduces  t he 

a mount  of  t he hori zont ally trans mitted f orces  and t hus  avoi ds  sli di ng of  the cabi net 

whil e concurrentl y mi nimi zi ng vi brati ons  occurring i n t he suspensi on unit.  Aft er  t he 
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dr um r eaches  t he spi n speed,  a shock absorber  havi ng opti mu m da mpi ng al so 

decreases  t he a mount  of  t he horizont all y transmi tt ed f orces  t o t he cabinet  of  t he 

washi ng unit.  Carlson and Davi d ( 1999)  showed t hat  i ncorporati on of  shock 

absorbers  cont ai ni ng MR fl ui ds  l ocat ed i n horizont al  axis  washi ng machi nes 

i mpr oves  t heir  vi bration suppressi on perfor mance.  Bef ore usi ng an MR da mper  t o 

investi gat e its  effecti veness  i n reduci ng vi brati ons  caused by unbal anced l aundr y 

( washl oad)  i n horizont al  axis  washi ng machi nes,  a realistic model  of  t he MR da mper 

has t o be chosen.  

Several  mechani cal  models  for  controllabl e mat erials were devel oped.  For  exa mpl e, 

Sha mes  and Cozzarelli  (1992)  used t he Bi ngha m,  vi scopl astic model  t o descri be t he 

behavi or  of  MR and ER fl ui ds.  In t his  model,  t he pl astic vi scosit y i s  defined as  t he 

sl ope of  t he measured shear  stress  versus  shear  strai n rat e dat a f or  positi ve val ues  of 

the shear strai n rate,  , the total stress is gi ven by 

  )sgn()field(y   (4. 2) 

where y  (fiel d)  represents t he yi el d stress  i nduced by t he magnetic or  el ectric fi el d 

and  represents t he viscosit y of fl ui d.  

Based on t his model  of  t he r heol ogi cal  behavior  of  ER fl ui ds,  St anway ( 1987) 

pr oposed an i dealized mechani cal  model,  denot ed t he Bi ngha m model,  f or  t he 

behavi or  of  an ER da mper.  The Bi ngha m model  consists of  a  Coul omb  fri cti on 

el e ment pl aced i n parallel wit h a viscous da mper and is as shown i n Fi gure 4. 2.  

 

Fi gure 4. 2. Bi ngha m model of controllabl e fl ui d da mper (St anway, 1987)  

In t his  model,  for  nonzero pist on vel ocities,  x ,  t he force generat ed by t he devi ce i s 

gi ven by 

ooc fxc)xsgn(fF    (4. 3) 

where  
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  co : da mpi ng coefficient  

 fc : fricti onal force related t o t he fl ui d yiel d stress 

fo  :  an offset  i n t he f orce i ncl uded t o account  f or  the nonzero mean obser ved 

in t he measured force due t o t he presence of t he accumul at or. 

The accumul at or  has  t he f uncti on of  co mpensati ng f or  changes  i n t he vol ume  of  t he 

MR fl ui d due t o changes i n t he t e mperat ure and changes  i n t he vol ume  availabl e t o 

the fl ui d as t he pist on rod enters and exits t he body of t he da mper. 

Al so,  f ocusi ng on predicti ng t he behavi or  of  ER mat erials,  Ga mot a and Filisco 

(1991)  pr oposed an extensi on of  t he Bi ngham model,  whi ch i s  given by t he 

vi scoel astic–pl astic model shown i n Fi gure 4. 3.  

 

Fi gure 4. 3. Model proposed by Ga mot a and Filisco (1991) 

The model  consists of  t he Bi ngha m model  (i. e.,  a fricti onal  el e ment  i n parallel  wit h a 

dashpot)  i n series  wit h a st andard model  of  a  linear  soli d ( Sha mes  and Gozorelli, 

1992).  The governi ng equati ons  f or  t his model  are gi ven by ( Spencer  and Dyke, 

1997) as 

for | F| > fc 

F k x x c x x fo    1 2 1 1 2 1( ) ( )   (4. 4) 

F c x f x fo c o   sgn()1 1  (4. 5) 

 F k x x fo  2 3 2( )  (4. 6) 

for | F|  fc 

 F k x x c x fo   1 2 1 1 2( )   (4. 7) 

 F k x x fo  2 3 2( )  (4. 8) 
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where co  denot es  da mpi ng coefficient  associ at ed wi t h t he Bi ngha m model ,  and k1,  k2 

and c1 are associ ated with t he li near soli d mat erial. When F f c , x1 0 . 

The ot her  model  t hat  is nu meri call y tract able and has  been used ext ensi vel y f or 

modeli ng hyst eretic syste ms  i s  t he Bouc– Wen model  ( Wen,  1976).  Thi s  model  can 

be used f or  many different  pur poses  and can exhi bit  a wi de variet y of hyst eretic 

behavi or.  A sche matic of t his  model  i s  shown i n Fi gure 4. 4.  The f orce i n t hi s  syst e m 

is gi ven by 

 F c x k x x zo o o    ( )   (4. 9) 

where z is an evol uti onary variabl e governed by  

    z x z z x z Ax
n n

   


 
1

 (4. 10) 

By adj usti ng t he para meters  ,   and A of  t he model,  one can control  t he l inearit y i n 

the unl oadi ng and t he s moot hness  of  t he transiti on from preyi el d t o post yi eld regi on.  

In additi on,  t he f orce to due t o t he accumul at or  ( f k xo o o )  can be directl y 

incorporat ed i nt o this model a, an i nitial deflecti on xo of t he li near spri ng ko.  

 

Fi gure 4. 4. Bouc– Wen model of MR da mper 

The model  used here i s pr oposed mechani cal  model  devel oped from t he  wor k of 

Spencer  et  al  ( 1997)  who have det er mi ned t heir  model  experi ment all y usi ng a 

pr ot ot ype MR da mper  (see Fi gure 4. 1)  built  for  control  applicati ons  t o better  predi ct 

the da mper  response i n the regi on where accel eration and vel ocit y have opposite 

si gns  and where magnit ude of  t he vel ocit y i s  s mall.  The sche matic of  t his model  i s 

represent ed i n Fi gure 4. 5. 
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Fi gure 4. 5. Proposed mechani cal model of t he MR da mper.  

The mechani cal  model  of  t he MR da mper  pr oposed i n Spencer  et  al  ( 1997)  i s  shown 

in Fi gure 4. 5.  A f orce bal ance on t he ri gi d bar whose positi on i s  measured by y 

results i n 

 c y z k x y c x yo o1
 ( ) ( )      (4. 11) 

where z k x y c x yo o   ( ) ( ) r epresents  t he force generat ed by t he Bouc- Wen 

model  wit h z  bei ng called t he evol uti onary variabl e.  The evol uti onary variabl e z  i s 

cal cul ated accordi ng t o  

    ( ) ( )z x y z z x y z A x y
n n

      


 
1

 (4. 12) 

where  , , A and n denot e para met ers whose val ues are det er mi ned experi mentally.  

Sol uti on of Equati on (4. 11) for y results i n 

    ( )y
c c

z c x k x y
o

o o


  
1

1

  (4. 13) 

The MR da mper  f orce i s t hen f ound t hrough a  f orce bal ance on t he ri gi d bar  whose 

positi on is measured by x in Fi gure 4. 4. This force bal ance results i n  

 F z c x y k x y k x xo o o       ( ) ( ) ( )1  (4. 14) 

Usi ng Equati on (4. 11), Equati on (4. 14) can also be expressed as 

  F c y k x xo  1 1
 ( )   (4. 15) 
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In t his  model,  k1  represents  t he accumul at or  stiffness  and co  represents  the  vi scous 

da mpi ng observed at  l arger  vel ocities.  The da mpi ng el e ment  repr esent ed by c1  i s 

incl uded i n t he model  to i ntroduce t he nonli near  decrease i n t he f orce–vel ocit y 

relati on.  ko  i s  present  t o control  t he stiffness  at  large vel ocities  and xo  i s t he i nitial 

di spl ace ment  of  spri ng k1  associ at ed wit h t he no mi nal  da mper  f orce due t o t he 

accumul at or.  By adj usting t he para met ers  ,   and A,  t he shape of  t he hyst eresis 

loops for t he yi el di ng element can be controlled.  

Si nce we  need varyi ng da mpi ng val ues  f or  t he washi ng machi ne suspension syst e m 

over  t he spi n cycl e,  we t ake t he f uncti onal  dependence of  t he para meters  on t he 

applied voltage ( or  current)  i nt o account.  To account  f or  t he dependence of  t he 

para met ers  on t he voltage applied t o t he current  dri ver  and t he resulti ng magneti c 

current, Spencer et al (1997) suggest ed usi ng 

 u)u( ba    (4. 16) 

 )u(cc)u(cc b1a111   (4. 17) 

 )u(cc)u(cc oboaoo   (4. 18) 

where u is gi ven as t he out put of a first order filter gi ven by 

 )u(u     (4. 19) 

and   i s  t he co mmanded voltage sent  t o t he current  dri ver.  The above equati on i s 

necessary t o model  t he dyna mi cs  i nvol ved i n reachi ng r heol ogi cal  equili briu m and i n 

dri vi ng t he electromagnet in t he MR da mper.  

The experi ment all y det er mi ned para met er  val ues  of  Spencer  et  al  ( 1997)  t hat  are 

tabul at ed i n Tabl e 4. 2 are used here.  
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Tabl e 4. 2 Para met ers  f or t he MR Da mper  model  (adapt ed from Spencer,  Dyke,  Sai n 

and Carlson, 1997) 

Para meter Val ue Para meter Val ue 

coa 21. 0 N. s/c m a  140 N/ c m 

cob 3. 50 N. s/c m. V b  695 N/ c m. V 

ko 46. 9 N/ c m  363 c m
- 2

 

c1a 283 N. s/c m  363 c m
- 2

 

c2b 2. 95 N. s/c m. V A 301 

k1 5. 0 N/ c m N 2 

xo 14. 3 c m  190 sec
- 1

 

 

Usi ng t hese para met ers,  the response of  t he MR da mper  model  i s  obt ai ned f or  t he 

four  const ant  voltage l evels  of  0,  0. 75,  1. 5 and 2. 25 Volts.  The i nput s  t o t he MR 

da mper  model  are t he di spl ace ment  and t he vel ocity across  t he devi ce and the out put 

is t he f orce i n t he devi ce.  To pr ove t he validity of  t he model,  force versus 

di spl ace ment,  force versus  vel ocit y and f orce versus  ti me graphs  were drawn and 

compared wit h t hose of  the experi ment all y obt ained ones  of  Spencer  et  al  (1997). 

The si mul ati on results are shown i n Fi gure 4. 6 and are f or  a  di spl ace ment  x (see 

Fi gure 4. 5) bei ng gi ven by 

 x x fto sin( )2  (4. 20) 

The excitati on frequency f  has  a val ue of  2. 5 Hz  and t he excitati on a mplit ude  xo  has  a 

val ue of 1. 5 cm.   

It  i s  seen from t hese fi gures  t hat  t he f orce pr oduced by t he MR da mper  when no 

voltage i s  applied t o it  i s not  zero.  Thi s  i s  due t o the presence of  t he accumul at or  i n 

the MR da mper.  Al so,  the f orce-ti me pl ot  of  Figure 4. 7(a)  i ndi cat es  t hat  t he f orce 

increases  i n direct  proporti onal  t o t he applied magnetic fiel d.  Ho wever,  aft er  a 
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certai n voltage val ue,  thi s  f orce st ays  at  a const ant  val ue.  The f orce-vel ocit y 

hyst eresis pl ot  of  Fi gure 4. 7(b)  de monstrates  t hat  the devi ce i s  pri maril y dissi pati ve. 

The hyst eresis i n t he f orce-vel ocit y pl ot  of  Fi gure 4. 7(c)  is  due t o t he elastic and 

inertial  pr operties  of  t he mat erial.  The si mul ated responses  obt ai ned are i n good 

agree ment  wit h t he publ ished experi ment al  results  (see  Fi gure 4. 6)  of  Spencer  et  al 

(1997). 

 

 

 

Fi gure 4. 6.  The experiment al  results for  2. 5 Hz  si nusoi dal  excitati on wit h an 

a mplit ude of 1. 5 c m. (Spencer, Dyke, Sai n and Carlson, 1997) 
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Fi gure 4. 7.  The model  results for  2. 5 Hz  si nusoidal  excitati on wit h an amplit ude of 

1. 5 c m.  

 

(a) 

(b) 
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5.  ACTI VE CONTROL  

The mai n source of  vi brati on pr obl e ms  i n washing machi nes  are due t o t he centrifugal 

forces  of  t he r ot ating unbal anced l aundr y.  The magnit ude of  t he centrifugal  f orce 

depends  on t he l ocati on and t he wei ght  of  t he unbal anced l aundr y as  well  as  t he 

rotational  speed of  t he dru m.  All  t hese fact ors  affecti ng t he magnit ude of  the centrifugal 

forces  vary duri ng t he operati on of  t he washi ng machi ne.  To da mp t he vi brati ons 

generat ed by t he centrifugal  forces,  a fricti on t ype shock absorber  ensuri ng a const ant 

vi brati on da mpi ng capacit y i s  bei ng used.  However,  t his  shock absorber  fails  t o 

adequat el y co mpensat e vibrati ons  whose a mplit udes  change duri ng t he operati on of  t he 

washi ng machi ne.  

Furt her more,  as  menti oned i n Chapt er  2,  i ncreased da mpi ng i s  needed duri ng t he 

resonance conditi on (t he begi nni ng and at  t he end of  t he spi n cycl e)  at  whi ch vi brati ons 

and f orces  t o be trans mi tted t hrough t he suspension unit  reach t heir  maxi mu m val ues. 

On t he ot her  hand,  l ow da mpi ng i s  required f or mi ni mal  f orce trans mi ssi on aft er  t he 

dr um reaches spi n speed.  

The appr oach i n vi brati on control  for  washi ng machi ne syst e m i s  t herefore t o decrease 

the effect  of  centrifugal  forces,  t he di st urbance on t he st eady-state out put  and al so on t he 

transi ent  response by using a  controllabl e act uat or  all owi ng f or  adj usti ng of  t he da mpi ng 

of t he washi ng machi ne syst e m t o the different washi ng cycl es and conditi ons.  

Bef ore i ntroduci ng t he vibrati on control  met hods i mpl e ment ed on t he washi ng machi ne 

suspensi on syst e m t o i mpr ove its  washi ng performance,  open-l oop behavior  of  t he si ngl e 

degree of  freedo m ( SDOF)  model  of  t he washi ng machi ne suspensi on syst e m i s 

anal yzed.  In t his  st udy,  the SDOF model  of  t he washi ng machi ne syst e m i s used i n or der 

to si mplify t he t heoretical  anal ysis for  se mi-active and acti ve vi bration control.  The 

bl ock di agra m of  t he open-l oop passi ve syst e m of t he SDOF suspensi on model  i s  gi ven 

in Fi gure 5. 3. 
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Fi gure 5. 1. Unbalance excitation response and Frsf vs ti me for the drum speed of 180 rpm 
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Fi gure 5. 2.  Unbal ance excitati on response and Frsf  vs  ti me f or  t he dr um speed of  600 

rpm 
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Fi gure 5. 3. Open-l oop passi ve syste m 

In Fi gure 5. 3,  d(s)  shows  t he unbal ance excitation (centrifugal  force)  caused by t he 

maxi mu m unbal anced mass  of  3. 5 kg r ot ati ng wi th t he dr um havi ng a  radi us  of  0. 2 m 

. The charact eristics  (stiffness  and da mpi ng)  of  t he opti mal  passi ve syst e m det er mi ned by 

Tür kay and Taşpı nar  ( 1995)  are k =16000N/ m and c =515 Ns/ m are used as  a  begi nni ng 

poi nt  here.  The unbal ance excitati on response of  t he passi ve model  f or  t wo different 

rotational speed of t he dru m is gi ven i n Fi gures 5.1 and 5. 2.  

5. 1. Se mi- Acti ve Vi bration Control  

Se mi -acti ve vi brati on control  met hod relies  on changi ng t he charact eristic(s)  of  t he 

suspensi on syst e m usi ng a l ow control  energy i nput.  This  control  can be i mpl e ment ed i n 

open-l oop or  cl osed-l oop manner  t hat  is  dependent  upon t he dyna mi cs  and the excitati on 

of  t he syst e m t o be controlled.  In t his  st udy,  an open-l oop se mi -acti ve control  met hod i s 

to be i mpl e ment ed on t he SDOF model as shown in Fi gure 5. 4.  

The controllabl e act uat or chosen here f or  se mi -active vi brati on control  is  the magnet o-

rheol ogi cal  ( MR)  da mper.  A mechani cal  model  of  t he MR da mper  pr oposed by Spencer 

et  al  (1997)  i s  i ncorporated i nt o t he SDOF model  of  t he act ual  washi ng machi ne i n pl ace 

of  t he dr y fricti on shock absorber.  The mechani cal  model  pr oposed f or  t he MR da mper 

is depicted i n Fi gure 5. 5.  

1/M 1 / s
d(s) +

-
1 / s

c / M
+

+

x(s)

k / M

a(s) v(s)
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1/M 1 / s
D(s) +

-
1 / s

k / M

1/M

MR

Damper

+

+

x(s)a(s)

sX(s)

X(s)



v(s)

 

Fi gure 5. 4. Open-l oop syste m wit h the MR da mper 

 

Fi gure 5. 5 Mechani cal Model of t he MR da mper 

The da mpi ng charact eristic of  t he MR da mper  i s  adj usted by var yi ng t he voltage   sent 

to t he current  dri ver.  The current  dri ver  creat es  a magnetic fiel d t hat modifi es  t he 

vi scous  and el astic pr operties  of  t he MR medium i nsi de t he housi ng and t hus  its 

da mpi ng charact eristics. The opti mu m da mpi ng of  t he open-l oop se mi -acti ve syst e m 

under  t he unbal ance excitati on f or  t he r ot ati onal  speeds  of  180 rpm and 600 rpm i s  f ound 

by adj usti ng t he voltage val ues  applied t o t he MR da mper  t o t he 0. 3 and 0 volt, 

respecti vel y.  Fi gure 5. 6 and 5. 7 show t he response of  t he open-l oop se mi -acti ve syst e m 

at t hese t wo drum speeds. 
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Fi gure 5. 7.  Unbal ance excitati on response and Frsf  vs  ti me f or  t he dr um speed of  600 

rpm ( MR da mper shut down)  

It  i s  seen from t he si mulat ed vi brati on a mplit ude of  t he passi ve and se mi -acti ve syst e ms 

that  t he st eady st ate vi bration a mplit ude of  approxi mat el y 0. 023 m i n Figure 5. 2 has 
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been reduced t o a val ue of  appr oxi mat el y 0. 0004 wi t h t he MR da mper  as  seen i n Fi gure 

5. 6.  A voltage of  50. Volt  was  applied i n t he MR damper  si mul ati on.  Besi des,  it  i s 

deduced from co mpari ng Fi gures  5. 3 and 5. 7 t hat  when t he MR da mper i s  effecti vel y 

shut  down,  its  st eady stat e vi brati on suppressi on capability i s  si mil ar  to t hat  of  t he 

preferred l ow da mpi ng passi ve syste m.  

5. 2. Acti ve Vi brati on Control  

The first,  acti ve vi bration control  strategy i mpl e ment ed i n t he washing machi ne 

suspensi on syst e m i n t his  t hesis i s  t o be cl osed-loop control  wit h accel erati on feedback 

control  for  vi brati on suppressi on.  Fi gure 5. 8 shows  t he bl ock di agra m of  the cl osed-l oop 

syste m.  

Fi g. 5. 8. The bl ock di agra m of t he cl osed-l oop system 

In Fi gure 5. 8 t he accel erati on feedback i s  realized by l etti ng t he  control  force t o oppose 

the centrifugal  forces  creat ed by t he unbal anced l aundr y.  In Fi gure 5. 8 t he accel eromet er 

attached t o t he t ub of  the washi ng unit  i s  assumed t o have a transfer  functi on i n t he 

foll owi ng for m;  

 
1

1




s
)s(H


 (5. 1) 

where ti me const ant,   was chosen t o have a val ue of  0. 0002sec.  This  val ue is suffici ent 

to track t he maxi mu m accel eration correspondi ng to t he maxi mu m wor ki ng speed of  t he 

R(s)

-

c / M

+

+

X(s)
1/M

1/(0.0002s+1)
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washi ng machi ne syst e m of  1500 rpm.  Not e t hat  the presence of  H(s)  i n Figure 5. 8 al so 

hel ps prevent t he for mation of an al gebrai c l oop when proporti onal control is used.  

The pr oporti onal  controller,  whi ch i s  essentiall y an a mplifier  wit h an adjust abl e gai n i s 

used t o adj ust  control  forces  so as  t o attenuate vi brati on pr oduced by t he unbal anced 

laundry. The control force is drawn from t he Fi gure 5. 8 as 

 )s(X)s(HKs)s(F 2

c   (5. 2) 

where K i s  t he controller  gai n,  or  effecti ve mass needed t o obt ai n t he control  forces  i n 

or der t o suppress t he distur bances generat ed by t he centrifugal forces. 

Fr om Fi gure 5. 8 and t he above equati ons,  t he cl osed l oop transfer  f uncti ons  of  t he 

washi ng machi ne suspensi on syst e m from t he di sturbance i nput  D(s)  t o t he accel erati on 

a(s) is obt ai ned as 

 )s(D
kcss)MK(

s
)s(a

2

2


  (5. 3) 

It  i s  seen from equati on ( 5. 3)  t hat  t o l ower  the vi brati on l evel  pr oduced by t he 

unbal anced mass  we  have t o decrease t he effect  of  t he di st urbance.  One way t o achi eve 

this is  t o i ncrease t he gai n,  K of  t he controller. For  t he predefi ned mass  eccentricit y 

70.mu   and t he r ot ational  speed 180  r p m t he det er mi ned controller  gai n i s  f ound 

to be 170.  Aft er  si mul ating t he syst e m i n Fi gure 5. 8 wit h t hese val ues,  t he response of 

the cl osed-l oop syst e m is obtai ned.  

Aft er  co mpari ng t he perfor mance of  t he cl osed-l oop syst e m ( Fi gure 5. 9)  wi t h t he open-

loop passi ve syst e m ( Figure 5. 2)  it  i s  not ed t hat  t he cl osed-l oop syst em r educes  t he 

vi brati on l evel  for  t he r otati onal  speed of  180 r pm from t he val ue of  0. 025 m t o t he val ue 

of  0. 004 m.  Thus,  it  i s  apparent  t hat  cl osed-l oop control  i mpr oves  syst e m perfor mance. 

That  i s,  t he use of  t he accel erati on feedback makes  t he syst e m r esponse partl y 

insensiti ve to t he dist urbances.  
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Fi g. 5. 9. The response of the cl osed-l oop syst e m with P controller 

5. 2. 1 The applicati on of  repetitive control  to t he washi ng machi ne s uspensi on 

syste m 

The pri nci pl e ai m i n t his  t hesis is  t o suppress  undesirabl e di st urbances,  the peri od of 

whi ch i s  known si nce the centrifugal  f orces  caused by t he unbal anced mass  i s  a 

har moni c f uncti on of  t he r ot ati onal  speed of  t he dr um.  As  repetiti ve control  syst e ms 

have been shown t o wor k well  for  regul ati on applicati ons  i nvol vi ng unknown but 

peri odi c di st urbance si gnals  ( Sri ni vasan,  1991)  t he repetiti ve controller  is  adapt ed t o t he 

washi ng machi ne vi bration suppressi on syste m.  

The repetitive controller  cont ai ns  a ti me del ay el ement  e mbedded i n a positive feedback 

loop,  t he val ue of  whi ch is equal  t o t he peri od of  the peri odi c reference i nput  or  peri odi c 

di st urbance i nput  ( Sri ni vasan,  1991).  Si nce t he washi ng machi ne suspension syst e m i s 

stabl e,  t he positi ve feedback l oop i n t he repetitive controller  generat es t he peri odi c 

si gnal  needed at  t he pl ant  i nput  t o rej ect  t he periodic di st urbance si gnal  effecti vel y.  I n 

ot her  wor ds,  t he current control  si gnal  i s  based on i nfor mati on from t he error  si gnal 

measured at  previ ous  t i mes  so as  t o rej ect  the peri odi c di st urbance.  Fi gure 5. 10 

de monstrates t he bl ock diagra m of a si ngle i nput single out put repetitive control syste m.  
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Fi g. 5. 10. The repetitive control syste m bl ock di agra m ( Sri ni vasan, 1991) 

Bef ore i ntroduci ng t he repetiti ve controller  i nt o the bl ock di agra m of  t he cl osed-l oop 

control  syst e m we  first  discuss  st ability anal ysis of ti me del ayed syst e ms.  Srini vasan and 

Nachti gal  (1991)  devel oped a  measure of  t he degree of  t he st abilit y of ti me  del ayed 

syste ms.  Thi s  measure is based on a f uncti on of  frequency called t he regenerati on 

spectrum whose defi niti on is based on t he syst e m charact eristic equati on.  

5. 2. 2 Stability anal ysis of the ti me del ayed syste ms usi ng regenerati on spectrum 

The charact eristic equation of  a  conti nuous  ti me,  ti me i nvariant,  ti me  delayed syst e m 

wi t h a si ngle ti me del ay TD  is gi ven by (Sri ni vasan, 1991)  

 P s Q s e sTD( ) ( )  0 (5. 4) 

where P(s)  and Q(s)  are pol yno mi als  i n t he Lapl ace variabl e s.  The regenerati on 

spectrum for a ti me del ayed syste m is defi ned as a pl ot of t he functi on R( )  gi ven by 

 R
Q j

P j
( )

( )

( )





  (5. 5) 

versus frequency   (Sri ni vasan, 1991). 

The rel ati onshi p of  t he regenerati on spectrum t o the absol ut e st ability of  the syst e m i s 

established by t he a mplitude phase met hod of  st abilit y anal ysis,  whi ch i s  essenti all y an 
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application of  t he Nyquist  criteri on t o ti me del ayed syst e ms.  That  i s,  if  t he pol yno mi al 

P(s) has no zeros i n t he right half of the s-pl ane and if (Sri ni vasan, 1991) 

 1)(R   (5. 6) 

then t he cl osed-l oop syste m i s  st abl e f or  all  val ues  of  t he ti me del ay.  In other  wor ds,  if 

the regenerati on spectrum f or  a  ti me del ayed syste m i s  l ess  t han unit y f or  all  frequenci es, 

the syst e m i s  st abl e f or  all  val ues  of  t he ti me delay.  Thi s  i s  a sufficient  conditi on onl y 

and i s  not  necessary f or  stability.  Moreover,  R i s  also a good measure of  relati ve st abilit y 

and it is desired t o keep it as l ow as possi bl e. 

5. 2. 3 Repetitive controller desi gn and anal ysis 

In Fi gure 5. 10 G sp ( )  i s  t he uncompensat ed or  conventiall y co mpensat ed pl ant  t ransfer 

functi on,  q(s)  i s  a l ow pass  filter  needed t o guarant ee repetiti ve control  syste m st abilit y, 

and b(s)  i s  a repetitive co mpensat or  transfer  function.  TD  i s  t he peri od of  t he peri odi c 

exogenous  i nput  ( Sri ni vasan,  1991).  The charact eristic equati on of  t he cl osed-l oop 

syste m shown i n Fi gure 5. 10 is 

   011 
 DsT

ppp e)s(G)s(G)s(b)s(q)s(G  (5. 7) 

where  

)s(G)s(P p1  (5. 8) 

 1 )s(G)s(G)s(b)s(q)s(Q pp  (5. 9) 

Substit uting P(s) and Q(s) int o t he equati on (5. 5) we get t he regenerati on spectrum as  

 
)j(G

))j(G()j(G)j(b)j(q
)(R

p

pp











1

1
 (5. 10) 
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The above expressi on f or  t he regenerati on spectru m i ndi cat es  very cl early t he effect  of 

changi ng q(s) and b(s) on the syste m stability. If the equati on  

P s G sp( ) ( )  1 0 (5. 12) 

has  no r oots  i n t he ri ght  half  of  t he co mpl ex s-pl ane and if  t he regenerati on spectrum i s 

less  t han one i n magnit ude at  all  frequenci es,  t hen t he repetiti ve control  syst e m i s  st abl e 

(Sri ni vasan,  1991).  The f irst  conditi on i s  t hat  t he cl osed-l oop syst e m should be st abl e i n 

the absence of  t he repetitive control  acti on.  If  compensati on i s  required for  t he st abilit y 

of  t he cl osed-l oop syst em,  t he co mpensat or  transfer  functi on i s  i ncorporat ed i n G sp ( ) . 

Mor eover,  q(s)  and b(s)  must  be chosen i n a way that  an i mpr ove ment  i n perfor mance i s 

to be achi eved.  The expressi on wit hi n parent hesis i n equati on ( 5. 11)  t ends  to unit y as    

goes  t o i nfi nit y because G jp ( )  goes  t o zero at  hi gh frequenci es  f or  physi cal  syst e ms. 

Therefore,  q(j )  must  be lower  t han one at  hi gh frequenci es  i n or der  t o pr ovide syst e m 

stability.  This  i s  achi eved by choosi ng a  l ow pass  filter  for  q(s).  It  i s  also not ed from 

equati on ( 5. 11)  t hat  choice of  b(j )  t o co mpensat e f or  t he a mplit ude and phase of  t he 

frequency response G Gp p/ ( )1  woul d keep t he magnit ude of  t he t er m wit hi n 

parent hesis i n equati on (5. 11)  cl ose t o zero f or  a wi der  range of  frequenci es.  By t hi s 

way,  we  l ower  t he magni tude of  t he regenerati on spectrum,  R( )  well  bel ow unit y f or  a 

wi de range of frequenci es and t his hel ps i mpr ove relati ve stability also.  

5. 2. 4 Appli cati on of  the  repetitive control  al gorithm t o t he washi ng machi ne 

suspensi on syste m 

In t his subsecti on,  t he repetitive controller  is  incl uded i n t he bl ock diagra m of  t he 

cl osed-l oop syst e m so as to reject dist urbances creat ed by t he unbalanced laundr y.  

Duri ng t he spi n cycl e of t he washi ng unit,  t here is a t endency f or  t he l aundr y t o bunch 

up and gat her  on one si de of  t he dr um.  As  a  result,  t he concentrated l aundry on one si de 

of  t he dr um generat es  centrifugal  forces  t hat  are pr oporti onal  t o t he square of  t he 
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rotational  speed of  t he dru m.  Si nce t he centrifugal f orces  are a har moni c f uncti on of  t he 

dr um r ot ati onal  speed,  the peri od of  t he di st urbance i nput  si gnal  is  known,  whi ch i s 

necessary for t he applicati on of repetitive control. 

The cl osed-l oop transfer f uncti on of  t he washi ng machi ne suspensi on syste m has  been 

cal culated as 

G s

G s

K s

K M s cs k

p

p

p

p

( )

( ) ( )1

2

2


  
 (5. 13) 

where G sp ( )  indi cat es t he compensat ed pl ant transfer functi on.  

Co mpensat ors  q(s)  and b(s)  i n t he repetiti ve controller  are sel ect ed usi ng the gui deli nes 

suggest ed by Sri ni vasan and Sha w ( 1991).  q(s)  i s chosen usi ng t he sensitivit y f uncti on 

as  a  gui deli ne f or  t he syste m i n Fi gure 5. 10.  The sensiti vity f uncti on f or  the syst e m i n 

Fi gure 5. 10 taken from the wor k of Sri ni vasan and Sha w (1991) is  
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 (5. 15) 

where S sR ( ) represents t he sensiti vity functi on for t he repetiti ve control syst e m.  
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2  (5. 16) 

where S(s)  denot es  t he sensiti vity f uncti on f or  t he syst e m wit hout  t he repetiti ve control. 

S(s) is also ter med t he closed-l oop transfer function from t he dist urbances to t he out puts.  

In equati on ( 5. 15),  sM de monstrates  t he multi pl yi ng fact or  changi ng t he sensiti vit y 

functi on as a result of t he repetitive control acti on (Sri ni vasan, 1991) and is 
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 (5. 17) 

Si nce t he sensiti vity f uncti on,  S(s)  i s  used as  a  measure of  di st urbance rej ecti on and 

sensiti vity t o pl ant  modelli ng errors  and paramet er  variati on,  l ow val ues  of  t he 

sensiti vity f uncti on magnit ude )j(S   are desired especi all y i n t he l ow frequency 

range. Aft er exa mi ni ng the multi pl yi ng fact or, M s at low frequenci es, it is seen t hat  

M j q j es

j TD( ) ( )    1  (5. 18) 

for t he val ue of b(j ) 

b j
G j

G j

p

p

( )
( )

( )







1
 (5. 19) 

It  i s  not ed from equati on ( 5. 17)  t hat  t he sensiti vity f uncti on can be reduced t o ver y l ow 

val ues for t he integer values of fTD  multi plicati on where 

f 


2
 

On t he ot her  hand,  due t o t he cyclical  nat ure of  t he multi pl yi ng fact or,  M s  t he 

i mpr ove ment  i n t he sensiti vity f uncti on i s  l ost at  t he i nt er medi ate fr equenci es.  For 

instance,  if  q(s)  i s  chosen t o be cl ose t o unit y at  low frequenci es,  t he sensitivity f uncti on 

and hence error  si gnal  is reduced t o nearl y zero at  frequenci es  whi ch are i nt egral 

multi ples  of  t he di st urbance si gnal  frequency,  f
TD


1

 (Sri ni vasan and Sha w,  1991). 

Ho wever, at inter medi at e frequenci es t he error si gnal is nearl y doubl ed.  

Consequentl y,  t he eequations  ( 5. 11)  and ( 5. 17)  show t hat  i mpr oved st ability r equire q(s) 

to be a l ow pass filter. Here q(s) is chosen as 

q s
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The cut-off  frequency of  q(s)  i s  equal  t o 1000 rad/sec  whi ch i s  wel l  beyond t he 

maxi mu m wor ki ng speed of  t he dr um of  150 rad/sec.  As  pr oposed by Sri ni vasan and 

Sha w (1991) b(s) is chosen as 
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2  (5. 21) 

Fi gure 5. 11 denot es  t he repetiti ve control  syst e m bl ock di agra m of  t he washi ng machi ne 

suspensi on syst e m.  For  the dr um r ot ational  speed of  180 rpm,  TD  (t he period of  t he 

di st urbance i nput si gnal) is cal cul ated as 

f
rev rev

 180
1

60
3

min

min

sec sec
 (5. 22) 

T
f revD  
1 1

3

sec
 (5. 23) 

 

Fi gure 5. 11.  The repetitive control  syst e m bl ock di agra m of  t he washi ng machi ne 

suspensi on syste m 

The response of  t he washi ng machi ne suspensi on syst e m wit h t he repetitive controller 

for t he si nusoi dal dist urbance i nput si gnal of a mpl itude 

F mo u 2 
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and frequency, 
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   rad/sec is obt ai ned by si mul ati on as i n Fi gure 5. 12.  
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Fi g. 5. 12. The response of the Repetitive Control Syst e m 

Fr om Fi gures  5. 6 and 5. 12 it  i s  not ed t hat  addi ng the repetitive controller  i nto t he cl osed-

loop syst e m t he a mplit ude of  t he response i s  reduced appr oxi mat el y 100 ti mes.  That  i s, 

the a mplit ude of  t he response i s  decreased nearl y from t he val ue of  0. 004m t o t he val ue 

of 0. 00007.  

Si nce b(s)  i s  chosen t o be equal  t o G Gp p/ ( )1 ,  t he regeneration spectrum goes  t o zero 

for  all  val ues  of  frequency.  This  i ndi cat es  t hat  t he repetitive control  syst em i s  st abl e f or 

all  val ues  of  frequency.  The sensiti vit y f unction wit hout  and wit h the repetiti ve 

controller is gi ven i n Fi gure 5. 13:  
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Fi gure 5. 13 Sensiti vity functi on magnit ude wit h and wit hout repetitive control  
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6.  CONCLUSI ONS AND RECOMMENDATI ONS 

The mai n source of vibrati on probl e ms i n washi ng machi nes are due t o t he 

centrifugal forces of t he rot ating unbal anced laundry. The fact ors affecti ng t he 

magnit ude of t he centrifugal forces vary during t he operati on of t he washi ng 

machi ne. To da mp t he vibrati ons generated by t he centrifugal forces, a fricti on t ype 

shock absorber ensuri ng a const ant vi brati on dampi ng capacit y fails to meet t he 

required da mpi ng val ues whi ch change wit h the rot ati onal speed of t he dru m. It has 

been de monstrated here that the use of an MR da mper all owi ng da mping t o be 

adj usted t hroughout t he washi ng machi ne cycl e inst ead of a passi ve da mper sol ves 

this probl e m effecti vel y. It is seen from t he simul at ed vi brati on a mplitude of t he 

open-l oop passi ve and se mi -acti ve control systems t hat the steady state vi brati on 

a mplit ude of t he passi ve syste m has been reduced an approxi mat el y 58 ti mes wit h 

the MR da mper. Besi des, active vi brati on control met hods are applied t o the passi ve 

suspensi on model and it is seen t hat t he vi brati on amplit ude of t he washi ng machi ne 

suspensi on syste m can be suppressed compl et ely by t he applicati on of repetiti ve 

control under i deal conditi ons. In additi on t o the effecti ve vi brati on suppressi on 

perfor mance of t he MR da mper, the si mpl e mechanis m, l ow power require ment and 

relati vel y s mall size of it make t his controllabl e da mper suitabl e i n washi ng machi ne 

syste m.  

To sol ve the wal ki ng probl e m of t he washi ng machi ne syste m, it is recommended t o 

cal culate t he required dampi ng val ues of t he MR da mper off-li ne and t o prepare a 

look-up tabl e as a function of t he rotating speed of t he drum duri ng t he resonance 

conditi on. Then, t he l ook- up tabl e accordi ng t o whi ch preferred da mpi ng val ues are 

pr oduced by t he MR damper shoul d be applied to t he mi croprocessor of the washi ng 

machi ne.  
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