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Prof. Dr. Can ÖZSOY (İTÜ)
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OPTICAL DESIGN AND DEVELOPMENT OF A MICROMIRROR BASED
HIGH ACCURACY CONFOCAL MICROSCOPE

SUMMARY
The need for fast, non-contact and precise metrology systems in the micrometer
and nanometer range has long been acknowledged as an important requirement
in the production of the fine machined surfaces and microelectronics. Optical
technologies have made a lot of progress in the last few years and some of them
are now as accurate as high grade stylus profilometers. One of the non-contact
system is confocal microscope.

In recent years the technique of confocal microscopy, which first described by
Minski, has become a more and more powerful tool for surface characterization,
in parallel with the development of computer based image processing systems.
The basic principle of confocal microscopy, light emitted from point light source
is imaged onto object focal plane of a microscope objective. When a specimen
position in focus leads to maximum intensity at detector pinhole. The depth
discriminated detector signal is limits by the pinhole size is reduced strongly when
object is defocused. One of the other significant advantage of confocal microscopy
against the classical light microscopy is that the lateral resolution is significantly
greater. Also optical sectioning allows the determination of z coordinates in real
time.

Various designs of confocal microscope are possible, this thesis describes
adaptation of Digital micromirror arrays (DMD)to confocal microscopy. DMD is
a planar array of 16 µm×16 µm mirrors that are bistable at ±10◦ normal to chip.
Each individual mirror acts as an "on/off" switch by either reflecting light towards
the optical system or by reflecting light into light trap. DMD unit refreshed at
video rate. By controlling the video signal delivered from PC, individual mirrors
can be set to their "on/off" position creating any arbitrary pattern of pixels on
the chip. The design of DMD allows us project of an arbitrary pixelated image
onto object. The reflected image is contain noise and losses that are the function
of chip geometry. Experiments show us that the losses are around 10%.

In this thesis beside the effect of the pinhole size, all optical aberrations were
studied and DMD based systems optical system were developed. This items were
discussed in detail in Chapter 2 and Chapter 3. Further experimental setup which
is based on the optical design and simulations and capability of the developed
system were further proved in Chapter 4. The obtained results were discussed in
Chapter 5.

Finally the adaptation of DMD unit for confocal applications were proved.
With this study a new type of confocal system built and it capabilities proved.
This adaptation process leads us further DMD applications in the direction of

xi



lithography applications where the DMD unit can be used for optical maskless
applications.
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YÜKSEK DOĞRULUKLU MİKROAYNA DİZİNLİ KONFOKAL
MİKROSKOBUN OPTİK DİZAYNI VE GELİŞTİRİLMESİ

ÖZET
Mikroelektronik ve hassas mühendislik yüzeylerinin imalatında mikrometre ve
nanometre seviyelerinde doğruluğa sahip hassas temassız ölçme cihazlarına
duyulan ihtiyaç uzun zamandır bilinen ve kabul edilmiş bir gerçektir. Optik
ölçme teknikleri son yıllarda önemli bir ilerleme kaydetmiş ve hassasiyetleri
temaslı ölçüm cihazları kadar yüksek hale ulaştırılmıştır. Bu yeni optik ölçme
tekniklerinden birisi de Konfokal mikroskopdur.

İlk defa Minsky tarafindan geliştirilen konfokal mikroskop son yıllarda, bilgisayar
sistemlerinin de gelişmesi ile, yüzey ölçümlerinde giderek daha önemli bir cihaz
haline gelmiştir. Konfokal mikroskobun temel çalışma prensibi, nokta ışık
kaynağının optik sistem sayesinde mikroskop objektifinin fokusunda yer alan
objenin üzerine görüntülenmesidir. Obje tam olarak sistemin fokus mesafesinde
yer aldığı zaman bu detektör üzerinde maksimum sinyalin elde edilmesine neden
olur. Eğer obje fokus mesafesinin dışında ise sinyalde şiddetli bir azalma görülür.
Konfokal mikroskobun klasik mikroskopiye göre bir diğer avantajı ise yatay
rezülüsyon üstünlüğüdür. Düşey (z) yönünde gerçekleştirilen tarama uygulaması
ile de konfokal mikroskop ile gerçek zamanlı ölçümler mümkün olabilmektedir.

Konfokal mikroskopun farklı dizaynları bulunmaktadır, bu tez çalışmasında
DMD’nin (Digital Micromirror Device, Dijital mikroayna dizini) konfokal
mikroskopa adaptasyonu çalışması yapılmıştır. DMD, 16 µm×16 µm boyutunda,
her biri kendi çapraz ekseni üzerinde ±10◦ dönme kabiliyetine sahip iki boyutlu
ayna dizinidir. Bu özelliği her bir aynanın gerektiğinde ışığı optik sistemin
içine, gerektiğinde ise bir ışık tuzağına gönderilmesini sağlayan bir "on / off"
anahtar vazifesi görebilmektedir. Herbir aynanın bilgisayar yardımı ile birbirinden
bağımsız olarak programlanabilmesi yüzey tarama işlemi sırasında istenilen
büyüklükte nokta kaynak ve istenilen yüzey tarama şeklinin oluşturulmasına
avantaj sağlar. Yansıtılan görüntü, ayna yapısının bir fonksiyonu olan gürültü
ve kayıpları da içermektedir. Deneyler bu kayıpların %10 civarında olduğunu
göstermiştir.

Bu tezde, nokta deliğinin büyüklüğünün yanı sıra bütün optik sapmalar
araştırılmış ve DMD esaslı optik sistem geliştirilmiştir. Bu çalışma ve sonuçları
Bölüm 2 ve Bölüm 3’ de detaylı olarak tartışılmıştır. Optik dizayn ve simülasyon
sonuçlarına dayanan deneysel çalışma ve geliştirilen sistemin kapasitesi Bölüm 4’
de ispat edilmiştir. Elde edilen sonuçlar Bölüm 5’ de tartışılmıştır.

Son olarak DMD’nin konfokal mikroskop uygulamalarına adaptasyonu
gerçekleştirilmiştir. Bu çalışma ile yeni bir konfokal sistem oluşturulmuş ve
kapasitesi ispatlanmiştir. Gerçekleştirilen bu adaptasyon çalışması bizi masksiz
baskili devre imalatı gibi yeni DMD uygulama alanlarına yönlendirmektedir.

xiii



1. INTRODUCTION

Today’s industrial needs mainly determined by the miniaturization demand in the

last decades. Due to the demand for miniaturization in the market, the accuracy

of measuring instruments must be improved continuously. Today, products

are benefiting from the new technologies, namely Micro System Technology

and Nanotechnology, of miniaturizing and precision manufacturing originally

developed in micro-electronics, molecular-biology and quantum optics.

1.1 Micro system technology

Micro System Technology (MST) in a classical way can be defined as the art

of producing miniaturized systems. Usually, MST refers to devices that have

a characteristic dimensions of less than 1 mm but more than 1 µm. MST can

be applied precisely and economically to many different areas from medical

instrumentation to industrial instrumentation, from consumer electronics to

automotive industry [5] [6] [7] [8]. MST can mainly be classified as combination of

three main areas namely Optics, Electronics and Mechanics. Figure 1.1 illustrates

the interaction between these areas.

MECHANICS

ELECTRONICSOPTICS
OE

MEOMS

MEMSOMS

Figure 1.1: Classification of Micro System Technology.
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The combination between optics and electronics is called opto-electronics (OE).

The integration of diode arrays in CMOS technology and electronics (shift

registers, amplifiers, etc.) on a chip can be given as good example for such a

combined instrument. Micro-electro-mechanical systems (MEMS) is concerned

with the production of miniature motors, fluids pumps, mechanical sensors and

similar devices. Opto-mechanical devices (OM) combine mechanics and optics.

The variable power objective developed by Philips can be given as an example

for this combination. The acronym MEOMS (Micro-Electro-Opto-Mechanical

Systems) is used for combinations of all three areas of technology and together

with Micro-Electro-Mechanical-Systems (MEMS) it forms the specialized

technology fields where miniaturized optics, electronics and mechanics are used.

An example of a MEMS device is the Digital Micromirror Device (DMDTM),

which is developed by Texas Instruments for Digital Light Projection (DLP)

applications and is shown in Figure 1.2.

16 µm 16 µm

1 µm

Rotatio
n axis

Figure 1.2: Digital Micromirror Device (DMDTM) as MEMS. Each pixel has a size
of 16 µm× 16 µm and the distance between two DMD mirror is 1 µm.
Mirrors can rotate ±10◦ around the diagonal axis.

The device contains over a million tiny pixel-mirrors; each mirror has a size of

16 µm × 16 µm and is capable of rotating ±10◦, about a diagonal axis with.

DMD’s are used for projectors, high definition televisions (HDTV’s), flexible

illumination systems in modern cars and in digital cinemas where traditional

liquid crystals technology cannot compete [9]. MEMS technology has made it
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possible to decrease the distance between the mirrors to less than 1 µm. The

structure of the DMD gives us chances to use this MEMS device as a MEOMS

device for some application as optical switching elements. Basically, in this

project the DMD is used as a rewritable pinhole array.

1.2 Nanotechnology

The word Nanotechnology was initially used to describe the target accuracy

for fabrication processes involving ultra-precision surface technology. Its’ basic

concept was introduced by Taniguchi in 1974 [1]. In his researches Taniguchi

suggested that the traced historical development of the accuracy of material

processing can be used for the prediction of future trends. A modified version

of his approach is given in Figure 1.3 where the time development of the

accuracy of machine processing is shown together with corresponding measuring

resolution [10] [11].
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Figure 1.3: Taniguchi’s approach, future trend in nanotechnology. Adapted from [1].
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The continuous miniaturization in manufacturing technologies now allows

us to produce nano-sized samples with nano-sized structures as well as

nano-scale precision [12]. Nanotechnology products are now found in biological

applications, chemistry, medical applications, microelectronics, and in precision

engineering [13]. Nanotechnology is not a simple continuation of microtechnology.

It marks the ultimate end of materials science, namely the dimensions where

the material properties stop and molecular properties start. Nanotechnology

includes not only extra-high precision processing technology but also measuring

and positioning technologies with sub-nanometer resolution and scattering error.

To support the current technologies it is necessary to provide devices that allow

measurements of very small dimensions. These devices must measure correctly,

in other word they must be traceable to the definition of the meter in the SI1 [14].

1.3 Technology needs measurement

In the production line it is important to know whether a product meets with

specified functional demands. This control process, quality control, can be done

by quantitative measurements which are traceable to an agreed metrology scale.

Quality control is required for all important physical quantities not only for an

end product but also at various stages in the production starting from design

to prototype evaluation until implementation. Therefore, metrology should be

considered as a very important subject for technology, it should be developed

together with science and technology. In order to apply metrology in the field of

micro and nanotechnology, it is necessary to make measurements in the nanometer

range traceable to the primary SI units by using:

• Proper scientific instruments

• Written standards

• Measurement standards

• Agreed measurements procedures and traceability chain.
1Système International des Unités / International System of Units
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Not all of these requirements are fulfilled in MST or Nanotechnology; especially

for surface characterization, to which this thesis is devoted, much work still has

to be done. It should be remembered that technology without related metrology

is incomplete.

1.4 Characterization of engineering surfaces

Due to miniaturization, the surface of products and their components has become

more important. Not only the surface structures become smaller but also the

surface becomes more important when the product dimensions become smaller.

From 1980s’ until today line-widths in microelectronic devices have decreased

from 1 µm to 0.07 µm [15]. The conditions of surfaces in a production line are

important for two reasons:

• the surface condition is a determinant of the functionality of the product

• it shows the conditions and efficiency of the production tool.

Thus in these conditions surfaces can be defined as "the place where tools

and materials make contact or the place where two different materials make

contact" [3]. In a more general and classical way the surface can be defined

as “a part of the solid that represents the boundaries between the solid body

and its environment" [16] [17] [18]. Surface geometry is a three-dimensional

attribute and its detailed features are termed as surface topography. Simply,

in engineering, topography represents the main external features of a surface.

Therefore, surface topography is significant for surface performance and the

importance of surface topography measurement is accepted. In production

technology, surface topography is usually divided in three main groups that

represent different aspects of the production process and machine tool, which

is illustrated in Figure 1.4. :

• Surface form

• Surface waviness

• Surface roughness
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Cross-section
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Figure 1.4: Layer of engineering surfaces

Surface form is that part of surface topography that is specified as the end result

of the production process. In many cases it is the largest dimensions (or longest

wavelength) that can be seen on the surface. But in microelectronics and other

subfields of MST systems the specified form can contain small details. As the

end result of a production process is never exactly realized, one needs metrology

to obtain information about the deviations from specifications. This means that

the measuring device must be able to resolve details that are much smaller than

the smallest form details. Such devices do not always exist.

Surface waviness is concerned with the tracks of the production method, such

as a cutting pattern in milling. Waviness can simply be defined as:

“surface deviations that are caused by the tool used in the production process”.

Usually these deviations have a quasi-periodic character; their spatial frequencies

lie between 1 to 100 per mm. The orientation, which is also called lay, of

the waviness is typical for the production method such as honing, milling or

turning [19].

Surface roughness is basically defined as: a random deviation which is mostly

determined by the material according to manufacturing process. Roughness

consists of random surface deviations with dimensions, generally, of the order of

microns in lateral directions and sub-micron dimensions in the vertical direction.

Roughness depends on the material beneath the surface, it is different for

crystalline, amorphous, glass or metal surfaces. Theoretically it is an avoidable

parameter by selection of the proper process and material. The smoothness of
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the surface can be improved by polishing, this is often applied in conventional

technology such as silicon wafers and optical components, but it is not possible

in Micro System Technology.

Beside these three main groups of surface topography, that are illustrated in

Figure 1.4, two sub-groups, that can occur with dimensions in the range of those

of waviness or form both in macro or micro level on the surface, must be added

to surface characterization [3] [20].

• Surface texture

• Surface defects

Surface texture consists of two-dimensional (quasi) periodic patterns that have

a specified function, for instance, to enhance the visual appearance of a surface

or to influence friction. The measurement of a surface texture includes the

determination of two periodicities and their orientations [20] [21].

Surface defects are incidental deviations such as scratches, digs and inclusions.

For quality control applications not only the determination of surface defects but

quantifying them is relatively important. For instance the size and depth of a

hole on the car body in the automotive industry and the matching of bullets and

fire-arms in forensic researches.

1.5 Optical methods for surface characterization

In practice surfaces are most often characterized with the aid of profilometers

[22] [23] [24]. From profile measurements, surface parameters can be derived. It is

well known that for the same object different parameter values are obtained from

different measuring techniques and instruments. It turns out that measurement

results depend on the physical principle on which the method or the instruments

is based. An often used criteria to differentiate between instruments is the

mechanism of interaction between instruments and sample. When this interaction

consists of mechanical contact, as with a mechanical stylus system, the possibility

of damage of the sample or the stylus itself can not be excluded [23] [25]. In

some scanning probe systems such as AFM (Atomic Force Microscope) this
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mechanical interaction is minimal. When light is used as a stylus in profilometry

the interaction, reflection or absorption of light, is less likely to damage the

sample surface or the probe. The use of optical methods in metrology has some

advantages, in many cases better than with their mechanical counterparts [26],

such as their measurement speed, accuracy and robustness. Many electro-optic

devices, like CCD sensors, laser diodes, and DMD’s can be used in metrological

applications [27] [?]. The market acceptance and industrial interest in optical

instruments for metrology can be seen from the number of patent applications.

Figure 1.5 shows the number of patent applications between 1960 and 1990 and

clearly indicates that there will be rapid growth for optical metrology applications

in the next decades [2].
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Figure 1.5: Worldwide number of patent applications in the field of optical metrology.
From [2] according to Market engineering research for the total European
industrial vision system market, 2000, Frost & Sullivan Report, Frost &
Sullivan.

Optical instruments for surface characterization can be divided into two classes:

• Point sensors (where the output after scanning is a profile)

• Imaging sensors (where the output)

In the following the state-of-the-art instruments in optical surface characterization

will be reviewed.
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1.5.1 State of the art review

The instruments that are reviewed in this section are rather new but already

widely used in industry [16] [24] [28]. In the context of the European research

program BCR (now called SMT, Standards, Measurements and Testing) diverse

studies have been done in the field of surface characterization. Further details on

the techniques that are reviewed in this section can be obtained from EU Reports,

15178 EN [24], 15707 EN [29] and 16161 EN [30].

Optical stylus: This instrument is also known as auto-focus sensor. The optical

stylus used to be the most common optical profiler; its principle is illustrated in

Figure 1.6.

Light source

Control unit

Detectors

Movable objective lens

voice coil

Beam splitter

Lenses

Wedges

Object

Figure 1.6: Principle of the auto-focus sensor. Adapted from [3]

A collimated beam of light is focused onto the surface of the specimen, the

reflected light is directed to a focus detector that consists of a lens, two wedges

and two pairs of detectors. Depending on the position of the specimen surface

relative to the focal plane of the objective lens, the outer or inner segments

of the detector pairs are illuminated. From the signals of the detector pairs a

focus error signal, which is independent of the intensity of the beam, is obtained.

The microscope objective can be moved up and down to bring the surface into
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focus, the movement of the microscope objective is measured by a high resolution

inductive measurement system. On a smooth specimen a resolution of 10 nm can

be obtained. The specimen is mounted on a x-y translation stage to determine

profiles of the surfaces. The measurement range of focus sensors is rather limited,

typically 1 mm or less. This system cannot cope very well with large surface

slopes; at steep edges it shows a huge overshoot. Therefore, it is not suitable for

the measurement of surface roughness or the profiles of rough surfaces. Because

an optical stylus needs to scan the object, its measuring speed is slow compared

to imaging instruments; this is true for most point sensors.

Triangulation sensors: The triangulation sensor is a simple and reliable height

measurement instrument. For this reason triangulation sensors are widely used

for in-process metrology and coordinate metrology, especially in the automotive

industry [31]. The main components of a triangulation sensor are a collimated

light source and a detector unit which are shown in Figure 1.7.

Light
Source Detector

∆Xm

Imaging
Lens

α

∆dm, z scan range
Object positions

Collimator

Figure 1.7: Principle of the triangulation sensor. Adapted from [2].

The optical axes of the illuminating beam and the detector unit form a fixed

angle α which is called the triangulation angle. The sensitivity of a triangulation

sensor depends on this angle [3] [32]. The object surface is brought close to the

point where both axes intersect; the diffuse reflection of the light spot on the
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workpiece surface is imaged onto the detector. The detector is preferably a point

sensitive diode (PSD) [32] that measures the position of the center of gravity of

the spot image. From this position the distance between sensor and specimen can

be calculated. The roughness of the workpiece surface is necessary in the set-up

depicted in Figure 1.7; smooth surfaces cannot be measured in this way because

of insufficient diffuse reflection. Errors in the measurement may be induced by

surface slopes (direct reflections), edges (shadowing), volume scattering or surface

texture. Detailed studies have showed that non-cooperative surfaces can lead

to large measurement errors [20] [33]. Due to the small numerical aperture of

the illuminating beam, the spot size on the specimen surface is not very small,

typically between 10 µm and 100 µm. This limits the lateral resolution. The

vertical resolution is of the same order of magnitude [3].

Fringe projection: This method can be seen as an extension of the triangulation

technique. Its principle is given in Figure 1.8.

Object

Grating

CCD

Lens

Lens

Light
source

Figure 1.8: Principle of the Fringe projection. Adapted from [3]

A sinusoidal grating image is projected on the specimen surface at an angle. The

lateral position of the fringes in this image can be converted into a height map

of the surface. To this end the fringe pattern is imaged onto a CCD detector.

The fringe pattern is shifted a few times (n ≥ 2) over a fraction of its period;

from CCD images thus gathered the height map can be computed by a simple

algorithm. This procedure, called phase shifting, is used also for fringe analysis
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in interferometry [34]. The height resolution of the system is determined by the

number of fringes in the field and by the angle between illumination and viewing

directions; for a 1 mm field size, it is usually of the order of 1 µm. The lateral

resolution is determined by the number of pixels of the CCD. The most important

advantage of fringe projection is that the technique can be applied to object sizes

from millimeters to meters (the resolution is proportional to the object size). Like

an optical stylus, fringe projectors have difficulties with steep edges and rough

surfaces, resulting in creation of optical artifacts.

Interferometric surface characterization: Interferometric microscopy is

widely used for the measurement of roughness and waviness, texture and

defects [35]. In this technique either monochromatic or polychromatic light can

be used. An application for the roughness measurement using laser illumination is

reported by Velzel [30]. Step height measurement with polychromatic light using a

shearing interferometer is described in [35]. A recent application of interferometry

to surface characterization is the measurement of surface topography from

interference contrast, using light of short coherence length. This method is also

called “white light interferometry" [3]. The intensity (or Contrast), I, on a pixel

depends on the distance, z, between the specimen surface and the reference plane.

Figure 1.9 shows the most commonly used interferometer applied for white light

interferometry.

Object

Beam Splitter

Reference Mirror

Microscope Objective

Light Source and Camera

z

Figure 1.9: Principle of the Mirau interferometer
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The reference mirror consists of a coating on an internal surface of the microscope

objective; in such a way a compact construction can be realized. The vertical

measurement range is determined by the free working length of the objective

with interferometer; usually a few mm. To determine the surface height, the

reference mirror or the complete objective are moved in the z direction. The

surface height is concluded from the maximum of the contrast curve. To measure

a complete surface section a series of CCD images is evaluated, giving the surface

height pixel by pixel.

Confocal microscopy: In confocal microscopy a point source is focused on the

object surface; the reflected light is detected by a point sensor in the image plane.

Figure 1.10 illustrates the principle of confocal microscopy.

Object

Beam Splitter

x - y scanner

Microscope Objective

Light Source

Pinholes

z scanning

Detector

Figure 1.10: Principle of confocal microscopy

When the object surface is exactly in focus, the maximum amount of light is

detected [36]. The focal plane is scanned to produce a complete image; in this

image only those parts of the object that are in focus or very near to focus show

up. The source and detection pinholes prevent the light emanating from regions

above and below the focal plane from contributing to the observed image.
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By scanning the objective in the axial direction, z, a three-dimensional image of

the surface topography can be obtained.

Confocal microscopes have several advantages over conventional optical

microscopes [37] [38]. Their images do not show out-of-focus blur, so that

it is possible to generate three-dimensional images of transparent objects by

optical sectioning [39]. Because of the spatial filter formed by the source and

detector pinholes the formation of optical artifacts is prevented to some extent.

This makes it an attractive technique for surface characterization because more

faithful images of steep edges, grooves and rough surfaces can be obtained. Also

the lateral resolution of a confocal microscope is better than that of standard

light microscopes [40]. Confocal microscopy will be discussed in more detail in

Chapter 2.

1.6 Comparison of measurement techniques

Surfaces can be measured in different techniques way with contact (stylus)

measurements and/or without contact (optical) measurements. In this section

the comparison of these techniques among themselves and also with the most

commonly used technique mechanical stylus measurement will be given.

1.6.1 Comparison of optical measurement techniques

The resolution and measurement ranges, vertical as well as lateral, of the optical

techniques are summarized in Table 1.1.

Table 1.1: Comparison of optical measurement techniques.

Optical Tri- Fringe Inter- Confocal
Stylus angulation Projection ferometry Microscope

δ z 0.01 µm 25 µm 0.1 µm – 1 µm 0.001 µm 0.002 µm
∆Z 1 mm 25 mm 2 µm – 200 µm 500 µm 200 µm
δx 1 µm 100 µm 1 µm – 20 µm 1 µm 0.7 µm
∆X n.a. n.a. 500 µm – 10 mm 2.5 mm 1.5 mm

δ z Vertical resolution
∆Z Vertical range
δx Lateral resolution
∆X Lateral range
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In Table 1.1 the lateral measurement range for the optical stylus and laser

triangulation is denoted by n.a. (not applicable). The instruments in question

are point sensor applications where the lateral range is limited by the scanning

mechanism and not by the principle of the sensor. This is not so for the other three

techniques that are based on imaging techniques. It can be seen from Table 1.1

that laser triangulation is not usable for sub-micron measurements. Nevertheless

this technique is frequently used in industry because of its simplicity and

robustness.The optical stylus cannot be used with rough or structured surfaces.

This prevents its application to the complete field of surface characterization.

Other types of point sensors have been developed that are more useful, especially

those that operate according to the confocal principle [41]. Because we discuss

confocal microscopy in detail in the next chapter, we do not elaborate on this

technique here.

Fringe projection, especially when combined with microscopy can result in

sub-micron vertical and lateral resolution. The technique is, however, not

usable for the measurement of surface roughness, because of optical artifacts

and shadowing effects.

White light interferometry and confocal microscopy, can both be used for all

measurements in surface characterization with the required accuracy. The lateral

resolution of a confocal microscope is better by about 30% than that of a

white light interferometer. The vertical resolution is of the same order for both

techniques; it should be noted that the vertical resolution of interferometric

microscopes is independent of the numerical aperture of their objective. On the

other hand confocal microscopes are less susceptible to optical artifacts and less

sensitive to steep slopes and edges. In view of technological developments the

improvement of lateral resolution, if possible below the diffraction limit, remains

desirable [42]. In the field of semiconductor technology near-field microscopy

methods such as SPM (Scanning phase microscope) and AFM (Atomic force

microscope) are widely used for testing. This technique, invented in the eighties

by Pohl [43], and improved able to resolve atomic structures, where the lateral

resolution goes down to nm level. This may be required for semiconductor quality

assurance but because of the restricted range of measurement, 100 µm×100 µm×
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10 µm, the application in surface characterization is limited. In addition, these

techniques are expensive, time consuming, not user friendly and require trained

personnel.

1.6.2 Comparison with mechanical stylus measuring techniques

Stylus instruments have the longest history of use in surface characterization.

For many years such instruments have been most widely used in industry [16]

[28]. Three-dimensional stylus instruments have been developed directly from 2D

instruments by adding an extra translation degree-of-freedom, z, perpendicular

to the horizontal x-y plane. The principle of stylus instruments is simple; the

vertical movement of the tip of the stylus, which is made to follow the object

surface, is amplified and digitized so that the desired surface parameters can be

extracted [44] [45]. There are some drawbacks in the use of mechanical stylus

instruments for measurement of surface topography. Some of them are:

• the technique is relatively slow,

• stylus can damage the surface,

• to measure 3D topography many profiles have to be obtained.

These drawbacks may be overcome by the use of optical measurement techniques.

Especially imaging techniques gather the information about surface topography

much faster than stylus instruments. The interaction of probe and surface is

very small when light is used as a probe. The vertical resolution of optical

techniques can be extended far below the classical criterion for depth-of-focus.

In this way (sub)nanometer resolution can be obtained. With a conventional

stylus instrument the vertical resolution is limited by mechanical vibrations and

electronic noise to about 2 nm [19]. The lateral resolution of optical instruments

is limited by the chosen wavelength. In stylus instruments the tip geometry

determines the lateral resolution. Due to the finite tip radius, small pits and

cracks in the surfaces are not detected. With some optical techniques steep slopes,

edges and peaks in the surface give rise to false signals, the so-called "optical

artifacts". In the early years of optical surface characterization this has hindered
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the acceptation of optical techniques in industry. The introduction of imaging

optical techniques has also been hindered by the circumstance that calibration

standards for profile measurements are widely available whereas standards for

areal measurement do not exist [17]. As a last remark, it should be stressed that

optical and stylus techniques are not incompatible but complementary. Each

technique has its own strengths and weaknesses.

1.7 Classification of measuring instruments

As can be seen from Table 1.1, instruments differ widely in performance, in

both vertical range and resolution and in the range of surface wavelengths

detectable [17]. A graphical method to describe the performance of instruments

for surface characterization has been developed by Stedman [22] [46] [47]. This

method is based on the limiting response of the instrument to sinusoidal surface

perturbations of varying amplitude and wavelength. The limits are mapped in

an amplitude-wavelength space, with logarithmic scales so that it is possible to

have nanometers and meters in one diagram. Such a diagram is called a Stedman

diagram in honor of its inventor. A Stedman diagram of diverse techniques is

given in Figure 1.11 [19].
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Figure 1.11: Stedman Diagram. Amplitude-wavelength plot of the working range of
3D surface measurements instruments
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The horizontal contours in this diagram represent amplitude resolution and

range, the vertical contours show the smallest and largest wavelength detectable.

Apart from these we also see contours at angles of arctan1 and arctan2 with

the wavelength axis, these contours represent limits of slope and curvature

respectively [19]. The Stedman diagram gives a convenient summary of

instrument performance. It allows easy and objective comparison of the

fundamental capabilities and limitations of different techniques. A Stedman

diagram covering all the instruments at a measurement laboratory shows its

overall capability and shows which instruments can tackle a job and where there

are gaps in the metrological armor.

1.8 Objectives and outline of the thesis

It is clear from the description of Micro System Technology and Nanotechnology

in Sections 1.1 and 1.2 and from the conclusion that is drawn in Section 1.3, that

technological developments into the nanometer range must be accompanied by

innovation in metrology. It can also be concluded from the state-of-the-art review

and the comparison of measurement techniques in Section 1.6 that we consider

confocal microscopy as the most promising candidate for further development

(with white light interferometry as a good second). Confocal microscopy is

already being used in the industry for a great number of applications [48] [49]. The

price of a confocal microscope is between e60.000 and e200.000, this prevents

the general application of the instrument, especially in the production line.

In this dissertation a novel technique of confocal microscopy is analyzed. The

key part of this technique is an innovative system itself, the Digital Micromirror

Device (DMD) as an example of Micro System Technology. The DMD was

already used in optical metrology for fringe projection systems [50] [31] [51].

In the developed system DMD was used as a scanning point-source device. There

are two other scanning point-source devices used in confocal microscopy, the

scanning laser beam and the Nipkow disc [4]. In comparison, DMD has the

advantage of higher flexibility in the generation of source patterns, also it does not
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contain moving macroscopic mechanical components that are sources of unwanted

vibrations.

1.8.1 Research objectives

This research is a continuation of the EC Craft Project, SMT4-CT98-5525,

“Development of a High Speed Optical 3D Scanner with a Micromirror Array

for Illumination and Detection, MICROSCAN” where the basic principles were

established and the preliminary experiments were done [52] [53]. The objectives

of the Craft project were:

• Measurement time in the range of a second,

• Measurement volume ranges:

from 10 mm×10 mm×5 mm to 100 µm×100 µm×10 µm,

• Measuring accuracy ranging from 1 µm to 10 nm depending on the

measurement volume,

• System price lower than e50.000.

An optical concept somewhat similar to that used during the EC Craft project

was patented by GFM company at Teltow (Germany)(patent no. EP0943950A1).

The goal of the extension of the project is to develop and build a stand alone

3D scanner prototype, based on the new optical measuring technique using the

Digital Mirror Device (DMD). The optical concept of the developed system is

based on the idea of Dr. Chris Velzel [54] and the optical lay-out is different from

the patented lay-out during the EC Craft project.

In this dissertation the research is concentrated on the smaller measurement

volume with the 10 nm resolution target. It did not look realistic to aim at

short measurement times, because with the given control electronics of the

DMD this is the matter of smart software; we concentrated on the optical and

mechanical aspects of the the developed system. The system price will eventually

be determined by the market, a system cost of e40.000 is realizable but cost

reduction was not one of the focused target. Table 1.2 shows the summary of

the project target and the selected components: The prototype that we
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Table 1.2: Developed system specifications

Measurement Volume 10 mm×10 mm×5 mm 10 µm×10 µm×5 µm
Targeted Accuracy 1 µm 10 nm
CCD2 number of pixels pixel size
Sony XC−8500 CE 782 h×582 v 8.3 µm×8.3 µm
DMD3 848 h×600 v 16 µm×16 µm

developed was based on standard catalog parts, intended for testing the concept

and validating the system.

1.8.2 Outline of the thesis

Besides this Chapter as an Introduction, this thesis contains the following:

Chapter 2, Confocal scanning microscopy in surface characterization

starts with the technical background of confocal microscopy and explains it’s use

in surfaced characterization. Depth discrimination, lateral resolution and the

influence of aberrations are discussed and a new model for the depth response

curve is introduced and finally, a short review of existing systems is given.

Chapter 3, Micromirror based confocal microscope Starts with the

explanation of the components of Microscan. Discusses a confocal microscope

based on micromirrors. Shows the basic optical design and presents the result

of optical simulations of its imaging properties, tolerance calculations and worst

case design.

Chapter 4, Explains the experimental set-up which the measurements were done.

Describes the measurement procedure and the corresponding software and finally

presents the result of validating measurements.

Chapter 5, Summarizes the study and presents conclusions and

recommendations.

2Act as a virtual detection pinhole
3Act as a virtual illumination pinhole
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2. CONFOCAL SCANNING MICROSCOPY IN SURFACE
CHARACTERIZATION

2.1 A short history of confocal microscopy

The ideas that led to the invention of confocal microscopy were formed in the

early 1950’s. The first development was done by Young and Roberts [55] who

built a scanning microscope. An early and essential contribution to scanning

microscopy was done by Minsky [56]; a few years later he invented and patented

the confocal microscope [37] [57]. His problem with the proper illumination

was partly solved by the development of the gas laser, and the first working

confocal scanning microscope using laser illumination was built by Davidovits

and Edgerin [58]. Recent developments were done by Wilson and Sheppared [59]

who were inspired by the studies of Lemons and Quate on scanning acoustic

microscopy [60]. Parallel to these developments an other type of confocal scanning

microscope was invented by Petran and Hadravsky in the late 1960’s [61]. They

used a Nipkow disk, invented already in mechanical scanning television, to fulfill

the requirements of point illumination and point detection. They called their

invention a tandem-scanning reflected light microscope (TSROM). In the late

1980’s this design was improved by Xiao, Corle and Kino and they called their

system a real time scanning optical microscope (RSOM) [62] [63]. As a result of

these developments, confocal microscopy has become available as a new technique

for surface characterization, which exhibits several advantages over conventional

optical microscopy. In the following a comparison between these two branches of

microscopy is given.
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2.2 Conventional microscopy versus scanning microscopy

For this comparison a simplified model of image formation can be used. From this

model the performance of scanning microscopy and scanning confocal microscopy,

which gives an improved image of structured surfaces, can easily be inferred.

Early studies on this subject were done by Wilson and Sheppard [59] [64] and by

Corle and Kino [4]. Figure 2.1(a) shows a simplified scheme of image forming in

a conventional (bright field) microscope

Source

Condenser

Object

Objective

Image

(a) Scheme of a classical microscope
(b) Conventional
microscope image of a
Vickers indent

Figure 2.1: The idea of a conventional microscope

This scheme shows a microscope with critical illumination (Kohler

illumination); a large source is focused by a condenser onto a specimen in such a

way that the interesting part of the specimen is illuminated by a patch of light,

corresponding to the full field of the objective. Information from each illuminated

point in the specimen is simultaneously transmitted in parallel by the objective

lens to form an image. The important property of this system is that the objective

is primarily responsible for image formation and determines its lateral resolution,

whereas the condenser plays only a secondary role in this respect. When an image

of an object with surface deviations larger than the depth of focus is captured,

a blurred image is obtained. Such an image, made by a bright field microscope,

is shown in Figure 2.1(b). The object was a metal surface with a microindent of

a Vickers hardness probe, with a depth of approximately 12 µm. It is clear that
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the 3D form of such a structure cannot be found from such a blurred picture.

A scanning microscope can be realized departing from the scheme of Figure 2.1

whether by scanning a point source over the source plane or by scanning a point

detector over the image plane, thereby building up a picture of the object point

by point. This type of microscope was called by Wilson and Sheppard a Type-I

scanning microscope [59], a schematic illustration is given in Figure 2.2 for the

case of image plane scanning (detectors moves in image plane).

Source

Condenser

Object

Objective

Image

Point detector

Figure 2.2: The idea of a Type-I scanning microscope

When the object is focused in such a way that the objective lens makes a

diffraction limited image of a point object, the point detector sees only this part of

the object and its immediate surroundings. This leads to a considerable reduction

of flare due to light scattering in the optics of the microscope. This advantage is

also valid for Type-I scanning microscopes where a cathode-ray tube is used as

a scanning source [55]. The contrast can be further improved by using a point

source and a point detector at the same time. This arrangement has been termed

a Type-II or confocal scanning microscope [59]. A scheme of confocal microscope

is given in Figure 2.3.
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Point Source

Condenser

Object

Objective

Point Detector

(a) Scheme of a confocal microscope
(b) Microscan image of a Vicker
indent

Figure 2.3: The idea of a confocal scanning microscope

In this configuration both condenser and objective play an equal role in forming

the image, leading to a sharper image with a better contrast than the image

in conventional microscopy, see Figure 2.1. Moreover this scheme allows the

possibility of optical sectioning [39]. The application of confocal scanning

microscopy to surface characterization has been worked out by Jordan [36] and

Velzel [30]. Figure 2.3(b) shows a false color coded three-dimensional image of a

Vickers indent, such as is used for the measurement of micro-hardness. Comparing

this to Figure 2.1(b) it can be concluded that a whole new dimension is opened

for metrology by confocal microscopy.

2.3 Depth response of the confocal microscope

Detailed studies about the theory of confocal microscopy based on scalar wave

diffraction and vector diffraction were done respectively by Wilson, Sheppard

and Corle [59] [65]. In this section these theories will not be reproduced but the

results of the scalar theory with respect to depth discrimination will be given.

These results are based on the work of Lommel as reported by Born and Wolf [66].

Figure 2.4 illustrates a reflection mode confocal microscope based on scalar theory.

The axial intensity, I, caused by a point source (the illumination pinhole) on axis,

as a function of defocusing z, is given by,

I(z) = I0

sin
u
4

u
4

2

, u =
2πz
λ

· sin2
θ (2.1)
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CCD

Pinhole

Beamsplitter

Microscope Objective

focal Point
Focus scanning, z

Light Source

Pinhole

f
θ

Figure 2.4: The principle of confocal microscope

where sinθ is the numerical aperture of the microscope objective and λ is the

wavelength of the light source. With a specularly reflecting object, as it is taken

in the thesis of Corle [4], the double value of the defocusing must be taken, the

depth response, defined as the normalized axial intensity now becomes,

is(z) =

sin
u′

4
u′

4


2

, u′ =
4πz
λ

· sin2
θ (2.2)

The FWHM of is(z) is given by,

FWHMs =
0.87λ

sin2
θ

(2.3)

The depth response given in Equation 2.2 is obtained when the illumination and

detection pinholes are small compared to the Airy resolution. The effects of

pinhole diameter will be considered in the next section.
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For a diffusely reflecting object the depth response is not given by Equation 2.2.

It is obtained from the following argument: a scatterer at a position z on the axis

is illuminated by an intensity as given by Equation 2.1, the defocusing leads to

the reduction of the axial intensity on the detection pinhole by another factor

I(z)/I0, so that the depth response for the case of diffuse reflection becomes

id(z) =

sin
u
4

u
4

4

, u =
2πz
λ

· sin2
θ (2.4)

Equation 2.4 is also valid for pinholes which are small compared to the Airy

diameter. The FWHM now takes the value

FWHMd =
4
π
· λ

sin2
θ

(2.5)

2.3.1 The influence of finite pinhole size

in the previous section we deduced depth response functions for specular and

diffuse objects under the assumption that the illumination and detection pinholes

are small compared to the Airy radius. In practice this is not always the case

and the effect of the size of pinhole diameters on the depth response must be

investigated. In the following an approximate theory based on Gaussian beam

propagation [67] will be presented. When the illumination pinhole is not very

small, the spatial coherence of the illumination becomes an important factor in

determining the depth response.

First it is focused on specular objects. With an illumination pinhole radius smaller

than the coherence length we consider the pinhole a the waist of a Gaussian beam

with radius w0. Similar to previous section all dimensions are translated to the

object space. Therefore ω0 is the radius of the pinhole image in the focal plane.

With a Gaussian beam the beam diameter as a function of the axial position z is

given by Hecht [67].

ω
2(z) = ω

2
0

(
1+
(

z
zr

)2
)

, zr =
πω2

0
λ

(2.6)

The depth response for a small detection pinhole is given by;

is =
ω2

0
ω2(2z)

(2.7)
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From Equations 2.6 and 2.7 follows that the FWHM of the depth response is

given by;

FWHMs = zr (2.8)

We conclude that as long as the illumination pinhole is coherently illuminated,

the width of the depth response is proportional to the square of its radius. With

a very small illumination pinhole we can take ω0 equal to the Airy radius. In this

case the entrance pupil of the objective is a approximately uniformly filled with;

ω0 = 0.61
λ

sinθ
(2.9)

we obtain;

zr = 1.13
λ

sin2
θ

(2.10)

This is an approximate value, because the beam in object space is not Gaussian.

When the radius of the illumination pinhole is large compared to coherence radius

the illumination is partially coherent. An approximate value of the beam radius

is now given by;

ω
2(z) = r2

i +ω
2
0

(
1+
(

z
zr

)2
)

, zr =
πω2

0
λ

(2.11)

where ri is the pinhole radius and ω0 the coherence length. Using this result in

Equation 2.7 the FWHM is found as;

FWHM = zr

√
r2

i +ω2
0

ω2
0

(2.12)

We now consider values of the detection pinhole radius. With a specular object

the beam width in the detection plane is ω2(2z), where ω2 is given by Equation 2.6

or Equation 2.11 depending on the coherence radius. In real confocal systems the

radius r2
d of the detection pinhole is smaller than r2

i + ω2
0 ; a larger value would

lead to unwanted broadening of the depth response function. The depth response

is now given by;

is =
1− e

−r2
d

ω2(2z)

1− e

−r2
d

ω
2(0)

(2.13)
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With rd = ω(0) and ω2(2z) = 2ω2(0) we obtain is = 0.622 The FWHM is found

when ω2(2z) = 2.57ω2(0) to be;

FWHMs = 1.25zr

√
r2

i +ω2
0

ω
2
0

(2.14)

It is concluded that even at limit condition, a detection pinhole with radius rd =√
r2

i +ω2
0 has only a small broadening effect. With a diffusely reflecting object we

consider only the case that the illumination pinhole is coherently illuminated and

that the detection pinhole has a small radius. The broadening effects of incoherent

illumination and finite detection pinhole radius are equal to those obtained with a

specular object. Assuming a Gaussian illuminating beam with beam waist radius

ω0, the spot radius on the defocused object is given by Equation 2.6. This spot

is imaged in the detection plane. When we assume that it consist of incoherent

point sources the radius of the resulting image is given by;

ω
2(z) = ω

2
0

(
1+
(

z
zr

)2
)

+ r2
a(1+

z
za

) (2.15)

where ra is the radius of the Airy diffraction spot and za is the Rayleigh depth of

focus,

ra =
λ

2sinθ
, ,za =

λ

2sin2
θ

(2.16)

Taking id = ω2(0)/ω2(z) we have a FWHM equal to;

FWHMd = zazr

√
ω2

0 + r2
a

ω2
0 z2

a + r2
az2

r
(2.17)

with ω2
0 = r2

a, z2
r = z2

a we obtain FWHMd = za the same as in Equation 2.8. With

ω2
0 = 4r2

a, z2
r = 16z2

a we obtain FWHMd = 2za. We conclude that with a diffusely

reflecting object the broadening depends approximately linearly on the radius of

the illumination pinhole.

2.4 Influence of aberrations on the depth response

This section focuses on the influence of some basic aberrations of (symmetric)

optical systems on the depth response. The following aberrations are discussed:

1. Chromatic aberrations (in the paraxial domain)
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2. Monochromatic aberrations

The latter are divided into two subgroups:

(a) Aberrations that decrease the image contrast; this heading considers

• Spherical aberration

• Coma

• Astigmatism

(b) Aberrations that deform the image; the items in question are

• Field curvature

• Distortion

These aberrations are described in the literature [66] [67] [68].

2.4.1 Chromatic aberrations

In the paraxial domain two chromatic aberrations can be distinguished:

• Longitudinal chromatic aberrations (Chromatic focus error)

• Transverse chromatic aberrations (Chromatic magnification error)

Both are caused by the dispersion of optical glasses that gives rise to a dependency

of lens powers from the wavelength of the radiation used [67]. With the lenses

that is used in the project it has been tried to make this effect as small as possible

by achromatization. This means that by the use of different types of optical glass

the lens powers are made equal for wavelengths in the red and the blue. The

remaining deviations of power with wavelength form the secondary spectrum.

The secondary spectrum of the set-up, that uses standard achromats, is shown

in Figure 2.5.
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Figure 2.5: Zemax simulation result of the developed system for the axial chromatic
aberration. Microscope objective is simulated with paraxial lens. During
simulation green light is selected as main focusing wavelength

In this figure the microscope objective is accepted as an ideal lens and the

aberrations of the microscope objective are neglected. From the numbers given

in Table 2.1 it is concluded that the chromatic focus error gives rise to a slight

broadening of the depth response curve and also to a possible shift of its maximum

by a few tenths of a µm.

Table 2.1: Numerical values of Figure 2.5. The system is focused for green light

Wavelength Color Focus Shift
in µm in µm

0.486 Blue 0.113
0.587 Green 0.0
0.656 Red 0.233

Both effects are relatively small compared to the FWHM of the curve (about

1.5 µm). The shift of the maximum gives rise to a systematic error of height

measurement and this error can be removed by calibration. The chromatic

magnification error depends on the position of the pupil in the optical system.

In Section 3.3, where the optical design will be discussed, it will be shown that

this position was chosen in such a way that this error is insignificant. It is also

necessary to mention here another effect connected with the source spectrum.
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From the theory given in Section 2.3 that the FWHM of the depth response curve

depends linearly on the wavelength. This effect is shown in Figure 2.6 where the

focal shifts (for the wavelengths chosen these are about equal) is neglected.
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Figure 2.6: Theoretical intensity curve response of z scanning for confocal microspe
for microscope objective 20× with NA 0.45 and for λ = 0.486133 µm
(blue) and λ = 0.656273 µm (red). Demonstration of the effect of
chromatic aberration in confocal microscopy

Finally, it can be concluded that the effects of the source spectrum are small and

can be neglected, as long as the source spectrum is constant in time. This means

that in practice one must take into account the thermal time constant of the

sources used (halogen incandescent lamps or Xe high pressure gas discharges).

2.4.2 Spherical aberration and astigmatism

These aberrations are considered together, because the wavefront errors connected

with them are even with respect to the meridional pupil coordinate. This is also

true for the wavefront error connected with defocusing. Therefore these two

aberrations will be discussed together with defocusing. Coma has an uneven

wavefront deviation with respect to the meridional pupil coordinate. Therefore

it will be discussed separately. The method that will be used to treat the first

group of monochromatic aberrations is to calculate Strehl’s number, defined as

the normalized intensity in the maximum of the point spread function [66]. When
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the aberrations are small, it can be shown that Strehl’s number S is given to a

good approximation by

S = 1−
(

2π

λ

)2

Var (W ) (2.18)

The curve S(z), Strehl’s number as a function of defocusing, describes the central

part of the depth response curve for the case of specularly reflecting objects.

When spherical aberration and astigmatism are present the wavefront error

(deviation of the wavefront from the reference sphere) can be written as;

W (x,y) = a · r2 +b · r4 + c · r2 · sin2
ϕ (2.19)

where x, y are pupil coordinates and r,ϕ are polar coordinates in the pupil, so

that

x = r · cosϕ , y = r · sinϕ (2.20)

The coefficient a is the coefficient of defocusing. It is connected to the defocusing

distance z by the approximate relation

a =
z
f 2 (2.21)

where f is the focal length of the objective in Figure 2.4.

The coefficient b in Equation 2.19 is the coefficient of spherical aberration. The

radius of the blur circle connected with spherical aberrations is given by;

ρs = 4 ·b · r3 · f (2.22)

The coefficient c in Equation 2.19 is the coefficient of astigmatism. It depends

quadratically on the field coordinate Y . The length of the focal line connected

with this aberration is given by

ηa = 2 · c · r · f (2.23)

The variance of W is defined by;

Var(W ) = W 2−
(
W
)2 (2.24)

where a bar denotes an average over the pupil domain

0 < r < R , 0 < ϕ < 2π (2.25)
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With Equation 2.19 for W :

Var(W ) =
1
12
·a2 ·R4 +

4
45
·b2 ·R8 +

1
8
·c2 ·R4 +

1
6
·a ·b ·R6 +

1
12
·a ·c ·R4 +

1
12
·b ·c ·R6

(2.26)

With Equation 2.21 and taking R/ f = sinθ the FWHM of the depth response

curve is, in this approximation, given by

FWHMST REHL =
√

6λ

πsin2θ

∼=
0.77λ

sin2θ
(2.27)

when aberrations are zero. Comparing this to Equation 2.3 it can be concluded

that the approximation is a fair one. With Equations 2.19 and 2.26 Strehl’s

number can be rewritten as a function of z:

S(z) = 1− (2π)2

(
1

12

(
z
zR

)2

+
(

1
6

β +
1

12
γ

)
z
zr

+
4

45
β +

1
12

βγ +
1

16
γ

2

)
(2.28)

where the constants zR, β , γ are defined as follows; zR = λ

sin2
θ
, β = b·R4

λ
, γ = c·R2

λ
.

The distance zR is the depth of focus of the objective according to Rayleigh’s

criterion. The constants β and γ are the spherical aberration and astigmatism

at the edge of the pupil, in wavelengths. It can be seen that S(z) is a parabolic

curve, its maximum is found for

ẑ
zR

=−
(

β +
1
2

γ

)
(2.29)

The maximum value of S(z) is given by;

S(ẑ) = 1− (2π)2 ·
(

1
180

·β 2 +
1

24
· γ2
)

(2.30)

The FWHM for this case is;

FWHMST REHL =

√
6

π2 −
2

15
·β 2 · λ

sin2
θ

(2.31)

The result of Equation 2.29 is not unexpected. It is known from the geometrical

theory of aberrations from Hecht [67] that the best focus in the presence of

spherical aberration is found when the wavefront errors due to defocusing and

spherical aberrations have opposite signs and have an equal magnitude on the

edge of the pupil; in others words, when in Equation 2.19

a ·R2 +b ·R4 = 0 (2.32)
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Also the term 1
2γ is plausible, because it situates the best focus in the presence of

astigmatism just half way between the focal lines; the geometric spot is circular

at that position. It is clear that with both aberrations the system has some

broadening of the spot on the detector pinhole and thus a smaller maximum

value of the detector signal. The result of Equation 2.31 is unexpected. From

ray diagrams of beams with spherical aberration, see Figure 2.7, it is expected

an increase of the FWHM; this behavior is perhaps due to the simplicity of our

model and should be checked by numerical calculations. The absence of γ in

Equation 2.31 shows that the average spot broadening due to astigmatism is the

same as that due to defocusing.

Monochromatic Light
Region of confusion

Transverse spherical

Axial spherical aberration (TSA)Spherical Lens

aberration (LSA)

Figure 2.7: Spherical aberration

2.4.3 Coma

With coma we have a complication, because the maximum intensity of the spot

on the detector pinhole is not found at the intersection of the chief ray and the

image plane, as is the case with spherical aberration and astigmatism. Therefore,

the wavefront aberration for coma is written as;

W (r,ϕ) = d · r sinϕ + e · r3 sinϕ (2.33)

in polar pupil coordinates (r,ϕ), where a linear term is added to find the position

of the maximum. In the same way as in the previous section the Strehl’s number

is written

S = 1− (2π)2
(

1
4

δ
2 +

1
3

δε +
1
8

ε
2
)

(2.34)
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where δ and ε is equal to:, δ = d·R
λ

, ε = e·R3

λ
; the wavefront errors at the edge of

the pupil, in wavelengths. It can be seen from Equation 2.34 that the maximum

of S is obtained for

δ =−3
2
· ε (2.35)

At this position the Strehl’s number becomes

S = 1− (2π)2
(

1
72

ε
2
)

(2.36)

With half a wavelength of coma the Strehl’s number is already down to 0.86.

Note that ε depends linearly on the field coordinate Y , this gives a quadratic

decrease of S with field radius. From Equation 2.33 can be seen why coma is

treated apart from spherical aberration, astigmatism and defocus. The reason is

that the cross products of the terms in Equation 2.33 and those in Equation 2.19

are on average equal to zero.

2.4.4 Field curvature and distortion

With field curvature the system has a defocus that depends quadratically on the

field radius, to a first approximation, (there may also be terms of higher order).

Distortion gives a lateral shift of the spot that is an uneven function of the field

radius, to a first approximation of the third order. Both aberrations displace the

intensity curve, vertically or laterally respectively. When these displacements are

known, they can be removed from the measurement result.

As a summary it can stated that chromatic aberrations, spherical aberrations,

coma and astigmatism should be kept within the specified boundaries, whereas

field curvature and distortion should be known so that they can be removed from

the measurement result.

2.5 Depth resolution

From the depth response curve as discussed in Section 2.3 the axial position of

the sample surface is determined. This is done by changing the distance between

sample and probe (microscope objective) in a number of steps. Usually steps of

1/10 of the depth of focus is taken as given in Equation 2.3. There are several

methods to calculate the focus position from measured intensities. Here it is
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assumed that the position of the center of gravity of the depth response curve is

estimated from the detector signals, I(zi), measured at a number N of focus steps

zi. For simplicity it is assumed that the center of gravity position z, given by

z =
∑

N
0 zi · I (zi)

∑
N
0 I (zi)

(2.37)

is equal to zero when the intensities I(zi) are without error. When an error, for

instance due to noise, ni, is present in the ith measurement, the measured signal

can be written Im(zi) as

Im (zi) = I (zi)+ni (2.38)

The focus error now becomes

∆z =
∑

N
0 zi ·ni

∑
N
0 I (zi)

(2.39)

assuming that the ni are zero on average. When the errors ni are uncorrelated

and have Gaussian statistics the RMS focus error is, to a good approximation,

given by

σz = zR ·
σn√

N · I (0)
(2.40)

where zR is the depth of focus, given by Rayleigh’s criterion or alternatively

from Equation 2.3, and σn is the RMS measurement error. In Equation 2.40

it is assumed that the measurement positions all lie in the top of the depth

response curve, between the half maximum points. Measurements further away

from focus have an unfavorable signal-to-noise ratio. With a wavelength of 550 nm

and a numerical aperture of 0.46 a depth of focus of about 3 µm is obtained.

With a signal-to-noise ratio, I(0)/σn, of about 100 and N = 10 measurements

we would have σz ∼= 9 nm. This estimated resolution agrees with our target

as formulated in Section 1.8.1. It is seen that the RMS focus error can be

considerably smaller than the wavelength λ of the source. This gives a parallelism

with the theory of superresolution [42] that (lateral) superresolution is possible

under two conditions:

1. The object field is limited,

2. Sufficient a priori knowledge of the object.
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In the case of confocal microscopy there is indeed a limited depth range (depth of

focus). The a priori knowledge in this case is that there is a well-defined surface;

the same result could be obtained by a coated specimen. A difference with the

theory of lateral superresolution is the dependence on noise. In the developed

system the depth resolution depends linearly on the signal-to-noise ratio. In the

lateral case the dependence is in general much weaker, but this depends on the

number of degrees-of-freedom in the object structure [69], which in the developed

system is very small.

2.6 Lateral resolution

In a Type-I scanning microscope, as described in Section 2.2, the lateral resolution

is determined by the point spread function (PSF), that is the intensity distribution

in the image of a point source. When the imaging is diffraction limited, the

FWHM of the PSF of a system with a circular pupil is given by

∆x1/2 =
1.22 ·λ

sinθ
(2.41)

The two point resolution as defined by Rayleigh [67] is half of this value. With

a Type-II, or confocal scanning microscope, it is well known that the lateral

resolution is about 30% better than in a Type-I scanning microscope or a

conventional bright field microscope [59], for both of which Equation 2.41 is valid.

This can be understood as follows:

Let a point scatterer in the focal plane move through the illuminating spot. It

is illuminated with an intensity proportional to the point spread function of the

illuminating system. The scatterer projects a moving intensity distribution in

the detection plane proportional to the (magnified) point spread function of the

imaging system. This distribution is sampled by the detection pinhole. When

this is small, the transmitted power is proportional to the product of the point

spread functions. With a reflective object, such as in surface characterization,

the amount of radiative power transmitted by the detection pinhole as a function

of the position of the scatterer is to a good approximation proportional to the

square of (a cross-section) of the point spread function. This gives a theoretical

improvement of lateral resolution by a factor of
√

2. Longitudinal chromatic
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aberration, spherical aberration, coma and astigmatism all have influences on

depth discrimination. In a well-designed confocal microscope these aberrations

must be, for this reason, well corrected so that we can speak of diffraction limited

imaging. Transverse chromatic aberration is the only primary aberration that

influences lateral resolution exclusively. Therefore, it must be well corrected

when one wants to profit from the
√

2 advantage mentioned above.

2.7 Practical aspects of confocal microscopy

The speed of measurement of a confocal microscope is related to the scanning

technique used. In industrial production, where it is often important to test

every product, speed of measurement is one of the parameters that determines

throughput. The scanning techniques that discussed in this section are illustrated

in Figure 2.8.

(a) Single pinhole (b) Nipkow Disc (c) Scanning Mirrors (d) Microlens array

Figure 2.8: Types confocal applications

The scanning techniques shown in Figure 2.8 can be divided into single beam

and multiple beam techniques. The simplest single beam scanning technique

consists of a relative lateral movement of microscope and object Figure 2.8(a).

The main advantage of this technique is that the illumination pinhole and the

detection pinhole are situated on the axis of the optical system, so that it is not

necessary to correct field dependent aberrations to a high degree, only correction
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of coma and lateral chromatic error is necessary. This makes the optical system

simpler and cheaper, as in CD players. A main problem of this technique is to

ensure that the scanning movement occurs exactly perpendicular to the optical

axis. The system of Figure 2.8(a) can also be called a confocal profilometer;

because relatively heavy objects must be moved (the microscope or the object

table) it is the slowest of the scanning techniques reviewed here. It is used in

those applications where a good lateral resolution is important.

With multiple-beam systems, that usually also have multiple detection pinholes,

the detector is either an array of diodes or an image detector, such as a CCD

array. Such a system is that invented by Petran and Hadravsky [61], illustrated

in Figure 2.8(b). In this system a Nipkow disk, known from pioneering early TV

system [70], is used for scanning. One side of the disk is imaged onto the other

side, so that the pinholes on the disk act as both illumination and detection

pinholes. The system in this form has the disadvantage that alignment and

production tolerances of the Nipkow disk are very narrow.

A system without this disadvantage was invented by Kino and Xiao [71]. In

this system, illustrated in Figure 2.9, each pinhole of the Nipkow disk is imaged

onto itself, thus acting as illumination and detection pinhole. Note that the

beamsplitter in the system is situated above the disk, in the full light of the

source. Because of this, a special beamsplitter design is necessary to avoid false

reflections from the beamsplitter.

In a modern design of this system, the object is scanned twelve times during a

revolution of the disk. To obtain a frame time of 20 msec a revolution frequency

of about 4 Hz is sufficient. Such a disk contains thousands of pinholes with a

diameter of about 20 µm and with a distance between pinholes of about 134 µm

to avoid cross-talk between pinholes.

Another single-beam technique is illustrated in Figure 2.8(c). Here the collimated

beam from the illumination pinhole is scanned over the field of the objective by

a rotating mirror in the back focal plane. A single detection pinhole receives

the back scattered light. Two-dimensional scanning can be obtained by adding

a second scanning mirror, with its rotation axis perpendicular to the first. With
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Figure 2.9: New generation Nipkow disk based confocal microscope. Developed by
Corle and Xiao [4].

this technique it is customary to use a laser as a point source. This introduces the

problem of false interference patterns that can be overcome by accurate coating of

the optics. As the moving parts in the systems are less heavy than in the previous

one, its scanning speed can be much higher. With a rotating polygon a frame

time of 20 msec is possible [72]. As to lateral resolution, this technique makes

much higher requirements to the optical system, especially vignetting of the laser

beam must be prevented rigorously. Also the correction of off-axis aberrations

becomes necessary. In single-beam/single-pinhole systems a single detector can

be used, in existing systems this is often an avalanche diode or photo-multiplier,

the latter when object fluorescence must be detected.

An alternative technique for multiple-beam scanning is the microlens array

confocal microscope, illustrated in Figure 2.8(d), invented by Tiziani [51]. It

uses arrays of about 200× 200 microlenses with a diameter of 150 µm. The
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distance between these lenses is also 150 µm. The object field covered is therefore

60× 60 mm. The lateral resolution is limited by the numerical aperture of the

microlenses. The spot array is imaged onto an array of pinholes, behind which

an array of detectors is located. This system has the advantage of having no

moving parts but it gives only a local sampled rendering of surface topography.

In Table 2.2 a summary of the conclusions of this Section is given. White-light

interferometry is used as a comparison where it was discussed in Section 1.5.1

which has the limitation of cross-talk between pixels.

Table 2.2: Numerical values of Figure 2.8.

System Frame Resolution Resolution Limitation
time field

Mechanical 1 sec. 10 nm 0.5 µm slides movement
scanning 10 µm >> 1×1 mm

Nipkow 20 msec. 2 nm 1 µm beam splitter
disk 10 µm 1×1 mm disk wobble

Scanning 0.25−0.02 sec. 5 nm 1 µm scan frequency
mirrors 10 µm 1×1 mm

Lens array 20 msec. 50 nm 1 µm numerical aperture
60×60 mm

Mirau 20 msec. 1 nm 2 µm cross-talk
interferometry 10 µm 1×1 mm artifacts

2.8 Summary

In this Chapter after a short summary of confocal microscopy and the types and

the advantages of it the two former studies from Corle [4] and Jordan [73], where

confocal microscopy was examined with reflected surfaces, is in detailed discussed.

The unsolved problems for both diffusely and specularly reflected surfaces were

discussed and a theory was built for broadening of depth response curve. Also

the affect of the aberrations on the system’s lateral and vertical resolutions is

discussed.
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3. MICROMIRROR BASED CONFOCAL MICROSCOPE

3.1 Toward a new type of confocal microscope

In Chapter 2.7 a number of practical realizations of the confocal microscope were

reviewed. Three out of four types that were discussed there, are regularly used

for the characterization of surfaces. These are:

• the confocal profilometer (with mechanical stage scanning),

• the laser scanning confocal microscope (with mirror scanning),

• the white-light confocal microscope (with Nipkow disk),

and their properties were reviewed in Table 2.2.

In this thesis a new and different type of scanning confocal microscope will be

presented. The aim of the new type confocal microscope can be easily found from

Table 2.2. The performance of the existing instruments can be improved. That

means:

• Shorter frame time,

• Better depth resolution,

• Larger depth range,

• Better lateral resolution,

• Larger field of view.

Also a new instrument could be free of some of the limitations of existing

instruments. There are also other aspects to be considered:

• user friendliness (easy operation)
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• influence of the environment

• price-performance ratio

For the user there are arguments to prefer one instrument above another:

• flexibility of applications,

this means, applied to surface characterization, that the instrument can

be used to measure all categories of surface topography, as mentioned in

Section 1.4 and that the measurement is largely independent of the material

of the surface. Also limitations of slope and curvature should not to be too

inconvenient.

• from the standpoint of the user, not all performance parameters mentioned

above are equally important. It could be that for instance a shorter frame

time is more urgent than the best lateral resolution.

The sensitivity of the instrument to its environment determines to a great extent

where the instrument is going to be used. In the research laboratory, in the

measuring room, on the factory floor or even outdoors. Environmental aspects

to be considered are:

• temperature changes,

• vibrations and shocks,

• dust,

• room light,

• electro-magnetic interference and compatibility.

The list is certainly not complete. As to price-performance ratio it should be

noted that some users prefer a low price above a high performance. So that even

when a new instrument has, in some respects, a lower performance than existing

instruments, it is nevertheless preferred when the price is significantly lower.

In the following a new type of confocal microscope, based on the use of a

micromirror array as a scanning illumination device will be presented.
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3.2 Analysis of the Microscan system’s components

Source

Pinhole
Achromats

Detector

Pinhole

Object

Objective

Beamsplitter

source

Condenser

DMD

Achromats

CCD

Pinhole

Object

Objective

Beamsplitter

Figure 3.1: Illustration of DMD based confocal system (Microscan) by comparing to
with the classical confocal microscope

The establishment of the virtual pinholes based confocal microscope (Microscan)

system is illustrated in Figure 3.1 in comparison with the principle of a classical

confocal microscope with mechanical scanning. The main differences between two

systems are:

• instead of classical illumination pinholes a Digital Micromirror Device

(DMDTM) completed with its off-axis illumination system is used. The light

source is a Xe-arc lamp and the light is transported to the microscope with

the help of a fibre-bundle,

• a CCD-array, where the each pixel is used as detection pinhole, is selected as

the detector.

The microscope objective, the two tube lenses (for which we use standard

achromats) and the beamsplitter are the same in both systems. Depth scanning

can be performed by moving the microscope, the object or by translating the

objective by a piezo-actuator. In the following sections the key components of

the system will be reviewed:
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• the DMDTMunit,

• microscope objective,

• CCD array.

3.2.1 The DMD and its properties

The Digital Micromirror Device (DMD) is one of today’s most successful MEMS.

It was invented in 1987 after 10 years of development by L.J.Hornbeck at Texas

Instruments and continuously improved and enhanced until today. Modern

DMDs, shown in figure 3.2(a), consist of up to 2048×1024 micromirrors made of

an aluminum alloy. DMD is a semiconductor-based array of fast, reflective digital

light switches that precisely control a light source using a binary pulse-width

-modulation technique. The DMD chip size and single micromirrors details are

given in Figure 3.2(a) and Figure 3.3(b). Each DMD mirror is 16 µm× 16 µm

in size with a 1 µm gap between them, resulting in a DMD filling factor of

approximately 89% [74].

(a) Image of a full DMD chip in hand (b) Detailed image of DMD pixels
and tilting mechanism

Figure 3.2: Image of a DMD chip and the detail of the group of DMD pixels

By electrostatic attraction each mirror can be individually tilted around its

diagonal axis over an angle of ±10◦ within 15 µs depending on the state of the

underlying memory cell. Some of the most important properties of DMDs are

summarized in Table 3.1.
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Table 3.1: DMDs specifications list

Manufacturer Texas Instruments
Mirror Size 16 µm×16 µm
Gap Between Mirrors 1 µm
Filling Factor 89%
Mirror Material Aluminum alloy
Mechanical Switching Time 15 µs
Available Resolutions 800×600

1024×768
1280×1024

In its’ original application, digital image projection systems, the DMD operate to

reflect light from light source through a projection lens onto a screen, with each

mirror representing a single pixel of a complex image. Gray scales are generated

by high speed pulse width modulation of the mirror positions and colors can be

created, for instance, by using a color wheel and time multiplexing the red, green

and blue components of the image. Beside the application of digital image and

video projection, DMDs are also used for digital fringe projection systems in the

filed of optical metrology. Since the DMD can also operate as a pinhole, it may as

well be used as flexible scanning device in a confocal microscope [52] [75] [53] [?].

Now it can be focused on some important specifications of the DMD for confocal

microscope applications.

3.2.1.1 DMD as a light switch

The DMD as a light switch is shown in Figure 3.3(a). Each DMD pixel acts as an

light switch that can reflect light in one of two directions, depending on the state

of the underlying memory cell. Rotation of the mirror is accomplished through

electrostatic attraction produced by voltage differences developed between the

mirror and the underlying memory cell. With the memory cell in the “on”or (1)

state, the mirror rotates +10◦. With the memory cell in the “off ” or (0) state, the

mirror rotates−10◦. The DMD light switch is able to turn light on and off rapidly

by the beam-steering action of the mirror. By combining the DMD with a suitable

light source and illumination optics, Figure 3.3(b), the mirror reflects incident

light either into or out of the pupil of the tube lens by a simple beam-steering

technique. Thus, on the (1), on, state of the mirror appears bright and on the
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(a) DMD mirrors positions. Each DMD
mirror is capable of tilting ±10◦ around its
diagonal axis

Pixel image

Projection lens

Incoming beam

+10−10

−10

Flat

+10

Pixel mirror

(b) DMD optical switching
principle. According to the
position of the DMD mirror
reflected light is either directed
into the optical system or outside
the optical system, in most cases
to a light trap

Figure 3.3: The idea of using a DMD unit as an optical switch

(0), off, state of the mirror appears dark. Compared to diffraction-based light

switches, the beam-steering action of the DMD light switch provides a superior

trade-off between contrast ratio and the overall brightness efficiency of the system.

The optical switching time for the DMD light switch is approximately 2 µs. The

mechanical switching time, including the time for the mirror to settle and latch,

is approximately 15 µs [9].

3.2.1.2 Grayscale operation

Grayscale illumination is achieved by binary pulse-width-modulation of the

incident light. As the mirror rotates, it either reflects light into or out of the pupil

of the projection lens, to create a burst of digital light pulses. The details of the

binary pulse-width-modulation (PWM) technique are illustrated in Figure 3.4.

For simplicity, the PWM technique is illustrated for a 4-bit word (24 or 16 gray

levels). Each bit in the word represents a time duration for light to be on or off

(1 or 0).
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Figure 3.4: The idea of the grayscale operation

3.2.1.3 Resolution

DMD chips are produced at a variety of resolutions, SVGA (800× 600), XGA

(1024×768) and SXGA (1280×1024). The DMD family of chips uses a common

pixel design having a 16 µm mirror arrayed with a 17 µm pixel pitch. As the

DMD resolution is increased, the pixel pitch is held constant so that the chip

diagonal becomes larger in proportion, see Figure 3.5.

Resolution
1280×1024

1024×768

800×600

4 : 3 4 : 3 5 : 4

SVGA XGA SXGA

Figure 3.5: DMD resolution vs chip diagonal

This approach has some advantages;
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• the optical efficiency and contrast ratio of the pixel are maintained at all

resolutions,

• the pixel timing is common to all sizes,

• the chip diagonal increases with resolution, which improves the DMD based

system optical efficiency.

3.2.1.4 Optical efficiency and contrast

The optical efficiency of DMD based systems is the product of the efficiencies

shown in Figure 3.6, namely the lamp-projection-lens and pixel efficiencies. The

pixel efficiency is composed of several factors namely the fill factor, mirror on time

reflectivity and diffraction efficiency. The efficiency of a DMD based systems can

reach maximum 61% [76]. The illumination efficiency depends on the reflection

Lamp × Pixel = Total

Fill factor On time Reflectivity Diffraction

89% 85%92% 88%

= 61%

Figure 3.6: Optical efficiency of DMD based systems

and absorption in the components of the illumination system, on the geometry

of the light source, the numerical aperture of the condenser lens and the ratio of

beam and chip area. The contrast ratio is defined as the ratio of the light flux

with all pixels turned on and the flux with all pixels turned off. In a DMD, it is

limited, with a DMD, by diffraction from the mirror edges, the substrate and the

metalized holes in the center of the mirror, where the support post is situated,

Figure 3.3(a). The estimated contrast ratio of the developed system is about 7 : 1;

this estimation will be discussed in detail in Chapter 4.
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3.2.1.5 Applications

DMD based projection systems are well suited to high-brightness and

high-resolution applications [50] [74] [77]. DMD is a key component in digital

projection systems, that require digital video input and produce digital light

output. Grayscale operation can be achieved by pulse-width-modulation; colored

images can be produced by the use of a color wheel and time-multiplexing the

color components of the image. Beside the application in image projection

and digital video, DMD’s are also used in fringe projection systems for optical

metrology [31] [?] [78].

3.2.2 Microscope objectives

Many considerations must be taken into account while choosing a microscope

objective that suits the needs of the Microscan system. Apart from the obvious

points such as field of view and numerical aperture also the correction of

aberrations is important. Because polychromatic light is used for illumination

the chromatic aberrations must be well corrected. Spherical aberration, coma and

astigmatism must not exceed the diffraction limit. Distortion and field curvature

can be tolerated to a small amount. The working distance (clearance) becomes

important when specimens with large differences in depth are introduced. It will

be clear that only the metallurgic type of objective, where no cover glass is used,

can be considered for use in the developed system. In the following a few types

of objectives with respect to their suitability will be discussed.

3.2.2.1 Achromatic objectives

In this type of objective glasses of different refractive index and dispersion are used

to correct chromatic aberration. The secondary spectrum will cause a broadening

of the depth response curve. With achromatic objectives

spherochromaticity1 cannot be corrected very well.

1the dependence of spherical aberration on wavelength
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3.2.2.2 Fluorite objectives (semi-apochromatic)

The secondary spectrum can be reduced considerably by the use of fluorite glass in

the design. This leads to a narrower depth response curve with a higher maximum

and improves the depth resolution. Also the lateral resolution will be better than

with an achromatic objective. The spherical aberration is still only corrected for

one primary color (green). Fluorite glass exhibits some strain birefringence and is

therefore not ideal in combination with polarization or fluorescence microscopy.

3.2.2.3 Apochromatic objectives

This type of objective is fully corrected for the three primary colors. The

secondary spectrum is practically eliminated. Spherical aberration is corrected

for blue and green. Apochromatic correction is usually applied to objectives

of high power and high numerical aperture. Because of the need for special

types of optical glass, the higher number of components and narrower production

tolerances, these objectives are expensive (3-4 times the price of an achromatic

objective); it does not follow that they are better for each application. Usually

the working distance is rather small. The increased numerical aperture can induce

increased glare that must be under control by reducing the field of view.

3.2.3 The image detector

Requirements for the image detector in the Microscan system are:

• high signal to noise ratio (SNR),

• resolution compatible to that of the DMD.

The image detector that is universally available is the Charge Couple Device

(CCD) array. In order to avoid Moiré effect between the CCD and the DMD

unit a CCD array with square pixels and a number of pixels about equal to the

DMD that was chosen. The size of the pixels was 8.3 µm×8.3 µm, the number

of pixels 782 h× 582 v where the DMD has 800 h× 600 v pixels. The noise in a

CCD array image detector has several components [70]:
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• photon noise, due to the quantization of the incoming light; in our case this is

incoherent light so that the photon noise has Poisson statistics,

• dark-current noise, this is the prominent noise source,

• read out noise, caused by the read-out amplifier.

The RMS dark-current noise in a room temperature CCD with MOS photo diodes

is 1000 electrons per pixel. The number of electrons stored per pixel is of the

order of 100.000 so that a SNR of 100 is a realistic value. By cooling of the

CCD the SNR can be improved; this option was not used during the project.

The spectral sensitivity of silicon CCD-arrays decreases about linearly from a

quantum efficiency of about 30% at 700 nm to 8% at 400 nm. For this reason

a Xe-arc lamp that has a fairly continuous spectrum in the visible region of the

spectrum is used in the system. To avoid chromatic broadenning of the depth

response curve a green filter with a peak transmission at 550 nm can be used.

3.2.4 Results of system analysis

The system analysis can be shortly summarized as:

• For the microscan project a suitable microscope objective type is the

semi-apochromatic (Fluorite) objective,

• The selection of the proper type of DMD depends on the lateral resolution

of the system components. In other words, the light source (wavelength) and

microscope objective NA value. For the chosen microscope objectives and

light source (0.55 µm) these values are given in Table 3.2. The best choice for

the Microscan project is a SVGA type DMD unit which has 800× 600 pixel

resolution.

Selected system components With the help of the knowledge built up to now,

the following system components are chosen for the next step in the project, see

Table 3.3.
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Table 3.2: Selection of the proper DMD type

Microscope objective Lateral Res. for DMD type
Magnification NA Lateral SVGA XGA SXGA

Resolution 400 pixel 500 pixel 600 pixel
µm in FoV in FoV in FoV

20 0.46 0.73 3.31 2.65 1.33
50 0.8 0.42 1.33 1.06 0.53
100 0.95 0.35 0.66 0.53 0.27

Table 3.3: Selected system components and their specifications

Imaging system CCD
Effective picture elements 782×582 (horizontal/ vertical)
Sensing area 1

2 inch-size
Cell size 8.3×8.3 µm (horizontal / vertical)
Chip size 8.10×6.33 mm (horizontal / vertical)
DMD unit
Pixel numbers 800×600 pixels (horizontal/ vertical)
Pixel size 16 µm×16 µm
Microscope Objectives
UMPLFL 20× NA = 0.46
UMPLFL 50× NA = 0.80

3.3 Establishment of the optical set-up

By using the key elements, DMD, microscope objective and CCD camera,

different matching possibilities between the DMD and the CCD can be created.

Figure 3.7 shows the critical areas that determine the matching condition of the

Microscan system. By nature each microscope objectives has it’s own circular

field of view (FOV) area which is given by the manufacturer specifications. In a

similar way the chosen CCD camera and the DMD unit have their own usable

areas, different from the circular FOV area, in rectangular shape, which cause

partly matching difficulties with the microscope objective’s FOV area.

3.3.1 A basic approach for the optical set up

The main approach in the Microscan project is to use the key and most expensive

element, the DMD unit, as efficiently as possible, in other words to use maximum
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DMD Microscope objective CCD

Figure 3.7: Basic limitations for the matching between the Microscan components

area on the DMD unit. For this purpose the microscope objective’s FOV is

matched with both the DMD and the CCD chip area in order to use the full DMD

and CCD areas. It is quite possible to create some series of alternative matching

conditions according to the existing areas. Basically the created solution mostly

depends on the aimed purposes, such as:

• in order to use the maximum FOV area,

• in order to use the maximum DMD area.

The number of matching conditions could be increased just by using a different

combination between the given areas. For given sets of specifications and

constraints one or more concepts for an opto-mechanical system can be created.

Two alternative matching conditions for the Microscan system were formerly

developed and tested during the early stage in the project [52] [79]. In the

following, the starting idea and final design approaches will be explained,

presented and simulated. At this stage of preliminary design, all optics are

accepted as thin lenses. The locations, sizes and orientations of images and pupils

are correct to a first order approximation in this ideal representation. In order

to obtain the Microscan layout specifications, i.e. the related focal distance and

lens diameters, one could start with a simple 2D model of the optical system by

using the primary elements specifications (CCD and DMD) and just by ignoring

the beamsplitter, Figure 3.8.
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DMD Achromat 1

fM

fM

fM

fM Achromat 2 CCD

fCCD fCCD fDMD fDMD

Figure 3.8: 2D scheme of the developed system.

The parameters given in the 2D scheme present:

• fDMD, focal length of the achromat 1,

• fCCD, focal length of the achromat 2,

• fM, focal length of the microscope objective.

In order to establish the lay-out of the optical system the FOV of the microscope

objective is adapted to the usable area of the DMD and the CCD, Figure 3.9.

DMD CCD

Field of view

FOV-DMD matching FOV-CCD matching

Figure 3.9: Matching approach on DMD and CCD

The microscope objective that will be most frequently used is a 20×magnification

microscope objective, with a 1.1 mm FOV of diameter. This enables to obtain
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profiles of 800 µm long, which is a standard for the cut-off length in roughness

measurements for mechanical stylus measurements [19]. When the diagonal

length of the DMD image is equal to 1 mm, the whole DMD image fits comfortably

inside the FOV of the microscope objective. The long side of the DMD image is

now shrunk to 0.8 mm. The DMD itself has a long side of 13.6 mm so that the

required magnification from object to DMD is 13.6/0.8 = 17 times. The focal

length of the 20× microscope objective is 9 mm and it requires a tube lens with

a focal length of 9× 17 = 153 mm. In the suppliers catalog available achromats

with focal lengths of 150 mm and 160 mm and the first value is preferred because

it is nearest to 153 mm and there is still some spare room inside the FOV. The

usable area of our CCD has the same form as the DMD but its dimensions are

a factor of 2.1 smaller. Therefore a tube lens of focal length 80 mm or 75 mm is

taken on the side of CCD.

After determining the rough focal distances and image-object relations, it can

be continue with the improved and detailed 2D schema. Even if it is thought

that theoretically light travels parallel after achromat 1 and the position of the

microscope objective is not important, in reality this is not true for the outer

DMD mirrors. This off-axis problem, which mainly causes a vignetting effect,

must be taken in to account. The aim of this design is to minimize the vignetting

effect in the system and to obtain as much light as possible at the position of

the microscope objective’s entrance pupil. In the current situation the distances

between the tube lenses and the objective are still free. It is aimed to have a

system that is tele-centric on the side of the object, so that the defocusing of

the object does not change the magnification with respect to the DMD and the

CCD. That means that the stop of the objective must be in its back focal plane.

Fortunately, the supplier has already taken care of this. In order to achieve the

aimed tele-centricy on the side of the CCD and the DMD the stop must be in

the focal plane of both tube lenses. This fixes the distances from the tube lenses

to the objective. An optical path correction must be introduced for the thickness

of a cube beamsplitter. This correction is given by Equation 3.1 and shown in

Figure 3.10.
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DMD Achromat 1 M.O.

ObjectBeamsplitter

Achroma 2 CCD

fDMD,( f1) fDMD−∆S2 ,( f1) fCCD−∆S4 ,( f3) fCCD,( f3)

fM

fM

fM

fM

Figure 3.10: 2D scheme of the developed system where M.O. is used for microscope
objective

∆S2 = ∆S4 =
1−n

n
d, (3.1)

where d is the thickness of the beamsplitter. In our case n = 1.517 and d = 25 mm

so that ∆S4 = ∆S2 = −8.52 mm. The last step in establishing the lay-out is the

calculation of the required diameter of the tube lenses. The numerical aperture

of the DMD side tube lens is 0.46/17 = 0.027. This means that the diameter of

this tube lens must be at least equal to

Φ1 = 17+2.150×0.027 = 25.1 mm (3.2)

The diameter of the CCD side tube lens must be more than 16.6 mm. The catalog

lenses have a free diameter of 25.4 mm. The dimensions of the lay-out,Figure 3.10,

are given in Table 3.4. It is assumed that the light source (the end of a fibre-bundle

Φ = 3 mm) is placed in the focal point of the condenser, so that its image is

projected in the stop of the objective.

For scanning steps in z direction it is accepted that the vertical scanning steps

will be approximately 10% of the related DoF, Table 3.5, it means that for each

microscope objective the calculated DoF value will be scanned in ten steps by

the piezo element.
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Table 3.4: System specification summary

Tube lens f1 = 150 mm Φ1 = 25.4 mm
Distance S2 S2 = f1−∆S2 = 141.5 mm
Objective f2 = 9 mm
Tube Lens f3 = 80 mm Φ2 = 25.4 mm
Distance S4 S4 = f3−∆S4 = 71.5 mm

Table 3.5: DoF and Vertical Resolution relation table
Depth of focus ( µm) Vertical scanning step ( µm)

1.1 0.11
0.43 0.043
0.34 0.034

From these calculations and the two important system parameters, namely the

achromats focal length at the DMD and the CCD sides, 150 mm and 80 mm, the

optical schema can easily be built.

3.4 Ray tracing analysis

Up to now, during the calculations for the optical path of the rays in the system, it

is assumed that the lenses are thin lenses (first-order, paraxial optics). However,

the first order theory is no more than just a good approximation. Deviations from

the ideal conditions are known as aberrations. As described in Hecht [80] and

Born & Wolf [66], there are several types of aberration such as spherical, coma and

astigmatism. In the optical scheme of the developed scanner, there are 3 lenses

in the system including the microscope objective. Both, lens 1 and lens 2 are

achromatic doublets, which consist of a combination of a positive convex crown

glass lens and a negative concave flint glass lens. The advantages of an achromatic

doublet are reduction of chromatic aberration, as well as correction for spherical

aberration (SA) and coma. Though these aberrations can be reduced by the use

of achromats, a complete correction for SA is not possible. The use of analytical

ray tracing, instead of the paraxial theory, gives us a more realistic impression of

the actual optical paths through the system. A full description of this method

can be found in [67] [80]. As this method requires a lot of computations, for
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this reason the ZEMAXTMprogram has been used. In a 3D scanner system,

the requirement is that the focusing beam on the object must have the smallest

spot diameter. The ray tracing analysis is started with the assumption that the

objective is an ideal lens with f = 9 mm and NA = 0.46. This means that the

diameter of the stop, in the back focal plane, is equal to 8.1 mm. The calculations

are done with cemented achromatic doublets from the Linos catalogue. The data

for these doublets are given in Table 3.6.

Table 3.6: Microscan system lens data

Type Achromat 1 Achromat 2
Number 322227 322307
Surfaces 5 4
Effective focal length 150.504 80.86075

Figure 3.11 illustrate the complete optical train, here it is assumed that the object

is exactly focused.

DMD
Achromat 1

Achromat 2

Beamsplitter

Objective

Object

CCD

Figure 3.11: First simulation schema

The calculation was executed for 5 points on the DMD, see Figure 3.12, with the

specifications given in Table 3.7.
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1

2 3

4 5

Active DMD area

Figure 3.12: Selected simulation points on the DMD

Table 3.7: Simulation field table
Field number X ,Y position on the DMD Remarks

in mm
1 0,0 Center DMD mirror
2 1,1
3 2,2
4 3,3
5 4,4 Outer DMD mirror

The results of these calculations are shown in Figure 3.13 and Figure 3.14. These

figures show that the spot diagram falls inside the first Airy ring for all the field

points.

Airy disk

Figure 3.13: Spot diagram on the object, the system is focusing for center DMD.
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Airy disk

Figure 3.14: Spot diagram on the object, the system is focusing for outer DMD.

Spot diagrams on the CCD are given in Figure 3.15 and in Figure 3.16 for focusing

center DMD field (1) and for focusing outer DMD field (4) respectively.

Airy disk

Figure 3.15: Spot diagram on the CCD, system is focusing for center DMD mirror

Although the data of our microscope objectives are not available to us to simulate,

from the literature [81] it is inferred that the current objective design can result

in near-diffraction-limited imaging over the whole FOV. Therefore the ideal

lens approach is accepted. In order to simulate the depth response curve the
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Airy disk

Figure 3.16: Spot diagram on the CCD, system is focusing for outer DMD mirror

defocusing of a specularly reflecting object is simulated by changing the distance

between object and objective in steps of 0.1λ/sin2
θ . 7 steps are taken on both

sides; with λ = 550 nm and sinθ = 0.46, we have ∆z = 260 nm per step. After each

step the point spread function and from that the energy within a circle of radius

0.61λ/sinθ = 0.73 µm is calculated, this is the radius of the first dark ring of the

Airy pattern. This exercise is done for the five field positions defined above, and

after fitting a polynomial through the calculated points the five depth response

curves shown in Figure 3.17 are obtained.

The ideal depth response curve, as given by Corle [63] is shown in Figure 2.6.

The effects of broadening and sagging down predicted in Section 2.4 can be seen.

The results are found in Section 2.4.2 that predicted narrowing of the depth

response curve in the presence of spherical aberration are not confirmed by this

calculation. To give an impression of lateral resolution the point spread functions

of the illumination and detection subsystems (with the beamsplitter included) is

calculated.
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Figure 3.17: Depth response of the developed system for the ideal objective
application

3.5 Tolerance budget and worst-case design

In order to predict the performance of the developed system an error budget

performance analysis are done. During the analysis the following contributers to

the system are taken into account, Figur 3.18.

Figure 3.18: Screen shot for Zemax tolerancing

There are several categories of error sources need to be accounted for:

• Errors in fabrication (will not be analyzed)
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– Incorrect radius and curvature,

– incorrect thickness,

– incorrect surface shape,

– curvature center offset from mechanical center,

– incorrect or unwanted conic or other aspheric coefficients.

• Errors in material (not examined)

– Index accuracy,

– index homogeneity,

– index distribution

– Abbe number dispersion

• Errors in assembly

– elements offset from mechanical axis,

– elements positions wrongly,

– elements improperly tilted relative to the optical axis,

– elements having wrong orientation

• Errors due to environment

– Thermal expansion (contraction) of materials (optical & mechanical),

– thermally induced changes in the refractive indices.

– alignment sensitivities introduced by system shock and vibration

– mechanical stresses,

– elements having wrong orientation

Figure 3.19 shows the simulated critical movements in the developed system:

• tilt and decentering of the tube lenses,

• tilt of the beam splitter,

• tilt of the objective.
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Figure 3.19: Error sources in the system

3.5.1 Establishing Tolerances

There are several steps in the analysis of tolerances:

• Determine a " figure of Merit" to use as a tolerance criteria

– For current system it is focused on two merit function these are RMS

spot size and MTF profile of the developed system

• Determine how much the system performance can depart from design

• Define initial set of tolerances

– Default ZEMAX values accepted as start point

• Evaluate the the tolerances (according to following items) to estimated the

expected cahnge in performance

– sensitivity

– Inverse sensitivity

– Monte Carlo

This study on tolerancing gives a clear insight about how the relevant optical

components affect the quality of the image spot diameter and the image quality.
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For the tolerance set-up, calculations of the effects introduced by misalignments

of the each individual component (tilting and decentering) are performed.

It is not necessary to consider decentering of the objective, because only the

relative decentering of objective and tube lenses is relevant. Because the tube

lenses have a FoV magnifican of 17 and 8.5 mm, respectively, a decentering of

0.1 mm will change the aberrations only to a small amount. A tilt equal to the

decentering divided by the focal length is roughly equivalent to the decentering.

For the DMD-side tube lens, from Figure 3.10, this is equal to 2/3 of a mrad

for the CCD side tube lens it is 4/3 of a mrad. A tilt of the objective of 1 mrad

is introduced. The spot diagrams for the individual centering errors and for the

worst case, where all errors are present simultaneously are simulated and just a

little variation which can be omitted in spot size and MTF profile is observed.

3.6 Summary

The results of the optical design and simulations can be listed as follows:

• The overall performance for the current system can not be accepted as a

diffraction limited system,

• In order to avoid aberrations in the system, especially for the outer DMD

fields, it is necessary to improve the system. The easy solution is to make the

focal distances longer; this idea will be discussed in detail in Chapter 4

• Thin lens calculations are sufficient to establish the optical set-up,

• Because of the quite high optical tolerances the optics that is used in

Microscan, accepted and treated as low precision components

• Because of the nature of the FoV, it is not possible to use the complete area

of the DMD and the CCD,

• In order to obtain high efficiency from the light that we use, we must place

the objective entrance pupil at the lens back focal plane,

• Simulated mechanical design tolerances quite big and the system can be

accepted low precision system.
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4. EXPERIMENTAL SET-UPS and MEASUREMENTS

4.1 Introduction

This chapter presents the realization of the micromirror based confocal

microscope Microscan that was described in Chapter 3. In comparison to Kino’s

RSOM (Real-time Scanning Optical Microscope), described in Chapter 2 the

developed microscope does not use a physical pinhole array. The mirrors of

a DMD unit are used as virtual illumination pinholes and the pixels of a CCD

array as virtual detection pinholes. As a result the optical system becomes simpler

and easier to align and to adjust. Furthermore this new design eliminates the

sources of vibration and stray light from the system that caused problems in the

existing system. In Section 4.2 some experimental results related with replacing

the Nipkow disk with a DMD will be presented. Simply the depth response curves

were measured in a semi-confocal set-up, with a real pinhole on the illumination

side and a CCD array on the detection side and compared with the depth response

curve which was obtained with the DMD based virtual pinhole. This led to the

establishment of a new type of confocal microscope, in which the DMD unit

is replaced by a set of pinhole masks, Section 4.3. Section 4.4 presents two

different set-ups of the Microscan system. The first set-up is based entirely on

the design that was described in Section 3.3. After preliminary measurements

it was concluded that some modifications of the set-up were necessary. This

led to the second set-up, with which the measurements were performed. The

measurements were used for the verification of the Microscan concept where the

developed system is aimed to be used in surface characterization. Therefore

measurements were focused on to verify whether the system is able to obtain the

3D surface topography of representative samples. Section 4.5 gives a detailed

description of the procedure that is followed in the measurements. Section 4.6

describes and discusses the measurements that were used in the verification of
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the Microscan concept. Finally, Section 4.7 discusses the performance and the

limitations of the Microscan system.

4.2 Comparison of real pinholes with DMD pixels

Pinholes are the most important parts of a confocal microscope. Replacing them

by a different device can have a negative influence on the advantages of confocal

microscopy. For this reason it was decided to do first an experiment to check the

effects of replacing the real physical pinhole by a DMD pixel. From literature [74]

it is well known that the contrast ratio between the on and off states of a DMD

pixel - although it is better than in other digital projection systems- is clearly

worse than that of a pinhole. With a DMD the on state intensity is lower due

to reflection losses at the mirror surface, absorption by the protective cover layer

and a filling factor of less than 100%. At the same time the off state intensity is

higher because of reflection by the protection layer and scattering by the edges of

the micromirror. The main differences between the intensity patterns generated

by a pinhole and a DMD pixel are illustrated in Figure 4.1.

Pinhole

DMD

Reflection from the mirror’s edge

Absorption by coating

Reflection from mirror

Reflection from glass cover

Intensity

Intensity

z
Scanning

z
Scanning

Figure 4.1: Comparison of pinhole vs DMD by means of intensity curves and contrast
efficiency
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Figure 4.2 shows the set-ups that the experiments were done.

Light Source

Light Source

Pinhole

DMD

C
C

D

C
C

D

Object Object
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sc
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ni

ng

(a) (b)

Figure 4.2: Experimental set-ups for comparison of DMD pixel with real pinhole

In Figure 4.2(a) the pinhole is illuminated in transmission, it is placed on the axis

of the optical set-up to eliminate as much possible as the disturbing influence of

aberrations. In Figure 4.2(b) the DMD is illuminated in reflection, the axial

pixel is switched to the on state. On the detection side a CCD array and

as an object, a plane mirror with interferometric quality was used. In both

cases experiments were done with a 20× with 0.46 NA value semi-aprochromate

microscope objective. The objective was scanned in the z direction by a

piezo-electric actuator 1.

1A PIFOC system from Physic Instruments (PI)

69



In the first experiment the depth response curve was obtained for a 10 µm in

diameter pinhole and a single pixel of the DMD. The results are presented in

Figure 4.3(a). The experiment was repeated with a pinhole of 100 µm in diameter

and a virtual pinhole consisting of 5×5 DMD pixels. With a pixel size of 17×

17 µm the areas of both pinholes are about equal. The results of this second

experiment are presented in Figure 4.3(b).
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(a) Result of experimental comparison of pinhole vs DMD by the
means of intensity curves and contrast efficiency. 1 DMD pixel vs
10 µm hole
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(b) Result of experimental comparison of pinhole vs DMD by the
means of intensity curves and contrast efficiency. 5× 5 DMD pixel
vs 100 µm hole

Figure 4.3: Result of experimental comparison of pinhole vs DMD by the means of
intensity curves and contrast efficiency
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The intensities in Figure 4.3 are normalized. It is seen in Figure 4.3(a) that the

contrast obtained with a real pinhole is better than with a single DMD pixel.

The FWHM of both depth response curves in Figure 4.3(a) is about equal to

5 µm. This is about a factor 2 larger than the prediction of Corle’s theory

(using λ = 0.55 µm). The possible causes of this difference in results will be

discussed in Section 4.4. In Figure 4.3(b) only a slight difference in contrast is

seen. The FWHM has grown to 8 µm. Although the contrast ratio obtained

with the DMD is inferior to that the pinhole, the depth response curves are

almost equally useful for depth discrimination. After these two experiments it

is concluded that concepts of confocal microscopy can be applied to a system

with DMD illumination. The same conclusion can be drawn, mutatis mutandis,

about the replacement of detection pinholes by a CCD array. We did not do

any experiment on this issue, but we are convinced that the result would be in

agreement with the result given above.

4.3 A semi-confocal microscope

When the illumination pinhole of Figure 4.2 is replaced by a pinhole array, a

semi-confocal microscope is obtained as illustrated in Figure 4.4

In this microscope design x− y scanning is not possible (except by mechanical

movement). Without x− y scanning a sampled version of the 3D topography

of the sample surface is obtained. It is clear that z scanning is still necessary.

The pinhole diameter and pinhole density of the mask can be adapted to the

application; a set of pinhole arrays must be available. Such a set of pinhole arrays

was produced by the central work shop of Eindhoven University of Technology

using etching in an aluminum layer. A few examples are shown in Figure 4.4.

Because of the absence of x− y scanning the measurement time of this system is

smaller than that of the DMD based microscope. With the DMD based Microscan

system it is also possible to omit x−y scanning. Operation of the in this mode will

be explained in Section 4.5 and the results of the measurements in Section 4.6.

Because the results are identical, the measurement results will not discussed in

this section.
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Light source

Dummy

Achromats

Beamsplitter

MO

Object

z scanning

C
C

D

Example for dummies

Figure 4.4: Experimental set-up with dummy. Dummies can be realized with pinholes
of different size and shapes.

4.4 DMD based experimental set-ups

During the project two different set-ups were built. The first set-up was based

entirely on the design that was described in Section 3.3. The lay-out data of this

design are given in Table 3.4. The specifications of the key components, DMD,

CCD and microscope objective are summarized in Table 3.3. For z scanning a

PIFOC piezo-scanner from PI with a range of 100 µm and a minimum step size

of 10 µm was used. Figure 4.5 shows the first experimental set-up. Because of its

importance the illumination system will be discussed in detail in Section 4.4.1

During the experiments with this set-up it is found that the depth response curves

obtained at positions in the outer regions of the field of view were of low quality,

compared to the depth response on axis. Characteristics intensity curves for this
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CCD

DMD

Light source.

Piezo scanner

Microscope objective

Figure 4.5: The very first build experimental set-up

system are given in Figure 4.6 where the depth response curves were obtained

with a 20× with 0.46 NA microscope objective.

Figure 4.6(a) shows the depth response curve for the center DMD pixel. It has

a FWHM of about 5.5 µm and it is also a bit asymmetric, where the asymmetry

could be caused by spherical aberration, and also by small alignment errors in the

developed set-up. Figure 4.6(b) shows the depth response for the outer field point.

The maximum intensity is decreased from 230 to 155, arbitrary but identical

units and the FWHM has grown to 11.5 µm. Moreover, there is a significant

asymmetry of the curve. These effects are mainly caused by field aberrations

(coma, astigmatism) over the diffraction limit. The presence of these aberrations

was already presented in the spot diagrams in Figures 3.15 and 3.16. A further

problem with the first set-up was that it was built in a horizontal plane, as can

be seen from Figure 4.5. Although this approach resulted in a good mechanical

stability, it makes the sample handling rather difficult. Therefore it is decided to

build a second set-up where the main differences with the first one are:

• the set-up is built in a vertical plane, so that the object can be placed and

measured in the horizontal plane,

• longer focal distances both on the DMD and the CCD side are chosen.
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(a) Depth response curve for the center DMD pixel
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(b) Depth response curve for the outer DMD pixel.

Figure 4.6: Depth response curves of the first experimental set-up

Figure 4.7 shows the second experimental set-up. Longer focal distances have the

consequence that the image of the DMD in the field of view of the microscope

objective is a factor of 3/4 smaller than in the first design. Therefore, with 20×

magnification only 600 µm profiles can be obtained. In a more definitive design

the profile length must be restored to 800 µm. This can be done by replacing

the existing achromats with air-spaced aplanic doublets or triplets. Because the

part of the FoV that is used is smaller now and the field angle of the achromats

is also reduced, the effects of the aberrations on the depth response curve are

less serious. The set-up is tested by obtaining the depth response curves for the

axial and the outermost pixel of the DMD. These proved to be nearly identical.
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Figure 4.7: 2nd set-up

The depth responses obtained for the outermost DMD pixel by using 20× and

50× microscope objectives are given in Figure 4.8, where the FWHM values are

6.2 µm and 1.5 µm respectively. It should be noted that the prediction of Corle’s

theory is 2.5 µm for the 20× and 0.43 for the 50× microscope objective.

The differences between the measured and the predicted values are caused by the

following phenomena:

• finite illumination and detection pinhole size,

• broadening due to aberrations,

• alignment errors in the set-up.

From the approximate theory that is formerly developed it is shown that a

diffraction spot with diameter d0, broadened by a virtual DMD based pinhole

of diameter e, creates a broadening of the spot on the object by a factor b, given

approximately by Equation 4.1.

b =

√
1+

e2

d2
0

(4.1)
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(b) PSF 50 X

Figure 4.8: PSF functions

Measurements mostly are done with a virtual pinhole of 2× 2 pixels so that

e = 2 µm on the object with a 20× microscope objective. With d0 = 1.5 µm,

b = 5
3 so that the broadening caused by the finite pinhole diameter would give a

FWHM of 4.2 µm. But, it is measured 6.6 µm, so this does not give a complete

explanation of the measured results. The results of Figure 4.9 are obtained by

taking the signal from a single pixel on the CCD, this does not lead to a further

broadening of the depth response curve.
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Figure 4.9: Comparison of Gauss evaluation and direct measurement result.

4.4.1 Illumination of the DMD

The light source and the illumination optics are two important components of

the developed system. Both were identical in the two set-ups that are developed

during the project. For the light source the essential parameters are the spectrum

and the effective source geometry. In Section 2.4 the influence of chromatic

aberrations on the depth response curves is discussed. It is found that with

the imaging optics that are used, this influence is not very strong. Therefore,

it is concluded to use a source with a broad spectrum. The influence of the

spectral width is tested by inserting a glass transmission filter with a maximum

transmission at 550 nm; a small narrowing of the depth response curve is observed.

As a result, it is decided to use the Schott 2500 KL, LCD lamp over the whole

visible spectrum. In this source the light of an Osram 50 W halogen lamp is

projected on a fiber bundle with a diameter of 3 µm. This has the advantage

that heat and vibrations can be kept away from the rest of the optical system.
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The illumination optics serves to illuminate the DMD homogeneously and to

send the light from on pixels through the imaging optics to the CCD via the

sample. Because of the lay-out chosen for the developed system, that is described

in Section 3.3.1 the effective source must be situated in the focal plane of the

condensor lens, so that the DMD is illuminated by a bundle of plane waves. This

idea is illustrated in Figure 4.10.

DMD

Condesor

Fibre boundle
MO pupil

Achromat

to the light trap

Figure 4.10: Illumination principle of Microscan

The effective source is imaged by the condenser and the first achromat onto the

pupil of the microscope objective. For the developed system the DMD is obtained

from a 3M projector. This had the additional advantage that the control unit and

a part of the illumination optics are easily adapted to Microscan. The adapted

illumination optics for the proper DMD illumination is described in detail by

Chang and Shieh [82]. They designed a special prism to fold up the light path

of the illumination system. The housing of the illumination optics, which has its

own light trap and the specially designed prism, is used in the developed system

in order to collect the light reflected from the off pixels of the DMD and for

the proper illumination of the DMD unit. Figure 4.11 shows the prism and the

housing that is partly adapted from the original projector.
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(a) Prism (b) Housing

Figure 4.11: The proper illumination optics for DMD

4.5 Measurement procedure

The flow chart of the measurement procedure is illustrated in Figure 4.12.

The course of the measurements is: first, a specified pattern of DMD super pixels

is produced and the CCD image is evaluated at the corresponding regions of

interest. Then the DMD super pixels and CCD regions of interest are moved

and evaluation is carried out again at different positions on the specimen. These

steps are repeated until the surface is completely scanned in x and y direction.

Afterwards, the microscope objective or the object is moved in vertical direction

and lateral scan restarts. After the depth scan is completed, the interpolated

intensity maximum is calculated for each super pixel. The intensity maximum

is linked to the piezo-scanner position allowing the 3D surface topography to be

obtained, see Figure 4.13.

In the following the steps in the measurement procedure will be reviewed in more

detail and the possibilities that arise with each step will be discussed.

4.5.1 Virtual pinhole patterns

While creating a periodic virtual pinhole pattern on the DMD the form of the

pinhole (n×m) and the period of the pattern N×M are the essential parameters.

During measurements n×n, m = n square pinholes2 are used, where n is equal to
2super pixel
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Figure 4.12: Flow chart for scanning

1,2,4 and the size of the pixel determines the lateral resolution of the developed

system. For the improved system a pixel image on the object has a size of 0.75 µm

which was about the half of the theoretical airy disk diameter, which is calculated

1.5 µm for a 20× microscope objective.

For objects that reflect less light the pinhole size can be taken larger naturally

at a cost of lateral resolution. This possibility can also be used for local drops

in reflected intensity or in other words, for uniform illumination on the detection

sensor (CCD) by adjusting each DMD pixel’s on time which is explained formerly

in Section 3.2.1. Although the scanning matrix size N can be chosen as 2n as

long as the height variations are smaller than the depth of focus of the objective

(about 2.5 µm for 20×, 0.46 NA microscope objective) during the measurements
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Figure 4.13: Idea of the confocal image forming

it is chosen N = 10 and N = 20 which is actually equal to 5× n and 10× n.

Figure 4.14(a) illustrates the idea of creating a super pixel and the scanning of

the DMD and Figure 4.14(b) shows the DMD based real pinholes created during

a measurement.

4.5.2 Matching between the DMD and the CCD

In order to create the virtual detection pinholes on the CCD it is necessary to

establish a matching between the DMD and the CCD. A DMD pixel D1 with the

coordinates (xd1,yd1) is imaged on a CCD pixel C1 with the coordinates (xc1,yc1).

This procedure is repeated for the three other DMD pixels where the DMD pixels

are entered by the user and related CCD pixels, imaged points, are determined,

see Figure 4.15.

As a result, matching between the DMD and the CCD is obtained for each DMD

pixel which is imaged on the CCD. If there is any not imaged DMD pixel(s), this

pixel(s) will not be taken into account during the data analysis. When the x,y

axes of the DMD and the CCD are well aligned and distortion is neglected, the

matching between two sets of coordinates can simply be written as

[
XDMD + i YDMD

]
·
[

a+ i b
]
+
[

c+ i d
]
=
[

XCCD + i YCCD
]

(4.2)

81



Pinhole (super pixel) Scanning matrix for super pixel

DMD area

(a) DMD based spot creation

(b) DMD based pinholes, which are created during a measurement

Figure 4.14: Real output for DMD scanning

where
[

a+ i b
]

is for rotating and scaling and
[

c+ i d
]

is for transpose Consequently for full DMD to CCD matching can be described

by the following equation.
xd1 + i yd1 1
xd2 + i yd2 1
xd3 + i yd3 1
xd4 + i yd4 1

 ·[ a+ i b
c+ i d

]
=


xc1 + i yc1
xc2 + i yc2
xc3 + i yc3
xc4 + i yc4

 (4.3)
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Figure 4.15: Realization of the matching between the DMD and the CCD chip

The coefficients a, b, c, d are depended on both achromats on the CCD and

on the DMD side. Actually these are the functions of the system and it is not

necessary to focus these coefficients in details, because in a well aligned system

lateral magnifications are mostly the same and equal to one. For each imaging

condition they can be calculated just after a simple matching test. Because the

DMD pixels are manually entered by the user and the detected CCD pixels are the

results, the transfer function between these two components, the coefficients, can

be obtained by reverse calculation. Matching application between the DMD and

the CCD is done (normally) with the help of the mirror object. This procedure

creates perfect matching conditions but it is also possible that the matching

conditions can be realized on the object that will be measured. In that case the

problem that is caused by extreme scatter or wavy surfaces can be reduced to a

minimum. If this is the case, it can be said that the developed system introduces

not only virtual pinholes but also adaptive pinholes application. After an imaged

CCD pixel is found the imaging pinhole is created by turning neighboring pixels

on. The size and the shape of the pinhole are again determined by the user. The

depth response value is obtained by recording the summed signal from the region

of interest. In order not to degrade the lateral resolution too much the size of

the region of interest (virtual pinhole, roi) should be taken equal to or smaller

than the spot on the CCD. During the experiments usually the size of the roi was

taken just bigger than the super pixel, for example for a 2×2 super pixel the roi

is chosen as 4×4 CCD pixels. Figure 4.16 shows the illumination and detection

pinholes during the measurement. As it can be seen from the Figure that the
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Figure 4.16: The DMD and the CCD matching during a measurement

bright spots are the imaged DMD pixel(s) on the CCD and the gray areas are

the related detection pinholes created on the CCD. On the CCD edge although

there are imaged DMD pixels to avoid the problems no CCD pixels were created.

This safety zone can also be easily canceled or can be increased.

4.5.3 Lateral scanning

The importance of lateral scanning for measurements is that the number of

the spots on the object basically determines the scanning time for whole

measurement. The higher the number of the spots the lower the measurement

time. With a super pixel of n×n pixels and a scanning matrix of N×N pixels a

number of images of at least N2/n2 has to be obtained at each z level. The idea

of scanning is illustrated in Figure 4.17.

With n = N the microscope would function as a conventional bright field system,

without the possibility of depth discrimination. Usually the DMD pattern is

moved in steps equal to the size of a super pixel. With objects that have

a complicated surface structure smaller steps of 1 pixel is taken. When the
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Figure 4.17: Lateral scanning idea

measurement time becomes more important than the lateral resolution, similar

to semi-confocal idea described in Section 4.3 or similar the confocal microscope

with microlens array described by Jordan [48] can be applied for measurements.

In Section 4.6 some measurement results will be presented related with the

semi-confocal microscope idea. Although it was not realized experimentally, by

taking a super pixel as a line, consisting of one or more columns (line scanning), a

shorter scanning time can be achieved. But is clear that the depth discrimination

will be much worser than with the virtual pinhole application.

The N2/n2 images captured during lateral scanning must be stored for lateral

use. By clipping these images for each roi the intensity profile is obtained. An

other option to evaluate the captured images is used by Bitte [53] by obtaining

the average intensity profile for each z level, the so called source image which

is actually the idea of image processing in commercial devices. For each z level

with the help of only one source image a 3D topography can be obtained [48].

The developed system’s imaging approach is as follows. After the correspondence

between the DMD pixels and the CCD pixels has been determined, an array of

pinholes with a specified shape and size is produced on the DMD. According to

the surface geometry at the image location, the intensity of the reflected signal
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is recorded to the corresponding CCD pixel. Figure 4.18 shows the procedure for

the example of a tilted object.

DMD CCD

"on" pixel Selected region if interestprojected DMD pixels out of focus projected DMD pixels in focus

Figure 4.18: Measurement principle on a tilted object

The intensity in each considered CCD pixel depends on the displacement of the

object surface from the confocal plane according to the depth response curve.

Hence, by measuring the different intensities of all considered pixels on the

CCD chip and finding its maximum while the specimen is moved through the

confocal plane, information about the height profile of the object surface can be

obtained. On the left side of Figure 4.18, pinhole patterns created on the DMD

are illustrated and on the left side, the CCD images with roi are illustrated for

the case that the object is tilted about the vertical axis. When the object is in

focus the spots imaged on the CCD are small and imaged in the roi of the CCD

but when the object is out of focus the spots are blurred and the spot diameter

is getting bigger and the detected intensity becomes lower.

4.5.4 Axial scanning

In principle, z scanning can be done in different ways: by moving the microscope,

the microscope objective or the object. In the developed set-up the microscope is

mounted on a vertical slide (z tower) and the slide is used to bring the sample in

rough focus. The fine z scanning is done with the help of a piezo-electric scanner

(PIFOC) which is connected to the microscope objectives. The z scanner could

make a step of minimum 10 µm and each step takes 10 ms. Steps within the

depth of focus and a stepping time of tz seconds, and with N2/n2 positions in the
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lateral scanning with a frame time of t f the total scanning time is given by

T = zn(tz +
N2 · t f

n2 ) (4.4)

With zn = 10 and tz = 10 ms, 100 ms is needed for vertical scanning. The

electronics that is used from the 3M projector has the capability to refresh the

frame in 16 ms. For N2/n2 = 100 the lateral scanning time for each z level

is 1600 ms and the total scanning time is 16000 ms. By choosing a smaller

scanning matrix N2/n2 = 4 the lateral scanning time can be reduced up to 640 ms.

From this calculation it can be seen that the lateral scanning makes the largest

contribution to the total scanning time. By using special control electronics [27]

the frame time can be reduced to 0.1 ms. The lateral scanning time can then be

reduced with a factor of 160; in this option the z scanner becomes critical and

determiner of the measurement time.

4.5.5 Surface topography determination

From the images stored during both during lateral and vertical scanning, the

surface topography can be determined. From the intensity curves that are

obtained for each super pixel in the z scanning range the position information

can be obtained in different ways. A few methods were considered during the

software development.

• Gauss fit,

• Parabola fit,

• Adaptive curve fit,

• Direct maximum determination (without any fitting procedure).

Taking the highest measurement value (direct maximum determination) is clearly

the fastest method; its axial measurement accuracy is limited by the z scanning

step to about ±10 µm. When a better accuracy is needed parabolic curve fitting

was used in the center of the depth response curve. Although the Gaussian curve

fitting method introduces a significant improvement in comparison with direct

maximum determination because of its’ iterative calculation method, it takes a
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lot of time to create a 3D image of the scan specimen. Dependent on the signal

to noise ratio the accuracy of the measurement can be a factor 2−3 times better.

This is also true for the center of gravity method which is used only in theoretical

considerations in Section 2.5.

4.5.6 Software

Although software development was not one of the targets of this dissertation, to

overcome the difficulties in the EU project it was decided to build an independent

home made software. This software was realized with the significant contribution

of two Ph.D. candidates at Precision Engineering, ir. M. Jansen and ir. M. Morel.

Figure 4.19 illustrates the flow chart of the developed measurement software. The

Initialization

Targets Set Z position Set DMD

Grab frame

Max. search & save Curve fitting

Height profile

DMD scan

Yes

No

Figure 4.19: Measurement flow-chart

actions taken during the measurements are as follows:
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Initialization: The system components are initialized and also the system

parameters are entered. Super pixel size, scanning matrix size on the DMD

are chosen, the scanning range is determined. Also the detection pinholes and roi

are created on the CCD.

Targets: the scanning range and step are manually entered.

Set z level: after finishing the lateral scanning (x,y scanning on the DMD) the

system moves in the z direction with the predefined step.

Set DMD: in order to make a full x,y scanning this procedure shifts the DMD

patterns.

Grab frame: do the capturing for each super pixel after each lateral scanning,

this procedure is repeated for each vertical z level.

Max. search & Save: is done after each capture command, actually this step

is done for the security of the measurements. This step can be skipped or the

captured image can easily be stored in a dynamic memory for future application.

Basically, this step is the bottle neck of the developed system, but in the given

technology conditions this is the only way to avoid a hardware crash problem.

DMD scan: is repeated until the vertical and the lateral scanning is completed.

Vertical movement: is repeated after each lateral scanning is completed and if

there is another z level to scan.

Curve fitting: this is the critical part of the software. Using the stored CCD

images for each super pixel and for all z levels, the maximum intensity value can

be found. For this calculation alternative solutions are available such as direct

determination, Gauss fitting, parabola fitting, similarity evaluation. During the

curve fitting applications the intensity curves, that have insufficient quality, are

omitted in the process.

Height profile: is created with the help of z information obtained from the

maximum intensity determination during the measurement.

Because the developed software is designed to save each captured image, the

average measurement time is approximately 10 min. but, as it is discussed

in Section 4.5.4 the system has the capability of much faster scanning and
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measurements. The developed software is capable to display the surface

topography, either in a false color display or in a pseudo-3D display. Also 2D

profiles can be extracted and surface parameters can be evaluated.

4.6 Verification measurements

In order to demonstrate the capabilities of the developed system some

quantitative measurements of various samples are performed. These samples

are selected in order to obtain the characteristic behavior of the developed

system, such as lateral magnification (also known as optical gearing effect), lateral

and vertical resolution, comparison with mechanical stylus instruments and to

determine the practical limits of the developed system. For these verifications

the following samples are used:

• Sine standard, for lateral magnification verification,

• Depth standard (step gauge) for vertical axis (z optical axis) verification,

• Groove standard,

• Roughness standard, to demonstrate the power of the developed system,

• Vicker indent,

• AFM standard, to show the matching between the theoretical and the practical

confirmation.

Sine standard In order to determine the lateral magnification coefficients both

in x and y direction, measurements with the laboratory sine standard, where the

wavelength value is calibrated as 100 µm with mechanical stylus instruments, are

done . The measurement is repeated in both perpendicular axis (x,y) by turning

the standard 90◦. Direct measurement result (without any data manipulation)

of the system are given in Figure 4.20.

Measurements were done by using 2× 2 pixels as super pixel size and with two

pixels lateral step size. The roi on the CCD ware chosen as 4× 4 pixels. The

measurements are done with a 20× with 0.46 NA value microscope objective,
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Figure 4.20: Measurement result of Sine standard

and the magnifications from the DMD to the object and from the object to the

CCD is verified as 22.2× and 11.1×, respectively. The wavelength of the sine

is measured as 100 µm and no differences in magnification are found between

different orientations of the standard. That means that anamorphosis, a possible

consequence of system misalignment, is not found.

In the profiles shown in Figure 4.21 some deviations from the sinusoidal form

are visible. Repetition of the measurement resulted in the production of these

deviations, so that these can not be attributed to noise. The stylus measurement

of this standard resulted in rq = 3.15 µm; with the developed system, which is an

image forming system, the value was measured as sq = 3.17 µm.

Step gauge standard In order to determine the vertical (depth) scanning

calibration, the system was tested with a step gauge, that is the combination

of two gauge blocks which have different heights. The measurement is done by

using a 50× magnification microscope objective and the scanning is realized by

2× 2 pixels as super pixel size and with the step of 2 pixels. The result of the
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Figure 4.21: Measurement results of Sine standard

measurement is given in Figure 4.22. The step gauge standard is measured as

1.996 µm, see Figure 4.23, where the step gauge formerly calibrated by a stylus

instrument as 2 µm.

Groove standard (glass) The groove measurement is carried out on a glass U

groove and a metal V groove. The glass U groove consisted of smooth planes

inside and outside the groove. The groove depth is given with a calibration

certificate as 8.6 µm and it is measured with the developed system as 8.66 µm,

see Figure 4.24 and Figure 4.25.

The edges of the groove are rather steep and it is well known that the edge

response characteristic of optical systems are usually poor. This leads to the

forming of artifacts in the measurement results. This effect can be easily seen
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Figure 4.22: Measurement result of depth standard

Figure 4.23: Evaluation of depth measurement result

from the Figures 4.24 and 4.25. Because there is not any detected intensity

information from the curved edges, at these points the intensity is dropped to

zero.

The measurement result on a metal V groove standard is shown in Figure 4.26.

The actual waviness in the V groove is also detected during the measurement.
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Figure 4.24: Measurement result of glass U groove standard

Figure 4.25: Cross-section of glass U groove standard

Some edge response effects, also known as overshoot, can be seen in this

measurement too, see Figure 4.27.

Figure 4.27 shows the evaluation of the measurement.

Roughness standard The measurement of roughness is an essential part and

the most difficult task in surface characterization. For this reason detailed

measurements on laboratory roughness standard were done. The standard that
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Figure 4.26: Measurement result of a metal V groove standard
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Figure 4.27: Evaluation of the metal groove standard

used during the measurements is calibrated by PTB 3 Physikalisch Technische

Bundesanstalt, the sample is periodic and one-dimensionally rough, which means

that the surface profile varies only in one direction. The standard shows periods

of different roughness, with sqmin = 0.14 µm and sqmax = 0.23 µm. For both parts

on the standard a highly detailed topographic measurement has been performed

by using 100× magnification with NA value of 0.95. The 3D presentation of this

measurement is shown in Figure 4.28.

The PTB standard allows the analysis of the axial and lateral resolution and the

accuracy of profilometer systems. It can also be used to analyse the capability
3PTB is the primary metrology institute of Germany.
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Figure 4.28: Measurement on a PTB-Halle roughness standard

of optical topometers to reproduce varying local surfaces slopes. This is an

important item in the comparison of optical systems with tactile (mechanical

stylus) systems for surface characterization. Tactile measurements have been

carried out for comparison after the Microscan measurements were completed.

These tactile measurements were carried out at TU/e Precision Engineering

laboratory by using a mechanical stylus instrument with a tip radius of 2 µm.A

display of the cross-section measurement result is given in Figure 4.29.

A comparison of the results of both series of measurements is given in Table 4.1.

Table 4.1: Comparison of mechanical stylus and Microscan. The results are the
averages of the six repeated measurements.

Sa Sq
Rough fine Rough fine

optical 0.197 0.118 0.232 0.139
stylus 0.193 0.118 0.225 0.140

In conclusion, the comparability of tactile and optical profilometry has been

greatly obtained.
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Figure 4.29: Evaluation of the roughness measurement result

Vicker’s indent measurement For a Vicker’s microhardness measurement a

diamond pyramid tip is pressed into a specimen with a defined force. The

depth and the diameter of the dent are functions of the hardness of the material.

Figure 4.30 shows the 3D result of such a Vicker’s indent measurement.
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Figure 4.30: Measurement on a Vicker’s indent
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The measurement has been done with a 50× magnification with a NA= 0.95

value microscope objective. The depth of the dent is of the order of 9 µm.

The dimensions of a typical Vicker’s indent, 22◦ cone angle and 136◦ aperture

angle, can easily be imaged with the developed system. The evaluation of the

measurement is given in Figure 4.31.
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Figure 4.31: Evaluation of the measurement on a Vicker’s indent

With the help of Microscan measurements not only the quantitative information

but also the qualitative information can be obtained, such as material

deformations during the indent process, which is quite important for the nanoscale

indent applications.

AFM standard measurement This sample is a twodimensional grating with a

period of 3 µm and it was used to check the lateral resolution of the developed

system. The measurement result in Figure 4.32 shows the achieved limit of the

developed system’s lateral resolution.

The amplitude of the structures can not be determined accurately, see Figure 4.33.

When a 20× microscope objective with 0.46 NA value is used, the Airy diameter

is about equal to 1.5 µm, i.e. half of the grating period.
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Figure 4.32: Measurement result of an AFM standard
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Figure 4.33: Evaluation of the AFM measurement data

4.6.1 Measurement without lateral scanning

For the samples for which lateral resolution is not an important issue, the

topography measurement can be executed without lateral scanning. it can be

easily realized just by skipping the lateral x,y scanning of the DMD unit in

the measurement procedure. This approach shortens the measurement time

considerably. With this procedure a sampled 3D topography is obtained. With

the 10× 10 pixels scanning matrix that was typically used in the experiments,

the number of samples 4800 can be obtained on the object with 7.2 µm space

between the object level. This mode of operation is identical to that of the

semi-confocal microscope that is described in Section 4.3. Figure 4.34 shows a U

groove measurement sampled without lateral scanning.
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Figure 4.34: Semi-confocal measurement result of depth standard

4.7 Summary

From the measurement results discussed in the former sections, it can be

concluded that the Microscan system in its present state can be used for the

measurement of form, waviness and roughness. The axial resolution of the

current set-up is estimated at 20 nm. The lateral resolution is better than 1.5 µm

at a numerical aperture of 0.46. Slope angles more than 20◦ can be detected

by the developed system. However, steep edges give rise to optical artifacts.

By omitting the lateral scanning the measurement can be done in 20 sec.; a

sampled topography is then obtained. The sampling frequency on the object

can easily be adjusted by the matrix size on the DMD. A similar system has

been described in Jordan’s thesis [48], that uses a microlens array with the

sampling distance on the object of 150 µm. It is clear that by the use of an

improved mechanical construction the performance of the developed system will

be improved significantly.
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5. CONCLUSIONS and FUTURE WORK

5.1 Conclusions

The subject of optical microscopy is an extremely rich and diverse field and

confocal microscopy is just one of its sub-groupes. The confocal imaging system

shows great promise as a tool for range sensing, biomedical imaging, integrated

circuit technology, precision engineering and metrology applications. Its main

advantages over the ordinary imaging systems are its depth discrimination

capability and also the improvement in transverse resolution, by about 30%. The

depth discrimination capability allows the confocal imaging system to obtain

3D structures while the improvement in the axial and the transverse resolution

permits it to image structures with more detail. This depth discrimination

capability makes CSOMs valuable tool for both biology and engineering

applications. The development of RSOM and its subsequent commercialization

have made CSOM technology available to a wide range of researchers. The variety

in techniques reflects the variety and diversity of samples.

This thesis has focused on the design and implementation of a new confocal

imaging system and its engineering applications. A micromirror based confocal

microscope (virtual pinhole application) has been introduced. Some applications

of Microscan on engineering surfaces have also been presented. The details of

the optical and mechanical design and the construction of a micromirror based

confocal microscope have been discussed. A digital micromirror device as a lateral

scanning device is used in the new developed confocal system. The DMD unit is

used as a replacement of pinholes, raster scanning unit or scanning mirror of the

existing confocal scanning devices. The system can be used not only as a confocal

profiler with thousands pinholes but also with the lateral scanning option it can

also be used as scanning confocal microscope. A CCD camera is used as detection

pinhole in the developed system, where the direct intensity data were measured
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and later used for the 3D surface mapping evaluation. During the measurements

600 µm FoV diameter for 20× magnification and 200 µm FoV diameter for 50×

magnification with 20 nm axial resolution were achieved and it is concluded that

with the improvement of the experimental set-up (with better illumination and

better construction) even 10 nm can easily be achieved.

The strength of the system is its flexibility and potential improvement in the

measurement speed. With the help of a fully computer controlled DMD unit

and by adjusting the DMD pixel’s, on and off time with the help of PWM

specification of DMD units local illumination can be achieved. With the help of

a local illumination it is possible to create an adaptive illumination on the object

level in other words, an uniform illumination detection on the CCD side.

The main advantages of the developed system are:

• the pinhole size and the pinhole shape can be adjusted by the user,

• by controlling the each DMD mirror adaptive illumination on the object can

be obtained,

• because of the optical design, stray light and false reflection problems are

minimized,

• absence of rotating or tilting devices reduces the vibration problem in the

developed system,

• the size and the weight of the DMD unit makes it possible to design a more

compact microscope,

• with the help of an adequate control unit the measurement time can be reduced

to msec. level,

• with the developing MEMS technology it is possible to develop and produce a

cheaper system.

Finally the newly developed DMD based confocal microscope can be considered

as the next generation optical measurement system because of its flexibility,

robustness, smaller size and lower price.
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In addition to the novel “virtual pinhole” implementation the following results are

achieved.

In Chapter 2 the depth response and the lateral resolution of the developed

system are examined. A new theory, which differs from former studies of Corle [4],

Xiao [62] and Jordan [73], for the depth response curves is derived. The effect

of aberrations on the depth response curves is examined. The important derived

equations in this chapter are proved by the measurement in Chapter 4

In Chapter 3 the optical design of the developed system is introduced. First,

it is focused on the geometrical basic matching in order to use all components

efficiently. Second, after the aberrations problems occurred, because of the short

focal distances, the second improved set is introduced. For both optical designs

the system simulations are done and the system is improved.

In Chapter 4 the developed system is tested with the home made software after

system is verified for its lateral and the vertical resolution, experiments are done

on different engineering surfaces.

5.2 Future work

In this thesis only a few of the many possible sample types that are suitable for

inspection with an optical microscope have been examined. For characterizing

the performance of the micromirror based confocal microscope it is necessary to

improve the range of test objects. Also for further investigations, in addition to

engineering applications, the imaging of biological samples, fluorescence confocal

microscopy, should be examined. For both developments it is necessary to improve

the signal to noise ratio of the system.

Although mechanical design of the developed system is not critical it is still

necessary to design and simulate the proper mechanical design for developed

system. Early system model is derived and it is shown that the developed system

is capable to achieve 10 nm vertical resolution.

Finally, it has been exciting to be involved in confocal microscopy together with

the MEMS technology at this particular time. The cooperation between the
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technologies will further improve the capabilities of future systems, such smart

multi purposes microscope and maskless lithography applications.
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