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YAPAY SİNİR AĞLARI YÖNTEMİNİ KULLANARAK ŞEV 

STABİLİTESİNİN İNCELENMESİ 

 

ÖZET 

 

Ülkemizde inşaat mühendisliği disiplininde yapay sinir ağlarını kullanmak çok yeni 

bir yöntemdir. Bu olgu genelde inşaat mühendisliği disiplininde hidrolik dalında ve 

Geoteknik mühendisliğinde kullanılmıştır. Bu çalışmada şev stabilitesinin 

incelenmesi yapay zeka mantığı kullanılarak incelenmiştir. Bu da şev stabilitesinde 

deprem etkisinin incelenmesine farklı bir bakış açısı getirecektir. 

Bu çalışmada 170 tane lokal bölgenin şev profili dataları kullanılmıştır. Çalışmada 

kullanılan bu verilerin hazırlanışı ve kullanım şekili bölüm 4’de anlatılmıştır. 

Yapay zeka mantığı yaklaşımında beş tane yapay sinir ağı mimarisi kullanılmıştır. 

Bunlar BPNN, geri yayılmalı sinir ağı mimarisi ve GRNN, genel regresyonlu yapay 

sinir ağı mimarisi, GMDH, gruplama methodu, Kohonen ve PNN, olasılık 

yöntemidir. Ancak sadece BPNN, geri yayılmalı sinir ağı mimarisi ve GRNN, genel 

regresyonlu yapay sinir ağı mimarisi model oluşturmakta kullanılmıştır. Bu 

yaklaşımlarda 9 adet girdi ve 1 tane çıkış parametreleri verilmiştir. Çıkış parametresi 

şev güvenlik katsayısı olup, girdi parametreleri şev yüksekliği ( H ), şev eğimi ( β ),  

yeraltı suyu derinliği ( Hw ), sağlam zemin derinliği ( Hb ), kohezyon ( c ), zemin 

içsel sürtünme açısı ( Φ ), kuru birim hacim ağırlığı ( γ ), düşey ve yatay sismik 

zemin katsayıları ( Kh , Kv )‘dır. Bu çalışmadaki amaç sismik zemin katsayılarının 

şev stabilitesindeki önemlerinin incelenmesidir. 

Tüm modellemelerde ve datalarda sismik zemin katsayıları kullanılmış olup bu 

yaklaşımdan beklenen sismik etkinin öneminin çıkarılmasıdır. 

Sonuç olarak genel regresyon yapay sinir ağı modelinin daha başarılı olduğu ve         

% 92.5 başarı yüzdesine sahip olduğu görülmüş, düşey ve yatay sismik zemin 

katsayılarının şev yüksekliği, şev eğimi ve yeraltı suyu derinliğinden sonra şev 

stabilitesindeki etkisinin önemli olduğu görülmüştür. 
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SLOPE STABILITY INVESTIGATION BY USING ARTIFICIAL NEURAL 

NETWORK ANALYSIS 

 

SUMMARY 

 

To use Neural Network approaches is a new phenomena for civil engineering 

disciplines in Turkey. This phenomena generally is used in Hydrology branch of civil 

engineering disciplines and in geotechnical disciplines, etc. In this study slope 

stability was discussed by using Neural Network approaches. This provides a new 

point of view for seeing the effects of earthquake to slope stability safety. 

In this study 170 slope data and their properties are used. Preparedness of using these 

data in this study is discussed in chapter 4. 

In Artificial Intelligence approach five neural network approaches architecture are 

used. These approaches are Back propagation neural network architecture ( BPNN ), 

General regression neural network ( GRNN ), Group method of data handling            

( GMDH ), Kohonen learning paradigm and Probabilistic neural network ( PNN ) 

architectures. But only 2 of them used, these are the back propagation neural network 

architecture ( BPNN ) and the general regression neural network ( GRNN ). 

There are 9 input parameters and 1 output parameter. The output parameter is the 

factor of the safety of the slopes ( F.S. ), the input parameters are the height of slope  

( H ), the inclination of slope ( β ), the height of water level ( Hw ), the depth of firm 

base ( Hb ), the cohesion of soil ( c ), the friction angle of soil ( Φ ), the unit weight of 

soil ( γ ), but the important input parameters are horizontal and vertical seismic 

coefficients ( kh , kv ).Trying to be obtained is the importance of the seismic 

coefficients for a slope stability safety.  

For all of the architecture approaches the models are solved for including the seismic 

coefficients ( kh , kv ) effects. From this approach it is expected  to see the earthquake 

impact to a slope. 

In conclusion this study shows that the general regression neural network (GRNN) 

approach is, the more appropriate model, and has a % 92.5 success rate for forcasting 

the effect of earthquake for slope stability safety and  generally horizontal and 

vertical seismic coefficients importance seen after the height of the slope ( H ),  the 

inclination of slope ( β ), the height of water level (Hw) importance. 
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1. INTRODUCTION 

1.1 General 

This study was prepared to investigate the effects seismic coefficient to a slope and 

the slope stability reaction with Neural Network (NN) approaches. Assessments of 

seismic loading and a basic slope figure given in Figure 1.1. For the purpose of 

engineering design, source effects generally refer to the slope parameters. 

 

Figure 1.1 : A basic slope  figure 

On the other hand, the parameters of slope are determinate the safety of a slope so to 

find out which parameter is important we can use Neural Network ( NN ). These 

parameters are discussed in section 3 and 4. 

1.2 Short History of Artificial Intelligence ( AI ) Method 

Artificial intelligence ( AI ) is the study of ideas brought into machines that respond 

to stimulation, consistent with traditional responses from humans, given the human 

capacity for contemplation, judgment and intention. Each such machine should 

engage in critical appraisal and selection of differing opinions within itself. Produced 

by human skill and labor, these machines should conduct themselves in agreement 

with life, spirit and sensitivity, though in reality, they are imitations. Human beings 

have attained the ability to respond to the world by bringing previous experience, or 

others' experience, and AI function in this way. 
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Artificial Intelligence is a valuable tool of representing real-world realities. The birth 

of artificial intelligence is attributed to the first "intelligent" machine concept 

developed by Alan Turing, a scientist at Cambridge, UK. The famous "Turing 

Machine", from many is considered the foundation stone of artificial intelligence, 

and it found its first use in the, also famous, Enigma decryption project during the 

WWII. Nevertheless, despite the "mythological" and science fiction depictions of 

Artificial Intelligence (AI), its true development was closely related to the 

development of computers in the post-war era. The use of computers allowed 

Artificial Intelligence (AI) to pursue its real purpose, that is, the attempt to 

understand, replicate and analyze intelligent entities and processes of our world. As 

time progressed, the study of artificial intelligence made its first natal steps. But, the 

"boost" on research and analytic explorations of Artificial Intelligence became 

possible after the ability of researchers, organizations and institutions to perform 

computer-based operations and experimentations, especially in the late 1970's and 

1980's. Today, artificial intelligence is a part of our everyday life. AI is used on a 

constantly growing number of applications and processes we use in our every-day 

life. Web-searches, economic models, computer games, automobile processors, etc, 

are only some of the most known applications that AI methods found their 

implementation. 

1.3 Objectives 

Turkey is a country where destructive earthquakes occur frequently. Since 

earthquakes occurs in regions at high population, earthquake loading and effects of 

soil  are extremely important. 

The purpose of this study is to examine the effect of seismic coefficients and the 

safety factor of a slope via artificial intelligence, rather than conventional and 

wellknown methodologies. Advantages of this innovative Artificial Intelligence 

approach can be listed as; 

In future, it may provide forecasting of foundation, and soil effects or damage with 

earthquake loading. Events experienced can be taught to Neuroshell2 (Neural 

Network program used in this study) and events experienced are indicators of 

experiences which might occur in the future. 



 3 

Like constructing robots or perceiving of human voices on mobile phone which are 

artificial intelligence methods; using earthquake data can be constituted knowledge 

programs according to high risk potentials. 

By the way of Neural Network approaches, inertial interaction can be generalized 

and forecasted. 

In this study, factor of safety and the seismic coefficients effects will be investigated 

with NN approaches. It should be noted that the General Regression Neural Network 

(GRNN) and Back Propagation Neural Network (BPNN) will be used. 
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2.LITERATURE REVIEW 

2.1 Introduction  

Slope stability is usually analyzed by methods of limit equilibrium. Historically these 

methods were developed before the advent of computers; computationally more 

complex methods followed later. These methods require information about the 

strength parameters and the geometrical parameters of the soil and rock mass. The 

factor of safety ( FS ) is defined as the ratio of reaction over action, expressed in 

terms of moments and forces and eventually in terms of stresses, depending on the 

geometry of the assumed slip surface. The way and methods of calculating FS values 

are given below. 

2.2 Types of Slope Failure Modes  

One knows that a stability check is made for two different failure modes when 

analyzing the safety of a slope. The slope can fail either during the excavation or 

long after the construction is completed. So for checking these slope failure modes, 

the stability of the slope must be checked both for short term stability and long term 

stability. 

2.2.1 Short Term Stability  

Short term stability conditions apply after a cut is made in a slope. In excavating for 

a cut shear stresses are induced that may cause failure in the undrained state. The 

total stress strength parameter cohesion, c, is used for short term stability. Based on 

field observations and laboratory analyses of soil samples the friction angle of the 

soil is zero (Φ = 0) the total stress method is satisfactory for short term stability 

analysis of non-fissured clay. For fissured over consolidated clays, the Φ = 0 analysis 

can also be employed by taking into account reduced shear strength due to the 

amount and magnitude of fissuring in soils. 
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2.2.2 Long Term Stability 

Long term stability is encountered in natural slopes and are considered in analyzing 

the stability of embankments. The effective stress methods of analysis are used for 

the long term stability analysis of both non-fissured and over consolidated fissured 

clay. Effective stress parameters, c’ and Φ’ must be used to analyses the long term 

stability problem of slopes. Pore water pressure may be assumed to be in equilibrium 

and are determined form considerations of steady-seepage. Skempton (1964) 

suggested the use of the radius shear strength concept for long term slope analysis for 

over consolidated clays. The residual shear strength can be obtained from slow 

drained shear tests. Figure 2.1 shows the shear strength characteristics of an over 

consolidated clay in terms of effective stress. Discussions on the method of selection 

of the strength parameters for stability investigation are given by Lowe       ( 1967 ) , 

Schuster ( 1968 ) and Duncan – Dunlop ( 1969 ) . 

 

Figure 2.1 : Shear characteristics of over consolidated clay and corresponding Mohr-
Coulomb failure envelopes ( Fang , 1991 ) 

2.3 Factors Affecting Slope Stability Analysis  

We know that there are a number of factors that affect slope stability analysis. There 

are major factors like, failure plane geometry, non homogeneity of soil layers, 

tension cracks, dynamic loading or earthquakes and seepage flow that can affect 

slope stability analysis. These major factors explanations are given below. 

2.3.1 Failure Plane Geometry  

The geometry of the failure plane is assumed to be circular or non-circular. Non-

circular surfaces include logarithmic spiral and simple wedge geometry. These are 

commonly known as general failure surfaces. 
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The use of the circular arc and logarithmic spiral failure planes for stability analysis 

have been discussed by Spencer ( 1969 ) and Chen ( 1970 ). Spencer ( 1969 ) 

suggested that the circular curve is more critical than the logarithmic spiral arc. Chen 

( 1970 ) concluded that the shape of the failure plane is not sensitive in the analysis 

of stability in slopes .  

2.3.2 Non homogenity of Soil Layers  

Depending upon the environmental condition of deposition and subsequent stress 

changes during geological history, soil strength parameters may be isotropic. 

However, most soils are unisotropic. Lo (1965) developed a general method of 

stability analysis for unisotropic soils, where the effect of unisotropy is small for 

steep slopes. For flatter slopes, the influence of unisotropy on stability is significant 

and can’t be ignored. 

2.3.3 Tension Crack  

Tension crack generally occur near the crest of a slope. The crack reduces the overall 

stability of a slope by decreasing the cohesion which can be  mobilized along the 

upper part of a potential failure surfaces. Therefore the factor of the safety of a slope 

varies with the depth of the tension crack. While  the change in depth of a tension 

crack can be quite large, the corresponding change in the numerical values of the 

factor of safety is not significant. Figure 2.2 shows the change of minimum factor of 

safety with the change of the depth for an assumed Φ’ -  c’ soil under drained 

conditions. The depth of water increases when the depth of the crack increases. The 

effect of water pressure in a tension crack on the position of critical circle is found to 

be rather small. However, the factor of safety decreases as the depth of water 

increases in a tension crack . 

If the soil strength is purely cohesive, as for clay soils in the undrained state, the 

depth of the tension crack ranges from 2 to 4 times c / γ ( Bromhead , 1986 ). The 

following formula can also be used to determine the depth of the tension crack  

)2/45tan(
2

φ
γ

′+
′

=
c

ZO                 ( 2.1 ) 

where , Zo is depth of the tension crack, tension cracks can be very deep and 

sometimes can even penetrate to the water table . 
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Figure 2.2: Change of minimum F.S.with depth of tension crack for constant c’& Φ’ 

( Feng , 1991 ) 

2.3.4 Dynamic Loading  

The effect of dynamic loading including that due to earthquakes on slope stability 

should also be considered. So after the 1960’s the researchers started to study about 

dynamic loading and slope stability relationship like Seed and Googman ( 1967 ) 

studied the yield acceleration of slope in cohesion less soils. Finn ( 1966 ) reported 

the earthquake stability of cohesive slopes. Methods for evaluating slope response to 

earthquakes and design procedures due to earthquake are given by Seed ( 1966 , 

1967 ), Sherard ( 1967 ) and Majundar ( 1971 ). Based on the laboratory tests, Ellis 

and Hartman ( 1967 ) reported that the dynamic strength of a soil may be less or 

greater than soil strength under static loadings. 

2.4 Methods of Analysis  

We know that, there are a number of methods available for performing slope stability 

analysis but the majority of these methods may be categorized as limit equilibrium 

methods. The basic assumption of the limit equilibrium method is that Coloumb’s 

failure criterion is satisfied along the failure surface. It is widely used for slope 
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stability problems. However, it neglects soil stress – strain relationships in that the 

soil is assumed to move as a rigid block. 

To begin the analysis, a trail failure surface for the slope is assumed. Next a free 

body or slice is then taken from the slope and the shear resistance is then compared 

to the estimated of available mobilized shear stress of the soil to give an indication of 

the factor of safety. 

The Culman method and the Friction circle method ( Taylor , 1948 ) consider the 

equilibrium of the whole free body as shown in Figure 2.3. 

         

 

 

Figure 2.3 : Examples of limit equilibrium methods ( Fang , 1991 ) 

The Swedish circle method ( Fellenius , 1927 ), the Bishop’s ( 1955 ), Bishop and 

Morgenstern ( 1960 ), Morgenstern ( 1963 ), and Spencer’s ( 1967 ) method are 

based on the method of slices with minor variations. The method of slices approach 

is to divide the free body into many vertical slices and to consider the equilibrium of 

each slice. The safety of the slope is found from summing the stability of all slices. 

In addition to the above mentioned methods, Hunter and Schuster ( 1968 , 1971 ), 

Huang ( 1975 , 1980 ), and Koppular ( 1948 ) discuss limit equilibrium methods. 
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Lowe and Karafiath ( 1960 ) and Janbu ( 1954 ) developed methods which are also in 

the category of the limit equilibrium method. These methods explanations are given 

below by classifying them with the geometry of slope failure surface. 

2.4.1 Planar Failure Surface  

A slope that is uniform and very long relative t the depth of the potentially unstable 

layer may often be analyzed as a planar failure slope. The general model is shown in 

Figure 2.4. 

 

Figure 2.4 : Forces acting on a Vertical Slice ( Mostyn and Small , 1987 ) 

As can be seen, the failure plane is taken to be parallel to and at a depth, d, below the 

ground surface having an inclination α with the horizontal. The assumption that the 

slope is very long and uniform implies that any vertical slice is similar to all others. 

Thus the side forces must be equal in magnitude, opposite in direction and co-linear. 

Groundwater flow is usually taken to be parallel to the ground surface with the 

phreatic surface at a distance dW, above the failure plane. For a material with a Mohr-

Coloumb failure criterion the factor of safety, FS, of the slope is given by the 

following expression ( Das, 1993 ); 

ααγ

φαγγ

cos.sin.

tancos)( 2

d

ddc
F WW

S

′−+′
=                                                                       ( 2.2 ) 

where c’ is effective cohesion of soil, γ is the unit weight of soil, γw is the unit weight 

of water  and Φ’ is the effective angle of friction. 
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The derivation of the factor of safety for a slope with planar failure surface is 

presented in most textbooks on soil mechanics or slope stability. The effective 

cohesion is often ignored or assumed to be zero in which case equation 2.2 simplifies 

to :  

α

φ

γ

γ

tan

tan
.1

′








−=

d

d
F WW

S                                                            ( 2.3 ) 

If  the water table is at or below the failure plane then the slope is at limiting 

equilibrium when the slope angle equals the effective angle of friction. If the water 

table is at the surface then the slope angle at limiting equilibrium is near half the 

effective angle of friction. 

2.4.2 Circular Failure Surface  

For many slope failures, the surfaces along which sliding takes place is found to be 

non-planar or curved leading to the idea of using curved failure surfaces for the 

analysis of slope stability ( Spencer 1973, Chen and Shao 1988 ). Although the actual 

failure surfaces in most cases are bowl shaped , the representation of a failure surface 

as a single curve ( in two dimension ) greatly simplifies the analysis. 

Early solutions for circular surfaces were obtained by Fellenius ( 1927 ) who used 

the method of slices and by Taylor ( 1937, 1948 ) who used a friction circle method 

to produce charts of “ stability numbers “ to determine factors of safety against slope 

failure. Most modern circular slip circle methods make use of the method of slices, 

and the major differences between these methods involve the way, in which the 

unknown quantities that arise in the analysis are dealt with. Some of the methods for 

analysis of circular failure surfaces using the method of slices are presented in the 

following sections. 

2.4.2.1 Fellenius Method 

This method assumes that for any slice, the forces acting upon its sides has a 

resultant of zero in the direction normal to the failure arc. This method have errors on 

the safe side, but is widely used in practice because of its early origins and 

simplicity. Figure 2.5 shows the region above the assumed circular failure surface 

divided into slices and a free body diagram of a single slice with all of the forces 

acting on it, and the unknown points of application of the forces. As there are too 

many unknowns to obtain a solution, some assumptions must be made about the 
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forces and their locations. The interslice forces ( Xn ; En ) are assumed to be equal 

and opposite to each slice and therefore they cancel each other. Taking moments 

about the center of the circle and assuming that everywhere along the failure surface 

the amount of shear stress mobilized Mτ  is the same fraction of the total shear stress 

available ( ( ) FcM /tan. φστ ′′+′=  ), we obtain :  

 

 

Figure 2.5 : Circular failure surface and forces acting on a single slice                            

( Fellenius , 1927 ) 

( )[ ]

∑
∑ ′−+′

=
α

φααα

sin.

tan.sec.cos.sec.

W

ubWbc
FS                 ( 2.4 ) 

where c’ is the effective cohesion, b is the slice width , α is the angle of the base of 

the slice to the horizontal, W is the total weight of the slice, u is the water pressure 

acting on the base of the slice, Φ’ is the effective angle of friction, and the 

summation implies an addition over all slices . 
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2.4.2.2 Bishop’s Method 

This method was developed by Bishop in 1955, and improved upon the method of 

slices developed by Fellenius ( 1936 ). The method is based on the statical analysis 

of the mass which is considered to be made up of vertical slices. Equilibrium of 

forces in the vertical direction is satisfied for each slice and the equilibrium of 

moments about the center point of the trial arc is satisfied for each slice. Equilibrium 

is also satisfied for the entire soil mass, consisting of all slices, above the trial arc. 

The factor of safety is calculated by dividing the sum of the resisting moments by the 

sum of the moments that causes the failure. 

For a mathematically correct static solution, equilibrium of forces and moments must 

exist for each slice as well as for all of the slices. Bishop’s rigorous formulation 

contains too many unknowns to enable a direct solution. Some assumptions must be 

made regarding the distribution of some of the unknown quantities and for this 

method assumptions are made concerning the distribution of X force. The position of 

the line of thrust yt ( Figure 2.6 ) of these X forces must be such that the moment 

equilibrium of each slice is maintained. As pointed out Sarma ( 1979 ), Bishop didn’t 

consider the point of action of the normal force on the base of the slice, thereby 

eliminating another group of unknowns  for the problem. 

Using Bishop’s original and now somewhat familiar notation, the expression for the 

factor of safety against a slip failure is expressed as :  

( )[ ]

∑
∑ ′∆+−+′

=
α

φ α

sin.

/tan.

W

mXubWbc
F                                                ( 2.5 ) 

where ;  

1+−=∆ nn XXX                                       ( 2.6 )  








 ′
+=

F
m

φα
αα

tan.tan
1.cos                                                                      ( 2.7 ) 

b is the slice width , W is the total weight of the slice, c’ is the effective cohesion, Φ’ 

is the effective angle of friction, u is the water pressure acting on the base of the 

slice, α is the angle of the base of the slice to the horizontal. 
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Figure 2.6 : Position of Line of Thrust ( Fellenius , 1927 ) 

2.4.2.3 Spencer’s Method 

Spencer developed this method in 1967 to determine the factor of safety of a slope 

against the failure on a trial slip surface. The analysis is in terms of effective stress. It 

leads to two equations of equilibrium, force equilibrium and moment equilibrium. As 

in Bishop‘s method the soil mass with in the slip surface is divided into vertical 

slices. In each slice, the resultant of the forces and the sum of the moments of the 

forces must both be zero. 

The factor of safety is defined as the ratio of the total shear strength available, S on 

the slip surface to the total stress mobilized, Sm in order to maintain equilibrium.  

mS

S
F =                              ( 2.8 ) 

A sketch of a slice with the forces acting upon is shown in Figure 2.7. The forces are 

as follows : 

The weight, Wi 

The total reaction, P normal to the base of the slice ( the force P’ due to the effective 

stress, The force ub.secα due to the pore pressure, u ),  

thus; 

αsec.ubPP +′=                                                                                                   ( 2.9 ) 

The mobilized shear force,  

F

S
Sm =                                                                                                           ( 2.10 ) 

where,  

φα ′′+′= tan.sec. PbcS                                               ( 2.11 ) 
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F
P

F

bc
Sm

φ
α

′
′+

′
=

tan
sec                          ( 2.12 ) 

The interslice forces Zn and Zn+1; from equilibrium, the resultant Q of these two 

forces must pass through the point of intersection of the three other forces. 

 

Figure 2.7 : Forces on a slice for Spencer’s method ( Spencer , 1967 ) 

By resolving the forces shown in Figure 2.7 normal and parallel to the base of the 

slice, the resultant, Qi of the later slice forces can be written : 

( )

( ) ( )





−

′
+−

−−
′

+
′

=

iiii

iiiiiiii

i

i

F

WbuW
FF

bc

Q

θα
φ

θα

ααα
φ

α

tan
tan

1cos

sinseccos
tan

sec
                              

( 2.13 ) 

For force equilibrium of the whole mass, the sum of both the horizontal and vertical 

components of the inter slice forces must be zero. 

∑ = 0cos iiQ θ                                                                                 ( 2.14 ) 

∑ = 0sin iiQ θ                                                                                                     ( 2.15 ) 

Furthermore, for moment equilibrium, the sum of the moments of the inter slice 

forces about the center rotation must also be zero. 

( )[ ] 0cos =−∑ iii RQ θα                                                                                      ( 2.16 ) 
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Since the slip surface is assumed to be circular, 

( )[ ] 0cos =−∑ iiQ θα                                                                ( 2.17 ) 

Assuming the inter slice forces are parallel,  

∑ = 0Q                                                                       ( 2.18 ) 

Spencer also described the following procedure to solve for F, Q and θ . 

A circular slip surface is chosen arbitrarily the area inside the slip surface is divided 

into vertical slices of equal width. The mean height, h, and base slope α of each slice 

is determined graphically. 

Several values of  θ are choosen and for each, the value of F is found which satisfies 

both Equations 2.17 , 2.18. The value of F obtained using Eqn. 2.18 is designated Ff, 

and that obtained from using Eqn. 2.17 as Fm. The value of the factor of safety 

obtained from moment equilibrium and taking θ as zero is designated as Fm. 

The resulting value of  Ff are plotted versus θ. On the same graph, a second curve is 

plotted as Fm versus θ. A typical graph is shown in Figure 2.8. The intersection of 

two curves gives the values of the factor of the safety, F, which satisfies both Eqn. 

2.17 and 2.18. The corresponding slope θ of the inter slice forces is also obtained. 

The values of F and θ are then substituted into Eqn. 2.13 to obtain the values of the 

resultant of the inter slice forces. Then, working from the first slice to the last, the 

values of the inter slice forces are obtained. 

 

Figure 2.8 : Variation of Fm and Ff with θ ( Spencer , 1967 ) 
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The required ( critical ) factor of safety is obtained for the case Fm = Ff  = FS. This 

factor of safety FS = 1,07 and the corresponding value of the inter slice force angle    

θ = 22,50 can be used to subsequently determine all the inter slice forces and their 

line of thrust. The difference in factor of safety obtained using the Spencer’s method 

as compared to Bishop’s method  is not large. It was noted by Spencer (1968) that 

the difference between two methods exceeded %1. 

2.4.2.4 Obtaining The Most Critical Circle 

Whichever of the methods of obtaining the factor of safety is used,  a number of trial 

circles must be taken and analyzed in order to obtain the one that gives the least 

factor of safety ( Barker , 1980 ). As most analyses are done by computers the 

process of analyzing a few hundred trial circles may be relatively quick and 

inexpensive in today’s computing environment. 

Computer programs need some type of algorithm upon which the search for the slip 

surface with the minimum factor of safety is based. One of the most commonly used 

methods is to specify a grid on which the centers of trial slip circles lie ( Figure 2.9 ). 

Contours of the minimum factor of safety at each center on the grid can be plotted in 

order to determine where the critical center may lie. 

 

Figure 2.9 : Grid Search patter ( Mostyn and Small , 1987 ) 

The amount of computation required to find the critical circle may be greatly reduced 

by using a technique by which one can automatically locate the center coordinates 

and radius of the circle yielding the minimum factor of safety. Such a technique has 

been described by Boutrup and Lovell ( 1980 ), who used the simplex reflection 
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method. To explain how the method works, consider the problem of finding the 

factor of safety for a two dimensional circular slip surface. The problem basically 

involves finding the coordinates a, b of the center and radius r of the circle which 

minimize the factor of safety, FS. This is done by evaluating FS at the four corners of 

a tetrahedron defined in x , y, r space. The value of factor of safety found at each 

corner may then be used to decide in which direction to move to obtain a lower 

factor of safety. Obviously this will be away from the vertex of the tetrahedron with 

the highest factor of safety. Depending on the coordinates and radii given to start the 

search, the minimum factor of safety can be found quite quickly. 

2.4.3 Non – Circular Failure Surface  

If the shear strength is non- uniform within a slope then the failure surface with the 

minimum factor of safety will not necessarily be a circle but the shape will depend 

on the distribution of shear strength. Sometimes the general shape of the critical 

failure surface will be highly constrained by the distribution of weak zones within the 

slope; other times it may require a lot of insight or work to find the critical surface or 

at least some surface with similar stability. 

Analysis of circular failure surfaces is easier than that of non-circular or generalized 

failure surfaces. This is because moments taken about the center of a circular failure 

surface result in a zero moment arm for the normal forces acting on the failure 

surface and a constant moment arm for the cohesive forces on the failure surface. 

Nevertheless the moments for the entire mass or each slice can be taken about any 

point or points that are convenient and failure surface of any shape can be adopted. 

This approach is used in analyzing generalized failure surfaces. Some of these 

methods are given below. 

 2.4.3.1 Janbu’s Method 

From the mid-50s t the early 70’s, Janbu developed generalized and simplified 

methods which are best described in Janbu ( 1973 ) . In the generalized method, a 

line of thrust is assumed and the equations of equilibrium solved. Sarma ( 1979 ) 

pointed out that this is not a rigorous solution because moment equilibrium of the last 

slice is not satisfied; this affects the line of thrust but does not greatly affect the 

factor of safety. Janbu ( 1973 ) noted that the factor of safety is relatively insensitive 

to the assumption regarding the location of the line of thrust as long as it is 
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reasonable.  According to Janbu ( 1973 ) in the line of thrust should be near one third 

the height of the slice for cohesion less soils. It should be below this level in the 

active zone and above it in the passive zone for cohesive soils. This method 

sometimes gives answers that differ quite markedly from those obtained by other 

methods such as Bishop  method. Janbu’s method is based on satisfying only force 

equilibrium and assumes zero inter slice shear forces and does not satisfy moment 

equilibrium. However, the simplified Janbu method does satisfy vertical force 

equilibrium and overall horizontal force equilibrium. 

The normal effective stress at the base of each slice can be determined with the 

following equations: 

( )
α

δβαα βα

cos

coscos1sincos QUkWSU
N

vm ++−+−−
=′                              ( 2.19 ) 

 

The overall horizontal force equilibrium for the slide mass is determined from the 

following: 
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It then follows that the Factor of Safety F can be determined with the following 

equation:          
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δα βα sinsin4 QUWkUA h +++=              ( 2.22 ) 

The Simplified Janbu Method does not satisfy moment equilibrium for the slide 

mass, as mentioned earlier. Therefore, Janbu performed more rigorous solutions and 

compared the result to those found using his simplified method. He then presented 

the following chart as seen in Figure 2.10 to correct for his over-determined solution. 
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Figure 2.10 : Janbu’s Correction factor for his simplified method  

FJanbu= fo * Fcalcualted 

2.4.3.2 Morgenstern - Price Method 

This is perhaps the best known and most widely used method developed for 

analyzing generalized failure surfaces. The method was initially described by 

Morgenstern and Price ( 1965 ). It satisfies all static equilibrium requirements an is, 

therefore, a rigorous method, but the solution obtained must be checked for 

acceptability. The overall problem is made determinate by assuming a functional 

relationship between the inter slice shear force and the inter slice normal force. The 

function is referred to as f(x) and most programs implementing the method provide a 

choice of such functions. Choosing such a function actually over determined the 

problem and thus part of the solution is to determine a scaling factor, λ. The function 

f(x) defines the relative inclination of the inter slice forces, while λ defines their 

absolute magnitude. Thus the inter slice forces on the left hand side of slice are 

related by following equation : 

ExfX ).(.λ=                                                            ( 2.23 )      

The solution procedure proposed by Morgenstern and Price ( 1965 ) differs from that 

adopted by most investigators in that the problem was formulated using differential 

equations that were integrated over each slice. Morgenstern and Price ( 1965 )  

method doesn’t make the assumption that the normal force on the base of each slice 

acts at the center of the slice. Thus, the accuracy of the other methods increases at the 

slice become thinner. A reasonable number of slices should be adopted in any 

analyses. 
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2.4.3.3 Location of Critical Failure Surface 

Initially, methods of analysis were based on circular surfaces. However, development 

of methods for non-circular surfaces followed soon. For the most part, non-circular 

methods may also be used for the analysis of circular failure surfaces, since a circle 

is merely a special type of curved failure surface. 

The equivalent problem of determining the generalized failure surface having 

minimum factor of safety is considerably more complex and routine procedures are 

uncommon. It is often necessary to locate the critical failure surface by an intelligent 

selection of potential failure surfaces and manual iteration until the critical surface 

has been established. This may often be the most efficient means of locating the 

critical surface. 

2.4.4 Selection of Method  

Some methods of slope stability analysis are more rigorous and should be favored for 

detailed evaluation of final designs. Some methods ( Spencer, Sweedish, wedge ) can 

be used to analyze noncircular slip surfaces. Some methods ( Bishop, Swedish, 

wedge ) can be used without the aid of a computer and are therefore convenient for 

independently checking results obtained using computer programs. Also when these 

latter methods are implemented in software they extremely fast and are useful where 

very large numbers of trial slip surfaces are to be analyzed. Table 2.1 can be helpful 

in selecting a suitable method for analysis. 

Table 2.1 : Comparison of features of methods 

Feature 

Ordinary 
method of 

slices 

Simplified 
Bishop 

Spencer Modified 
Swedish 

Wedge Infinite 
slope 

Accuracy   X X     X 

Plane slip surfaces 
parallel to slope face 

          X 

Circular slip surfaces X X X X     

Wedge failure 
mechanism 

    X X X   

Non-circular slip surfaces 
– any shape 

    X X     

Suitable for hand 
calculations 

X X   X X X 
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2.5 Numerical Methods For Slope Stability Analysis  

With the rapid development of computational technologies, alternative numerical 

approach have been sought for developing new modeling techniques. Among them, 

finite difference method and finite element method are being widely used by 

consulting firms as computing facilities become cheaper and more readily available. 

Although they are more complex to use than the conventionally limit equilibrium 

methods, they nevertheless can provide a detailed insight into the way how a slope 

will deform and fail and therefore provide a valuable addition to methods of 

analyzing slope behavior. 

2.5.1 Finite Difference Method  

The application of the limit equilibrium methods gives an insight of the stability of 

the slope at the state of failure and gives no information about the stress – strain 

history of the slope prior and after failure has occurred. The limit equilibrium 

methods generally do not satisfy the stress equilibrium at any given point in the slope 

at any given time, thus the methods are inappropriate to model progressive failure 

mechanisms. Finite element and difference methods can model the deformation of 

the slope and the stress caused by the deformations throughout the failure. There are 

some computer programs based on these methods that can solve such problems, 

however these methods still require an interpretation of the results of analysis, and it 

has not widely used for general slope stability analysis. However, with advanced 

computer technology and interactive visualization of the results of such analyses, the 

methods have a place among the general methods used in stability analysis. Finite 

difference methods content is given below. 

Finite difference method widely used to obtain approximate solutions of many 

boundary value problems whose exact solutions are mathematically complex and in 

come cases impossible. Response of a structure system is often represented by the 

governing differential equations. These equations involve derivatives of functions 

using finite difference approach these derivatives can be easily evaluated at discrete 

points. The partial differential equations ( PDE ) can then be solved in the domain 

with respect to some given boundary conditions. Cundall ( 1976 ) gave an example 

of how finite difference methods might  be applied to the problems of slope stability. 
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Finite difference method is an approximate method for determining derivatives of a 

function. Depending upon circumstances, the finite difference method may give 

exact results. However, frequently it yields only approximate results. The extent of 

error in using finite difference method in finding derivatives of a function depends on 

various including order of derivative, type of function, type of finite difference mesh. 

This method has the following advantages over the traditional methods : Failure 

mode develops naturally no need to specify trial surfaces; No parameters need to be 

given as input. Multiple failure surfaces evolve naturally. 

2.5.2 Finite Element Method  

The finite element method ( FEM ) represent a powerful alternative approach for 

slope stability analysis. This method is accurate, versatile and requires fewer 

assumptions especially regarding the failure mechanism. The FEM can solve 

problems with irregular boundaries and complex variation of potential and flow 

lines. The region to be analyzed is divided into elements which are jointed at nodes. 

The unknown displacements at each node may be computed and from these the strain 

and stress fields within the body may be found. 

The finite element method (FEM) can be used to compute displacements and stresses 

caused by applied loads. However, it does not provide a value for the overall factor 

of safety without additional processing of the computed stresses. The principal uses 

of the finite element method for design are as follows: 

(1) Finite element analyses can provide estimates of displacements and construction 

pore water pressures. These may be useful for field control of construction, or when 

there is concern for damage to adjacent structures. If the displacements and pore 

water pressures measured in the field differ greatly from those computed, the reason 

for the difference should be investigated. 

(2) Finite element analyses provide displacement pattern which may show potential 

and possibly complex failure mechanisms. The validity of the factor of safety 

obtained from limit equilibrium analyses depends on locating the critical potential 

slip surfaces. In complex conditions, it is often difficult to anticipate failure modes, 

particularly if reinforcement or structural members such as geotextiles, concrete 

retaining walls, or sheet piles are included. Once a potential failure mechanism is 
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recognized, the factor of safety against a shear failure developing by that mode can 

be computed using conventional limit equilibrium procedures. 

(3) Finite element analyses provide estimates of mobilized stresses and forces. The 

finite element method may be particularly useful in judging what strengths should be 

used when materials have very dissimilar stress-strain and strength properties, i.e., 

where strain compatibility is an issue. The FEM can help identify local regions 

where “overstress” may occur and cause cracking in brittle and strain softening 

materials. Also, the FEM is helpful in identifying how reinforcement will respond in 

embankments. Finite element analyses may be useful in areas where new types of 

reinforcement are being used or reinforcement is being used in ways different from 

the ways for which experience exists. An important input to the stability analyses for 

reinforced slopes is the force in the reinforcement. The FEM can provide useful 

guidance for establishing the force that will be used. 

Use of finite element analyses to compute factors of safety. If desired, factors of 

safety equivalent to those computed using limit equilibrium analyses can be 

computed from results of finite element analyses. The procedure for using the FEM 

to compute factors of safety are as follows: 

(1) Perform an analysis using the FEM to determine the stresses for the slope. 

(2) Select a trial slip surface. 

(3) Subdivide the slip surface into segments. 

(4) Compute the normal stresses and shear stresses along an assumed slip surface.  

This requires interpolation of values of stress from the values calculated at Gauss 

points in the finite element mesh to obtain values at selected points on the slip  

surface. If an effective stress analysis is being performed, subtract pore pressures to 

determine the effective normal stresses on the slip surface. The pore pressures are 

determined from the same finite element analysis if a coupled analysis was 

performed to compute stresses and deformations. The pore pressures are determined 

from a separate steady seepage analysis if an uncoupled analysis was performed to 

compute stresses and deformations. 

(5) Use the normal stress and the shear strength parameters, c and Φor c' and Φ ', to 

compute the available shear strength at points along the shear surface. Use total 

normal stresses and total stress shear strength parameters for total stress analysis and 
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effective normal stresses and effective stress shear strength parameters for effective 

stress analyses. 

(6) Compute an overall factor of safety using the following equation: 

∑
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where ; 

si  = Available shear strength computed in step (4) 

iτ = Shear stress computed in step (3) 

l∆ = Length of each individual segment into which the slip surface has been        

        subdivided. 

The summations in Equation 2.24 are performed over all the segments into which the 

slip surface has been subdivided. 

Finite element analyses require considerably more time and effort, beyond that 

required for limit equilibrium analyses and additional data related to stress-strain 

behavior of materials. Therefore, the use of finite element analyses is not justified for 

the sole purpose of calculating factors of safety. 

Another method is that the shear strength reduction technique is a new method to use 

finite element method in the slope stability analysis, and assumed that the failure 

mechanism of slope is directly related to the development of the shear strain. In this 

method, the shear strength ( c ,ϕ ) of the geomaterial is divided by the shear strength 

reduction ratio, 
s

F , and use the reduced shear strength ( 'c , 'ϕ ) to replace the primary 

shear strength to bring the slope to the verge of failure. When the verge of failure 

arrives, the strain or displacement in the sliding zone will break, and this kind of 

break will lead the convergence of finite element fail. The expression of the 

reduction can be described as:  

' /
s

c c F=                            ( 2.26 ) 

' atan(tan / )
s

Fϕ ϕ=                 ( 2.27 ) 

Where, c  and ϕ  are the shear strength parameters, 'c  and 'ϕ  are the reduced shear 

strength parameters, 
s

F  is the shear strength reduction ratio. During the calculation, 

the shear strength reduction ration,
s

F , is increased step by step, and the shear 
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strength of the geomaterial is also changed. When the convergence is failed, the 
shear strength ratio,

s
F , is the safety factor of the slope, and the plastic zone 

corresponds to the sliding face of the slope. 

2.6 Computer Programs Based on Traditional Methods  

Program : CLARA-W   

Description : CLARA-W is a program for geotechnical slope stability analysis in 

two or three dimensions, using Bishop, Janbu, Spencer and Morgenstern-Price 

methods. Features include: 2D and 3D analysis of rotational or non-rotational sliding 

surfaces, ellipsoids, wedges, compound surfaces, fully specified surfaces and 

searches. Other features include point loads, tension cracks, earthquake loading, 

anisotropic and non-linear material strength models and the possibility to use digital 

elevation model (DEM) files to specify ground surface topography. It also includes 

3D extensions of the Spencer's method and the Morgenstern-Price method.                 

( Geotechnical & Geoenvironmental Software Directory  - http://www.ggsd.com ) 

Program : XSLOPE for Windows  

Description : XSLOPE for Windows computes the stability of an earth slope using 

Bishop's (1955) simplified method for circular failure surfaces or Morgenstern and 

Price's (1965, 1967) analysis for non-circular failure surfaces. The slope may be 

divided into a number of different soil layers with different properties. In the Bishop 

analysis a circular surface of rupture is assumed and then the equilibrium of the 

sliding mass of soil is considered by dividing this mass into a number of slices. This 

process is repeated for a large number of circles and the minimum factor of safety 

determined. Pore pressures within each soil layer can be calculated by a number of 

different methods, from the depth below a piezo metric surface, by using a pore 

pressure coefficient ru, from a user specified grid of pore pressures, or from a grid of 

pore pressures generated by program FESEEP. External normal and shear tractions 

can be applied to segments along the surface of the slope. The effect of an 

earthquake is modeled by applying a set of horizontal and vertical forces at the 

centroid of each slice. These forces are calculated using the horizontal and vertical 

seismic coefficients which are assumed to vary with depth. (http://www.ggsd.com ) 
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Program  : SVDynamic  

Description : SVDynamic carries out slope stability analyses using the dynamic 

programming method to determine the location of the slip surface and factor of 

safety of a slope based on a finite element analysis. It has been verified against 

traditional slope stability analysis methods such as Morgenstern-Price, GLE (General 

Limit Equilibrium - Fredlund et al. 1982), Spencer, Simplified Bishop's, Janbu, and 

the Ordinary method. (http://www.ggsd.com ) 

Program  : GeoStru  

Description : Slope (GeoStru) carries out the analysis of soil slope stability both in 

static and seismic states utilising the limit equilibrium methods of Fellenius, Bishop, 

Janbu, Bell, Sarma, Spencer, Morgenstern and Price. The discrete element method 

(DEM) is also used for circular and non-circular failures by which it is possible to 

determine movement in the slope, examine a gradual failure, and employ various 

models of force-deformation. Program is doing automatic computation of Safety 

Factor for surfaces that are tangential to a straight line (automatically varying the 

inclination), or that pass through one, two, or three given points, and back analysis.      

(http://www.ggsd.com ) 

Program  : SLOPE/W Basic Edition  

Description : SLOPE/W Basic Edition has the essential features for solving slope 

stability analyses, including: Ordinary, Bishop, Janbu Simplified, Spencer, 

Morgenstern-Price and Generalized Limit Equilibrium methods. Pore-water pressure 

conditions specified using a piezometric line. Soil strength specified as undrained, 

cohesive and frictional, no strength, or impenetrable. Ground surface surcharge 

pressures. It has horizontal and vertical seismic coefficients analyses.                          

( http://www.ggsd.com ) 

Program : DC-Slope  

Description : DC-Slope carries out slope stability analysis according to Krey-Bishop 

(friction circle) and Janbu (arbitrary sliding planes) methods. Main features include: 

Freely defined ground surface and layers, ground water and seepage paths, different 

load cases with concentrated and distributed loads, dead and live loads or earthquake 

loads. Program have automatic iteration of center and/or radius, optionally with 

predefined range, to find the minimum safety factor. ( http://www.ggsd.com ) 
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Program : Slope (ejgeSoft)  

Description : Slope is a program for carrying out slope stability analysis by the 

Bishop method and has the following features: Any shape of soil profile can be 

considered; Change any parameter for immediate re-calculation; Any consistent unit 

system can be used (SI is default); Several soil layers with different properties can be 

considered; Single circle can be specified; Single center can be specified and R range 

scanned by the program; A grid of centers can be specified for minimum FS search; 

Output of details can be requested, down to slice weights; Pore pressures are 

specified either by an ru coefficient or a fixed ground water table elevation.               

( http://www.ggsd.com ) 

Program : CADS Re-Slope  

Description : CADS Re-Slope is a general slope stability software package supplied 

as a complete suite or as a series of modules. The Full Slope Stability module 

features: Circular and user defined slip surfaces; Swedish method of slices; Bishops 

method (No interslice shear, moment equilibrium); Janbu method (No interslice 

shear, horizontal equilibrium); Rigorous method (interslice shear, full equilibrium); 

Also program have Seismic analysis (horizontal and vertical acceleration).                    

( http://www.ggsd.com ) 

Program : GGU-STABILITY  

Description : GGU-STABILITY for slope failure calculations and soil nailing. 

Considers circular slip surfaces (Bishop or Krey) and polygonal slip surfaces 

(Janbu), in addition to rigid body failure mechanisms and block sliding methods. Slip 

stability. Overturning stability. Base failure safety. Slope failure safety (Bishop). 

Calculation of maximum "nailing forces". ( http://www.ggsd.com ) 

Program : GeoStar  

Description : GeoStar supports standard and improved limit equilibrium methods. 

Cylindrical or general shaped (polygonal) shear surface. Progressive failure. General 

shaped layers. Variable inter-slice forces. Ground water influence calculated from 

groundwater levels, pore pressure coefficient (Bishop - Morgenstern), pore pressure 

value for layer or explicit field of pore pressure values (i.e. imported from a finite 

element calculation). ( http://www.ggsd.com ) 
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Program : TSTAB  

Description :TSTAB conducts limit equilibrium slope stability analyses of circular 

slip surfaces by the Simplified Bishop or Spencer methods and searches for the 

critical circular slip surface. Provides for application of line loads and pressures to 

the slope and this capability allows for modeling of both anchors and internal 

reinforcement, such as that provided by geogrids. Automatically computes the 

pressures on submerged slopes and the pressures due to fluid in tension cracks. 

Provides several alternatives for specifying shear strengths, allows anisotropic 

undrained shear strengths and allows specification of local residual factors. Provides 

a choice of automatic computation of pore pressures from a specified phreatic 

surface or from the average pore pressure ratio or specification of pore pressures as 

contours or specification of pore pressures on a grid. Includes an interactive pre-

processor for generating input files and generates plots of slope geometry, soil layers, 

pore pressures, specified slip circles or trial slip circles, with critical circles 

highlighted. (http://www.ggsd.com ) 

Program : Geo-Tec B  

Description : Geo-Tec B is a cross platform (Windows and Macintosh) slope 

stability analysis program using the Janbu, Bishop and Fellenius methods. It can 

automatically calculate a series of circles between two defined extreme circles. 

Circles may be defined by identifying three points or a center and radius. Seismic 

analysis is carried out by a pseudo-static method. When using the Janbu method, it is 

possible to apply an external horizontal force to the slope. ( http://www.ggsd.com ) 

Program : PCSTABL 6  

Description : PCSTABL 6 is a computer program for the general solution of slope 

stability problems by two-dimensional limiting equilibrium methods and includes the 

analysis of reinforced soil slopes with geosynthetics, nailing, and tiebacks. The 

calculation of the factor of safety against instability of a slope is performed by the 

simplified Bishop method, applicable to circular shaped failure surfaces, the 

simplified Janbu method, applicable to failure surfaces of general shape, and the 

Spencer method, applicable to any type of surface. The simplified Janbu method has 

an option to use a correction factor, developed by Janbu, which can be applied to the 

factor of safety to reduce the conservatism produced by the assumption of no 
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interslice forces. It features random techniques for generation of potential failure 

surfaces for subsequent determination of the more critical surfaces and their 

corresponding factors of safety. ( http://www.ggsd.com ) 

Program : STABGM  

Description : STABGM is a program for the slope stability analysis of reinforced 

embankments and slopes with circular slip surfaces, using the Ordinary Method of 

Slices and Bishop's Modified Method. ( http://www.ggsd.com ) 

Program : Stabl for Windows  

Description :Stabl for Windows is the Windows version of PCSTABL 6 program 

for the general solution of slope stability problems by two-dimensional limiting 

equilibrium methods and includes the analysis of reinforced soil slopes with 

geosynthetics, nailing, and tiebacks. The calculation of the factor of safety against 

instability of a slope is performed by the simplified Bishop method, applicable to 

circular shaped failure surfaces, the simplified Janbu method, applicable to failure 

surfaces of general shape, and the Spencer method, applicable to any type of surface. 

The simplified Janbu method has an option to use a correction factor, developed by 

Janbu, which can be applied to the factor of safety to reduce the conservatism 

produced by the assumption of no interslice forces. It features random techniques for 

generation of potential failure surfaces for subsequent determination of the more 

critical surfaces and their corresponding factors of safety. ( http://www.ggsd.com ) 

Program : Slope stability (Fine)  

Description : Slope stability (Fine) solves the slope stability problem in a two 

dimensional environment. The slip surface can be modeled in two different ways - 

circular (Bishop or Petterson method), or polygonal (Sarma method). Features  

include:    

- Simple input of geometry of layers  

- Built-in database of soils and rocks  

- Optimization of circular and polygonal slip surfaces  

- An arbitrary number of surcharges (strip, trapezoidal, concentrated loading)  

- Simple modeling of rigid bodies  

- Possibility to model earthquake effects  
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- Possibility to consider foliation of soils (soil anisotropy)  

- Possibility to introduce geo-reinforcement into the analysis  

- Analysis in effective and total parameters of soils  

- An arbitrary number of analyses within one stage of construction  

- Possibility to introduce restrictions on the slip surface optimization  

- Analysis according to the theory of limit states or safety factor                                      

( http://www.ggsd.com ) 

Program : STABLE  

Description :STABLE carries out slope stability analysis by the methods of Bishop, 

Morgenstern-Price and Sarma. Analyses may include: point loads, line reinforcement 

forces, flexible soil geometry for representation of lenses, inclusions, clay cores etc. 

Pore pressures may be specified as: piezometric surface, Ru values in each soil, 

absolute or excess values in each soil. Automatic slip-circle generation., location of 

critical circle,  earthquake analysis. ( http://www.ggsd.com ) 

Program : SLOPE 12R  

Description : SLOPE 12R is a computer program for analysing the stability of 

slopes, also applicable to earth pressure and bearing capacity problems. Main 

Features are : Automatically generates slip surfaces to find the critical failure 

mechanism. The ground can be described in terms of up to nine soil strata with 

different strength properties. Multiple water tables or piezometric surfaces modeled. 

In simple cases pore pressures are calculated from the position of the water table but 

in more complicated flow conditions local values of pore pressure can be defined. 

Circular and non-circular slip surfaces can be analysed. A group of circular slip 

surfaces can be analysed by defining a rectangular grid of centres. For each centre a 

number of different radii can be specified. Two and three part wedges can be 

analysed. A group of wedges can be analysed by defining a rectangular grid of 

wedge nodes. Analysis methods: Swedish Circle (or Fellenius') method; Bishop's 

method; Spencer's method; Janbu's method. External forces (due to buildings or strut 

forces in excavations) can be applied to the ground surface. Earthquake forces can be 

modeled in a quasi-static manner by specifying horizontal and vertical acceleration 

factors. ( http://www.ggsd.com ) 
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Program : XSTABL   

Description : XSTABL performs a two dimensional limit equilibrium analysis to 

compute the factor of safety for a layered slope. The Generalized Limit Equilibrium 

(GLE) method allows factors of safety to be calculated for force and moment 

equilibrium or for force equilibrium only, using different interslice force angle 

distributions including Spencer's, Morgenstern-Price, or one of the methods proposed 

by the Corps of Engineers. If an analysis requires a search for the most critical failure 

surface, the simplified Bishop and Janbu methods of analysis are selected due to their 

relative ease of use. The program may be used to either search for the most critical 

circular, non-circular, or block-shaped surface, or alternatively, to analyze a single 

circular or non-circular surface. ( http://www.ggsd.com ) 

Program : I.L.A.  

Description : I.L.A. is a slope stability analysis program that also incorporates 

features for retaining system designing. The slope analysis and design can be 

performed using the Sarma method, whose numerical stability increases the 

reliability of the calculations. The classic Bishop,Jambu, Morgenstern&Price and 

Bell methods are also available. The failure surfaces can either be defined as circular 

or planar surface families or even individually, as polygonal surfaces, and therefore 

have any shape whatsoever. The analysis can be carried out under drained or 

undrained conditions, also considering water pressures, surcharges,  seismicity.          

( http://www.ggsd.com ) 

Program : WinStabl  

Description : WinStabl is a pre- and post-processor to STABL6. The package 

supports: Simplified Janbu, Modified Bishop, and Spencer's analyses. Reinforcing 

layers. Tiebacks. Earthquake (pseudo-static) analysis. Boundary (external) loads. 

Anisotropic soils. Specific failure surfaces. Circular and irregular surface searching.   

( http://www.ggsd.com ) 

Program : MStab  

Description : MStab carries out stability analysis by the Bishop, Fellenius and 

Spencer methods. It provides automatic search of the critical slip circle; user-defined 

zones that the circle will not cross; integration of geotextiles; user-defined non-

circular slip plane; temporary and permanent loads; pore pressures and degree of 
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consolidation; Mohr-Coulomb soil parameters; output of global safety factor; output 

of safety contours; output of stress components along slip plane.                                    

( http://www.ggsd.com ) 

Program : GSTABL7 with STEDwin v.2  

Description : GSTABL7 with STEDwin v.2 is a 2D limit equilibrium slope stability 

program based on STABL6 but which includes geogrid reinforcement, piers/piles, 

tiebacks, soil nails, applied forces, and surcharge loads. Failure surfaces of any shape 

can be analyzed with Modified Bishop, Simplified Janbu, Spencer, and Morgenstern-

Price methods. ( http://www.ggsd.com ) 

Program : GSlope  

Description : GSLOPE carries out limit equilibrium slope stability analysis of 

existing natural slopes, unreinforced man-made slopes, or slopes with soil 

reinforcement. The program uses Bishop's Modified method and Janbu's Simplified 

method. Slopes can be analysed in either direction, and a seismic coefficient is 

provided for pseudo-static analysis. When a non-circular slip surface is drawn, the 

computed Factor of Safety is displayed immediately.  ( http://www.ggsd.com ) 

Program : SLOPBG  

Description :It allows the analysis of a generalized soil slope using Bishop's 

modified method. Water pressures are accounted for using either phreatic lines, pore 

pressure contours or a single pore pressure coefficient. Horizontal and vertical 

seismic forces are considered. The program can search for the critical minimum 

factor of safety circle. The program can be run in a deterministic or probabilistic 

mode. In probabilistic mode several statistical distribution types can be applied to 

best reflect the range of input variables. A simulation technique is then used to 

generate pseudo-variables used to calculate the distribution of the factor of safety.           

( http://www.ggsd.com ) 

Program : Slide  

Description : Slide 5.0 is a 2D Limit Equilibrium Analysis program with a CAD 

based graphical interface and a wide range of modeling and data interpretation 

options. it now includes sensitivity, probabilistic and back analysis capabilities. 

Sensitivity analysis allows the user to determine the effect of any parameter on the 
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factor of safety to discover the most critical parameters, leading to optimization of 

the slope remediation. Safety factors are calculated based on a number of widely 

used limit equilibrium techniques including Bishop Simplified, Spencer, and 

GLE/Morgenstern & Price. ( http://www.ggsd.com ) 

Program : Slope-W  

Description : Slope-W is a circular and non-circular soil and rock slope stability 

program. Carries out stability analyses by the methods of Fellenius, Bishop 

simplified, Janbu simplified, Spencer, Morgenstern-Price, Corps of Engineers, Lowe-

Karafiath, General Limit Equilibrium, Finite element stress. It can perform 

probabilistic stability analyses using the Monte Carlo method. 

(http://www.ggsd.com) 

Program : Galena  

Description : Galena is a slope stability analysis program incorporating Bishop 

(circular), Spencer-Wright (circular and non-circular) and Sarma (non-vertical slices) 

methods for problem solving in soils and rocks. Single and multiple analyses 

available for all methods. Models can include external forces, distributed loads, and 

earthquake effects. ( http://www.ggsd.com ) 

Program : Slope 2000  

Description : Slope 2000 can locate the critical failure surface of a slope under 

general conditions with general constraints. The shape of the failure surface can be 

either circular or non-circular. The slope analysis methods include Bishop, Janbu 

simplified and rigorous, Morgenstern-Price, Sarma, GLE, Corps of Engineers, Lowe 

Karafiath, wedge. ( Geotechnical & Geoenvironmental Software Directory  - 

http://www.ggsd.com ) 

2.7 Slope Stability Analysis Conditions Importance  

We know that pore water pressure is a major factor for slope stability check and 

when carrying out an effective stress analysis the pore water pressures need to be 

calculated at the base of each slice as the water force is involved in computing the 

factor of safety. One of the common ways to compute pore water pressure is to use 

ru, where ru is defined as the ratio of the water pressure u to the overburden pressure 

γh at a given point. This implies that the pore water pressure is related to the 
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overburden pressure or that the water force U at the base of each slice is proportional 

to the total weight W of the slice. 

Another common way is to use a piezometric surface. A surface may be used in 

conjunction with a slip circle program that the water pressure, u, at the base of each 

slice is computed as γwhw where hw is the vertical distance between the piezometric 

surface and the base of the slice. The use of a piezometric surface for a slope in 

which seepage is taking place will lead to errors in estimating pore pressures since 

pore pressures should be determined from a flow net and can’t be tied to a single 

piezometric surface. 

The use of a pore water pressure grid can overcome the above problem. Pore 

pressure values may be specified at points on a regular gird and the values at the base 

of each slice found from interpolation of values at the nearest grid points. This is 

particularly useful with seepage problems where finite difference or finite element 

solutions may be obtained and used to set up a grid pore pressure. 

Most of the methods mentioned in the previous sections employ the definition of the 

factor of safety Fs. As Lowe ( 1967 ) pointed out defining the factor of safety as a 

factor on shear strength is logical because shear strength is usually the quantity that 

involves the greatest degree of uncertainty. The limitation results from the fact that 

these methods provide no information regarding the magnitudes of the strains within 

the slopes or any indication about how they may vary along the slip surface. It is 

worth noting that the average value of Fs is the same for all practical purposes, even 

if the factor of safety is assumed to vary from place to place along the slip surface. 
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3. ARTIFICIAL INTELLIGENCE APPLICATIONS WITH NEURAL 
NETWORKS 

3.1 Introduction 

Artificial neural networks are systems and computational devices that are constructed 

to make use of some organizational principles resembling those of the human brain. 

Normally there are a large number of highly connected computational nodes               

( neurons ) that are operated and configured in parallel regular architectures. Like 

human brain an artificial neural network has the ability to learn; recall and generalize 

from the data which are used to train the system. The pattern of activation at the 

input units represents the problem being presented to the network; and the pattern of 

activation at the output processing units, represents computational results achieved 

by neural network. The neural network propagates the changes in weights of the 

connection between each linked neuron by minimizing the difference between the 

actual output and target output. The propagation of the changes in link weight the 

computation performed by neural network is strongly affected by the topology and 

strengths of the connections between the neurons. As an example Figure 3.1 shows a 

simple mathematical model of  this network. 

 

Figure 3.1: Schematic Diagram of A Neuron’s Network ( McCulloch & Pitts ,1943 ) 

3.2 Neural Network’s Properties  

3.2.1 Basic Structure of Neural Network  

The basic building block of neural network technology is the simulated neuron 

(depicted in Figure 3.2 as a circle). Independent neurons are of little use, unless they 
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are interconnected in a network of neurons. The network processes a number of 

inputs from the outside world in order to produce an output, the network's 

classifications and predictions. The neurons are connected by weights, (depicted as 

lines) which are applied to values passed from one neuron on to the next. A group of 

neurons is called a slab. Neurons are also grouped into layers by their connection to 

the outside world. For example, if a neuron receives data from outside of the 

network, it is considered to be in the input layer. If a neuron contains the network's 

predictions or classifications, it is in the output layer. Neurons in between the input 

and output layers are in the hidden layer(s). A layer may contain one or more slabs of 

neurons. 

 

Figure 3.2 : Neural Networks Structure ( Ural & Bayrak , 2003 ) 

Neural networks are not programmed; they learn by example. Typically, a neural 

network is presented with a training set consisting of a group of examples from 

which the network can learn. The most common training scenarios utilize supervised 

learning, during which the network is presented with an input pattern together with 

the target output for that pattern. The target output usually constitutes the correct 

answer, or correct classification for the input pattern. In response to these paired 

examples, the neural network adjusts the values of its internal weights. If training is 

successful, the internal parameters are then adjusted to the point where the network 

can produce the correct answers in response to each input pattern. Usually the set of 

training examples is presented many times during training to allow the network to 

adjust its internal parameters gradually. The neural network approach does not 

require human development of algorithms and programs that are specific to the 

classification problem hand, suggesting that time and human effort can be saved. 

There are drawbacks to the neural network approach, however: the time to train the 
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network may not be known beforehand, and the process of designing a network that 

successfully solves an application problem may be involved. 

It is possible to develop a network that can generalize on the tasks for which it is 

trained, enabling the network to provide the correct answer when presented with a 

new input pattern that is different from the input in the training set. To develop a 

neural network that can generalize, the training set must include a variety of 

examples that are good preparation for the generalization task. In addition, the 

training session must be limited in iterations, so that no “over learning” takes place 

(i.e., the learning of specific examples instead of classification criteria, which is 

effective and general). Thus, special considerations in constructing the training set 

and the training presentations must be made to permit effective generalization 

behavior from a neural network. All of these characteristics of neural networks may 

be explained through the simple mathematical structure of neural net models. The 

computations performed in the neural net may be specified mathematically. 

As a summary, an artificial neural network is a parallel computing system with the 

following characteristics ( Lin & Lee , 1996 )  

1. It is a naturally inspired mathematical model. 

2. It consists of a large number of highly interconnected processing units. 

3. Its connections ( weights ) hold the information about the relationship between 

the inputs and outputs. 

4. Each neuron can dynamically respond to its input stimulus and the response 

completely depends on its local information that is the input signals arrive at the 

processing element via connections and connection weights. 

5. It has the ability to learn recall and generalize from training data by adjusting the 

connection weights. 

6. Its collective behavior demonstrates the computational power while no single 

neuron carries specific information, the information is distributed among the neurons 

which have a great deal of computational power. 

One of the primary significant properties of neural network is the ability of the 

network to learn from its environment and to improve its performance through 

learning. The neural network learns about its environment through an iterative 
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process of adjustment to its synaptic weights and thresholds. Ideally the network can 

become more knowledgeable about its environment after each iteration of the 

learning process. The learning process can be classified as supervised learning or 

unsupervised learning. For supervised learning we are trying to map the input output 

pairs according to a given training set. In other words already know what the output 

will be during the training. The network parameters are updated by a supervised 

learning rule. For unsupervised learning there is no external instruction available 

only input vectors can be used for learning. In other words one does not know 

outputs or classes associated with the input patterns. During the unsupervised 

learning there is no feedback from the environment to indicate what the outputs of a 

network should be, or, whether they are correct. The network itself should discover 

any relationships, such as patterns, features, correlations, or categories that may exist 

in the input data and translate the discovered relationship outputs. 

According to Mendel and McClaren ( 1970 ) the definition of learning can be 

expressed as follows. Learning is a process by which the free parameters of a neural 

network are adopted through a continuing process of stimulation by the environment 

in which the network is embedded. The type of learning is determined by the manner 

in which the parameter changes take place. 

The learning can be understood as the process that repeatedly applies input vectors to 

the network and the finds new weights and biases with the learning rule. The process 

will be repeated until the sum error based on the cost function falls beneath an 

acceptable error goal or a maximum number of epochs have occurred. The learning 

parameters are varied according to different learning rules. But the common 

parameters which will be used for each supervised learning process are the number 

of epochs between displaying process the maximum number of epochs to train, the 

acceptable error goal and the learning rate. 

The learning algorithm is defined as a prescribed set of well defined rules for the 

solution of a learning problem. There are large varieties of learning algorithms which 

differ from each other in the way to adjust the weight. Each learning algorithm offers 

an advantage of its own. 
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3.2.2 Design Choices of Neural Networks  

Many design choices are involved in developing a neural network application.  

Figure 3.3 Shows an example for choosing a design for a neural network application  

 

Figure 3.3 : Design Choices For  Neural Network application (Dayhoff, 1990) 

The first option is in choosing the general area of application. Usually this is an 

existing problem that appears amenable to solution with a neural network. Next, the 

problem must be identified, so that a selection of inputs and outputs to the network 

may be made. Choices for inputs and outputs involve identifying the types of pattern 

that go into and out of the network. In addition, the researcher must design how those 

patterns are to represent the needed information (the representation scheme). Next, 

internal design choices must be made including the topology and size of the network. 

The number of processing units are specified, along with the specific 

interconnections that the network is to have. Processing units are usually organized 

into distinct layers, which are either fully or partially interconnected. 

There are additional choices for the dynamic activity of processing units. A variety 

of neural net paradigms are available; these differ in the specifics of the processing 

done at each unit and in how their internal parameters are updated. Each paradigm 

dictates how the readjustments of parameters take place. This readjustment results in 

“learning” by the network. Next, there are internal parameters that are “tuned” to 

optimize the neural net design. The value of this parameter influences the rate of 

learning by the network, and may possibly influence how successful the network 

learns. These are experiments that indicate “learning” occurs at more successful rates 

if this parameter is decreased during the learning session. Some paradigms utilize 

more than one parameter that must be tuned.  
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Finally, the selection of training of data presented to the neural network influences 

whether or not the network “learns” a particular task. How well a network will learn 

depends on the examples presented. A good set of examples, which illustrate the 

tasks to be learned well, is necessary for the desired learning to take place. A  poor 

set of examples will result in poor learning on the part of the network. The set of 

training examples must also reflect the variability in the patterns that the network 

will encounter after training. 

3.2.3 Neural Network Architectures  

3.2.3.1 GRNN Architecture And Learning Algorithm   

General Regression Neural Networks, GRNN, invented by Dr. Donald Specht 

(1996), is a three-layer network having one hidden neuron for every training pattern, 

in addition to the total number of neurons equal to sum of input and output number. 

Unlike Back-propagation Networks, there is a smoothing factor instead of training 

parameters; learning rate and momentum. The success of GRNN networks is 

dependent upon the smoothing factor. The individual smoothing factor adjustments 

values may be used as a sensitivity analysis tool: inputs with low smoothing factor 

adjustments are candidates for removal at a later trial, especially if the smoothing 

factor adjustments approaches zero. 

The fact that the GRNN network centers are determined by the training data vectors 

gives the network stability and it ensures that it is not be over-trained. This is the 

main feature along with its simplicity that distinguishes it from most other 

approaches. 

GRNN is especially useful for continuous function approximations. GRNN can have 

multidimensional input, and it will fit multidimensional surfaces through data. 

GRNN work by measuring how far a given sample pattern is from patterns in the 

training set in N dimensional space, where N is the number of inputs in the problem. 

When a new pattern is presented to the network , that input pattern is compared in N 

dimensional space to all of the patterns in the training set to determine how far in 

distance it is from those patterns. The output that is predicted by the network, is a 

proportional amount of all of the outputs in the training set. The proportion is based 

upon how far the new pattern is, from the given patterns in the training set. 
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Advantages: 

i. GRNN can handle both linear and non-linear data. 

ii. Adding new samples to the training set does not require re-calibration the model. 

iii. Only one adjustable parameter thereby making overtraining less likely. 

Disadvantages: 

i. Requires many training samples to adequately span the variation in the data. 

ii. Requires that all the training samples be stored for future use (i.e., prediction). 

iii. Has trouble with irrelevant inputs. 

iv. No intuitive method for selecting the optimal smoothing parameter. 

 

Figure 3.4 : The Basic GRNN Architecture 

The general regression neural network (GRNN) is a three layer network having one 

hidden neuron for every training pattern (Lawrence,1993). ( Figure 3.4 ) In addition 

to the total number of neurons is equal to the sum of the number of inputs and the 

outputs (Specht,1991). The regression is the estimation of the least mean squares of 

variables based on the available data. In other words, the regression decision in the 

GRNN architecture reveals the most probable value of all the patterns in an N-

dimensional space (where N is the number of inputs). Output values correspond to 

the weighted average of the target values. The target values are weights which 

exceed from the hidden layers to the output layers. During the GRNN training 

process, smoothing factors (or bandwidths) are the only weights which need to be 

calculated. The success of the GRNN is dependent upon the smoothing factor, 

however, there is no intuitive method for selecting the optimal smoothing factor 

(Ural and Bayrak, 2003). 
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The GRNN utilizes a probabilistic model between an independent single training 

vector in the input space (X) and a dependent scalar output (Y). Xi is defined as the 

input vector of the ith training data set, and Yi is the output related to Xi. It is 

assumed that x and y are defined as measured values of X and Y, respectively, and 

the regression of Y on x is defined as yˆ such that; 
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By substituting Eq. 3.2 in Eq. 3.1 
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Eqs. (3) is known as the Specth’s GRNN. In Specth’s GRNN, σ, is a smoothing 

factor shared by all the inputs and the pattern nodes. Assigning an independent 

smoothing factor for each of the variables may improve accuracy; however, this may 

be impractical in many simulations (Specht, 1996). 

 

Figure 3.5 : The GRNN Architecture ( Specht , 1996 ) 
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As shown in Figure 3.5, the GRNN is composed of one input layer, one hidden layer, 

a summation layer, and one output layer. The GRNN models are trained by a one-

pass learning algorithm. In order to estimate an output, the presented input is 

subtracted from each stored vector in the hidden layers. The probability density 

functions ( PDF ) or radial basis functions are applied in order to evaluate the 

squared or absolute difference between the hidden neurons and inputs. Between these 

layers activation functions use and the details of them are given below. Activation 

functions determine neurons behaviour. The formulas of the functions which are 

used in Neuroshell2 are shown below: 

Logistic→ f (x) =1/(1+ exp(−x))                  (3.4) 
 
Linear→ f (x) = x                    (3.5) 
 
Tanh→ f (x) = tanh(x) , the hyperbolic tangent function               (3.6) 
 
Tanh15→ f (x) = tanh(1.5x)                  (3.7) 
 
Sine→ f (x) = sin(x)                    (3.8) 
 
Symmetric Logistic→ f (x) = ((2/(1+ exp(−x)))−1)                (3.9) 
 
Gaussian→ f (x) = exp(−x2 )                (3.10) 
 
Gaussian Complement→ f (x) =1− exp(−x2 )              (3.11) 
 

The details of these activation functions are  given in Figure 3.6, 3.7, 3.8, 3.9 ; 

Linear: Use of this function should generally be limited to the output slab. It is useful 

for problems where the output is continuous variable, as opposed to several outputs 

which represent categories. 

 

Figure 3.6 : Linear activation function 
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Logistic (Sigmoid Logistic): This function is useful for most neural network 

applications, and it maps values into the (0, 1) ranges. It is used when the outputs are 

in categories. 

 

Figure 3.7 : Logistic function 

Symmetric Logistic: This is similar to the logistic, except that it maps to (-1, 1) 

instead of to (0, 1). When the outputs are categories, trying symmetric logistic 

function instead of the logistic function in the hidden and output layers may be 

better. In some cases, the network will train to a lower error in the training and test 

sets. 

 

Figure 3.8 : Symmetric logistic function 

Gaussian: It is very useful in some set of problems. Trying it in the hidden layer and 

logistic function in the output layer may give good results. 

 

Figure 3.9 : Gaussian function 

The summation unit computes the sum of the outputs from all hidden neurons. The 

network’s final output is obtained at the output layer, where a normalization is 

performed. The normalized output is computed by dividing the value of the weighted 

sum of hidden layer outputs, by the value in the summation layer. 
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3.2.3.2 PNN Architecture  

Probabilistic Neural Networks are (PNN) are known for their ability to train quickly 

on sparse data sets. PNN separates data into a specified number of output categories. 

PNN networks are three layer networks wherein the training patterns are presented to 

the input layer and the output layer has one neuron for each possible category. There 

must be as many neurons in the hidden layer as there are training patterns. The 

network produces activations in the output layer corresponding to the probability 

density function estimate for that category. The highest output represents the most 

probable category (Frederick, 1996). 

The probabilistic neural network (PNN) learns to approximate the PDF of the 

training examples. More precisely, the PNN is interpreted as a function which 

approximates the probability density of the underlying examples’ distribution (rather 

than the examples directly by fitting).The PNN consists of nodes allocated in three 

layers after the inputs ( Figure 3.10 ) 

Pattern layer: There is one pattern node for each training example. Each pattern node 

forms a product of the weight vector and the given example for classification, where 

the weights entering a node are from a particular example.  

Summation layer: Each summation node receives the outputs from pattern nodes 

associated with a given class 

Output layer: The output nodes are binary neurons that produce the classification 

decision. 

The only factor that needs to be selected for training is the smoothing factor, that is if 

the deviation of the Gaussian functions is too small deviations cause a very spiky 

approximation which can’t generalize well and large deviations smooth out details. 

 

Figure 3.10 : The PNN Architecture 
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A probabilistic neural network (PNN) has 3 layers of nodes. The Figure 3.11 below, 

displays the architecture for a PNN that recognizes K = 2 classes, but it can be 

extended to any number K of classes. The input layer (on the left) contains N nodes: 

one for each of the N input features of a feature vector. These are fan-out nodes that 

branch at each feature input node to all nodes in the hidden (or middle) layer so that 

each hidden node receives the complete input feature vector x. The hidden nodes are 

collected into groups: one group for each of the K classes as shown in the          

Figure 3.11. 

 

Figure 3.11 : Probabilistic Neural Network Layers 

Each hidden node in the group for Class k corresponds to a Gaussian function 

centered on its associated feature vector (there is a Gaussian for each exemplar 

feature vector). All of the Gaussians in a class , group feed their functional values to 

the same output layer node for that class, so there are K output nodes. 

At the output node for Class k (k = 1 or 2 here), all of the Gaussian values for Class k 

are summed and the sum is scaled to so the probability volume under the sum 

function is unity so that the sum forms a probability density function. Here we 

temporarily use special notation for clarity. Let there be P exemplar feature vectors 

{x(p): p = 1,...,P} labeled as Class 1 and let there be Q exemplar feature vectors 

{y(r): r = 1,...,R} labeled as Class 2. In the hidden layer there are P nodes in the 

group for Class 1 and R nodes in the group for Class 2. The equations for each 
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Gaussian centered on the respective Class 1 and Class 2 points x(p) and y(q) (feature 

vectors) are (where N is the dimension of the vectors) are, for any input vector x 

                                   (3.12) 

                        (3.13) 

The F values can be taken to be one-half the average distance between the feature 

vectors in the same group or at each exemplar it can be one-half the distance from 

the exemplar to its nearest other exemplar vector. The kth output node sums the 

values received from the hidden nodes in the kth group, called mixed Gaussians or 

Parzen windows. The sums are defined by 

                                        (3.14) 

                                     (3.15) 

x is any input feature vector, F1 and F2 are the spread parameters (standard 

deviations) for Gaussians in Classes 1 and 2 , respectively. N is the dimension of the 

input vectors, P is the number of center vectors in Class 1 and R is the number of 

centers in Class 2, x(p) and y(r) are centers in the respective Classes 1 and 2, and 2x - 

x(p)2 is the Euclidean distance (square root of the sum of squared differences) 

between x and x(p). Any input vector x is put through both sum functions f1(x) and 

f2(x) and the maximum value (maximum a posteriori, or MAP value) of f1(x) and 

f2(x) decides the class. For K > 2 classes the process is analogous. There is no 

iteration nor computation of weights. For a large number of Gaussians in a sum, the 

error buildup can be significant. Thus the feature vectors in each class may be 

reduced by thinning those that are too close to another one and making F larger. 

3.2.3.3 Back propagation Neural Network Architecture  

The back propagation learning algorithm is one of the most important developments 

in neural network. Back propagation networks are known for their ability to 

generalize well on a wide variety of problems. That is why they are used for the vast 

majority of working neural network applications. Back propagation networks are a 

supervised type of network, e.g., trained with both inputs and outputs. Depending 

upon the number of patterns, training may be slower than other paradigms. When 

using back propagation networks, you can increase the precision of the network by 
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creating a separate network for each output if your outputs are not categories 

(Frederick, 1996). 

This learning algorithm is applied to multilayer feed forward networks consisting of 

processing elements with continuous differentiable activation functions. Such 

networks associated with the back propagation learning algorithm are also called 

back propagation networks. There are some factors related to this network, these are 

the initial weights, the learning constant, the cost function, the update rule, the size 

and nature of the training sets and the network architecture ( includes the number of 

hidden nodes and number of hidden layers ) . 

The ultimate solutions of multilayer feed forward network are strongly affected by 

the initial weights. Normally the weight matrices are initialized with the random 

small values.  

The learning constant is another important factor that affects the efficiency and 

convergence of the back propagation algorithm. A large value of learning constant 

can speed up the convergence but might result in over shooting, while a small value 

has an opposite effect. Another problem is that the best values of the learning 

constant at the beginning of training may not be as good in the later training. 

Therefore the learning can be improved by using an adaptive learning constant. It can 

decrease the training time by trying to keep the learning step size as large as possible, 

while keeping learning stable. 

Also , any differentiable function which is minimized when its arguments are equal 

can be used as the cost function. However the update rule needs to be changed 

corresponding to different cost functions. The least square cost function is the most 

popular one that has been used in a large variety of applications because of its 

simplicity.  

The two major requirements on the training data are to be sufficient and proper. 

However there are no standard procedures or rules for all case when choosing the 

training data. Normally the training data should be able to cover the entire expected 

input space. In most situations scaling and normalization is necessary to help the 

learning. The back propagation artificial neural network is good at generalization, it 

can explain the input patterns which are new to the network after being well trained. 

The generalization is important for learning tasks where the number of inputs is large 
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and the data itself is noisy. In general, we are not looking for a neural network 

system that can best fit the training input pattern. Instead, we are looking for a 

system trained with data that can respond to the testing of new input patterns in a 

satisfactory manner. However, there is one phenomenon called “over fitting“ existing 

in some network, when the network has too many trainable parameters for the given 

amount of training data. “Over fitting“ means the network can learn very well on all 

the training input patterns, but does not perform generalization well. Figure 3.12 

demonstrates the network can’t generate reasonable output for the data between the 

original inputs due to over fitting.  

On the other hand, with too few trainable parameters, the network will fail to learn 

the training data and will also perform very poorly on the testing data. Therefore in 

the actual practicing we normally introduce the trainable parameters into the system 

stepwise to figure out the optimum number of input parameters that can perform well 

at generalization. Another way that may cause over fitting is when we limit the 

acceptable error goal in the training stage to some small values which are difficult for 

the system to reach. In this situation the system parameters will be updated in order 

to specifically fit the training data set but will no longer a good job of fitting the 

testing data sets. In order to solve this problem we normally decrease the value of 

acceptable error goal stepwise to check the performance of the system and choose the 

error goal that can let the system perform best on the testing data. The number of 

hidden layers and number of hidden nodes are the basic factors we need to determine 

for setting up the networks. For determination of the number of hidden layers using 

one to two hidden layers are common and can satisfy most of the problems. For the 

determination of the number of hidden nodes, it is rather difficult to follow any 

standard rules due to complexity of network mapping and nondeterministic nature of 

real world problems.  
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Figure 3.12 : Mismatch The Function Due To The Over fitting 

3.2.3.4 Kohonen Architecture  

The Kohonen self organizing map network used in numerical programs is a type of 

unsupervised network, which has the ability to learn without being shown correct 

outputs in sample patterns. These networks are able to separate data into a specific 

number of categories. There are only two layers: an input layer and an output layer 

which has one neuron for each possible output category. 

The training patterns are presented to the input layer, then propagated to the output 

layer and evaluated. One output neuron is the “winner”. The network weights are 

adjusted during training. This process is repeated for all patterns for a number of 

epochs chosen in advance. This network is very sensitive to learning rate. It is 

lowered slightly but steadily as the training progresses, causing smaller and smaller 

weight changes. This causes the network to stabilize. 

The network adjusts the weights for the neurons in a neighborhood around the 

winning neuron. The neighborhood size is variable, starting off fairly large 

(sometimes even close to the number of categories) and decreasing with learning 

until during the last training events the neighborhood is zero, meaning by then only 
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the winning neuron’s weights are changed. By that time the learning rate is very 

small, and the clusters have been defined. Architecture automatically adjusts learning 

rate and neighborhood size for you, but you have to specify the initial values as well 

as the total number of epochs that learning will continue (Frederick, 1996). 

3.2.3.5 GMDH Architecture 

The technique called Group Method of Data Handling (GMDH) was invented by 

A.G.Ivakhnenko, but enhanced by others, including A.R.Barron. This technique has 

also been called “polynomial nets”. 

GMDH works by building successive layers with complex links (or connections) that 

are the individual terms of a polynomial. These polynomial terms are created by 

using linear and non-linear regression. The initial layer is simply the input layer. The 

first layer created is made by computing regressions of the input variables and then 

choosing the best ones. The second layer is created by computing regressions of the 

values in the first layer along with the input variables. Again, only the best are 

chosen by the algorithm. These are called survivors. This process continues until the 

net stops getting better (according to a prespecified selection criterion). 

The resulting network can be represented as a complex polynomial description of the 

model. You may view the formula, which contains the most significant input 

variables. In some respects, it is very much like using regression analysis. GMDH 

can build very complex models while avoiding over fitting problems. 

GMDH contains several evaluation methods, called selection criteria, to determine 

when it should stop training. One of these, called regularity, is similar to calibration 

in that the net uses the constructed architecture that works the best on the test set. 

The other selection criteria do not need a test set because the network automatically 

penalized models that become too complex in order to prevent overtraining. The 

advantage of this is that you can use all available data to train the network. A by-

product of GMDH is that it recognizes the most significant variables as it trains, and 

will display a list of them (Frederick, 1996). 
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3.3 General Applications in Civil Engineering  

3.3.1 Dynamic Soil–Structure Interaction Using Neural Networks For Parameter 

Evaluation 

The subject of soil structure interaction has attracted the attention of engineers 

worldwide over the last four decades. Foundations are subjected to loads, which may 

induce high pressures in soils causing considerable deformations between soils and 

structural members. These deformations may eventually affect the forces transferred 

at the foundation level .This phenomenon is referred to as soil-structure interaction. 

Thus, to study the behavior of interfaces, it is necessary to characterize the behavior 

at the interface, model constitutive relationships mathematically, and incorporate the 

model together with the governing equations of mechanics into numerical procedures 

such as the finite element method. Such an approach then can be used for solving 

complex problems that involve dynamic loading, nonlinear material behavior, and 

the presence of the water, leading to saturated interfaces. 

A biased artificial neural network program based on back propagation algorithm has 

been developed to find saturated Nevada sand aluminum interface parameters from 

available saturated Ottawa sand steel interface parameters and saturated Sabine clay 

steel interface parameters. 

From the research it is shown that the model can be used to solve complex problems 

involving dynamic loading, nonlinear material behavior and saturated conditions. It 

is also shown that artificial neural networks can be used to obtain material 

parameters for the model from available sets of parameters for different materials. 

3.3.2 A Neural Network Approach For Predicting The Structural Behavior of  

Concrete Slabs 

This research investigates the use of Neural Networks ( NN ) as a preliminary 

alternative to mathematical modeling or experimental testing for quick prediction of 

the structural behavior of reinforced concrete slabs. Such predictions could be 

utilized by a structural engineer on a preliminary basis to determine the initial 

suitability of a particular slab design. Once this suitability was determined, the 

engineer could then proceed with further, more traditional methods of design. This 

will serve to illustrate the simple manner by which neural networks model the impact 

of a set of parameters ( inputs ) on a set of simultaneous conclusions ( outputs ); and 
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the powerful learn by example and generalization mechanism that neural networks 

use to detect the hidden relationships linking the inputs to their outputs. 

Neural networks are computational models that adopt a training mechanism to 

extract the relationships that link a set of causal input parameters to their resulting 

conclusions. Once neural networks are trained , they can predict the results for an 

unknown case ( not used in training ) if provided with the input parameters alone. 

Some characteristics of neural networks that make them potentially useful for many 

different types of applications are  ( Moselhi et al., 1992 ) : 

• Neural networks are organized within a parallel , decentralized structure rather than 

the serial architecture found in conventional computer algorithms. As a result, 

processing occurs in a rapid manner, 

• They have distributed memories; neural network memories are represented by 

interconnection weights spread over all of the network’s processing elements, 

• They are fault tolerant, that is, they are still functional even after several processing 

elements are damaged and become defective, 

• They have the ability to learn by example,  

• They have the ability to simulate the behavior of systems with limited modeling 

effort, and 

• They can provide speedy and reasonably accurate solutions in complex, uncertain, 

and subjective situations. 

3.3.3 Neural Network Analysis of Structural Damage Due to Corrosion 

The need for the maintenance of bridges has been drawing attention in recent years. 

Many bridges require some kinds of repairs, and the number of such bridges is likely 

to grow for at least the foreseeable future. When determining whether or not a 

particular bridge should be repaired, common practice is for a maintenance expert to 

inspect the bridge visually. This method is therefore time consuming, and the 

growing number of bridges requiring attention is making the current approach 

impractical. Under these circumstances, engineers who are not expert in repairing are 

increasingly called upon to judge the repair time. 
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In order to help non specialist engineers to make appropriate decisions on the timing 

of repair, an attempt to develop a practical decision support system for the damage 

assessment of structural corrosion is made. In this system, it is attempted to apply the 

neural network technique for the damage assessment. When there are sufficient 

records of past bridge maintenance, the learning ability of the neural network is 

useful to save the working time and load necessary in the inspection and analysis. 

Further reduction of load time can be achieved by utilizing the technique of image 

processing. Through image processing, one is enabled to assess the damage state of 

structural corrosion automatically and independent of the subjectivity of inspector, or 

engineer.  

3.3.4 Artificial Neural Networks for Predicting the Response of Structural  Systems 

with Viscoelastic Dampers 

The artificial neural networks (ANNs) are emerging as powerful tools for solving 

problems of an iterative nature. Among the various neural network paradigms 

available, many problems of civil engineering are solved using multilayer feed 

forward back-propagation networks. ANN-based methods have been used in 

environmental and water resources engineering, traffic engineering, highway 

engineering, and geotechnical engineering. Application of ANNs for structural 

analysis, design automation, optimization, system identification, condition 

assessment and monitoring, finite-element mesh generation, structural material 

characterization, modeling, and structural control has been reported extensively in 

the literature (Adeli, 2001). 

An attempt has been made to estimate the inelastic demand of the structural systems 

with passive energy dissipators in terms of average peak displacement using a back-

propagation neural network. The methodology to arrive at the base shear and roof 

displacement using the effective damping and effective period predicted by the 

neural network is also illustrated. Predicting the inelastic demand of structural 

systems with dampers is a time-consuming process, which involves several 

iterations. ANN methodology has been effectively tried to quickly predict the 

inelastic demand in terms of peak displacement, effective damping, and effective 

time period. The complete methodology to arrive at the design base shear force and 

roof displacement has been illustrated. The ANN can be effectively used for new 

designs as well as for checking the response of any retrofitted structure for the 
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chosen design spectrum. This network is useful in quickly deciding the amount of 

damping and the number of dampers required to reduce the peak displacement and 

help in restricting further damage. Sensitivity of input parameters could also be 

studied which will help in the selection and proportioning of structural members and 

dampers. 

3.3.5 Modeling Ground Motion Using Neural Networks 

In view of potential shortcomings of analytical modeling and considering the ever 

increasing bulk of information on earthquake-induced ground motions within the 

Valley of Mexico, knowledge-based procedures are being explored to develop 

alternate ways to analyze the response of Mexico City soil deposits. Modeling 

earthquake geotechnical problems by means of Artificial Neural Networks ( ANNs ), 

when these are trained on a comprehensive set of data, is very appealing because 

ANNs are capable of capturing and storing the related-phenomenon knowledge 

directly from the information that originates during the monitoring process. 

The information given above demonstrates that ANNs are able to predict with good 

approximation ground surface responses to seismic events that come from different 

earthquake sources. After a significant number of trials using different combinations 

of input functions, learning rules and transfer functions, combined with one and two 

hidden layers and a variety of processing neurons in each layer, it was found that the 

architecture with general regression learning rule, was the most accurate. 

3.3.6 Analysis Of Soil Water Retention Data Using Artificial Neural Networks 

Several approaches for estimating hydraulic properties have been developed over the 

last three decades (e.g. Husz, 1967; Gupta & Larson, 1979; Vereecken et al., 1989). 

Tietje & Tapkenhinrichs (1993) reviewed and tested the quality of 13 different 

pedotransfer functions (PTFs). One of their conclusions was that PTFs which 

predicted shape parameters such as the Van Genuchten parameters (Van Genuchten, 

1980) were inaccurate. All these studies use regression techniques, either linear or 

non-linear. 

When using regression to predict the water retention characteristics, the relations 

between textural data and hydraulic characteristics need to be described by well-

defined, a priori, regression models, which in general is difficult since these models 

are not known. Neural networks (NNs) do not need such an a priori model. A neural 
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network is an adaptable non-linear data transfer structure that can learn the relations 

between input and output data while being insensitive to measurement noise (Hecht-

Nielsen, 1990). 

Pachepsky et al. (1996) used NNs to estimate points of the water retention curve 

using textural data from 200 samples and compared the results with the outcomes of 

regression. Although the differences were not always significant, NNs performed 

slightly better than regression. Schaap & Bouten (1996) used a neural network to 

predict Van Genuchten's shape parameters for wetting and drying branches of the 

water retention curve of sandy forest soils in the Netherlands. However, in none of 

these studies were the effects of soil structure (i.e. ped-size and shape) considered. 

The effects of soil structure on the hydraulic characteristics become more important 

at small suctions, as has been explained by Durner (1994) in his study on the effect 

of bi-modal pore size distributions on the retentivity and conductivity curve, and by 

Booltink et al. (1993) who quantified the role of soil structure on water flow in 

aggregated clay soils. 

The first objective of this research is to illustrate the method of neural network 

modeling by the development and evaluation of PTFs, emphasizing the combined 

effects of soil textural and structural data (based on available soil data from the 

Netherlands and Scotland). The second objective is to compare the performance of 

the NNs with the previously developed regression-based PTFs, as described by 

Gupta & Larson (1979). 

It has been seen that classical statistical regression techniques require an a priori 

assumption on the model type (e.g. linear, exponential or logarithmic) and that the 

residuals are independent and identically distributed, whereas neural networks do 

not. The avoidance of these a priori assumptions and the organizational structure of 

strongly interconnected nodes make neural networks valuable when non-linear 

relations have to be described, or when data of different types, quantitative as well as 

qualitative, have to be included in the analysis. This study illustrates the procedure 

for predicting points of the water retention curve by the inclusion of soil texture and 

soil structure data.  
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Neural network models performed somewhat better than previously developed 

regression-type transfer functions, although differences were not significant. The 

neural network models were developed and tested for a limited number of soils.  

3.3.7 Neural Network Based Prediction of Ground Surface Settlements due to 

Tunneling 

In this research , a neural network based procedure to predict ground surface 

settlement during tunneling has been proposed. Incorporating a Gaussian normal 

distribution function the settlement profiles collected from various tunnel sites (Seoul 

subway) are analyzed, leading to two representative parameters. These parameters 

are then stored in a database with background tunnel information for training a neural 

network. It has been found that the use of both parameters representing monitored 

raw profile leads to more efficiency in storing as well as in further applications of the 

database.  

Monitored ground surface profiles for a total of ‘113’ monitoring lines have been 

collected to train an optimal neural network chosen and a parametric study has been 

performed herein. It leads to a rational prediction based on past tunnel records using 

pattern recognition and the memorization capability of an ANN. The capabilities 

enable the neural network based prediction to be automatically improved as further 

information is accumulated, without any restriction.  

In conclusion we can say that , this research has introduced artificial intelligence for 

prediction of ground surface settlement based on field data accumulated. However, it 

should be noted that the capabilities of such codes in making accurate predictions, is 

entirely dependent on the quality and the quantity of data used in training ANNs. If 

the data is deficient or training is inadequate, the proposed neural network based 

prediction should be treated with caution. Therefore, the collection and analysis of 

monitored data should be carefully carried out for guaranteed predictions. 

3.3.8 Neural Network Modeling of  water table depth fluctuations 

Recent literature reviews reveal that ANN specifically the feed forward networks, 

have been successfully used for water resources variables modeling and prediction 

[Coulibaly et al., 1999; Maier and Dandy, 2000]. The differences of ANN-based 

modeling approach against the conventional methods are discussed in detail by many 

authors [Connor et al., 1994; Sarle, 1994; Weigend and Gershenfeld, 1994; Suykens 
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et al., 1996] and specifically in hydrological applications by French et al. [1992], 

Karunanithi et al. [1994], Hsu et al. [1995], Tokar and Markus [2000], and Coulibaly 

et al. [2000a]. Furthermore, Hornik et al. [1989] established that a three-layer feed 

forward ANN could be considered as a general nonlinear approximator. The major 

advantage of an ANN is its ability to represent underlying nonlinear dynamics of the 

system modeled without any a priori assumption regarding the processes involved. 

Recently, ANN have been successfully used for modeling complex time-varying 

patterns, such as low frequency climatic oscillations [Coulibaly et al., 2000b]. In the 

aquifer system modeling context, ANN approach has been first used to provide maps 

of conductivity or transmissivity values [Rizzo and Dougherty, 1994; Ranjithan et 

al., 1995] and to predict water retention curves of sandy soils [Schaap and Bouten, 

1996]. Recently, ANN’s have been applied to perform inverse groundwater modeling 

for estimation of different parameters [Morshed and Kaluarachchi, 1998; Lebron et 

al., 1999]. The purpose of this paper is to identify ANN models that can capture the 

complex dynamics of large water table fluctuations, even with relatively short length 

of training (or calibration) data. We specifically focus on temporal neural networks, 

such as the input delay (IDNN) and the recurrent neural network (RNN) that have 

different dynamically driven properties.  

This study has shown that temporal and probabilistic neural networks are effective at 

predicting monthly groundwater level fluctuations in the Gondo aquifer located in 

the Sahel region. A significant advantage of these models is that they can provide 

satisfactory predictions with short groundwater level records, which are a common 

occurrence in countries with scarce instrumentation for groundwater monitoring. The 

prediction results suggest that the RNN can be an effective tool for up to a 3 month 

ahead forecast of the dry season deep water table depths.  

3.4 General Applications in Geotechnical Engineering  

The engineering properties of soil and rock exhibit varied and uncertain behaviour 

due to the complex and imprecise physical processes associated with the formation 

of these materials (Jaksa 1995). This is in contrast to most other civil engineering 

materials, such as steel, concrete and timber, which exhibit far greater homogeneity 

and isotropy. In order to cope with the complexity of geotechnical behaviour, and the 

spatial variability of these materials, traditional forms of engineering design models 
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are justifiably simplified. An alternative approach, which has been shown to have 

some degree of success, is based on the data alone to determine the structure and 

parameters of the model. The ANN is well suited to model complex problems where 

the relationship between the model variables is unknown ( Hubick 1992 ). 

3.4.1 Pile Capacity  

The prediction of the load capacity, particularly those based on pile driving data, has 

been examined by several ANN researchers. Goh (1994a; 1995b) presented a neural 

network to predict the friction capacity of piles in clays. The neural network was 

trained with field data of actual case records. The model inputs were considered to be 

the pile length, the pile diameter, the mean effective stress and the undrained shear 

strength. The skin friction resistance was the only model output. The results obtained 

by utilising the neural network were compared with the results obtained by the 

method of Semple and Rigden (1986) and the â method (Burland 1973 ). 

Goh (1995a; 1996b), soon after, developed another neural network to estimate the 

ultimate load capacity of driven piles in cohesionless soils. In this study, the data 

used were derived from the results of actual load tests on timber, precast concrete 

and steel piles driven into sandy soils. The inputs to the ANN model that were found 

to be more significant were the hammer weight, the hammer drop, the pile length, the 

pile weight, the pile cross sectional area, the pile set, the pile modulus of elasticity 

and the hammer type. The model output was the pile load capacity. When the model 

was examined with the testing set, it was observed that the neural network 

successfully modeled the pile load capacity. By examining the connection weights, it 

was observed that the more important input factors are the pile set, the hammer 

weight and the hammer type. The study compared the results obtained by the neural 

networks with the following common relationships: the Engineering News formula 

(Wellington 1892), the Hiley formula (Hiley 1922) and the Janbu formula (Janbu 

1953). Regression analysis was carried out to obtain the coefficients of correlation of 

predicted versus measured results for neural networks and the traditional methods. 

Table 3.1 summaries the regression analysis results which indicate that the neural 

network predictions of the load capacity of driven piles were found to be better than 

these obtained using the other methods. 
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Table 3.1 : Summary of regression analysis results of pile capacity prediction               

( Goh , 1995 ) 

Coefficient of correlation Method 

Training data Testing data 

Neural network 0,96 0,97 

Engineering news 0,69 0,61 

Hiley 0,48 0,76 

Janbu 0,82 0,89 

3.4.2 Settlement of Foundations  

The design of foundations is generally controlled by the criteria of bearing capacity 

and settlement; the latter often governing. The problem of estimating the settlement 

of foundations is very complex, uncertain and not yet entirely understood. This fact 

encouraged researchers to apply the ANN technique to settlement prediction. Goh 

(1994) developed a neural network for the prediction of settlement of a vertically 

loaded pile foundation in a homogeneous soil stratum. The input variables for the 

proposed neural network consisted of the ratio of the elastic modulus of the pile to 

the shear modulus of the soil, pile length, pile load, shear modulus of the soil, 

Poisson’s ratio of the soil and radius of the pile. The output variable was the pile 

settlement. The desired output that was used for the ANN model training was 

obtained by means of finite element and integral equation analyses developed by 

Randolph and Wroth (1978). 

 A comparison of the theoretical and predicted settlements for the training and testing 

sets is given in Figure 13. The results in Figure 3.13 show that the neural network 

was able to successfully model the settlement of pile foundations. 
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Figure 3.13 : Comparison Of Theoretical Settlement And Neural network 

Prediciton ( Goh , 1994 ) 

Also , Sivakugan et al. (1998) explored the possibility of using neural networks to 

predict the settlement of shallow foundations on granular soils. A neural network was 

trained with five inputs representing the net applied pressure, average blow count 

from the standard penetration test, width of foundation, shape of foundation and 

depth of foundation. The output was the settlement of the foundation. The results 

obtained by the neural network were compared with methods proposed by Terzaghi 

and Peck (1967) and Schmertmann (1970). Based on the results obtained, it was 

shown that the traditional method of Terzaghi and Peck and Schmertmann’s method 

overestimate the settlements by about 2.18 times and 3.39 times respectively as 

shown in Figure 3.14. In contrast, the predictions using the ANN model were good 

(Figure 3.15). 
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Figure 3.14 : Settlement Predicted using Traditional methods                                          

( Sivakugan et al.1998 ) 

 

Figure 3.15 : Settlement Prediction Using Artificial Neural Network                                    

( Sivakugan et al.1998 ) 

Most recently, Shahin et al. (2000) carried out similar work for predicting the 

settlement of shallow foundations on cohesionless soils. In this work, 272 data 
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records were used for modeling. The input variables considered to have the most 

significant impact on settlement prediction were the footing width, the footing 

length, the applied pressure of the footing and the soil compressibility. The results of 

the ANN were compared with three of the most commonly used traditional methods. 

These methods were Meyerhof (1965), Schultze and Sherif (1973) and Schmertmann 

et al. (1978). The results of the study confirmed those found by Sivakugan et al. 

(1998), in the sense that ANNs were able to predict the settlement well and 

outperform the traditional methods. As shown in Table 3.2, the ANN produced high 

coefficients of correlation, r, low root mean squared errors ( RMSE ) and low mean 

absolute errors, ( MAE ) compared with the other methods. 

Table 3.2 : Comparison of predicted vs measured settlements ( Shahin et al. 2000 ) 

Category ANN Meyerhof 

(1965 ) 

Schultze & 

Sherif 

(1973) 

Schmertmann 

et al. (1978) 

Correlation , r 0,99 0,33 0,86 0,70 

RMSE (mm.) 3,9 27,0 23,8 45,2 

MAE (mm.) 2,6 20,8 11,1 29,5 

3.4.3 Soil Properties and Behaviour  

Soil properties and behaviour is an area that has attracted many researchers to 

modeling using ANNs. Developing engineering correlations between various soil 

parameters is an issue discussed by Goh (1995a; 1995c). Goh used neural networks 

to model the correlation between the relative density and the cone resistance from 

cone penetration test (CPT), for both normally consolidated and over-consolidated 

sands. Laboratory data, based on calibration chamber tests, were used to successfully 

train and test the neural network model. The neural network model used the relative 

density and the mean effective stress of soils as inputs and the CPT cone resistance 

as a single output. The ANN model was found to give high coefficients of correlation 

of 0.97 and 0.91 for the training and testing data, respectively, which indicated that 

the neural network was successful in modeling the non-linear relationship between 

the CPT cone resistance and the other parameters.  
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Ellis et al. (1995) developed an ANN model for sands based on grain size 

distribution and stress history. Sidarta and Ghaboussi (1998) employed an ANN 

model within a finite element analysis to extract the geometerial constitutive 

behaviour from non-uniform material tests. Penumadu and Jean-Lou (1997) used 

NNs for representing the behaviour of sand and clay soils. Ghaboussi and Sidarta 

(1998) used NNs to model both the drained and undrained behaviour of sandy soil 

subjected to triaxial compression-type testing. Penumadu and Zhao (1999) also used 

ANNs to model the stress-strain and volume change behaviour of sand and gravel 

under drained triaxial compression test conditions. Zhu et al. (1998a; 1998b) used 

neural networks for modeling the shearing behaviour of a fine-grained residual soil, 

dune sand and Hawaiian volcanic soil. Cal (1995) used a neural network model to 

generate a quantitative soil classification from three main factors (plastic index, 

liquid limit and clay content). Najjar et al. (1996a) showed that neural network-based 

models can be used to accurately assess soil swelling, and that neural network 

models can provide significant improvements in prediction accuracy over statistical 

models. Romero and Pamukcu (1996) showed that neural networks are able to 

effectively characterize and estimate the shear modulus of granular materials. 

Agrawal et al. (1994); Gribb and Gribb (1994) and Najjar and Basheer (1996b) all 

used neural network approaches for estimating the permeability of clay liners. 

Basheer and Najjar (1995) and Najjar et al. (1996b) presented neural network 

approaches for soil compaction. 

Other applications include modeling the mechanical behaviour of medium-to-fine 

sand (Ellis et al. 1992), modeling rate-dependent behaviour of clay soils (Penumadu 

et al. (1994), simulating the uniaxial stress-strain constitutive behaviour of fine-

grained soils under both monotonic and cyclic loading (Basheer 1998; Basheer and 

Najjar 1998), characterizing the undrained stress-strain response of Nevada sand 

subjected to both triaxial compression and extension stress paths (Najjar and Ali 

1999; Najjar et al. 1999), predicting the axial and volumetric stress-strain behaviour 

of sand during loading, unloading and reloading (Zhu and Zaman 1997), predicting 

the anisotropic stiffness of granular materials from standard repeated load triaxial 

tests (Tutumluer and Seyhan 1998). 
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3.4.4 Liquefaction  

Liquefaction is a phenomenon which occurs mainly in loose and saturated sands as a 

result of earthquakes. It causes the soil to lose its shear strength due to an increase in 

pore water pressure, often resulting in large amounts of damage to most civil 

engineering structures. Determination of liquefaction potential due to earthquakes is 

a complex geotechnical engineering problem. Goh (1994b) used neural networks to 

model the complex relationship between seismic and soil parameters in order to 

investigate liquefaction potential. The neural network used in this work was trained 

using case records from 13 earthquakes that occurred in Japan, United States and 

Pan-America during the period 1891–1980. The study used eight input variables and 

only one output variable. The input variables were the SPT-value, the fines content, 

the mean grain size, the total stress, the effective stress, the equivalent dynamic shear 

stress, the earthquake magnitude and the maximum horizontal acceleration at ground 

surface. The output was assigned a binary value of 1, for sites with extensive or 

moderate liquefaction, and a value of 0 for marginal or no liquefaction. The results 

obtained by the neural network model were compared with the method of Seed et al. 

(1985). The study showed that the neural network gave correct predictions in 95% of 

cases, whereas Seed et al. (1985) gave a success rate of 84%. Goh (1996a) also used 

neural networks to assess liquefaction potential from cone penetration test (CPT) 

resistance data. The data records were taken for sites of sand and silty sand deposits 

in Japan, China, United States and Romania, representing five earthquakes that 

occurred during the period 1964–1983. A similar neural network modeling strategy, 

as used in Goh (1994b), was used for this study and the results were compared with 

the method of Shibata and Teparaksa (1988). The neural network showed a 94% 

success rate, which is equivalent to the same number of error predictions as the 

conventional method by Shibata and Teparaksa (1988). 

Two other works (Najjar and Ali 1998; Ural and Saka 1998) also used CPT data to 

evaluate soil liquefaction potential and resistance. Najjar and Ali (1998) used neural 

networks to characterize the soil liquefaction resistance utilizing field data sets 

representing various earthquake sites from around the world. The ANN model that 

was developed in this work was generated to produce a liquefaction potential 

assessment chart that could be used by geotechnical engineers in liquefaction 

assessment tasks. Ural and Saka (1998) used neural networks to analyze liquefaction. 
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Comparison between this approach and a simplified liquefaction procedure indicated 

a similar rate of success for the neural network approach as the conventional 

approach. 

Other applications of ANNs for liquefaction prediction include the prediction of 

liquefaction resistance and potential (Juang and Chen 1999), investigation of the 

accuracy of liquefaction prediction of ANNs compared with fuzzy logic and 

statistical approaches (Ali and Najjar 1998) and assessment of liquefaction potential 

using standard penetration test results (Agrawal et al. 1997). 

3.4.5 Site Characterization  

Site characterization is an area concerned with the analysis and interpretation of 

geotechnical site investigation data. Zhou and Wu (1994) used a neural network 

model to characterize the spatial distribution of rockhead elevations. The data used to 

train the model were taken from seismic refraction surveys on more than 11 km of 

transverse lines. The network used the spatial position (x- and y-coordinate) and the 

surface elevation as inputs, and was used to estimate the rockhead elevation at that 

location as the output. The trained network was tested to estimate the rockhead 

elevations for all locations within the area of investigation by producing a contour 

map. Results from the neural network model compared well with similar contour 

maps, with the additional benefit that neural networks do not make assumptions or 

simplify spatial variations. 

A similar application relevant to ground water characterization was described by 

Basheer et al. (1996). Basheer et al. (1996) indicated that neural networks can be 

used to map and logically predict the variation of soil permeability in order to 

identify landfill boundaries and construct a waste landfill. Rizzo et al. (1996) 

presented a new site characterization method called SCANN (Site Characterization 

using Artificial Neural Networks) that is based on the use of neural networks to map 

discrete spatially-distributed fields. 

3.4.6 Earth Retaining Structures  

Goh et al. (1995) developed a neural network model to provide initial estimates of 

maximum wall deflections for braced excavations in soft clay. The neural network 

was used to synthesis data derived from finite element studies on braced excavations 

in clay. The input parameters used in the model were the excavation width, soil 
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thickness/excavation width ratio, wall stiffness, height of excavation, soil undrained 

shear strength, undrained soil modulus/shear strength ratio and soil unit weight. The 

maximum wall deflection was the only output. Using regression analysis, the scatter 

of the predicted neural network deflections relative to the deflections obtained using 

the finite element method were assessed. The results produced high coefficients of 

correlation for the training and testing data of 0.984 and 0.967, respectively. Some 

additional testing data from actual case records were also used to confirm the 

performance of the trained neural network model. The study intended to use the 

neural network model as a time-saving and user-friendly alternative to the finite 

element method. 

3.4.7 Tunnels and Underground Openings  

Shi et al. (1998) presented a study of neural networks for predicting settlements of 

tunnels. A general NN model was trained and tested using data from the 6.5 km 

Brasilia Tunnel, Brazil. The study identified many factors to be used as the model 

inputs and three settlement parameters as the model outputs. The input parameters 

were the length of excavation from drive start, the depth of soil cover above tunnel 

crown, the area of tunnel section, the delay for closing invert, the water level depth, 

the rate of advance of excavation, the construction method, the mean blow count 

from standard penetration test at tunnel crown level, the tunnel spring-line level and 

the tunnel inverted arch level. The three output parameters were the settlement at the 

face passage, the settlement at the invert closing and the final settlement after 

stabilization. The results showed that the NN model could not achieve a high level of 

accuracy. To improve the prediction accuracy, the study proposed a modular NN 

model based on the concept of integrating multiple neural network modules in one 

system, with each module being constrained to operate at one specific situation of a 

complicated real world problem. The modular concept showed an improvement in 

terms of model convergence and prediction. The capability to improve the models 

developed in this work was later extended by Shi (2000) by applying input data 

transformation. This extended study indicated that distribution transformation of the 

input variables reduced the prediction error by more than 13%. 
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4. NEURAL NETWORK APPROACHES FOR SLOPE STABILITY  

4.1 Introduction 

In this chapter, application of neural networks for slope stability is discussed. There 

are 5 models introduced for neural network approaches. Model 1 and 2 are Back-

Propagation Neural Network (BPNN) approaches, and model 3, 4, 5 are General 

Regression Neural Network (GRNN) approaches. Data and case studies are given for 

Neural Network (NN). Factor of safety and seismic coefficients will be examined by 

NN approaches which are the BPNN and GRNN approaches. Values are obtained 

from a doctorate thesis ( Cao , 2002 ). These values will be used in NN approaches. 

Neural Network parameters and case study are given in section 4.2. 

4.2 Input Parameters Information 

In this study, there are nine data parameter important for factor of safety, that are 

presented for NN approaches. All data parameters are given below. 

1 - H ( m. ) :  The height of slope,                                    

2- Hw ( m. ) : The height of water level,           

3- Hb ( m. ) : The distance of firm base,                

4- γ ( kN/m3 ) : The unit weight of soil,                  

5- β ( deg. ) : The inclination of slope,                 

6- c ( kPa. ) : The cohesion of soil,             

7- φ  ( deg. ) : The friction angle of soil,                          

8- kh : Horizontal seismic coefficient ,              

9- kv : Vertical seismic coefficient,              

10- F.S. : Factor of Safety ( with Bishop’s method ) 
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There were 170 data patterns for Neural Network approaches (Given in Appendix A) 

and the input – output values range for Neural Network is given below in Figure 4.1. 

To see the common effects of parameters the slope profile has taken only one soil 

layer and its parameters. 

 

Figure 4.1 : Basic Slope Profile and Slope Parameters 

First of all we have to define the output and input parameters in the program , then 

we define the values range. So the program will use min, max, mean values while the 

program is learning the model. This input and output values range table is given 

below in Table 4.1. 

Table 4.1 : Input and output values range for Neural Network 
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Variable Name H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) 
Variable Type I I I I I 
Min 3,65 0,0 0,00 11 9,00 
Max 214,00 45,0 164,00 71 28,44 
Mean 23,95 2,0 6,00 29 19,08 
Std. Deviation 30,10 6,2 22,90 10 2,69 
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Variable Name c ( kPa ) Φ ( deg. ) kh kv F.S. 
Variable Type I I I I A 
Min 0,0 0,000 0,035 0,050 0,620 
Max 150,0 45,0 0,510 0,250 2,150 
Mean 15,3 23,1 0,273 0,146 1,190 
Std. Deviation 20,0 9,5 0,138 0,071 0,335 
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I is input value and A is actual output value in Table 4.1. We define which 

parameters are input and output so these parameters used in the model as we defined. 

4.3 Analysis 

Analysis results are presented in output tables, error through pattern graphics. r2, 

defined in Neuroshell2, is a statistical indicator usually applied to multiple regression 

analysis. It compares the accuracy of the model to the accuracy of a trivial 

benchmark model, and the prediction is just the mean of all of the samples. A perfect 

fit would result in an r squared value of 1, a very good fit near 1, and a very poor fit 

near 0. The formula that Neuroshell2 uses is defined as the following: 

YYSS

SSE
r −= 12

       Where                                                                                          (4.1) 

2)(∑ −= yySSE
)

                                                                                                                                                     (4.2) 
2)(∑ −= yySSYY                                                                                                                   (4.3) 

Where y is the actual value, yˆ is the predicted value of y, and y  is the mean of the y 

values. 

4.3.1 BPNN approaches 

4.3.1.1 Model 1 

In Table 4.2, training calibration for model 1 is given. Architecture is 3 hidden slabs, 

and different activation functions used in tihs model. Activation function is linear 

function. Pattern selection is rotational, not random from 145 pattern processed for 

training. 

Table 4.2 : Model 1 approach for training 

Architecture 3 hidden slabs , different activation function 

% Test Set 
Extraction 

15 

# of Hidden Layer 2 

# of Neurons In 
One Hidden Layer 

18 

Learning Rate 0,2 

Momentum Factor 0,6 

Initial weight 0,3 
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Calibration 
Interval 

400 

Scale Function Linear [ -1,1 ] 

Missing Values Error Condition 

Pattern Selection Rotation 

Pattern Processed 170 

As it is seen from Table 4.3 the most important parameter is the height of slope but 

after the height parameter the seismic coefficients are coming. So for model 1 the 

earthquake effect on slope can be seen. 

Table 4.3 : The contribution factors for Model 1 

Parameters 
The 

Contribution 
Function 

Orders of The 
Contribution Function 

H ( m. ) 0,27667 1 
kh 0,10485 2 
kv 0,10008 3 

Hw ( m. ) 0,09826 4 
Hb ( m. ) 0,09587 5 

γ ( kN/m3 ) 0,08857 6 
β ( deg. ) 0,08404 7 
c ( kPa ) 0,07862 8 

Φ ( deg. ) 0,07305 9 

After we made approximately 100 model approaches  we get the results from Model 

1 analysis. From these results as we can see from Table 4.4 our success rate is          

% 79,31 and the correlation coefficient is 0,8912.  

Table 4.4 : The results of Model 1 

R squared: 0,7931 

r squared: 0,7943 

Mean squared error: 0,023 

Mean absolute error: 0,109 

Min. absolute error: 0 

Max. absolute error: 0,667 

Correlation coefficient r: 0,8912 

r2 value is best fit correlation coefficient from Excel and same value from that 

Neuroshell2 ‘ s r2. This show that the process which has been performed is correct. 
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The black line is best fit line and green lines are 20% error limits is taken from bestfit 

line. In Figure 4.1, 20% error limit means that when the difference the target output 

the network result is greater than 20% green lines, the network is considered as an 

incorrectsimulation (Bayrak, 2004). According to this assumption, if the error graphs 

of each mode is considered and this best network gives 10 incorrect simulations, out 

of 170 data set for model 1. The error percentage 5.88 % which correspond to a 

success percentage is 94.12 % for this simulation shown in Figure 4.2. 

 

Figure 4.2 : Actual – Network output scatter for Model 1 and error limits 

There are 24 incorrect simulations this means simulation success percentages 85 % 

according to Figure 4.3. 

 

Figure 4.3 : Variables error through pattern and error limits for model 1 
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Figure 4.4 : Test set error graph for Model 1 

There are not so many big peaks and graph is decreased also after 0.05 graph is 

generally constant in Figure 4.4, this means that over-learning did not occur.  

A piece of model 1 outputs are given below in table 4.5 and all of the datas are given 

in Appendix B. In Table 4.5 the Actual (1) is the factor of safety values that we 

define , the network (1) is the simulation results of factor of safety and Act-Net (1) is 

the difference between Actual (1) – Network (1). We can see how the model success 

by looking Act-net (1) values then we can accept it successful. 

Table 4.5 : A pieces of Model 1 output table 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,2958 0,0242 
0,9400 0,8895 0,0505 
0,9700 0,9517 0,0183 
1,6100 1,8270 -0,2170 
1,6400 1,6866 -0,0466 
1,3500 1,3435 0,0065 
1,2700 1,0988 0,1712 
1,0600 1,1224 -0,0624 
1,5500 1,1839 0,3661 
1,4000 1,3054 0,0946 
1,1800 1,1452 0,0348 
1,3100 1,2206 0,0894 
0,7500 0,7897 -0,0397 
0,8000 0,8660 -0,0660 
0,7700 0,8582 -0,0882 
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This model has % 80 success percentage but Back Propagation Neural Network is 

not an appropriate method for evaluation of Slope Stability and the Seismic 

coefficients effects. 

4.3.1.2 Model 2 

There are certain differences between Model 2 from Model 1.Pattern extraction is 

same 15% in Model 2 but momentum factor is 0.7 and calibration interval is 600 in 

Model 2. These training model approach differences are given in Table 4.6. 

Table 4.6 : Model 2 approach for training 

Architecture 
3 hidden slabs , different activation 

function 

% Test Set Extraction 15 

# of Hidden Layer 2 

# of Neurons In One 
Hidden Layer 

18 

Learning Rate 0,2 

Momentum Factor 0,7 

Initial weight 0,3 

Calibration Interval 600 

Scale Function Linear << -1,1 >> 

Missing Values Error Condition 

Pattern Selection Rotation 

Pattern Processed 170 

As it is seen from Table 4.7 the most important parameter is the height of slope but 

after the height parameter  the seismic coefficients are coming. So like model 1 in 

this  model 2 the earthquake effect on slope can be seen. 
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Table 4.7 : The contribution factors for Model 2 

Parameters The Contribution Function 
Orders of The 

Cont.Func. 
H ( m. ) 0,27258 1 

kh 0,10545 2 
kv 0,10157 3 

Hw ( m. ) 0,09792 4 
Hb ( m. ) 0,09673 5 

γ ( kN/m3 ) 0,08959 6 

β ( deg. ) 0,08754 7 
c ( kPa ) 0,07771 8 

Φ ( deg. ) 0,07091 9 

After we made approximately 100 model approaches  we get the results from Model 

2. From these results as we can see from Table 4.8 our success rate is % 80,30 and 

the correlation coefficient is 0,8974 .  

Table 4.8 : The results of Model 

R squared: 0,8030 

r squared: 0,8053 

Mean squared error: 0,022 

Mean absolute error: 0,106 

Min. absolute error: 0,002 

Max. absolute error: 0,594 

Correlation coefficient r: 0,8974 

There are 20 incorrect simulations in Figure 4.5, and the simulation success 

percentage is 88 %. 

 

Figure 4.5 : Actual-Network output scatter for Model 2 and error limits 
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There are 25 incorrect simulations this means simulation success percentages 85 % 

according to Figure 4.6. 

 

Figure 4.6 : Variables error through pattern and error limits for model 2 

As it is seen from Figure 4.7 over-learning occurred with local peaks but generally 

graph is decreased after the local peaks. This model has the challenge same model 1.  

 

Figure 4.7 : Test set error graph for Model 2 
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4.3.2 GRNN approaches 

4.3.2.1 Model 3 

In Table 4.9, the GRNN architecture properties are shown for Model 3. The GRNN 

method differs from BPNN methods by the existence of smoothing factors. On the 

other hand, there are no learning rate, momentum factor, and initial weights in the 

GRNN method. Extraction for training is 20%. There are 136 patterns for training 

and 34 patterns for test patterns. Genetic breeding pool size can be taken values 20, 

50, 75, 100, 200, 300 respectively for Neuroshell2. In this model genetic pool size is 

taken 200. Missing values is taken error conditions. It should be noted that 

smoothing factor is taken values in a range from 0 to 1 (0<smoothing factor<1). 

Table 4.9 : The architecture and the configuration of the Model  

 

 

 

 

 

 

 

 

 

 

 

All the network parameters and the smoothing factors defined by program and given 

in Table 4.10. As it is seen from Table 4.10 the most important parameter is the unit 

weight of soil but after the unit weight of soil parameter  the height and the water 

level come. The seismic coefficients are coming after these parameters. So in    

model 3  the earthquake effect can be seen after these 3 parameters. 

 

 

Smoothing Factor 0,01821 

Activation Function linear [ 0,1 ] 

Distance Metric City Block 

Calibraiton Genetic , Adaptive 

Missing Values Error condition 

Genetic Breeding Pool Size 200 

% Test Set Extraction 20 

Number of Inputs 9 

Number of Outputs 1 

Number of Training 
Patterns 

136 

Number of Test Pattern 34 

Pattern Processed 170 
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Table 4.10 : Individual smoothing factors for Model 3 

Network type:  GRNN, genetic adaptive 

Problem name: C:\NSHELL2\GRNN-1\GRNN-1 

Number of inputs: 9 

Number of outputs: 1 

Number of training patterns: 136 

Number of test patterns: 34 

current best smoothing factor: 0,0721176 

smoothing test generations: 85 

last mean squared error: 0,028048 

minimum mean squared error: 0,027964 
generations since min. ms. 
error: 20 

Input name 
Individual 

smoothing factor 
Orders 

γ ( kN/m3 ) 3,0000 1 
H ( m. ) 1,9412 2 
Hw ( m. ) 1,2000 3 
kh 0,7177 4 
Hb ( m. ) 0,6118 5 
kv 0,3059 6 
c ( kPa ) 0,1059 7 
Φ ( deg. ) 0,0235 8 

β ( deg. ) 0,0118 9 

After we made approximately 216 model approaches  we get the results from Model 

3. From these results as we can see from Table 4.11 our success rate is % 90,29 and 

the correlation coefficient is 0,9505 .  

Table 4.11 : The results of Model 3 

R squared: 0,9029 

r squared: 0,9034 

Mean squared error: 0,011 

Mean absolute error: 0,038 

Min. absolute error: 0 

Max. absolute error: 0,510 

Correlation coefficient r: 0,9505 



 79 

There are 10 incorrect simulations in Figure 4.8 and the simulation success 

percentage is 94.11 %. 

 

Figure 4.8 : Actual-Network output scatter for model 3 and error limits 

There are 10 incorrect simulations in Figure 4.9, and the simulation success 

percentage is 94.11%. 

 

Figure 4.9 : Variables error through pattern  and error limits for model 3 

As it is seen from Figure 4.10 over-learning did not occur and the error gradually 

decreases. 
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Figure 4.10 : Test set error graph for model 3 

4.3.2.2 Model 4 

In model 4, activation function , distance metric and genetic breeding pool size are 

different from model 3 architecture. Genetic breeding pool size is 50, distance metric 

is vanilla and activation function is tanh. All the factors for Model 4 is given in Table 

4.12. 

Table 4.12 : The architecture and the configuration of the Model 4 

Smoothing Factor 0,2196471 

Activation Function tanh 

Distance Metric Vanilla 

Calibraiton Genetic , Adaptive 

Missing Values Average Values 

Genetic Breeding Pool Size 50 

% Test Set Extraction 15 

Number of Inputs 9 

Number of Outputs 1 

Number of Training 
Patterns 

145 

Number of Test Pattern 25 

Pattern Processed 170 
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All the network parameters and the smoothing factors defined by program and given 

in Table 4.13. As it is seen from Table 4.13 the most important parameter is the 

cohesion of soil but after the cohesion of soil parameter the inclination of slope 

come. The seismic coefficients are coming after these parameters. So in model 4  the 

earthquake effect can be seen after these 4 parameters. If we compare model 4 

between other models the seismic coefficient effect in model 4 is less than others. 

Table 4.13 : Individual smoothing factors for Model 4 

Network type:  GRNN, genetic adaptive 

Problem name: C:\NSHELL2\GRNN-2\GRNN-2 

Number of inputs: 9 

Number of outputs: 1 

Number of training patterns: 145 

Number of test patterns: 25 

current best smoothing factor: 0,2196471 

smoothing test generations: 66 

last mean squared error: 0,021763 

minimum mean squared error: 0,021742 
generations since min. ms. 
error: 20 

Input name 
Individual 

smoothing factor Orders 

c ( kPa ) 3,00000 1 

β ( deg. ) 2,02353 2 

Φ ( deg. ) 1,57647 3 

Hb ( m. ) 1,41176 4 

kh 1,23529 5 

kv 0,78824 6 

H ( m. ) 0,50588 7 

Hw ( m. ) 0,30588 8 

γ ( kN/m3 ) 0,03529 9 

After making approximately 216 model approaches  we get the results from Model 4. 

From these results as we can see from Table 4.14 our success rate is % 91,37 and the 

correlation coefficient is 0,9570.  
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Table 4.14 : The results of the Model 4 

R squared: 0,9137 

r squared: 0,9158 

Mean squared error: 0,010 

Mean absolute error: 0,040 

Min. absolute error: 0 

Max. absolute error: 0,510 

Correlation coefficient r: 0,9570 

There are 9 incorrect simulation in Figure 4.11, and the success simulation 

percentage is 94.70%. 

 

Figure 4.11 : Actual-Network output scatter for model 4 and error limits 

There are 10 incorrect simulations in Figure 4.12, and the success simulation 

percentage is 94.11%. 
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Figure 4.12 : Variables error through pattern and error limits for Model 4 

As it is seen from Figure 4.13 over-learning did not occurr. Graph is close to 0,025 

that means error is very little. 

 

Figure 4.13 : Test set error graph for model 4 

4.3.2.3 Model 5 

Model 4 activation function is also different fom Model 3 and Model 4 activation 

function. This model’s activation function is linear [-1,1]. Model 5 have the same 

extraction at 20% like Model 4. Number of training patterns are 145 patterns and 

number of test patterns are 25patterns like Model 4. Genetic breeding pool size is 

100 in Table 4.15. 
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Table 4.15 : The architecture and the configuration of the Model 5 

Smoothing Factor 0,11201 

Activation Function Linear [ -1,1 ] 

Distance Metric Vanilla 

Calibraiton Genetic , Adaptive 

Missing Values Error Condition 

Genetic Breeding Pool Size 100 

% Test Set Extraction 15 

Number of Inputs 9 

Number of Outputs 1 

Number of Training 
Patterns 

145 

Number of Test Pattern 25 

Pattern Processed 170 

All the network parameters and the smoothing factors for Model 5 defined by 

program and given in Table 4.16. As it is seen from Table 4.16 the most important 

parameter is the cohesion of soil but after the cohesion of soil parameter, the 

inclination of slope come. The seismic coefficients are coming after these 

parameters. So in model 5  the earthquake effect can be seen after these 4 parameters. 

If we compare model 5 between other models the seismic coefficient effect in model 

5 is less than others. 

Table 4.16 : Individual Smoothing Factors for Model 5 

Network type:  GRNN, genetic adaptive 

Problem name: C:\NSHELL2\GRNN-3\GRNN-3 

Number of inputs: 9 

Number of outputs: 1 

Number of training patterns: 145 

Number of test patterns: 25 

current best smoothing factor: 0,1458824 

smoothing test generations: 58 

last mean squared error: 0,020391 

minimum mean squared error: 0,020346 

generations since min. ms. error: 20 
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Input name 
Individual 

smoothing factor 
Orders 

c ( kPa ) 2,97647 1 

β ( deg. ) 2,14118 2 

Hb ( m. ) 1,61176 3 

Φ ( deg. ) 0,90588 4 

kh 0,72941 5 

H ( m. ) 0,71765 6 

kv 0,49412 7 

γ ( kN/m3 ) 0,45882 8 

Hw ( m. ) 0,36471 9 

After making approximately 216 model approaches  we get the results from Model 5. 

From these results as we can see from Table 4.17 our success rate is % 92,25 and the 

correlation coefficient is 0,9618 .  

Table 4.17 : The results of the Model 5 

R squared: 0,9225 

r squared: 0,9250 

Mean squared error: 0,009 

Mean absolute error: 0,036 

Min. absolute error: 0 

Max. absolute error: 0,510 

Correlation coefficient r: 0,9618 

There are 6 incorrect simulation.Simulation success percentage is 96.47% as 

depicted in Figure 4.14. 

 

Figure 4.14 : Actual-Network output scatter for Model 5 and error limits 
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There are 8 incorrect simulations in Figure 4.15, and the success simulation 

percentage is 95,29 %. 

 

Figure 4.15 : Variables error through pattern and error limits for Model 5 

As it is seen from Figure 4.16 over-learning did not occurr and graph is close to 

0,015 that means error is very little. 

 

Figure 4.16 : Test set error graph for model 5 
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5. RESULTS 

To reach the best results, different configurations and architectures are trained. In 

chapter 4, the best configurations, architectures, and error graphs for BPNN and 

GRNN approaches are presented. In this chapter, all models results are evaluated. 

Model 1 and Model 2 approach architectures are given in Table 5.1. 

Table 5.1 : Model 1 and Model 2 approach configurations and architecture 

  MODEL 1 MODEL 2 

Architecture 

3 hidden slabs , 
different 

activation 
function 

3 hidden slabs , 
different 
activation 
function 

% Test Set 
Extraction 

15 15 

# of Hidden Layer 2 2 
# of Neurons In One 

Hidden Layer 
18 18 

Learning Rate 0 0,2 
Momentum Factor 0,6 0,7 

Initial weight 0 0,3 
Calibration Interval 400 600 

Scale Function Linear [ -1,1 ] Linear << -1,1 >> 
Missing Values Error Condition Error Condition 

Pattern Selection Rotation Rotation 
Pattern Processed 170 170 

There are not a different extraction percentage for each other for training. Model’s 

extraction percentage is 15%. Momentum factors are differ from each other. 0.6, 0.7 

are momentum factors for model 1 and model 2, respectively. In Addition, there is a 

different calibration interval for Model 1 and Model 2 in Table 5.1.As in Table 5.2, 

Model 2 results are better compared to Model 1. If we look at the success rate of 

Model 1  and Model 2 in Table 5.2, we can say that there are not too much 

difference. 
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Table 5.2 : Output R2 values for Model 1 and 2 

  
R 

squared: r squared: 

Model 1 0,7931 0,7943 

Model 2 0,803 0,8053 

The Model 1 calibration interval is 400, and error graph is quite good, however 

Model 2 calibration interval is 600 and error graph is not acceptable. In Model 2, 

there are several local over-learning points. In summary, increasing calibration 

interval could lead to over-learning situations for BPNN approaches. This can be 

seen from Figure 5.1 and 5.2. 

 

Figure 5.1 : Test set error graph for Model 1 

 

Figure 5.2 : Test set error graph for Model 2 
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As seen in Table 5.3, the first five of contribution factors of Model 1 and Model 2 are 

the same parameters in output. This shows that results are generally meaningful for 

evaluation of contribution factors for BPNN approaches. 

Table 5.3 : The first five contribution factors for Model 1 and Model 2 

Order Model 1 Model 2 

1 H (m.) H  m.) 

2 kh kh 

3 kv kv 

4 Hw (m.) Hw (m.) 

5 Hb (m.) Hb (m.) 

In this GRNN approaches, all models results are evaluated. Model 3, Model 4 and 

Model 5 approach architectures are given in Table 5.4. 

Table 5.4 : The architecture and the configuration of Models 3, 4 and 5 

  MODEL 3 MODEL 4 MODEL 5 
Smoothing Factor 0,01821 0,2196471 0,11201 

Activation Function linear [ 0,1 ] tanh Linear [ -1,1 ] 

Distance Metric City Block Vanilla Vanilla 

Calibraiton Genetic , 
Adaptive 

Genetic , 
Adaptive 

Genetic , 
Adaptive 

Missing Values Error condition Average Values Error Condition 

Genetic Breeding Pool 
Size 

200 50 100 

% Test Set Extraction 20 15 15 

Number of Inputs 9 9 9 

Number of Outputs 1 1 1 

Number of Training 
Patterns 

136 145 145 

Number of Test Pattern 34 25 25 

Pattern Processed 170 170 170 

If we look at the success rate of Model 3 , Model 4  and Model 5 in Table 5.5, we 

can say that Model 5 is the best approach for slope stability. 

Table 5.5 : Output R2 values for Model 3, 4, and 5 

  R squared: r squared: 
Model 3 0,9029 0,9034 
Model 4 0,9137 0,9158 

Model 5 0,9225 0,9250 
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The activation function “ Linear [ -1,1 ] ” gives better results compared to                    

“Linear [ 0 , 1 ]” for the GRNN models in Table 5.5. In Model 3 and Model 5 all 

configuration parameters are the same, except activation function and genetic 

breeding pool size. For GRNN approaches, when activation function changes and 

genetic breeding pool size decreases, success ratio gets better as seen in Table 5.5. 

The architecture and the configuration of the Model 3, 4 and 5 are given in Table 5.4. 

As seen in Table 5.6, the first five parameters are generally same in Model 3 and 5, 

however they have different activation functions. 

Table 5.6 : The first five of sensitivity factors for Models 3, 4, and 5 

Order Model 3 Model 4 Model 5 

1 β ( deg. ) c ( kPa ) c ( kPa ) 

2 H ( m. ) β ( deg. ) β ( deg. ) 

3 Hw ( m. ) Φ ( deg. ) H ( m. ) 

4 kh H ( m. ) Φ ( deg. ) 

5 Hb ( m. ) kh kh 

Results are meaningful for individual smoothing parameters. But model 3 gives 

different parameters from other models because of its genetic breeding pool size is 

larger than other models. ( Figure 5.3, Figure 5.4 and Figure 5.5 ) 

 

Figure 5.3 : Test set error graph for model 3 
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Figure 5.4 : Test set error graph for model 4 

 

Figure 5.5 : Test set error graph for Model 5 

From model 3 through model 5, test set error decreases. The best model number 5 

has the smallest test set error value. This shows that test set improves with different 

calibrations. The smallest values are approximately 0.25 for model 3, 0.015 for 

model 4, 0.01 for model 5. On the contrary like this comparison is not made for 

BPNN. All the simulation success rates are given in Table 5.7. 

 

 

 

 



 92 

Table 5.7 : Simulation success rates for each model 

Model 1 (R squared) 0,7943 

Model 1 ( Number of incorrect 
simulations ) 

24 

B
P

N
N

 

Model 1  ( Simulation success rate % ) 85,88 

Model 2 (R squared) 0,8053 
Model 2 ( Number of incorrect 
simulations ) 

20 

B
P

N
N

 

Model 2  ( Simulation success rate % ) 88,24 

Model 3 (R squared) 0,9034 
Model 3 ( Number of incorrect 
simulations ) 

10 

G
R

N
N

 

Model 3  ( Simulation success rate % ) 94,11 

Model 4 (R squared) 0,9158 
Model 4 ( Number of incorrect 
simulations ) 

10 

G
R

N
N

 

Model 4  ( Simulation success rate % ) 94,11 

Model 5 (R squared) 0,9250 
Model 5 ( Number of incorrect 
simulations ) 

6 

G
R

N
N

 

Model 5  ( Simulation success rate % ) 96,47 

Model 1 and 2 are Back-Propagation Neural Network (BPNN) approaches, and 

model 3, 4, 5 are General Regression Neural Network (GRNN) approaches and in 

Model 2 sometimes over learning patterns happen but this is not seen in Model 3, 4, 

and 5 for GRNN approaches.  

Neural network is generally used in Hydrology branch of civil engineering 

disciplines and in Geotechnical discipline etc. which is given in Chapter 3. By the 

way of this study Geotechnical, Earthquake Engineering work with together. 

Because this study is slope stability by using seismic coefficients data and concerns 

with these disciplines. Earthquake, and soil properties are used with together in this 

study as input parameters. This study brings new view point to Earthquake 

Engineering, and Geotechnical Engineering.  
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In this study , the aim is to find the parameters effects and which parameter is the 

important factor for slope stability. Because of finding the seismic coefficients 

effects imporatantance for earthquake and geotechnical engineering, this study have 

done. 

In conclusion, from this study it has seen that seismic coefficients effects are 

important in slope stability but not a determinating parameter for evaluation of slope 

stability and the effects of seismic coefficient. We can say that the slope height and 

the water lever are more important. For evaluation of slope stability and the effects of 

seismic coefficient GRNN is very good and suitable approach. Model 5 have the best 

success rate but model 3 have the best contribution factors because of model 4 and 

model 5 parameters are choosen from clay soil. As a result for Model 4 and 5 

cohesion ( c ) is in the first order of contribution factor. On the contrary, BPNN is not 

suitable approaches for this study. In future, forecasting can be done by using these 

models. For example, there are 9 input parameters in this study, and using these 9 

parameters factor of safety and seismic coefficient effects can be solved by the way 

of Neural Network. Therefore solving and forecasting engineering problems get easy 

for slope stability investigation. 
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Appendix A. BPNN Approach Output Tables for Model 1 
 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,2958 0,0242 
0,9400 0,8895 0,0505 
0,9700 0,9517 0,0183 
1,6100 1,8270 -0,2170 
1,6400 1,6866 -0,0466 
1,3500 1,3435 0,0065 
1,2700 1,0988 0,1712 
1,0600 1,1224 -0,0624 
1,5500 1,1839 0,3661 
1,4000 1,3054 0,0946 
1,1800 1,1452 0,0348 
1,3100 1,2206 0,0894 
0,7500 0,7897 -0,0397 
0,8000 0,8660 -0,0660 
0,7700 0,8582 -0,0882 
1,0500 0,9742 0,0758 
0,9800 0,9446 0,0354 
2,0900 1,7515 0,3385 
1,0000 0,8538 0,1462 
0,9000 0,8390 0,0610 
1,1000 1,1197 -0,0197 
1,2000 1,1544 0,0456 
1,2900 1,3711 -0,0811 
0,9700 0,9905 -0,0205 
1,1300 1,1630 -0,0330 
0,8600 0,7813 0,0787 
1,1200 0,9997 0,1203 
0,9600 1,0255 -0,0655 
1,0000 0,9741 0,0259 
1,1200 0,9246 0,1954 
1,1000 1,2209 -0,1209 
1,4000 1,1703 0,2297 
1,0000 0,8796 0,1204 
0,9900 0,6597 0,3303 
1,0300 0,8021 0,2279 
1,3200 1,2953 0,0247 
1,5000 1,5342 -0,0342 
1,5200 1,6925 -0,1725 
1,1100 1,0193 0,0907 
0,9700 0,9785 -0,0085 
1,4700 1,1997 0,2703 
0,9300 0,9949 -0,0649 
0,9900 0,8729 0,1171 
1,3500 1,3186 0,0314 
0,7900 0,6446 0,1454 
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Actual(1) Network(1) Act-Net(1) 
1,1500 1,2354 -0,0854 
1,5000 1,3546 0,1454 
2,0800 1,6502 0,4298 
1,1900 1,1815 0,0085 
0,9300 0,8940 0,0360 
0,8100 0,8183 -0,0083 
1,0500 1,2325 -0,1825 
1,0700 1,1660 -0,0960 
1,2100 1,4773 -0,2673 
1,8200 1,7137 0,1063 
0,9700 0,8637 0,1063 
0,6200 0,8119 -0,1919 
0,7800 0,9401 -0,1601 
1,5400 1,5714 -0,0314 
0,9300 0,8530 0,0770 
1,6200 1,4839 0,1361 
1,3000 1,2828 0,0172 
1,7800 1,5596 0,2204 
1,0300 1,1087 -0,0787 
1,2300 1,1622 0,0678 
1,2500 1,5146 -0,2646 
1,3700 1,3961 -0,0261 
1,2800 1,1608 0,1192 
1,1100 1,1166 -0,0066 
0,6800 1,1390 -0,4590 
0,7000 0,9199 -0,2199 
1,2000 1,1550 0,0450 
2,1500 1,9525 0,1975 
1,3500 1,4915 -0,1415 
0,8900 0,9602 -0,0702 
0,9200 0,8619 0,0581 
0,6400 0,7483 -0,1083 
1,1400 0,9359 0,2041 
1,1900 1,2367 -0,0467 
0,8700 0,9913 -0,1213 
1,0500 1,1412 -0,0912 
1,1700 1,1725 -0,0025 
1,3100 1,2478 0,0622 
1,0500 1,2664 -0,2164 
1,3600 1,3803 -0,0203 
1,5300 1,5754 -0,0454 
1,3500 1,3638 -0,0138 
1,0000 1,0266 -0,0266 
0,8300 0,9026 -0,0726 
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Actual(1) Network(1) Act-Net(1) 
0,7900 0,9566 -0,1666 
1,0300 0,8343 0,1957 
1,4500 1,0252 0,4248 
1,6400 1,7485 -0,1085 
1,2900 1,4117 -0,1217 
1,0100 1,0574 -0,0474 
1,0700 1,0724 -0,0024 
1,0500 0,9476 0,1024 
0,7300 0,7682 -0,0382 
1,4300 1,2680 0,1620 
1,0500 0,9638 0,0862 
1,0000 0,9559 0,0441 
1,2800 1,2553 0,0247 
1,0000 0,9909 0,0091 
0,8600 0,9928 -0,1328 
0,9800 1,2301 -0,2501 
1,2100 1,1395 0,0705 
1,3100 1,3678 -0,0578 
0,9700 0,9401 0,0299 
1,7500 1,7513 -0,0013 
2,0500 1,8548 0,1952 
0,8200 1,1464 -0,3264 
1,0000 0,9933 0,0067 
0,9800 0,9676 0,0124 
0,6700 0,8458 -0,1758 
1,7600 1,7963 -0,0363 
1,2000 1,0843 0,1157 
1,1200 1,1657 -0,0457 
0,9600 0,9827 -0,0227 
1,7400 1,7397 0,0003 
1,5400 1,4608 0,0792 
1,2500 1,2440 0,0060 
1,0000 1,1544 -0,1544 
0,8700 0,8734 -0,0034 
1,0000 1,1777 -0,1777 
1,1100 1,1262 -0,0162 
1,0000 1,0193 -0,0193 
1,8750 1,5406 0,3344 
2,0450 1,3778 0,6672 
1,7800 1,6699 0,1101 
1,9900 1,6817 0,3083 
1,2500 0,8968 0,3532 
1,1300 1,0239 0,1061 
1,0200 1,0277 -0,0077 
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Actual(1) Network(1) Act-Net(1) 
1,3000 1,1923 0,1077 
1,2000 1,1305 0,0695 
1,0900 1,1039 -0,0139 
0,7800 0,8460 -0,0660 
2,0000 1,9302 0,0698 
1,7000 1,7450 -0,0450 
1,0200 1,0602 -0,0402 
0,8900 0,9100 -0,0200 
1,4600 1,4707 -0,0107 
0,8000 0,9442 -0,1442 
1,4400 1,5093 -0,0693 
0,8600 0,8622 -0,0022 
1,0800 1,0844 -0,0044 
1,1100 1,3293 -0,2193 
1,4000 1,5357 -0,1357 
1,3500 1,4917 -0,1417 
1,0300 1,1319 -0,1019 
1,2800 1,1535 0,1265 
1,6300 1,5245 0,1055 
1,0500 0,9304 0,1196 
1,0300 1,0503 -0,0203 
1,0900 1,0421 0,0479 
1,1100 1,0893 0,0207 
1,0100 1,0628 -0,0528 
0,6250 0,9493 -0,3243 
1,1200 0,9816 0,1384 
1,2000 1,3517 -0,1517 
1,8000 1,7990 0,0010 
0,9000 1,0747 -0,1747 
0,9600 0,8864 0,0736 
0,8300 0,8157 0,0143 
0,7900 0,8746 -0,0846 
0,6700 0,9665 -0,2965 
1,4500 1,4097 0,0403 
1,5800 1,7291 -0,1491 
1,3700 1,1987 0,1713 
2,0500 1,9812 0,0688 
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Appendix B. BPNN Approach Output Tables for Model 2 
 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,2902 0,0298 
0,9400 0,8705 0,0695 
0,9700 0,9951 -0,0251 
1,6100 1,8157 -0,2057 
1,6400 1,6686 -0,0286 
1,3500 1,3615 -0,0115 
1,2700 1,0968 0,1732 
1,0600 1,0110 0,0490 
1,5500 1,0413 0,5087 
1,4000 1,3269 0,0731 
1,1800 1,1132 0,0668 
1,3100 1,1234 0,1866 
0,7500 0,8022 -0,0522 
0,8000 0,7761 0,0239 
0,7700 0,8684 -0,0984 
1,0500 0,9861 0,0639 
0,9800 0,9767 0,0033 
2,0900 1,7669 0,3231 
1,0000 0,8540 0,1460 
0,9000 0,8432 0,0568 
1,1000 1,1075 -0,0075 
1,2000 1,1274 0,0726 
1,2900 1,3427 -0,0527 
0,9700 0,9871 -0,0171 
1,1300 1,1749 -0,0449 
0,8600 0,7428 0,1172 
1,1200 1,0157 0,1043 
0,9600 1,0419 -0,0819 
1,0000 0,9572 0,0428 
1,1200 1,0469 0,0731 
1,1000 1,2385 -0,1385 
1,4000 1,4137 -0,0137 
1,0000 0,8827 0,1173 
0,9900 0,6425 0,3475 
1,0300 0,7725 0,2575 
1,3200 1,3082 0,0118 
1,5000 1,5323 -0,0323 
1,5200 1,6958 -0,1758 
1,1100 0,9272 0,1828 
0,9700 0,9550 0,0150 
1,4700 1,2335 0,2365 
0,9300 0,9400 -0,0100 
0,9900 0,9304 0,0596 
1,3500 1,3143 0,0357 
0,7900 0,6401 0,1499 
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Actual(1) Network(1) Act-Net(1) 
1,1500 1,2788 -0,1288 
1,5000 1,5479 -0,0479 
2,0800 1,6139 0,4661 
1,1900 1,1773 0,0127 
0,9300 0,8961 0,0339 
0,8100 0,8212 -0,0112 
1,0500 1,2598 -0,2098 
1,0700 1,1753 -0,1053 
1,2100 1,4223 -0,2123 
1,8200 1,7024 0,1176 
0,9700 0,8981 0,0719 
0,6200 0,8027 -0,1827 
0,7800 0,9687 -0,1887 
1,5400 1,5612 -0,0212 
0,9300 0,8704 0,0596 
1,6200 1,5151 0,1049 
1,3000 1,2875 0,0125 
1,7800 1,5672 0,2128 
1,0300 1,1244 -0,0944 
1,2300 1,1601 0,0699 
1,2500 1,4925 -0,2425 
1,3700 1,2647 0,1053 
1,2800 1,1822 0,0978 
1,1100 1,1223 -0,0123 
0,6800 1,1398 -0,4598 
0,7000 0,9422 -0,2422 
1,2000 1,1770 0,0230 
2,1500 1,9544 0,1956 
1,3500 1,4645 -0,1145 
0,8900 0,9434 -0,0534 
0,9200 0,8834 0,0366 
0,6400 0,7107 -0,0707 
1,1400 0,9095 0,2305 
1,1900 1,1823 0,0077 
0,8700 0,9799 -0,1099 
1,0500 1,1542 -0,1042 
1,1700 1,1911 -0,0211 
1,3100 1,2531 0,0569 
1,0500 1,2177 -0,1677 
1,3600 1,3643 -0,0043 
1,5300 1,5485 -0,0185 
1,3500 1,3536 -0,0036 
1,0000 1,0344 -0,0344 
0,8300 0,7472 0,0828 
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Actual(1) Network(1) Act-Net(1) 
0,7900 0,9798 -0,1898 
1,0300 0,8383 0,1917 
1,4500 1,1300 0,3200 
1,6400 1,6420 -0,0020 
1,2900 1,4378 -0,1478 
1,0100 0,9903 0,0197 
1,0700 1,0979 -0,0279 
1,0500 0,9765 0,0735 
0,7300 0,7640 -0,0340 
1,4300 1,2638 0,1662 
1,0500 0,9944 0,0556 
1,0000 0,9497 0,0503 
1,2800 1,3068 -0,0268 
1,0000 0,9119 0,0881 
0,8600 0,9723 -0,1123 
0,9800 1,2635 -0,2835 
1,2100 1,2521 -0,0421 
1,3100 1,2112 0,0988 
0,9700 0,9352 0,0348 
1,7500 1,7563 -0,0063 
2,0500 1,8710 0,1790 
0,8200 1,1625 -0,3425 
1,0000 0,9973 0,0027 
0,9800 1,0114 -0,0314 
0,6700 0,7422 -0,0722 
1,7600 1,8047 -0,0447 
1,2000 1,0784 0,1216 
1,1200 1,1640 -0,0440 
0,9600 0,8880 0,0720 
1,7400 1,7563 -0,0163 
1,5400 1,4523 0,0877 
1,2500 1,1815 0,0685 
1,0000 1,1274 -0,1274 
0,8700 0,8529 0,0171 
1,0000 1,1600 -0,1600 
1,1100 1,1135 -0,0035 
1,0000 1,0068 -0,0068 
1,8750 1,5603 0,3147 
2,0450 1,4507 0,5943 
1,7800 1,6828 0,0972 
1,9900 1,6904 0,2996 
1,2500 0,9014 0,3486 
1,1300 1,0458 0,0842 
1,0200 0,8087 0,2113 
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Actual(1) Network(1) Act-Net(1) 
1,3000 1,4622 -0,1622 
1,2000 0,9646 0,2354 
1,0900 1,0982 -0,0082 
0,7800 0,8374 -0,0574 
2,0000 1,9444 0,0556 
1,7000 1,7199 -0,0199 
1,0200 1,0648 -0,0448 
0,8900 0,9039 -0,0139 
1,4600 1,4480 0,0120 
0,8000 0,9294 -0,1294 
1,4400 1,4070 0,0330 
0,8600 0,8334 0,0266 
1,0800 1,1135 -0,0335 
1,1100 1,2793 -0,1693 
1,4000 1,5170 -0,1170 
1,3500 1,4758 -0,1258 
1,0300 1,0846 -0,0546 
1,2800 1,2118 0,0682 
1,6300 1,5631 0,0669 
1,0500 0,9170 0,1330 
1,0300 1,0282 0,0018 
1,0900 0,9852 0,1048 
1,1100 1,1896 -0,0796 
1,0100 0,9953 0,0147 
0,6250 0,7538 -0,1288 
1,1200 0,9799 0,1401 
1,2000 1,3455 -0,1455 
1,8000 1,7952 0,0048 
0,9000 1,0872 -0,1872 
0,9600 1,0154 -0,0554 
0,8300 0,8182 0,0118 
0,7900 0,8685 -0,0785 
0,6700 0,9388 -0,2688 
1,4500 1,4539 -0,0039 
1,5800 1,7386 -0,1586 
1,3700 1,2078 0,1622 
2,0500 1,9722 0,0778 
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Appendix C. Error Through Patterns Graphs for Model 1 and 2. 
 
 

 
 

Figure App. C1 : Error through patterns for act-net for Model 1 
 

 
 
 

 

 
 

Figure App. C2 : Error through patterns for act-net for Model 2 
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Appendix D. GRNN Approach Output Tables for Model 3 
 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,3200 0,0000 
0,9400 0,9400 0,0000 
0,9700 0,9700 0,0000 
1,6100 1,6400 -0,0300 
1,6400 1,6400 0,0000 
1,3500 1,3500 0,0000 
1,2700 1,2700 0,0000 
1,0600 1,0600 0,0000 
1,5500 1,6799 -0,1299 
1,4000 1,4000 0,0000 
1,1800 1,1800 0,0000 
1,3100 1,3100 0,0000 
0,7500 0,7500 0,0000 
0,8000 0,8000 0,0000 
0,7700 0,7700 0,0000 
1,0500 1,0500 0,0000 
0,9800 0,9800 0,0000 
2,0900 2,0897 0,0003 
1,0000 0,9000 0,1000 
0,9000 0,9000 0,0000 
1,1000 1,0999 0,0001 
1,2000 1,0998 0,1002 
1,2900 1,3452 -0,0552 
0,9700 0,9700 0,0000 
1,1300 1,1996 -0,0696 
0,8600 1,3600 -0,5000 
1,1200 1,1188 0,0012 
0,9600 0,9613 -0,0013 
1,0000 1,0021 -0,0021 
1,1200 1,1185 0,0015 
1,1000 1,1000 0,0000 
1,4000 1,4000 0,0000 
1,0000 1,0000 0,0000 
0,9900 1,0300 -0,0400 
1,0300 1,0300 0,0000 
1,3200 1,3200 0,0000 
1,5000 1,5000 0,0000 
1,5200 1,5200 0,0000 
1,1100 1,3155 -0,2055 
0,9700 0,9700 0,0000 
1,4700 1,4696 0,0004 
0,9300 0,9300 0,0000 
0,9900 0,9398 0,0502 
1,3500 1,3500 0,0000 
0,7900 0,7900 0,0000 
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Actual(1) Network(1) Act-Net(1) 
1,1500 1,1500 0,0000 
1,5000 1,0997 0,4003 
2,0800 1,6372 0,4428 
1,1900 1,1900 0,0000 
0,9300 0,9301 -0,0001 
0,8100 0,8100 0,0000 
1,0500 1,0305 0,0195 
1,0700 1,2051 -0,1351 
1,2100 1,2100 0,0000 
1,8200 1,8202 -0,0002 
0,9700 0,9700 0,0000 
0,6200 0,6200 0,0000 
0,7800 0,7800 0,0000 
1,5400 1,5400 0,0000 
0,9300 0,9300 0,0000 
1,6200 1,5115 0,1085 
1,3000 1,3000 0,0000 
1,7800 1,7801 -0,0001 
1,0300 1,0300 0,0000 
1,2300 1,2300 0,0000 
1,2500 1,2361 0,0139 
1,3700 1,3443 0,0257 
1,2800 1,2800 0,0000 
1,1100 1,1100 0,0000 
0,6800 1,1030 -0,4230 
0,7000 0,7385 -0,0385 
1,2000 1,2000 0,0000 
2,1500 1,6400 0,5100 
1,3500 1,3500 0,0000 
0,8900 0,8900 0,0000 
0,9200 0,9199 0,0001 
0,6400 0,6401 -0,0001 
1,1400 1,1400 0,0000 
1,1900 0,8712 0,3188 
0,8700 0,8700 0,0000 
1,0500 1,0500 0,0000 
1,1700 1,1700 0,0000 
1,3100 1,3062 0,0038 
1,0500 1,0538 -0,0038 
1,3600 1,3600 0,0000 
1,5300 1,5299 0,0001 
1,3500 1,3500 0,0000 
1,0000 1,0000 0,0000 
0,8300 1,0000 -0,1700 
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Actual(1) Network(1) Act-Net(1) 
0,7900 0,7904 -0,0004 
1,0300 1,0300 0,0000 
1,4500 1,6447 -0,1947 
1,6400 1,6400 0,0000 
1,2900 1,2900 0,0000 
1,0100 1,0100 0,0000 
1,0700 1,0700 0,0000 
1,0500 1,0500 0,0000 
0,7300 0,7300 0,0000 
1,4300 1,4299 0,0001 
1,0500 1,0500 0,0000 
1,0000 1,0000 0,0000 
1,2800 1,2800 0,0000 
1,0000 1,0000 0,0000 
0,8600 0,8600 0,0000 
0,9800 0,9919 -0,0119 
1,2100 1,2100 0,0000 
1,3100 1,3100 0,0000 
0,9700 1,1125 -0,1425 
1,7500 1,7500 0,0000 
2,0500 2,0500 0,0000 
0,8200 1,0971 -0,2771 
1,0000 1,0000 0,0000 
0,9800 0,9800 0,0000 
0,6700 0,9746 -0,3046 
1,7600 1,7600 0,0000 
1,2000 1,4688 -0,2688 
1,1200 1,1199 0,0001 
0,9600 1,0059 -0,0459 
1,7400 1,7400 0,0000 
1,5400 1,5400 0,0000 
1,2500 1,0883 0,1617 
1,0000 1,0998 -0,0998 
0,8700 0,8710 -0,0010 
1,0000 0,8813 0,1187 
1,1100 1,1100 0,0000 
1,0000 1,0000 0,0000 
1,8750 1,8738 0,0012 
2,0450 1,7580 0,2870 
1,7800 1,7800 0,0000 
1,9900 1,7800 0,2100 
1,2500 1,2500 0,0000 
1,1300 1,1300 0,0000 
1,0200 1,0155 0,0045 
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Actual(1) Network(1) Act-Net(1) 
1,3000 1,3000 0,0000 
1,2000 1,2000 0,0000 
1,0900 1,0900 0,0000 
0,7800 0,7800 0,0000 
2,0000 2,0000 0,0000 
1,7000 1,7000 0,0000 
1,0200 1,0200 0,0000 
0,8900 0,8898 0,0002 
1,4600 1,4600 0,0000 
0,8000 0,8000 0,0000 
1,4400 1,4400 0,0000 
0,8600 0,8600 0,0000 
1,0800 1,0800 0,0000 
1,1100 1,1100 0,0000 
1,4000 1,4000 0,0000 
1,3500 1,3500 0,0000 
1,0300 1,0300 0,0000 
1,2800 1,2800 0,0000 
1,6300 1,6300 0,0000 
1,0500 1,0500 0,0000 
1,0300 1,0300 0,0000 
1,0900 1,0900 0,0000 
1,1100 1,1112 -0,0012 
1,0100 1,0100 0,0000 
0,6250 0,6295 -0,0045 
1,1200 1,1200 0,0000 
1,2000 1,0300 0,1700 
1,8000 1,7125 0,0875 
0,9000 0,8076 0,0924 
0,9600 0,9600 0,0000 
0,8300 0,8300 0,0000 
0,7900 0,7883 0,0017 
0,6700 0,6720 -0,0020 
1,4500 1,4500 0,0000 
1,5800 1,4500 0,1300 
1,3700 1,3700 0,0000 
2,0500 2,0500 0,0000 

 
 
 
 
 
 
 
 



 112 

Appendix E. GRNN Approach Output Tables for Model 4 
 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,3200 0,0000 
0,9400 0,9412 -0,0012 
0,9700 1,0355 -0,0655 
1,6100 1,6400 -0,0300 
1,6400 1,6400 0,0000 
1,3500 1,3500 0,0000 
1,2700 1,2712 -0,0012 
1,0600 1,0600 0,0000 
1,5500 1,6237 -0,0737 
1,4000 1,3864 0,0136 
1,1800 1,1807 -0,0007 
1,3100 1,3108 -0,0008 
0,7500 0,7514 -0,0014 
0,8000 0,8491 -0,0491 
0,7700 0,7945 -0,0245 
1,0500 1,0471 0,0029 
0,9800 0,9816 -0,0016 
2,0900 2,0822 0,0078 
1,0000 0,9934 0,0066 
0,9000 0,9134 -0,0134 
1,1000 1,1006 -0,0006 
1,2000 1,1006 0,0994 
1,2900 1,2900 0,0000 
0,9700 0,9704 -0,0004 
1,1300 1,1300 0,0000 
0,8600 0,8600 0,0000 
1,1200 1,1197 0,0003 
0,9600 0,9605 -0,0005 
1,0000 1,0289 -0,0289 
1,1200 1,0917 0,0283 
1,1000 1,0606 0,0394 
1,4000 1,4000 0,0000 
1,0000 1,0000 0,0000 
0,9900 1,0706 -0,0806 
1,0300 1,0300 0,0000 
1,3200 1,2733 0,0467 
1,5000 1,4989 0,0011 
1,5200 1,4540 0,0660 
1,1100 0,8666 0,2434 
0,9700 0,9700 0,0000 
1,4700 1,3871 0,0829 
0,9300 0,9340 -0,0040 
0,9900 0,9999 -0,0099 
1,3500 1,3505 -0,0005 
0,7900 0,7900 0,0000 
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Actual(1) Network(1) Act-Net(1) 
1,1500 1,1984 -0,0484 
1,5000 1,2577 0,2423 
2,0800 1,6368 0,4432 
1,1900 1,2036 -0,0136 
0,9300 1,0598 -0,1298 
0,8100 0,8100 0,0000 
1,0500 1,0500 0,0000 
1,0700 1,0700 0,0000 
1,2100 1,2100 0,0000 
1,8200 1,8199 0,0001 
0,9700 0,9895 -0,0195 
0,6200 0,6200 0,0000 
0,7800 0,7803 -0,0003 
1,5400 1,5400 0,0000 
0,9300 0,9283 0,0017 
1,6200 1,6651 -0,0451 
1,3000 1,2953 0,0047 
1,7800 1,7878 -0,0078 
1,0300 1,0300 0,0000 
1,2300 1,2300 0,0000 
1,2500 1,1865 0,0635 
1,3700 1,3679 0,0021 
1,2800 1,2800 0,0000 
1,1100 1,1096 0,0004 
0,6800 1,1807 -0,5007 
0,7000 1,0421 -0,3421 
1,2000 1,2000 0,0000 
2,1500 1,6400 0,5100 
1,3500 1,3500 0,0000 
0,8900 0,8929 -0,0029 
0,9200 0,9200 0,0000 
0,6400 0,6404 -0,0004 
1,1400 1,1400 0,0000 
1,1900 1,0455 0,1445 
0,8700 0,8953 -0,0253 
1,0500 1,0497 0,0003 
1,1700 1,1682 0,0018 
1,3100 1,2570 0,0530 
1,0500 1,1030 -0,0530 
1,3600 1,3600 0,0000 
1,5300 1,5290 0,0010 
1,3500 1,3500 0,0000 
1,0000 0,9999 0,0001 
0,8300 1,0001 -0,1701 



 114 

 
 
 

Actual(1) Network(1) Act-Net(1) 
0,7900 0,8729 -0,0829 
1,0300 1,0924 -0,0624 
1,4500 1,5917 -0,1417 
1,6400 1,6400 0,0000 
1,2900 1,2900 0,0000 
1,0100 1,0100 0,0000 
1,0700 1,0700 0,0000 
1,0500 1,0500 0,0000 
0,7300 0,7307 -0,0007 
1,4300 1,2366 0,1934 
1,0500 1,0505 -0,0005 
1,0000 1,0000 0,0000 
1,2800 1,2800 0,0000 
1,0000 1,0000 0,0000 
0,8600 0,8600 0,0000 
0,9800 0,9870 -0,0070 
1,2100 1,2100 0,0000 
1,3100 1,3100 0,0000 
0,9700 0,9221 0,0479 
1,7500 1,7495 0,0005 
2,0500 2,0500 0,0000 
0,8200 0,9396 -0,1196 
1,0000 0,9999 0,0001 
0,9800 0,9800 0,0000 
0,6700 0,6702 -0,0002 
1,7600 1,7600 0,0000 
1,2000 1,4727 -0,2727 
1,1200 1,1199 0,0001 
0,9600 1,1200 -0,1600 
1,7400 1,7388 0,0012 
1,5400 1,5365 0,0035 
1,2500 0,9959 0,2541 
1,0000 1,1006 -0,1006 
0,8700 0,8700 0,0000 
1,0000 1,0914 -0,0914 
1,1100 1,1100 0,0000 
1,0000 0,9999 0,0001 
1,8750 1,8744 0,0006 
2,0450 1,6395 0,4055 
1,7800 1,7800 0,0000 
1,9900 1,7800 0,2100 
1,2500 1,2500 0,0000 
1,1300 1,1297 0,0003 
1,0200 0,8481 0,1719 
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Actual(1) Network(1) Act-Net(1) 
1,3000 1,2830 0,0170 
1,2000 1,2170 -0,0170 
1,0900 1,0900 0,0000 
0,7800 0,7801 -0,0001 
2,0000 1,9999 0,0001 
1,7000 1,6928 0,0072 
1,0200 1,0198 0,0002 
0,8900 0,8215 0,0685 
1,4600 1,4598 0,0002 
0,8000 0,8000 0,0000 
1,4400 1,4391 0,0009 
0,8600 0,8601 -0,0001 
1,0800 1,0796 0,0004 
1,1100 1,1100 0,0000 
1,4000 1,4000 0,0000 
1,3500 1,3500 0,0000 
1,0300 1,0371 -0,0071 
1,2800 1,2800 0,0000 
1,6300 1,6300 0,0000 
1,0500 1,0693 -0,0193 
1,0300 1,0280 0,0020 
1,0900 1,0900 0,0000 
1,1100 1,1102 -0,0002 
1,0100 1,0100 0,0000 
0,6250 0,7969 -0,1719 
1,1200 1,1200 0,0000 
1,2000 1,1992 0,0008 
1,8000 1,8000 0,0000 
0,9000 0,9470 -0,0470 
0,9600 0,9600 0,0000 
0,8300 0,8303 -0,0003 
0,7900 0,7899 0,0001 
0,6700 0,7388 -0,0688 
1,4500 1,4502 -0,0002 
1,5800 1,4502 0,1298 
1,3700 1,3698 0,0002 
2,0500 2,0500 0,0000 
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Appendix F. GRNN Approach Output Tables for Model 5 
 

Actual(1) Network(1) Act-Net(1) 
1,3200 1,3200 0,0000 
0,9400 0,9400 0,0000 
0,9700 0,9701 -0,0001 
1,6100 1,6391 -0,0291 
1,6400 1,6384 0,0016 
1,3500 1,3500 0,0000 
1,2700 1,2762 -0,0062 
1,0600 1,0600 0,0000 
1,5500 1,6252 -0,0752 
1,4000 1,3999 0,0001 
1,1800 1,1800 0,0000 
1,3100 1,3089 0,0011 
0,7500 0,7617 -0,0117 
0,8000 0,8011 -0,0011 
0,7700 0,7954 -0,0254 
1,0500 1,0279 0,0221 
0,9800 0,9801 -0,0001 
2,0900 2,0545 0,0355 
1,0000 1,0528 -0,0528 
0,9000 0,9016 -0,0016 
1,1000 1,1002 -0,0002 
1,2000 1,1045 0,0955 
1,2900 1,2900 0,0000 
0,9700 0,9700 0,0000 
1,1300 1,1300 0,0000 
0,8600 0,8600 0,0000 
1,1200 1,1196 0,0004 
0,9600 0,9785 -0,0185 
1,0000 1,0007 -0,0007 
1,1200 1,1196 0,0004 
1,1000 1,0722 0,0278 
1,4000 1,4000 0,0000 
1,0000 1,0000 0,0000 
0,9900 1,0300 -0,0400 
1,0300 1,0300 0,0000 
1,3200 1,3003 0,0197 
1,5000 1,5011 -0,0011 
1,5200 1,5016 0,0184 
1,1100 0,8600 0,2500 
0,9700 0,9700 0,0000 
1,4700 1,3046 0,1654 
0,9300 0,9403 -0,0103 
0,9900 1,0010 -0,0110 
1,3500 1,3500 0,0000 
0,7900 0,7900 0,0000 
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Actual(1) Network(1) Act-Net(1) 
1,1500 1,1695 -0,0195 
1,5000 1,3352 0,1648 
2,0800 1,6400 0,4400 
1,1900 1,1901 -0,0001 
0,9300 1,0614 -0,1314 
0,8100 0,8101 -0,0001 
1,0500 1,0496 0,0004 
1,0700 1,0700 0,0000 
1,2100 1,2100 0,0000 
1,8200 1,8061 0,0139 
0,9700 0,9666 0,0034 
0,6200 0,6200 0,0000 
0,7800 0,7800 0,0000 
1,5400 1,5400 0,0000 
0,9300 0,9451 -0,0151 
1,6200 1,6816 -0,0616 
1,3000 1,2922 0,0078 
1,7800 1,8154 -0,0354 
1,0300 1,0299 0,0001 
1,2300 1,2300 0,0000 
1,2500 1,1684 0,0816 
1,3700 1,3663 0,0037 
1,2800 1,2800 0,0000 
1,1100 1,1100 0,0000 
0,6800 1,1792 -0,4992 
0,7000 0,9682 -0,2682 
1,2000 1,1999 0,0001 
2,1500 1,6400 0,5100 
1,3500 1,3514 -0,0014 
0,8900 0,9126 -0,0226 
0,9200 0,9196 0,0004 
0,6400 0,6408 -0,0008 
1,1400 1,1400 0,0000 
1,1900 1,0465 0,1435 
0,8700 0,8998 -0,0298 
1,0500 1,0499 0,0001 
1,1700 1,1582 0,0118 
1,3100 1,3092 0,0008 
1,0500 1,0508 -0,0008 
1,3600 1,3600 0,0000 
1,5300 1,5286 0,0014 
1,3500 1,3499 0,0001 
1,0000 1,0000 0,0000 
0,8300 1,0007 -0,1707 
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Actual(1) Network(1) Act-Net(1) 

0,7900 0,9554 -0,1654 
1,0300 1,0509 -0,0209 
1,4500 1,5504 -0,1004 
1,6400 1,6400 0,0000 
1,2900 1,3039 -0,0139 
1,0100 1,0100 0,0000 
1,0700 1,0730 -0,0030 
1,0500 1,0501 -0,0001 
0,7300 0,7772 -0,0472 
1,4300 1,2599 0,1701 
1,0500 1,0524 -0,0024 
1,0000 1,0000 0,0000 
1,2800 1,2800 0,0000 
1,0000 1,0001 -0,0001 
0,8600 0,8600 0,0000 
0,9800 1,0267 -0,0467 
1,2100 1,2100 0,0000 
1,3100 1,3100 0,0000 
0,9700 0,9065 0,0635 
1,7500 1,7500 0,0000 
2,0500 2,0500 0,0000 
0,8200 0,9389 -0,1189 
1,0000 0,9997 0,0003 
0,9800 0,9800 0,0000 
0,6700 0,6700 0,0000 
1,7600 1,7600 0,0000 
1,2000 1,4620 -0,2620 
1,1200 1,1200 0,0000 
0,9600 1,1200 -0,1600 
1,7400 1,7400 0,0000 
1,5400 1,5120 0,0280 
1,2500 1,1160 0,1340 
1,0000 1,1045 -0,1045 
0,8700 0,8700 0,0000 
1,0000 0,8669 0,1331 
1,1100 1,1100 0,0000 
1,0000 0,9999 0,0001 
1,8750 1,8273 0,0477 
2,0450 1,6390 0,4060 
1,7800 1,7800 0,0000 
1,9900 1,7800 0,2100 
1,2500 1,2500 0,0000 
1,1300 1,1300 0,0000 
1,0200 0,9603 0,0597 
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Actual(1) Network(1) Act-Net(1) 

1,3000 1,3000 0,0000 
1,2000 1,2000 0,0000 
1,0900 1,0900 0,0000 
0,7800 0,7801 -0,0001 
2,0000 2,0000 0,0000 
1,7000 1,6997 0,0003 
1,0200 1,0200 0,0000 
0,8900 0,8656 0,0244 
1,4600 1,4600 0,0000 
0,8000 0,8000 0,0000 
1,4400 1,4400 0,0000 
0,8600 0,8600 0,0000 
1,0800 1,0800 0,0000 
1,1100 1,1100 0,0000 
1,4000 1,4001 -0,0001 
1,3500 1,3500 0,0000 
1,0300 1,0307 -0,0007 
1,2800 1,2800 0,0000 
1,6300 1,6300 0,0000 
1,0500 1,0786 -0,0286 
1,0300 1,0299 0,0001 
1,0900 1,0911 -0,0011 
1,1100 1,1107 -0,0007 
1,0100 1,0100 0,0000 
0,6250 0,6847 -0,0597 
1,1200 1,1200 0,0000 
1,2000 1,2000 0,0000 
1,8000 1,8000 0,0000 
0,9000 0,9596 -0,0596 
0,9600 0,9600 0,0000 
0,8300 0,8300 0,0000 
0,7900 0,7896 0,0004 
0,6700 0,6947 -0,0247 
1,4500 1,4500 0,0000 
1,5800 1,4502 0,1298 
1,3700 1,3699 0,0001 
2,0500 2,0500 0,0000 
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Appendix G. Error Through Patterns Graphs for Model 3,4 and 5. 
 
 

 
 

Figure App. G1 : Error through patterns for act-net for Model 3 
 
 
 
 

 
 

Figure App. G2 : Error through patterns for act-net for Model 4 
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Figure App. G3 : Error through patterns for act-net for Model 5 
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       Appendix H. Slope Data Used In Program ( Cao Jinggang , 2002 ) 
 

H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
10,00 0,00 10,00 33,69 20,00 10,00 20,00 0,100 0,050 1,32 
15,20 0,00 0,00 71,60 18,00 20,00 20,00 0,150 0,100 0,94 
50,00 0,00 0,00 21,80 11,00 15,00 21,00 0,200 0,150 0,97 
10,00 9,00 0,00 26,57 19,61 31,70 13,00 0,250 0,200 1,61 
10,50 0,00 0,00 26,57 20,27 31,70 13,00 0,300 0,250 1,64 
5,00 0,00 30,00 20,00 20,00 40,00 30,00 0,350 0,050 1,35 
8,05 0,00 0,00 26,57 18,50 15,00 10,00 0,400 0,100 1,27 
23,75 6,30 0,00 29,20 17,65 0,00 37,00 0,450 0,150 1,06 
10,00 9,00 2,00 30,00 18,00 25,00 10,00 0,500 0,200 1,55 
6,00 6,00 0,00 33,69 19,80 4,00 32,00 0,100 0,250 1,40 
44,20 12,00 0,00 19,98 22,76 16,76 37,50 0,150 0,050 1,18 
20,00 0,00 0,00 33,69 19,65 4,31 32,00 0,200 0,100 1,31 
6,20 0,00 0,00 16,72 18,80 0,00 20,00 0,250 0,150 0,75 
7,20 0,00 0,00 19,98 18,80 1,00 20,00 0,300 0,200 0,80 
7,00 0,00 0,00 18,43 18,80 1,00 20,00 0,350 0,250 0,77 
7,80 0,00 3,20 44,50 18,60 10,20 20,00 0,400 0,050 1,05 
12,20 0,00 0,00 17,10 18,80 1,50 20,00 0,450 0,100 0,98 
8,00 0,00 0,00 26,57 18,50 20,00 20,00 0,500 0,150 2,09 
20,00 0,00 0,00 22,00 20,00 0,00 20,00 0,035 0,200 1,00 
20,00 10,00 0,00 22,00 20,00 0,00 20,00 0,035 0,250 0,90 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,200 0,050 1,10 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,100 0,100 1,20 
8,00 0,00 0,00 45,00 18,50 15,00 20,00 0,100 0,150 1,29 
8,00 5,60 5,60 45,00 19,50 17,50 7,50 0,150 0,200 0,97 
7,62 6,73 2,31 26,57 18,53 0,00 30,00 0,200 0,250 1,13 
32,80 26,90 164,00 18,16 17,00 12,00 16,30 0,250 0,050 0,86 
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H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
20,40 10,00 0,00 22,00 20,00 20,00 20,00 0,035 0,100 1,12 
20,40 10,00 0,00 22,00 20,00 20,00 20,00 0,100 0,150 0,96 
44,20 0,00 0,00 19,98 22,80 16,80 37,50 0,100 0,200 1,00 
44,20 0,00 0,00 19,98 22,80 16,80 37,50 0,150 0,250 1,12 
4,90 0,00 0,00 18,43 18,80 1,20 20,00 0,200 0,050 1,10 
20,00 0,00 100,00 33,69 18,80 41,70 15,00 0,250 0,100 1,40 
15,20 0,00 0,00 63,40 18,00 20,00 20,00 0,300 0,150 1,00 
46,00 0,00 0,00 41,01 9,00 25,00 20,00 0,350 0,200 0,99 
45,50 0,00 0,00 41,01 12,00 23,00 25,00 0,400 0,250 1,03 
8,00 0,00 0,00 45,00 18,50 20,00 15,00 0,450 0,050 1,32 
8,00 0,00 0,00 45,00 18,50 20,00 20,00 0,500 0,100 1,50 
30,00 0,00 0,00 20,56 19,61 14,71 20,00 0,100 0,150 1,52 
32,80 26,90 164,00 18,16 17,00 12,00 16,30 0,150 0,200 1,11 
17,00 0,00 0,00 33,69 18,80 1,00 20,00 0,200 0,250 0,97 
6,10 0,00 30,50 33,69 19,62 4,31 32,00 0,250 0,050 1,47 
10,00 0,00 5,00 26,57 16,00 10,00 15,00 0,300 0,100 0,93 
9,10 4,00 5,00 26,60 16,50 8,50 10,60 0,350 0,150 0,99 
8,00 0,00 0,00 45,00 18,50 25,00 10,00 0,400 0,200 1,35 
17,68 17,68 88,40 26,57 19,65 10,06 27,00 0,450 0,250 0,79 
8,56 0,00 0,00 45,00 18,50 20,00 10,00 0,500 0,050 1,15 
44,00 0,00 0,00 19,98 22,80 16,80 37,50 0,100 0,100 1,50 
13,50 0,00 0,00 26,57 17,30 57,50 7,00 0,150 0,150 2,08 
6,10 0,00 0,00 33,69 19,65 4,31 32,00 0,200 0,200 1,19 
6,00 0,00 0,00 23,96 18,80 1,00 20,00 0,250 0,250 0,93 
7,00 0,00 0,00 26,57 18,80 1,00 20,00 0,300 0,050 0,81 
10,00 0,00 0,00 26,57 18,93 11,97 32,00 0,350 0,100 1,05 
10,00 0,00 5,00 33,69 17,66 7,85 25,00 0,400 0,150 1,07 
8,00 0,00 0,00 26,57 18,50 5,00 20,00 0,450 0,200 1,21 
8,00 0,00 0,00 26,57 18,50 15,00 20,00 0,500 0,250 1,82 
10,40 0,00 0,00 15,24 18,80 0,00 20,00 0,100 0,050 0,97 
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H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
5,10 3,27 25,50 25,25 18,84 0,00 34,00 0,150 0,100 0,62 
4,00 0,00 0,00 20,00 17,95 5,00 15,00 0,200 0,150 0,78 
20,00 0,00 0,00 20,00 19,72 30,00 30,00 0,250 0,200 1,54 
4,50 0,00 1,30 20,00 15,92 2,16 17,33 0,300 0,250 0,93 
12,19 0,00 0,00 33,69 19,24 22,80 35,00 0,350 0,050 1,62 
9,50 0,00 0,00 25,50 20,00 11,50 9,60 0,400 0,100 1,30 
8,00 0,00 0,00 26,57 18,50 20,00 15,00 0,450 0,150 1,78 
20,00 0,00 0,00 26,57 18,71 0,00 23,50 0,510 0,100 1,03 
21,50 0,00 0,00 24,13 17,40 5,00 10,00 0,100 0,050 1,23 
44,20 0,00 0,00 20,00 22,00 16,80 37,50 0,150 0,100 1,25 
44,20 0,00 0,00 20,00 22,00 16,80 37,50 0,200 0,150 1,37 
13,70 0,00 0,00 26,57 18,71 0,00 14,00 0,050 0,200 1,28 
8,20 0,00 0,00 45,00 18,50 15,00 15,00 0,100 0,250 1,11 
44,10 0,00 0,00 19,98 22,80 16,50 37,50 0,150 0,050 0,68 
44,10 0,00 0,00 19,98 22,80 16,50 37,50 0,200 0,100 0,70 
12,19 0,00 7,62 27,15 18,87 0,00 33,00 0,250 0,150 1,20 
12,19 0,00 7,62 27,15 18,87 67,00 0,00 0,300 0,200 2,15 
12,19 0,00 7,62 27,15 18,87 28,70 20,00 0,350 0,250 1,35 
8,45 0,00 0,00 45,00 18,50 10,00 15,00 0,400 0,050 0,89 
21,50 0,00 0,00 24,13 17,40 0,00 14,00 0,450 0,100 0,92 
21,50 0,00 0,00 24,13 17,40 0,00 17,20 0,500 0,150 0,64 
46,00 0,00 0,00 38,66 14,00 20,00 26,30 0,100 0,200 1,14 
22,70 0,00 0,00 16,27 18,20 0,00 14,10 0,150 0,250 1,19 
22,70 0,00 0,00 16,27 18,20 0,00 17,20 0,200 0,050 0,87 
15,50 0,00 0,00 15,01 18,00 5,00 10,00 0,250 0,100 1,05 
15,50 0,00 0,00 15,01 18,00 0,00 14,00 0,300 0,150 1,17 
15,00 0,00 0,00 12,99 22,00 0,00 26,00 0,350 0,200 1,31 
15,00 0,00 0,00 12,99 22,00 0,00 26,00 0,400 0,250 1,05 
25,00 6,25 125,00 22,00 18,80 30,00 20,00 0,450 0,050 1,36 
8,00 0,00 0,00 45,00 18,50 25,00 15,00 0,500 0,100 1,53 
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H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
8,00 0,00 0,00 26,50 18,50 15,00 15,00 0,100 0,150 1,35 
10,06 30,38 0,00 21,80 18,44 0,96 24,50 0,150 0,200 1,00 
10,06 30,38 0,00 21,80 18,44 0,72 25,60 0,200 0,250 0,83 
6,00 6,00 30,00 33,69 19,65 1,50 30,00 0,250 0,050 0,79 
12,80 0,00 0,00 27,76 21,85 8,62 32,00 0,300 0,100 1,03 
27,43 0,00 0,00 26,40 17,29 44,54 12,00 0,350 0,150 1,45 
14,33 15,14 3,05 36,53 20,47 68,00 0,00 0,400 0,200 1,64 
8,00 0,00 0,00 26,57 18,50 10,00 15,00 0,450 0,250 1,29 
10,00 7,00 0,00 39,81 20,36 0,98 32,50 0,500 0,050 1,01 
18,00 0,00 0,00 26,57 19,50 9,81 27,00 0,100 0,100 1,07 
12,80 0,00 6,10 28,50 21,55 8,62 30,00 0,150 0,150 1,05 
10,06 0,00 0,00 21,80 18,01 15,33 20,00 0,200 0,200 0,73 
10,06 0,00 0,00 21,80 18,84 0,00 20,00 0,250 0,250 1,43 
7,01 0,00 0,00 18,43 21,29 0,00 20,00 0,300 0,050 1,05 
7,01 0,00 0,00 18,43 19,79 0,96 13,00 0,350 0,100 1,00 
18,29 0,00 0,00 11,00 22,32 15,33 21,00 0,400 0,150 1,28 
12,10 10,00 0,00 24,38 16,10 25,00 20,00 0,450 0,200 1,00 
30,00 0,00 20,00 30,00 21,00 22,11 18,29 0,500 0,250 0,86 
5,00 0,00 30,00 33,69 19,60 2,56 27,60 0,100 0,050 0,98 
67,80 0,00 0,00 29,05 19,00 33,00 29,50 0,150 0,100 1,21 
67,80 45,00 0,00 29,05 16,00 25,00 20,00 0,200 0,150 1,31 
14,30 13,30 0,00 27,00 19,60 9,60 25,00 0,250 0,200 0,97 
8,00 0,00 0,00 45,00 18,50 30,00 15,00 0,300 0,250 1,75 
8,00 0,00 0,00 26,57 18,50 25,00 15,00 0,350 0,050 2,05 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,400 0,100 0,82 
5,00 1,00 3,00 26,57 17,64 4,90 10,00 0,450 0,150 1,00 
12,80 8,09 8,09 28,00 21,67 7,82 32,00 0,500 0,200 0,98 
10,00 0,00 0,00 14,04 20,00 10,00 25,00 0,100 0,250 0,67 
6,00 0,00 30,00 45,00 18,00 10,00 37,00 0,150 0,050 1,76 
6,00 0,00 30,00 33,69 18,00 10,00 37,00 0,200 0,100 1,20 
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H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
20,15 10,00 0,00 22,00 20,00 20,00 20,00 0,035 0,250 1,12 
20,15 10,00 0,00 22,00 20,00 20,00 20,00 0,100 0,050 0,96 
8,00 0,00 0,00 45,00 18,50 25,00 20,00 0,100 0,050 1,74 
8,30 0,00 0,00 26,57 18,50 10,00 20,00 0,200 0,100 1,54 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,050 0,150 1,25 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,100 0,100 1,00 
11,50 0,00 10,80 27,60 17,71 9,09 20,35 0,150 0,200 0,87 
10,20 0,00 5,00 45,00 19,60 11,80 30,00 0,200 0,050 1,00 
8,23 0,00 0,00 35,00 18,67 26,34 15,00 0,100 0,100 1,11 
3,66 0,00 0,00 30,00 16,50 11,49 0,00 0,150 0,150 1,00 
30,50 0,00 0,00 20,00 18,84 14,40 25,00 0,200 0,200 1,88 
30,50 0,00 0,00 20,00 18,84 57,46 20,00 0,250 0,250 2,05 
100,00 0,00 0,00 35,00 28,44 29,42 35,00 0,300 0,050 1,78 
100,00 0,00 0,00 35,00 28,44 39,23 38,00 0,350 0,100 1,99 
40,00 0,00 0,00 30,00 20,60 16,28 26,50 0,400 0,150 1,25 
50,00 0,00 0,00 20,00 14,80 0,00 17,00 0,450 0,200 1,13 
88,00 0,00 0,00 30,00 14,00 11,97 26,00 0,500 0,250 1,02 
120,00 0,00 0,00 53,00 25,00 120,00 45,00 0,100 0,050 1,30 
200,00 0,00 0,00 50,00 26,00 150,05 45,00 0,150 0,100 1,20 
6,00 0,00 0,00 30,00 18,50 25,00 0,00 0,200 0,150 1,09 
6,00 0,00 0,00 30,00 18,50 12,00 0,00 0,250 0,200 0,78 
10,00 0,00 0,00 30,00 22,40 10,00 35,00 0,300 0,250 2,00 
20,00 0,00 0,00 30,00 21,40 10,00 30,34 0,350 0,050 1,70 
50,00 0,00 0,00 45,00 22,00 20,00 36,00 0,400 0,100 1,02 
50,00 0,00 0,00 45,00 22,00 0,00 36,00 0,450 0,150 0,89 
4,00 0,00 0,00 35,00 12,00 0,00 30,00 0,500 0,200 1,46 
8,00 0,00 0,00 45,00 12,00 0,00 30,00 0,100 0,250 0,80 
4,00 0,00 0,00 35,00 12,00 0,00 30,00 0,150 0,050 1,44 
8,00 0,00 0,00 45,00 12,00 0,00 30,00 0,200 0,100 0,86 

214,00 0,00 0,00 37,00 23,47 0,00 32,00 0,250 0,150 1,08 
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H ( m. ) Hw ( m. ) Hb ( m. ) β ( deg. ) γ  ( kN/m^3 ) c ( kPa ) Φ ( deg. ) kh kv F.S. 
115,00 0,00 0,00 40,00 16,00 70,00 20,00 0,300 0,200 1,11 
10,67 0,00 0,00 22,00 20,41 24,90 13,00 0,350 0,250 1,40 
12,19 0,00 0,00 22,00 19,63 11,97 20,00 0,400 0,050 1,35 
12,80 0,00 0,00 28,00 21,82 8,62 32,00 0,450 0,100 1,03 
45,72 0,00 0,00 16,00 20,41 33,52 11,00 0,500 0,150 1,28 
10,67 0,00 0,00 25,00 18,84 15,32 30,00 0,100 0,200 1,63 
7,62 0,00 0,00 20,00 18,84 0,00 20,00 0,150 0,250 1,05 
61,00 0,00 0,00 20,00 21,43 0,00 20,00 0,200 0,050 1,03 
21,00 0,00 0,00 35,00 19,06 11,71 28,00 0,250 0,100 1,09 
30,50 0,00 0,00 20,00 18,84 14,36 25,00 0,300 0,150 1,11 
76,81 0,00 0,00 31,00 21,51 6,94 30,00 0,350 0,200 1,01 
88,00 0,00 0,00 30,00 14,00 11,97 26,00 0,400 0,250 0,63 
20,00 0,00 0,00 45,00 18,00 24,00 30,15 0,450 0,050 1,12 
100,00 0,00 0,00 20,00 23,00 0,00 20,00 0,500 0,100 1,20 
15,00 0,00 0,00 45,00 22,40 100,00 45,00 0,100 0,150 1,80 
10,00 0,00 0,00 45,00 22,40 10,00 35,00 0,150 0,200 0,90 
50,00 0,00 0,00 45,00 20,00 20,00 36,00 0,200 0,250 0,96 
50,00 0,00 0,00 45,00 20,00 20,00 36,00 0,250 0,050 0,83 
50,00 0,00 0,00 45,00 20,00 0,00 36,00 0,300 0,100 0,79 
50,00 0,00 0,00 45,00 20,00 0,00 36,00 0,350 0,150 0,67 
8,00 0,00 0,00 33,00 22,00 0,00 40,00 0,400 0,200 1,45 
8,00 0,00 0,00 33,00 24,00 0,00 40,00 0,450 0,250 1,58 
8,00 0,00 0,00 20,00 20,00 0,00 24,50 0,500 0,050 1,37 
8,00 0,00 0,00 20,00 18,00 5,00 30,00 0,100 0,100 2,05 
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