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REHABILITATION OF CORROSION DAMAGED SUBSTANDARD RC 

COLUMNS WITH USING FRP 

SUMMARY 

Due to increasing in country populations, building requirement is getting more 

important. Between 1960 and 1995, there have been 104% population increase in 

Turkey as like as other countries of the world. This breakneck population increment 

caused new building requirements such as building cooperations and apartments and 

this increase resulted as huge substandard reinforced concrete structure stock in 

Turkey. In those years, there were no seismic code or qualified engineers, who can 

design, control and check these buildings properly. There were some seismic and 

deisgn codes in foreign countries and the absence of any seismic or reinforced concrete 

design code in Turkey caused a building stock which had poor quality material. Even 

worse most of the buildings which built in that period, regulations and design codes 

were not taken into consideration. As a consequence, buildings which has been 

building after beginning of '60s in our country, which do not meet the standard codes, 

has potential of damage during the earthquakes. Turkey is in seismic zone and there 

have been a lot of grand earthquake happening and if 95% of Turkey lands are in 

seismic zone considered, size of the problem could be realized easily. Also these 

building stock have another huge problem which have been increasing due to time 

which is corrosion risk of the reinforced concrete elements. Especially in old existing 

buildings corrosion problem could be seen due to insufficient concrete cover, contain 

high percent chloride and low pH, temperature, water/cement ratio, humidity, 

insufficient using of vibration and problematic water drainage systems. Some defects 

due to workmanship or material on these building stocks could cause corrosion 

problem within the years. Corrosion causes significant decrease in drift capacity and 

strength due to cross-section loss of reinforcing bars, bond alteration between 

reinforcing bar and concrete, and cover cracking along the reinforcing bars on 

concrete. Although steel has a natural protector for corrosion reactions. The alkaline 

environment of concrete provides steel to corrosion protection (shown in Figure 2.4). 

At the high pH, a thin oxide layer forms on the steel and prevents metal atoms from 

dissolving. This passive film does not actually stop corrosion; it reduces the corrosion 

rate to an insignificant level. Because of concrete’s inherent protection, reinforcing 

steel does not corrode in the majority of concrete elements and structures. However, 

corrosion can occur when the passive layer is destroyed. The destruction of the passive 

layer occurs when the alkalinity of the concrete is reduced or when the chloride 

concentration in concrete is increased to a certain level. All these corrosion damages 

will result in the loss of property and life in a possible earthquake if eventuated 

earthquake is considered in last 10 years.  

Furthermore, if the reinforced concrete (RC) structure with corroded reinforcing bars, 

designed and built without complying seismic design codes, then it would be in urgent 

need of economic seismic rehabilitation/retrofitting.  
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Due to these reasons, an experimental study was carried out for investigating a 

rehabilitation/retrofitting procedure that improves the seismic performance of 

substandard RC columns (extremely low strength concrete, plain longitudinal bars, 

insufficient lap-splice zone, insufficient amount of transverse bars in the potential 

plastic hinge regions) with corroded plain reinforcing bars. Six symmetrically 

reinforced cantilever column specimens were constructed to provide relatively old and 

existing structures, which were built without complying the design codes as usually 

encountered in Turkey and in developing countries. Substandard structures means 

extremely low quality of concrete, unsufficient lap-splice length and plain round bars. 

Cross-sectional dimensions of columns were 200 mm × 300 mm and 1400 mm height 

and supported by a 700 mm × 700 mm × 500 mm foundation. All transverse bars 

spaces were 20 cm, it means there is no conforming transverse bars like as common 

usage.  Clear cover was 20 mm from the transverse bars.  

One of the specimens was choosen as reference specimen without any retrofit process. 

Then, the other specimens were subjected to accelerated corrosion process. Due to the 

accelerated corrosion process, the concrete cover became weak and deteriorated due 

to corrosion of reinforcing bars. After accelerated corrosion, corroded concrete cover 

was removed except the reference one, then steel reinforcement surfaces was cleaned 

from any concrete traces and rust of the corrosion products. All bars diameters were 

measured again with caliper for every 1 cm and compared with the uncorroded bars 

cross section to find cross section loss of the reinforcing bars. After cleaning process 

reinforcement of the specimens were covered with a corrosion inhibitor material to 

prevent corrosion. As a final step for specimens which will retrofitted by carbon fiber 

reinforced polymer sheets, were wrapped around the specimen externally one, two and 

three times in transverse direction with 150 mm overlap at the end of the wrap to 

enhance the deformability and to avoid potential shear failure due to increased flexural 

strength. FRP was recommended for its less disturbance to the occupants and 

hindrance of the functions of the structure. Then, the specimens were tested under 

constant axial load and reversed cyclic loads. The efficiency of the number of the ply 

of FRP sheet and the seismic retrofit technique for the case of low strength concrete 

column specimens with corroded plain reinforcing bars, which were subjected to 

reversed cyclic loading conditions were examined due to the indicators of seismic 

performance such as strength, displacement capacity, ductility, strain distribution, 

moment-curvature relationship and displacement components. Furthermore, the 

flexural strengths of the reference and retrofitted specimens are predicted analitically. 

Based on the results of limited number of reversed cyclic lateral loading tests on 

substandard RC columns with corroded plain reinforcing bars and extremely low 

strength concrete, the substandard columns cannot reach their theoretical flexural 

capacity due to loss of bond between concrete and reinforcement. A certain level of 

corrosion causes increase of friction between the bars and concrete leading to better 

bond and enhanced strength. Rehabilitation of corrosion damaged column with repair 

mortar enhanced the strength of the damaged column significantly, whereas ductility 

was only slightly improved with respect to corrosion damaged column. Rehabilitation 

and retrofitting using CFRP sheets enhanced both strength and ductility of the 

corrosion damaged column significantly up to a limit. However, wrapping of 

substandard RC columns with corroded plain reinforcing bars and extremely low 

strength concrete with more than two layer of CRFP reduced ductility due to corroded 

reinforcement bar sections and elongation request of bars while equalizing the section 

stability. It should be noted that before any CFRP application, elongations of bars and 
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statement of concrete should calculate carefully otherwise retrofitting with CFRP 

could also reduce both strength and ductility of substandard columns with corroded 

reinforcement due to rupture risk of corroded bars. Even CFRP increases both strength 

and ductility, local corrosion damages on the reinforcements can affect end reduce the 

behavior of specimen. 
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STANDARTLARA UYMAYAN KOROZYON HASARLI BETONARME 

KOLONLARIN KARBON LİFLİ POLİMER KULLANILARAK 

GÜÇLENDİRİLMESİ 

ÖZET 

Türkiye’de 60’lı yıllar ve sonrasında başlayan ve günümüze kadar devam eden hızlı 

nüfus artışı, nüfusun en önemli ihtiyaçlarından biri olan barınma ihtiyacını da 

beraberinde getirmiştir. Barınma ve konut ihtiyacının bu kadar hızlı artış gösterdiği bir 

dönemde bu ihtiyaçlar düzensiz ve problemli bir betonarme yapılaşma ile giderilmiştir. 

Bu problemli süreçte yapılmış olan yapılarda mevcut bir mühendislik hizmeti alımı 

söz konusu değildir. Yapılan yapıların üretim süreçlerinde deprem vb. dış etkilere karşı 

yapılmış detaylı bir yönetmelik bulunmaması, kullanılan malzemelerin herhangi bir 

standarda bağlı olmadan üretilmiş olmaları, günümüze kadar ki süreçte de o ya da bu 

nedenle hasarlı hale gelmiş ya da olası bir afette hasar görme olasılığı çok yüksek olan 

bir yapı stoğu oluşturmuştur. Günümüze kadar hızla artan bu yapı stoğu o dönemden 

bu döneme gerçekleşen depremlerde birçok mal ve can kaybına neden olmuştur ve 

olası gelecekteki depremlerde de can ve mal kaybına devam edecekleri aşikardır. 

Önceki dönemlerde yapılmış bu mevcut yapı stoğunun birçoğu, kullanılan malzemeler 

açısından hiçbir şekilde teste tabi tutulamamış, yapıldıkları dönemde sahip oldukları 

bir çok yapım ve plan kusurlarının yanı sıra yıllar içerisinde de o ya da bu nedenle 

belirgin düzeylerde hasarlara uğramışlardır.  

Türkiye topraklarının %90’ının aktif fay hatları içerisinde yer alan deprem bölgeleri 

içerisinde bulunduğu göz önüne alınırsa, herhangi bir sismik harekette ya da 

gerçekleşebilecek bir afette bu yapıların ciddi hasarlar alabileceği, hatta 

yıkılabilecekleri,  bunun sonucunda da büyük mal ve can kayıplarının ortaya çıkacağı 

gerçeği aşikardır. Bu sorunlu yapı stoğunun en büyük problemlerinden biride özellikle 

kullanılan beton kalitesinin düşük olması, paspayı mesafesinin bırakılmaması ve yıllar 

içerisinde aldığı kullanım hasarları nedeniyle betonarme elemanların içerisinde 

bulunan çelik donatıların korozyona uğramasıdır. Donatı korozyonu, yapı ve 

betonarme elemanların öteleme kapasitelerini donatı kesit alanlarında oluşan kesit 

kayıplarıyla doğru orantılı olarak düşürmekte, donatı ve beton arasındaki aderans 

kuvvetlerinin azalmasına ve donatı ile beton arasındaki yük aktarımının yitirilmesine 

neden olmaktadır. Bunların yanı sıra korozyona uğrayan çelik donatıların hacmi, 

çeliğin korozyona uğraması sonucu korozyon artıkları nedeniyle genişlemekte, bu da 

oluşturduğu basınçla beton örtüsünde çatlaklara neden olup betonun işlevini 

kaybetmesiyle sonuç vermektedir. Korozyona maruz kalmış betonarme yapıların 

deprem vb. yükler altındaki davranışı olumsuz yönde etkilenmekte, yapı dayanımlarını 

ve deprem performanslarını önemli ölçüde düşürmektedir.  

Türkiye’de yer alan mevcut betonarme yapıların bir çoğunun önceki dönemlerde 

yapılmış olması, çeşitli nedenlerle korozyona maruz kalmış oldukları göz önüne 

alınırsa olası bir depremde bu tip yapıların neden olacağı can ve mal kaybı bir şekilde 

engellenmelidir. Mevcut yapı sayısının çok olması ve bu tip yapıların yıkılıp yeniden 

yapılabilmesi gibi durumlar ciddi bir ekonomik zorluktur. Ülkenin mevcut ekonomik 
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durumu ve halkın alım gücü göz önüne alındığında, yönetmeliklere uymayan hasarlı 

yapı stoğunun depreme karşı davranışının iyileştirilebilmesi için ekonomik 

rehabilitasyon/güçlendirme yöntemlerine acilen ihtiyaç vardır. Mevcut yöntemler 

ekonomik olmadıklarından dolayı yaşadıkları yapıları deprem ve etkilerine karşı 

iyileştirmek isteyen insanlar için masraflı olmakta güçlendirilmeyen binalarda büyük 

risk oluşturmaktadır.  

Bütün bu nedenlerden dolayı bu tez çalışmasında ülkemizde bir çok yerde 

görülebilecek olan dikdörtgen kesitlere sahip kolonlar üzerinde deneysel bir çalışma 

gerçekleştirilmiştir. Yapılacak deneysel bir çalışma ile, donatıları korozyona uğramış 

betonarme kolonların güçlendirilmesi adına efektif ve ekonomik bir yöntemin 

bulunması amaçlanmış, elde edilecek deneysel sonuç veritabanları ile bu alanda ortaya 

çıkan sorunları çözmek adına inşaat mühendisliğine katkı yapılması istenmiştir. 

Korozyonun global bir problem olduğu göz önüne alındığında bulunacak basit bir 

yöntemin tüm dünyada ekonomik ve uygulanabilir bir sonuca sahip olacağı kesindir. 

Deneysel çalışmada kullanılan numuneler yönetmeliklere hiçbir şekilde uymayacak 

şekilde(çok düşük beton dayanımına, düz donatılara, yetersiz sıkılaştırma bölgesine, 

yetersiz donatı bindirme boyuna sahip) tasarlanmışlar ardından da yıllar içerisinde 

gözlenebilecek korozyon hasarlarını gerçekleştirebilmek için literatürde geçerli olan 

hızlandırılmış korozyon yöntemleriyle korozyona maruz bırakılmışlardır. 

Yönetmeliğe uymayacak şekilde tasarlanmış 6 numunenin 5 adedi hızlandırılmış 

korozyona maruz bırakılmaları sonucunda hasara uğramış, diğer numune ise referans 

olarak korozyon hasarının kolonlar üzerindeki davranış değişikliklerini tespit 

edebilme adına bırakılmıştır. Korozyona maruz bırakılan numunelerde oluşan 

korozyon sonucunda donatı hacimlerinde artış meydana gelmiş, artan donatı hacimleri 

betona basınç uygulayarak çatlaklara sebebiyet vermiştir. Bu numunelere güçlendirme 

işleminin yapılabilmesi için öncelikle mevcut korozyonun oluşturduğu hasarların 

temizlenmesi gerekmiştir. Korozyon hasarlarının tespit edilebilmesi için öncelikle bu 

korozyon sonucu oluşan çatlaklar ölçülmüş, ölçümler sonucunda korozyon oranları 

tespit edilmiştir. Ardından numunelerde oluşan korozyon hasarları ve artıkları, 

numunede paspayı mesafesinde bulunan beton örtüsünün kaldırılması ve açığa 

çıkarılan korozyonlu donatıların mekanik temizleyicilerle temizlenmesi sonucu 

ortadan kaldırılmış, beton örtüsünün kaldırılmasının ardından ortaya çıkan donatılar 

iki yönde de birer cm aralıklarla ölçülmüş ve korozyon kesit kayıpları belirlenmiştir. 

Kaldırılan korozyon hasarlı beton örtüsünün yerine, yüksek dayanımlı tamir harcıyla 

bir katman uygulanmış, korozyonlu betonun kaldırılması ve içerisindeki donatılarının 

temizlenip yeni bir tamir harcıyla tamir edilmesi sonucu, betonarme kolon 

iyileştirilmiştir. Ardından bir diğer kolon daha deney grubundan çıkarılmış geride 

kalan numuneler ise korozyonlu kısımlarının temizlenmesi ve tamir harcıyla 

onarılmasının ardından karbon katkılı lifli polimerler ile etriyelere paralel yerleşim 

olacak şekilde güçlendirilmiştir. Karbon lifli polimerler yapı strüktürel 

fonksiyonlarına minimum zararı veriyor olmasından, yapıda herhangi bir simetri 

kaybına neden olacak bir ağırlığı bulunmadığından dolayı bu tür yapılarda 

uygulanabilecek en iyi güçlendirme araçlarından birisidir. Güçlendirme işlemi 3 

numunenin her birinin farklı kat sayısına sahip(1, 2 ve 3 kat) lifli polimerler ile 

sarılması ile gerçekleştirilmiştir. Güçlendirme işlemlerinin tamamlanmasının ardından 

bütün numuneler üzerine ölçüm cihazları yerleştirilmiş ve deprem davranışına en 

yakın düzeyde performans gösteren sabit eksenel yük altında tersinir çevrimli 

yüklemeyle teste tabi tutulmuştur. Test edilen numunelerde dayanım-deplasman 

kapasitesi, süneklik, uzama dağılımı, moment-eğrilik ilişkileri ve deplasman 
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bileşenleri  incelenmiş güçlendirme şekillerinin ve güçlendirme de kullanılan CFRP 

kalınlığının sabit eksenel yük ve tersinir çevrimli yük altındaki davranışa etkisi 

incelenmiştir.  

Yapılan deneyler sonucunda elde edilen dayanım, yerdeğiştirme kapasitesi, süneklik, 

donatıda oluşan şekil değiştirme dağılımı, moment eğrilik ilişkileri ve yerdeğiştirme 

bileşenleri değerlendirildiğinde, sabit eksenel yük ve tersinir çevrimli yük altında 

yapılan kısıtlı sayıda test sonucunda, içerisindeki donatıları korozyonlu ve nervürsüz 

olan, çok düşük beton basınç dayanıma sahip standartlara uymayan kolon 

numunelerde, donatılardaki korozyona bağlı olarak oluşan kesit kaybına ve beton ile 

donatılar arasındaki aderasyonun kaybolmasına bağlı olarak numune teorik eğilme 

kapasitesine ulaşamamıştır. Hızlandırılmış korozyon uygulanması sonucu numune 

donatılarında oluşan bir miktar korozyon, donatı ile beton arasındaki sürtünmeyi 

artırarak aderansı artırmış ve bu sayede korozyona uğramış düşük standartlı numune, 

korozyonsuz numuneden daha yüksek bir dayanım göstermiştir. Yine de eksenel yük 

ve korozyon sonucu oluşan beton hasarı, yeterli sıkılaştırma yapılmamış donatılarda 

burkulmaya neden olmuş bu da numune dayanımını bir anda düşürerek gevre bir 

davranış göstermesine neden olmuştur. Tamir harcıyla onarılmış numunede 

korozyonlu donatıların temizlenmesi sonucu oluşan  pürüzlü donatı yüzeyi, nervürlü 

donatı gibi davranarak aderansı artırmış,  buna bağlı olarak bir dayanım artışı tespit 

edilirken, herhangi bir gözle görünür süneklik artışı gözlemlenmemiştir. Numunelerin 

karbon lifli polimerler ile güçlendirilmesi numune davranışını hem dayanım yönünden 

hem de süneklik yönünden bir sınıra kadar artırmıştır. Ne yazık ki bu tip çok düşük 

beton dayanımına sahip kolonların lifli polimerler ile sarılması sonucu kesit 

içerisindeki tarafsız eksen kesit sınırına kaymış bunun sonucunda da korozyon hasarlı 

donatılarda oluşan uzama istemi, donatıların kopmasına neden olmuştur. Yine de elde 

edilen sonuçlar karşılaştırıldığında karbon lifli polimer kullanımının dayanıma ve 

sünekliğe bir noktaya kadar yarar sağladığı aşikardır.  

Çalışmanın sonuçlarına bakıldığında, kullanılan güçlendirme ve iyileştirme 

yöntemlerinin dayanıma ve öteleme kapasitesine bir iyileştirme sağladığı fakat bu 

iyileştirmenin yine numunelerin standartların çok altında olmalarından dolayı yeterli 

olmadığı tespit edilmiştir. Gelecek çalışmalarda bu problemin çözümüne yönelik 

çalışmalar yapılmasına olanak tanıması nedeniyle elde edilen bilgilerin tüm betonarme 

yapılarda ortaya çıkan korozyon problemini çözmesi adına büyük yararlarının olduğu 

aşikardır.  
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1.  INTRODUCTION 

After 1950, there have been huge illegal and dense housing in Turkey parallel to 

population increment. In those years there were no seismic code or qualified engineers, 

who can design, control and check these buildings. By the 1990s, there were huge 

reinforced concrete structure stock in Turkey which built without seismic code or 

qualified engineers. When 95% of Turkey is in seismic zone considered, size of the 

problem can be realized easily. Some defects due to workmanship or material on these 

building stocks could cause corrosion problem within the years. Due to damage 

assessment report of İstanbul, which was published by İstanbul Büyükşehir Belediyesi 

first reason of the building damage was corrosion, because of humidity and the second 

one was unsufficient material using (Demirtas, 2008). 

Especially in old existing buildings corrosion problem could be seen due to insufficient 

concrete cover, contain high percent chloride and low pH, temperature, water/cement 

ratio, humidity, insufficient using of vibration and problematic water drainage 

systems. If the 64% of the buildings were damaged because of corrosion is considered, 

new economic rehabilitation/retrofitting methods for these buildings is urgent. 

Because, corrosion is one of the major problem for especially substandard (extremely 

low strength concrete, plain longitudinal bars, insufficient lap-splice zone, insufficient 

amount of transverse bars in the potential plastic hinge regions) reinforced concrete 

buildings.  

In this thesis new rehabilitation and retrofitting process is offered for substandard 

reinforced concrete columns with corroded steel reinforcement and experimental study 

was performed. 

Nine chapters, a list of references, and one appendices are included in the thesis.  

In chapter one, the aim of the thesis is described with a general introduction.  

In chapter two, reinforced concrete, steel corrosion, and effects of the corrosion to 

reinforced concrete are described. 
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In chapter three, review of the effect of corrosion on mechanical properties of 

reinforcing bars, flexural behavior of RC members with corroded reinforcement, 

previous experimental and analytical studies on various constitutive bond stress-slip 

models available in literature, studies on corrosion monitoring of RC members, the 

emphasize of corrosion of reinforcing bars in relevant codes and standards are 

introduced.  

In chapter four, the characteristics of specimens, and the test setup with its 

instrumentation are introduced.  

In chapter five, rehabilitation and retrofitting process of the specimens are introduced.  

In chapter six, theoretical predictions was calculated. 

In chapter seven, test results are reported.  

In chapter eight, the comparison of all column specimens with each other are reported.  

In chapter nine, all thesis is concluded and some suggestians are made.  
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2.  REINFORCED CONCRETE AND CORROSION  

Concrete is a structural material which is mixing of aggregates, cement and water in a 

specific proportions. Cement is solidify after a time mixed with water and the 

aggregate is use for filler material which form the physical state of concrete .  

Concrete has relatively low tensile strength and ductility thus, this deficiency is resolve 

with the reinforcement steel material which has high tensile strength and ductility. 

These steel reinforcing bars (rebar) is usually embedded passively in the concrete 

before it sets and this composite material is named as “Reinforced Concrete”.  

Basically, the portland cement and the concrete is a natural protector for the 

reinforcement steel corrosion. But some defects due to workmanship or material like 

as insufficient concrete cover, contain high percent chloride and low pH, temperature, 

water/cement ratio, humidity, insufficient using of vibration and problematic water 

drainage systems especially in old buildings. 

As a word, “Corrosion”, comes from latin language “Corrosus”, that means abrade, 

corrode (Gedikli, 2004). Corrosion can be explained as an electrochemical reaction 

between a metal and its environment that produces a deterioration of the material and 

its properties (ASTM G15-04).  

Iron is the most used metal for reinforcing steel on constructions and as we commonly 

recognize it, iron is not generally found in nature because of its instability. It takes a 

great deal of energy to produce iron from its ore, and even then it is so unstable that it 

must be coated to keep it from reverting back to its ore forms. This process is called 

corrosion (URL-1). 

For corrosion, there must be at least two metals, an electrolyte and a metallic 

connection must be in the process. In reinforced concrete, the rebar may have many 

separate areas at different energy levels. Concrete acts as the electrolyte, and the 

metallic connection is provided by wire ties, chair supports, or the rebar itself. 
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Corrosion is an electrochemical process involving the flow of charges (electrons and 

ions). At active sites on the bar, called anodes, iron atoms lose electrons and move into 

the surrounding concrete as ferrous ions. This process is called as a half-cell oxidation 

reaction, or the anodic reaction, and is represented as: 

 
2

2 2 4Fe Fe e


     (2.1) 

The electrons remain in the bar and flow to sites called as cathodes, where they 

combine with water and oxygen in the concrete. The reaction is represented as: 

2 22 4 4H O O e OH
 

       (2.2) 

For keep the equation neutral, the ferrous ions migrate through the concrete pore water 

to these cathodic sites where they combine to form iron hydroxides, or rust: 

2
22 4 2 ( )Fe OH Fe OH

 
 

   
(2.3) 

Electrochemical process of the corrosion is shown in Figure 2.1.  

The increases in volume as the reaction products react further with dissolved oxygen 

leads to internal stress within the concrete that may be sufficient to cause cracking and 

spalling of the concrete cover.  

 

Figure 2.1 : Corrosion process on reinforced concrete steel bar (URL-1). 
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Figure 2.2 : Stage of corrosion on reinforced concrete with rusting (Gulikers, 2005). 

Stage of corrosion in reinforced concrete with rust products are shown in Figure 2.2. 

As seen from the figure firstly uncorroded materials were exposed to CO2, H2O and 

Cl. After a time of exposure, concrete starts to change its color. After a time it starts to 

crushing and at last it fails.  

The most common type of corrosion damage on reinforcing steel is pitting corrosion. 

Pitting corrosion is the localized corrosion type which a metal surface confined to a 

point or small area, that takes the form of cavities. Pitting corrosion is one of the most 

damaging forms of corrosion. 

Pitting corrosion is usually found on passive metals and alloys such as aluminium 

alloys, stainless steels and stainless alloys when the ultra-thin passive film (oxide film) 

is chemically or mechanically damaged and does not immediately repassivate. The 

resulting pits can become wide and shallow or narrow and deep which can rapidly 

perforate the wall thickness of a metal. ASTM-G46 has a standard visual chart 

for rating of pitting corrosion. Due to ASTM-G46, standard visual chart for rating of 

pitting corrosion is shown in Figure 2.3. The shape of pitting corrosion can only be 

identified through metallography where a pitted sample is cross-sectioned and the pit 

shape, the pit size, and the pit depth of penetration can be determined. (URL-2) 

http://www.corrosionclinic.com/different_types_of_corrosion.htm
http://www.corrosionclinic.com/index.html
http://www.corrosionclinic.com/different_types_of_corrosion.htm
http://www.corrosionclinic.com/index.html
http://www.corrosionclinic.com/different_types_of_corrosion.htm
http://www.corrosionclinic.com/different_types_of_corrosion.htm
http://www.corrosionclinic.com/different_types_of_corrosion.htm
http://www.corrosionclinic.com/different_types_of_corrosion.htm
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Figure 2.3 : Standard visual chart for rating of pitting corrosion due to ASTM-G46. 

Although steel has a natural protector for corrosion reactions. The alkaline 

environment of concrete provides steel to corrosion protection (shown in Figure 2.4). 

At the high pH, a thin oxide layer forms on the steel and prevents metal atoms from 

dissolving. This passive film does not actually stop corrosion; it reduces the corrosion 

rate to an insignificant level. For steel in concrete, the passive corrosion rate is 

typically 0.1µm per year. Without the passive film, the steel would corrode at rates at 

least 1,000 times higher (ACI222, 2001). 

Because of concrete’s inherent protection, reinforcing steel does not corrode in the 

majority of concrete elements and structures. However, corrosion can occur when the 

passive layer is destroyed. The destruction of the passive layer occurs when the 

alkalinity of the concrete is reduced or when the chloride concentration in concrete is 

increased to a certain level. 

 

Figure 2.4 : Illustration of corrosion protector layer of steel (URL-1).  

http://www.corrosionclinic.com/different_types_of_corrosion.htm
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3.  LITERATURE REVIEW 

This section contains experimental and analytical studies from the literature. Effect of 

reinforcement corrosion in reinforced concrete have been studied by several 

researchers but, most of these researches were performed their studies in outside of 

Turkey. For this reason, typical problematic Turkish structure with substandard 

detailing were not taken into consideration in the studies which have been done. 

Lee (1998) studied repair of reinforced concrete columns using CFRP sheets on seven 

large scale columns after subjected five of them to accelerated corrosion and the three 

of rest were repaired. Specimens have diameter size 305 mm and circular cross section. 

Accelerated corrosion was simulated by adding sodium chloride to the mixing water, 

applying a current to the reinforcement, and subjecting the column to wetting and 

drying cycles. For repair process two continuous layers of CFRP with a 4-inch overlap 

were applied. Corrosion-damage reduced the load carrying capacity of the specimens 

by 7%. The strain at ultimate load was also reduced. Repair of columns using CFRP 

sheets was quick and simple to use and CFRP repair increased the load-carrying 

capacity of the corroded columns by 28%.  

Pantazopoulou et al. (2001) studied an experimental parametric study as a repair 

alternative for corroded structures. Several smallsize (300 mm in height and 150 mm 

diameter) concrete columns with various reinforcement configurations were subjected 

to accelerated corrosion to simulate natural corrosion damage the specimens. Then the 

columns were repaired using a variety of repair alternatives. Most of the repair 

schemes considered the damaged specimens with glass-fiber wraps, in combination 

with grouting the voids between the jacket and the original lateral surface of the 

specimen with either conventional or expansive grouts. All the repair options 

considered was slowing down the rate of the corrosion reaction, and imparting ductility 

and strength to the affected structural element. FRP wraps, being strong and corrosion-

resistant, proved very effective as jacketing material. Compared with the conventional 

repair methods all the alternatives considered performed much better in terms of 

strength and durability. Performance was markedly improved when increasing the 
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number of FRP layers used in the jacket. Testing the performance of FRP-jacketed 

corroded members of rectangular cross sections, and consideration of combined 

flexure/axial load action in assessing the effectiveness of the repair schemes would be 

necessary prior to recommending general implementation of this technology to field 

applications. 

Lee et al. (2002) studied on the retrofitting effects of reinforced concrete columns 

damaged by rebar corrosion strengthened with carbon fiber sheets. A cyclic horizontal 

loading test was carried out using RC columns damaged by different degrees of rebar 

corrosion and strengthened with CFS. As a result, it was revealed that the deterioration 

of their structural behavior was mainly caused by the decline in the confining effect 

due to the falling off of concrete cover and the reduction of mechanical properties of 

corrosion rebar.  The local corrosion of hoops of an RC column, where axial force is 

dominant, causes fracture of the hoops and brittle shear failure due to the buckling of 

the longitudinal reinforcement when subjected to cyclic positive–negative shear forces 

as in earthquake. Shear strengthening using CFS is an extremely effective retrofitting 

method which prevents bond splitting cracks and shear cracks from growing and 

improves the ductility of RC columns with corroded bars because of the confining 

effects of CFS. 

Bousias et al. (2002) studied seismic retrofitting of corrosion-damaged RC columns. 

RC columns which had 18-20 MPa concrete strength, corroded plain reinforcement 

bars  were designed as not to fit regulations and seismic codes. Then these columns 

were retrofitted by using FRP and behavior of the specimens about different type and 

different layer number of FRP were examined under constant axial load and reverse 

cyclic load.  

Wang et al. (2004) studied experimentally and analytically the behavior of fiber-

reinforced plastic (FRP) retrofitted reinforced concrete beams, possessing a high 

chloride content and rebar corrosion under static loading. The test beams were 

characterized as falling into three different groups according to the state of their 

corrosion damage (natural corrosion, cathodic protection, and accelerated corrosion). 

The load carrying capacities of the beams, with or without FRP patching, were tested 

in the laboratory. The experimental results show that the state of corrosion of the steel, 

the water/cement ratio of the concrete material, and the arrangement and the number 

of FRP patches all affect the strength as well as the failure mechanisms of retrofitted 
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RC beams. Some simple analytical models and a design concept for retrofitting 

cracked and corroded RC beams with FRP sheets are also presented.  

Tastani and Pantazopoulou (2004) studied experimental evaluation of FRP jackets in 

upgrading RC corroded columns with substandard detailing. Console columns which 

were 200 mm×200 mm size and 320 mm height with 30 MPa concrete strength were 

subjected to accelarated corrosion first, then some of them was retrofitted with 

EMACO-S66 which have 50 MPa concrete strength, some of them were retrofitted 

with CFRP (Carbon Fibre Reinforced Polymer) and the rest were retrofitted with both 

repair mortar and CFRP. Then the specimens were tested. For all retrofitting 

procedures, effective strength increase were examined. Ductile behavior were 

examined for the specimens which were retrofitted with CFRP. 

Soudki et al. (2007) studied behavior of CFRP strengthened reinforced concrete beams 

in corrosive environment. Eight beams were cracked by subjected up to 300 wetting 

and drying cycles with deicing chemicals(3% NaCl) and repaired with CFRP sheets 

while the other three beams were kept uncracked as a control. All the specimens were 

subjected to an aggressive environment. The beams were 150 mm wide by 250 mm 

deep by 2400 mm long and reinforced with a reinforcement ratio of 0.6%. In addition, 

non-destructive test were performed to determine the corrosion rate, as well as 

destructive tests to determine chloride diffusion and reinforcing bar mass loss. Based 

on the findings of the study, the long-term effectiveness of the CFRP strengthened 

reinforced concrete in aggressive corrosive environments was established. CFRP 

strengthening significantly enhanced the performance of RC beams with the load 

capacity of almost double that of unstrengthened specimens. CFRP sheets and the resin 

system appeared to decrease chloride ionic diffusion and may reduce the corrosion rate 

of reinforcing steel in the beams. The ultimate capacity of the CFRP strengthened 

beams decreased by 11 to 28% over 300 cycles. The stiffness and yield load was not 

affected by the environmental exposure. Failure mode for a beam strengthened with 

CFRP strips was by debonding of the strips and the time to delaminate was shortened 

by increased wet-dry cycles. 

Maaddawy (2008) studied about behavior of corrosion-damaged RC columns wrapped 

with FRP under combined flexural and axial loading. Console columns which were 

125×125×500 mm sizes were casted with a concrete 28.5 MPa compressive concrete 

strength. Accelarated corrosion process were subjected and damaged columns due to 



10 

corrosion were rehabilitated with CFRP by wrapped the columns. Then performance 

of columns was studied under axial load. Wrapping process were applied by two 

different types, first full wrapping which whole column edge were wrapped and partly 

wrapping which is strip with 125 mm width on end-points of columns and with 65 cm 

strip on middle points of column with a 40 cm spacing. %26 strength improving were 

examined on partly wrapped columns and %40 strength improvin were examined on 

full wrapped columns as a results of experiments.  

C. Goksu (2012) studied seismic behavior of rc columns with corroded plain and 

deformed reinforcing bars. Thirteen specimens which were classified into three 

different types, were produced and subjected to accelerated corrosion process then 

tested under constant axial load and reversed cyclic loads. The first type specimens 

were constructed using low strength concrete and plain reinforcing bars and with 

insufficient lap splices at column-footing connection to represent the existing 

relatively old structures built without complying the design codes. The second type 

specimens were designed and constructed according to current seismic design codes 

in Turkey. The third type specimen had the same characteristics with the first type 

specimens with an additional hook at ends of longitudinal bars lapped over at the 

column-footing connection. None of the specimens of the first type reached their 

theoretical capacity considering uncorroded reinforcing bar cross-sections. The slip of 

longitudinal bars dominated the behavior of specimens without corrosion and with low 

level corrosion. The bond strengths of heavily corroded specimens increased due to 

better bond conditions friction) by rust products on the surface of the plain bars and 

these specimens reached their theoretical capacity determined considering corroded 

reinforcing bar cross-sectional area, which is less than the theoretical capacity 

considering uncorroded reinforcing bar cross-sectional area. 

As a result of literature review, there are a lot of research and researchers who studied 

about corrosion and rehabilitated performance of corrosion with FRP but, none of them 

were studied about rehabilitation of substandard columns because most of these 

researches were performed outside of Turkey. For this reason, typical problematic 

Turkish structure with substandard detailing were not taken into consideration and 

research on this topic is essential and urgent.  
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4.  EXPERIMENTAL DESIGN 

4.1 Design of Specimens 

Six test specimens were constructed to provide relatively old and existing substandard 

structures in Turkey. Substandard structures means extremely low quality of concrete, 

unsufficient lap-splice length and plain round bars. Cross-sectional dimensions of 

columns were 200 mm × 300 mm and 1400 mm height and supported by a 700 mm × 

700 mm × 500 mm foundation. Due to concrete compressive strength test results that 

made by another research in ITU (Goksu, 2012). The mean 28-day compressive 

concrete strength of the specimens are 3.7 MPa.  The elastic modulus of the concrete 

was determined as 6200 MPa. All transverse bars spaces were 20 cm, it means there 

is no conforming transverse bars like as common usage.  Clear cover was 20 mm from 

the transverse bars. The reinforcing cage and specimen details are shown in Appendix 

A.  

Two different types of hot rolled reinforcing bars were used, bar with a 14 mm 

diameter were used for both starter and longitudinal bars, and bar with a 8 mm diameter 

were used for transverse bars. The mechanical characteristics of reinforcing bars are 

given in Table 4.1. In this table; fy, fmax, fu are yield, maximum and ultimate tensile 

stresses, and εy, εmax and εu are the tensile strains corresponding to fy, fmax and fu, 

respectively. 

Table 4.1 : Mechanical characteristics of reinforcing bars. 

Reinforcing 

capacity bars 

fy  

[MPa] 

εy fmax  

[MPa] 

εmax fu 

[MPa] 

εu 

S
2
2
0

a ϕ14 337 0.0016 499 0.2148 366 0.2838 

ϕ8 377 0.0018 494 0.1895 324 0.3202 



12 

 

 

Axial load capacity of the columns is calculated by using Eq. (4.1) and Eq. (4.2) which 

is 124 kN (55% and 30% of the axial load capacity of the column without and with 

consideration of longitudinal bars, respectively).  

  N 0.5 0.55 3.7 200 300 122100 C Cf b h N                 (4.1) 

                         

2

2

0.3 [( ) ( )]
4

14
(3.7 200 300) (4 337 ) 126850

4

C C y

d
N W f b h f

N





    

  



 

 

 

            (4.2) 

The cyclic behavior of the columns was dominated by flexure damage. The average 

moment capacities of the columns were calculated as 34.2 kNm (Figure 4.1) by 

XTRACT(2007) computer program. For the moment-curvature analysis, the models 

proposed by Mander et al (1988) are used for unconfined and confined concrete stress-

strain behavior. Steel reinforcing bars are assumed to behave in an elastic-plastic 

manner with strain hardening. Concrete and steel material models of reinforced 

concrete  section is shown in Figure 4.2.  

 

Figure 4.1: Theoretical moment-curvature relationships of the reference column. 
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Figure 4.2: Concrete and steel material models of reinforced concrete section of 

reference column. 

According to the theoretical calculation of the reference specimen, the column failure 

mode was with the crushing of concrete cover followed by crushing of core concrete 

and then yielding of longitudinal tension bar.  

4.2 Shear Strength 

For determination of shear strength capacity, three several models which where 

common and have been using in the world were used. These were TS500 (2000),  

Sezen and Moehle (2004) and ACI318 (2011). 

According to TS500 (2000), the nominal shear strength capacity, Vr, is calculated as 

the sum of contributions from concrete, Vc and the transverse reinforcement, Vw. 

Results of materials tests are used in the calculations by dividing materials coefficients 

which are γmc and γms taken as 1.5 and 1.15, respectively.  

r c wV V V                                                (4.3) 

 0.8c crV V     (4.4) 

0.65 ( ') (1 )cr cr
N

V f b h d
b h

       


                                 (4.5) 

1.5 3.7 5.55 MPack mc cf f                                         (4.6) 

0.35 0.35 5.55 0.82 MPact ckf f                           (4.7) 
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2
2 8.37 / 4 8.37

378 300 20 ( ) 57.36 kN
200 2

sw
w yw

A
V f d

s

   
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 
(4.10) 

25.86 57.36 83.23 kNr c wV V V        (4.11) 

According to Sezen and Moehle (2004), the nominal shear strength capacity, Vr, is 

calculated as the sum of contributions from concrete, Vc and the transverse 

reinforcement, Vs. 

r c sV V V                 (4.12) 

0.5 '
( 1 ) 0.8

0.5 '

0.5 3.7 122100
1( 1 ) 0.8 200 300 17.99 kN

1200 0.5 3.7 200 300

265

c
c g

c g

f P
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a f A

d
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

      
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   (4.13) 

110 378 265
1 55.09 kN

200

v y
s

A f d
V k

s

   
                       (4.14) 

17.99 55.09 73.08 kNrV       (4.15) 

 

According to ACI318 (2011), the nominal shear strength capacity of concrete for 

members subject to axial compression, VU, is computed by equation 4.16 where VC is 

nominal shear strength provided by concrete and VS is nominal shear strength provided 

by shear reinforcement. 

u c sV V V              (4.16) 

2 1 '
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   (4.17) 

0.1705 54824.25 10.43
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                   (4.18) 
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55.07 19.41 74.487u c sV V V kN                                   (4.19) 

According to calculations, the nominal shear strength capacity of the specimens were 

found as 83.23 kN, 73.08 kN and 74.487 kN according to TS500 (2000), Sezen and 

Moehle (2004) and ACI318 (2011). 

4.3 Accelerated Corrosion 

As known the corrosion is a long term process that effect the earthquake performance 

of the buildings widely. For this reason accelerated corrosion method was used for get 

shorten that process. All specimens except the reference one were exposed to 

accelerated corrosion for modelling the real corrosion effects. 

For accelerated corrosion, calcium chloride was added in the mixing water during 

concrete casting. The weight of calcium chloride was 4% of cement weight (cement 

weight: 384.4 kg, CaCl2: 14.8 kg). After casting, to increase the corrosion rate even 

more, calcium chloride solution was sprayed from the outer sides of the specimens and 

a fixed potential of 6 Volts was applied. Longitudinal and transverse cracks occured 

at the specimens after the accelarated corrosion process. The crack pattern of 

specimens due to corrosion is presented in Figure 4.3.  

Previos studies pointed out a reduction in concrete compressive strength after the 

reinforcing bars in the respective reinforced concrete number have corroded. However, 

concrete compression test results obtained for core specimens that were extracted from 

the columns with heavily corroded reinforcing bars, showed that there was no 

significant change in the compressive characteristic of concrete for the speciments 

tested in this study. A similar result was also obtained for the mechanical 

characteristics of reinforcing bars, which were taken from the unccorroded region.    

For this reason the mean 28-day compressive concrete strength of the specimens and 

were taken as 3.7 MPa for all specimens.  
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Figure 4.3: Photos of the cracked sections on specimens. 

4.4 Test Setup 

Testing Procedure 

All specimens were tested at Istanbul Technical University Structural and Earthquake 

Engineering Laboratory. The transverse load was applied at the top of the specimen, 

approximately at 1200 mm height from the base of the column with a MTS hydraulic 

actuator of 250 kN capacity.  An axial load of 124 kN (55% and 30% of the axial load 

capacity of the column without and with consideration of longitudinal bars, 

respectively) was applied by using a hydraulic jack at the top of the columns. Two 6-

wire-strand post tensioning tendons were used for applying the axial load. Steel 

tendons were passed through inside of the bottom steel beam to the steel beam which 

located at top of the column. Axial load was given by using these steel tendons and the 

hydraulic jack. The load was measured by load cell which was located on the jack. All 

specimens were tested under axial load and reversed cyclic load. Test setup is shown 

in Figure 4.4, Figure 4.5 and Figure 4.6. 

 

Figure 4.4: Axial Load Setup. 
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a)  b)  

Figure 4.5: Test Setup.  

 

Figure 4.6: Test Setup. 

 

 

Test Setup 

TML transducers, YFLA-5 strain-gauges, TML-CLC-50A load cell, the interior load 

cell and interior transducer of MTS actuator were the instrumentation equipment. The 

data of these instruments reached TML TDS 303 data logger through TML ASW-50B 

switch box.  
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4.4.2.1 LVDT’s 

One of the most important thing in the experimental studies are installing the 

measuring system. Therefore, LVDTs were used to estimate the column displacements 

during the test. The LVDT or Linear Variable Differential Transformer is a well 

established transducer design which has been used throughout many decades for the 

accurate measurement of displacement and within closed loops for the control of 

positioning. Six LVDTs were placed parallel to the column bottom up in 20 mm, 150 

mm and 300 mm evaluate curvature values of the specimens. Two of six were CDP50 

which have 50 mm gage length and rest of the LVDTs were CDP25 which have 25 

mm gage length. For the lateral displacement of the column, a reference LVDTs which 

was SDP200 (200 mm gage length) were placed to tip of the column length and another 

one which was CDP100 (100 mm gage length) were placed to mid of the column 

length. Two LVDTs which were CDP5 (5 mm gage length) were placed on the footing 

for measuring the rotations and another LVDTs which was CDP10 were placed 

horizontally at the midpoint of the footing for measuring the possible footing 

displacements. The locations of the LVDTs are shown in Figure 4.7. 

 

Figure 4.7: Locations of the LVDTs. 
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4.4.2.2 Strain-Gauges 

Straingauges are using for monitoring the elongation and shortening of the longitudinal 

bars and transverse reinforcement. “A strain gauge (also strain gage) is a device used 

to measure the strain of an object. Invented by Edward E. Simmons and Arthur C. 

Ruge in 1938, the most co mmon type of strain gauge consists of an insulating flexible 

backing which supports a metallic foil pattern. The gauge is attached to the object by 

a suitable adhesive. As the object is deformed, the foil is deformed, causing its 

electrical resistance to change. This resistance change, usually measured using a 

wheatstone bridge, is related to the strain by the quantity known as the gauge factor.” 

(URL-3). 16 strain-gauges were used for each of the specimens.  

Before attach the strain-gauges, place which strain-gauge attach was clean with coarse 

and sharp corundum. Strain-gauges were glued to totally cleaned places on bars with 

a glue that including cyanoacrylat. After adhered the strain gauges, those were 

wrapped with the N-1 waterproof material and VM Tape for the humidity and other 

external factors. Notes and numbers were written on the cables for understand which 

strain-gauge was where. All strain-gauges were tied in bunches and were takeoff from 

nearest point on concrete.  

 

 

Figure 4.8: Strain-Gauge locations. 
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Table 4.2 : Strain-gauge location plans, names and factors. 

Strain Gauge 

Name 

Adhesion 

Distance  

(mm) 

Gauge 

Factor 

Attached Column 

X26-

REF2 

X26-

M 

X47-M-

CFRP1 

X43-M-

CFRP2 

X44-M-

CFRP3 

KD40-4 400 2.10 ±%1     

KD20-4 200 2.10 ±%1     

KD10-4 100 2.10 ±%1     

FD40-4 400 2.10 ±%1     

FD20-4 200 2.10 ±%1     

FD10-4 100 2.10 ±%1     

KD40-3 400 2.10 ±%1     

KD20-3 200 2.10 ±%1     

KD10-3 100 2.10 ±%1     

FD40-3 400 2.10 ±%1     

FD20-3 200 2.10 ±%1     

FD10-3 100 2.10 ±%1     

EDU1 50 2.10 ±%1     

EDU2 250 2.10 ±%1     

EDK1 50 2.10 ±%1     

EDK2 250 2.10 ±%1     

Six strain-gauges were attached to both of tension and compression bars at 10 cm, 20 

cm and 40 cm heights at both of starter bar and column bars(FD10, FD20, FD40, 

KD10, KD20, KD40). Two strain-gauges were attached to first and second short side 

of transverse bars(EDK1 and EDK2). Two strain-gauges were attached to first and 

second long side of transverse bars(EDU1 and EDU2). Strain-gauge location plans, 

names and factors shows on Table 4.2 and Figure 4.8. 

4.5 Loading History 

Loading history is the one of the most important thing in experimental studies and 

many loading histories have been proposed in the literature. A test may carried out 

under deformation control or force control within the elasctic or the inelastic range. 

Deformation controlled loading history method is applicable to components whose 

seismic response is controlled by a deformation parameter such as displacement, 

rotation or shear distortion. In this thesis, deformation controlled reversed cyclic 

loading history was chosen for all specimens for simulate the dynamic load effects of 
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earthquakes which were suggested by FEMA461. The deformation was controlled by 

using top displacement values of column. Suggested deformation controlled loading 

history of FEMA461 is given in Figure 4.9 where Δ0 and Δm are the targeted smallest 

and targeted maximum deformation amplitude of the loading history.  In this thesis 

modified version of FEMA461 which had used by Goksu (2012) was used and 

displacement have been controlled by drift ratios.  

 

Figure 4.9: Sketch of deformation-controlled loading history. 

Drift ratios(d/L) were calculated as the ratio of the lateral displacement of the top of 

the column(d) to column length(L). Loading history of the specimens are shown in 

Figure 4.10. The loading history was composed of excursions at certain drift ratios 

(±0.0010 (±1.2 mm), ±0.0025 (±3.00 mm), ±0.0050 (±6.00 mm), ±0.0075 (±9.00 mm), 

±0.0100 (±12 mm), ±0.0150 (±18 mm), ±0.0200 (±24 mm), ±0.0250 (±30 mm), 

±0.0300 (±36 mm), ±0.0350d (±42 mm), ±0.0400 (±48 mm), ±0.0450 (±54 mm), 

±0.0500 (±60 mm), ±0.0600 (±72 mm), ±0.0700 (±84 mm), ±0.0800 (±96 mm)) for 

pulling and pushing cycles. 

 

Figure 4.10: Loading history of the specimens.  
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5.  SPECIMEN REHABILITATION/RETROFITTING 

All the specimens except reference one were subjected to rehabilitation/retrofitting 

process. One specimen was rehabilitated while the rest of the specimens were both 

rehabilitated and retrofitted. Rehabilitation/retrofitting methods for each specimen is 

given in Table 5.1. This section contains rehabilitation / retrofitting process of the 

specimens.  

Table 5.1 : Specimen rehabilitation/retrofitting types. 

Specimen Name Rehabilitation Type Retrofitting Type 

X26-REF2 - - 

X26-M Repair Mortar - 

X47-M-CFRP1 Repair Mortar 1 Layer of CFRP 

X43-M-CFRP2 Repair Mortar 2 Layer of CFRP 

X44-M-CFRP3 Repair Mortar 3 Layer of CFRP 

5.1 Measuring the Crack Widths on Specimens 

Before any process on the specimens, all cracks measured with a crack measuring card 

from three different part of the specimens. Most of the corrosion damage and section 

lose were occured on the foundation, column joint section at the specimens. For this 

reason first part was 0-15 cm section of the column specimens for determine how much 

crack width occur cause of the corrosion lose. Second part was 15-60 cm and it shows 

the lap-splice area. And the last one shows the least corroded place. Crack measuring 

for 0-15 cm section is shown in Figure 5.1. 

 

Figure 5.1 : Crack measuring of the specimen.  
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5.2 Cleaning of Cover Concrete and Corrosion Products 

After the crack width measurement, two of the six specimens were taken as a reference 

and corroded concrete cover of the specimens were clean except reference. Hydraulic 

crusher and peen ha mmer were used for the cover concrete cleaning process. The 

weak concrete cover was removed until the longitudinal bars were exposed for 

avoiding premature cover spalling off.  

Since generally the cover concrete is weak and deteriorated due to corrosion of internal 

reinforcing bars in case of sub-standard existing RC structures built with low quality 

concrete, the process of removing of concrete cover does not require a significant 

effort. When concrete cover cleaned, longitudinal and transverse bars were cleaned 

also by using metal brush. Cover concerete cleaned specimen is shown in Figure 5.2. 

a)   b)  

Figure 5.2 : Concrete cover cleaned specimen. 

In the notations of the specimens, the first specimen identifier denotes the cross-section 

loss (X) of the reinforcing bars and the second identifier denotes the 

rehabilitation/retrofitting procedures which were used on specimens. The cross-section 

loss (X) of the reinforcing bars because of corrosion was determined by dividing the 

difference between initial and the existing cross-sectional area.  

All bars diameters were measured again with caliper for every 1 cm and compared 

with the un-corroded bars cross sections. Marked bars is shown in Figure 5.3. The 
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existing cross-sectional area after corrosion was determined by dividing the 

bottommost 300 mm part of four longitudinal bars of each specimen into 10 mm long 

pieces, and averaging or taking the minimum diameters of each 10 mm long piece both 

in 0º and 90º directions after mechanical cleaning of the rust on reinforcing bars. The 

difference in determining the cross-sectional losses of reinforcing bars for specimens 

was due to different failure modes of the specimens.   Minimum cross-section is taken 

into consideration for X47-M-CFRP1, X43-M-CFRP2 and X44-M-CFRP3 due to their 

failure mode were rupture of the starter bars, while average cross-section is consider 

for other specimens.  

a)  b)  

Figure 5.3 : Marked bars for measuring on specimens. 

Peak and average section loses were determined for all specimens except X0-REF1-

REF1 and these values is given in Table 5.2. It should be noted that reinforcement bar 

diameter values of X26-REF2 was measured in autopsy step after test performed. 

Average diameter of the un-corroded longitudinal and starter bar was 14.55 mm.  

Table 5.2 : Diamaters and section loss of the reinforcement longitudinal bars. 

Specimen 

Name 

 
Bar #1  

(mm) 

Bar #2  

(mm) 

Bar #3  

(mm) 

Bar #4  

(mm) 

Average 

Section Loss 

% 

X26-REF2  12.50 12.84 11.76 12.89 26% 

X26-M  12.50 12.84 11.76 12.89 26% 

X47-M-CFRP1  11.39 11.51 11.15 7.94 47% 

X43-M-CFRP2  11.24 8.31 11.77 12.31 43% 

X44-M-CFRP3  10.17 11.20 10.32 11.88 44% 
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5.3 Measuring the Crack Widths on Specimens 

In previous part the concrete cover was cleaned mechanically. Steel reinforcement 

surfaces was cleaned from any concrete traces and rust of the corrosion products.  After 

cleaning process reinforcement of the specimens were covered with a corrosion 

inhibitor material Masterseal 300T. This material prevents is an anti-corrosion coating 

and primer which is protect the reinforcement from corrosion. Applying of corrosion 

inhibitor material is shown in Figure 5.4. 

 

Figure 5.4 : Specimens were covered with a corrosion inhibitor material. 

After the corrosion inhibitor dried, specimens strengthened with EMACO S88 repair 

mortar with no gap around columns. Strengthening process of the specimens is shown 

step by step in Figure 5.5  

a)  b)   c)  

Figure 5.5 : Rehabilitation process of the specimens with repair mortar. 
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As a final step for specimens which will retrofitted by carbon fiber reinforced polymer 

sheets, were wrapped around the specimen externally one, two and three times in 

transverse direction with 150 mm overlap at the end of the wrap to enhance the 

deformability and to avoid potential shear failure due to increased flexural strength. 

Retrofitting process of the specimens with CFRP is shown step by step in Figure 5.6. 

Other functions of CFRP sheets wrapped around the members in transverse direction 

were to contribute to the bond between the core concrete and repair mortar, and to 

contribute to prevention of buckling of internal steel. It should be noted that, all retrofit 

application was carried out within the thickness of the original concrete cover. 

a)   b)    c)  

Figure 5.6 : Retrofitting process of the specimens. 

The mechanical characteristics of the CFRP sheet, as given by Telateks Company, are 

presented in Table 5.3. In this table, tf, wf  and Ef  are the effective thickness, the 

effective width and the tensile elastic modulus of CFRP sheet. The compressive 

strengths of the cement based structural repair mortar, the epoxy adhesive mix used in 

wrapping CFRP sheets in transverse direction to the member surface were 50 and 

60MPa (after 7 days of age), respectively. 

Table 5.3 : Characteristics of CFRP sheet. 

 Ef  [N/ mm2] tf  [ mm] wf  [ mm] Ultimate strain 

CFRP Sheet 245000  0.17 500 0.018 
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6. THEORICAL STUDY 

Theorical predictions of X26-REF2 and X26-M were calculated by using method 

which proposed by Mander et al. while X-47-CFRP1, X-43-CFRP2 and X-44-CFRP3 

were calculated by using Mander et al.  after unconfined part of the section had 

calculated according to method suggested by A.İlki et al. for the CFRP strengthened 

beams. Diameter of bars were taken from Table 5.2. Then the section was modelled as 

given in Figure 6.1 for X26-REF2. Contrubition of cracked cover concrete of X26-

REF2 was disregarded in calculations. Moment – curvature diagram for X26-REF2 

was given in Figure 6.2.  

  

Figure 6.1 : Theorical section and material properties of X26-REF2 specimen. 

 

Figure 6.2 : Theorical Moment – Curvature Diagram of X26-REF2 specimen. 
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The section was modelled as given in Figure 6.3 for X26-M. Properties of unconfined 

concrete were taken from manufacturer firm of EMACO S88. Moment – curvature 

diagram for X26-M was given in Figure 6.4.   

  

Figure 6.3 : Theorical section and material properties of X26-M specimen. 

 

Figure 6.4 : Theoretical Moment – Curvature Diagram of X26-M specimen. 

For calculation of theorical moment capacity of X47-M-CFRP1, effect of confined 

concrete was calculated by using the method which proposed by Mander et al. and 

effect of unconfined and CFRP sheets together was calculated by using the method 

which proposed by A.İlki et al.. For X47-M-CFRP1, calculation steps of 𝑓𝑐𝑐
′  and 𝜀𝑐𝑐 

according to method proposed by A.İlki are given in below.  
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Then cross-section of specimen X47-M-CFRP1 was modelled in XTRACT as given 

in Figure 6.5. Moment – curvature diagram for X47-M-CFRP1 was given in Figure 

6.6.   
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Figure 6.5 : Theorical section and material properties of X47-M-CFRP1 specimen. 

 

Figure 6.6 : Theoretical Moment – Curvature Diagram of X47-M-CFRP1 specimen. 
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according to method proposed by A.İlki are given in below.  
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Then cross-section of specimen X43-M-CFRP2 was modelled in XTRACT as given 

in Figure 6.7. Moment – curvature diagram for X43-M-CFRP2 was given in Figure 

6.8.   
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Figure 6.7 : Theorical section and material properties of X47-M-CFRP2 specimen. 

 

Figure 6.8 : Theoretical Moment – Curvature Diagram of X43-M-CFRP2 specimen. 
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Then cross-section of specimen X44-M-CFRP3 was modelled in XTRACT as given 

in Figure 6.9. Moment – curvature diagram for X44-M-CFRP3 was given in Figure 

6.10.   

 



36 

  

Figure 6.9 : Theorical section and material properties of X44-M-CFRP3 specimen. 

 

Figure 6.10 : Theoretical Moment – Curvature Diagram of X44-M-CFRP3 specimen. 

Comparison of theoretical and experimental capacities of the specimens are given in 
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X43-M-CFRP2 31.90 -27.69 33.21 -27.82 3% 

X44-M-CFRP3 30.08 -29.66 30.18 -28.63 0% 
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7.  TEST RESULTS 

7.1 X0-REF1 

Results of X0-REF1 specimen are taken from PhD. Thesis of Dr. Çağlar GÖKSU 

which had done before this thesis to compare with corroded specimen test results. X0-

REF1 is the reference specimen which was not exposed to any accelerated corrosion 

process or rehabilitation application. Test was examined at 1.6.2007 within the 

doctoral studies of Dr. Çağlar GÖKSU (Goksu, 2012). Axial load of the specimen was 

124 kN, and test was performed displacement-controlled like as done in this thesis. 

No cracks were observed while loading to target displacements of ±1.2 mm (drift ratio 

0.10%) and ±3 mm (drift ratio 0.25%). First flexural crack was observed at the 

interface of the column and footing during loading to target displacement of 6 mm 

(drift ratio 0.5%). The view of the specimen X0-REF1 after 0.50% drift ratio is shown 

in Figure 7.1. 

a)           b)  

Figure 7.1 : a) North, and b) South view of the X0-REF1 specimen after -0.50% drift 

ratio. (Goksu, 2012) 

Second flexural crack was observed 250 mm above the footing during loading to target 

displacement of 12 mm(drift ratio 1.00%). The view of the specimen X0-REF1 after -

1.50% drift ratio is shown in Figure 7.2.  
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a)         b)  

Figure 7.2 : a) North, and b) South view of the X0-REF1 specimen after -1.50% drift 

ratio (Goksu, 2012). 

During loading to target displacement of 24 mm (drift ratio 2.00%), vertical cracks 

formed at the lap splice zone. Similar type of damages occurred at the opposite side 

while the column was subjected to pulling. The view of the specimen X0-REF1 after 

-2.50% drift ratio is shown in Figure 7.3.  

b)  

Figure 7.3 : a) North, and b) South view of the LS-C0 specimen after -3.50% drift 

ratio (Goksu, 2012). 

As the testing progressed, cracks generally accumulated 300 mm above the footing. 

The view of the specimen X0-REF1 specimen after -5.00% drift ratio is shown in 

Figure 7.4. Force-displacement relationship of the specimen X0-REF1 is presented in 

Figure 7.5. In this figure, P is applied lateral load and P0 is the theoretical lateral load 

capacity of the specimen determined without considering the effect of corrosion. First 

flexural crack, first shear crack, first vertical crack, crushing of concrete cover, spalling 

of concrete cover, maximum strain on the starter bar and maximum strain on the 

longitudinal bar are marked on the figure. As seen from Figure 7.5, no strength loss 



39 

was observed. The decline is due to the horizontal component of the axial load. As the 

line of action of the axial load does not pass through the column base during the tests 

of all column specimens, to account P-o effects, the effect of axial load resolved to its 

horizontal and vertical components. Then, the horizontal components of the axial load 

subtracted from the force applied by the actuator and the net horizontal  force obtained. 

This correction was done due to PEER (2004) Case 4. 

a)      b)  

Figure 7.4 : a) North, and b) South view of the X0-REF1 specimen after -5.00% drift 

ratio (Goksu, 2012). 

Summary of the seismic behavior of specimen X0-REF1 is shown in Table 7.1.  

 

Figure 7.5 : Lateral load/Theoretical load capacity capacity versus displacement for 

X0-REF1 (Goksu, 2012). 
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For the observation of distribution of damages, moment-curvature relationships were 

obtained at different gauge lengths at the potential plastic hinge zones (Figure 7.6). 

Table 7.1 : Summary of the seismic behavior of X0-REF1(Goksu, 2012). 

Drift 

Ratio (%) 

δ 

(mm/mm) P (kN) 
Observations 

0.1 ±1.2 4.67/-6.74 No crack was observed. 

2.5 ±3 10.3/-11.91 No crack was observed. 

0.5 ±6 14.7/-15.23 

First flexural crack at column-footing interface was 

observed 

0.75 ±9 16.2/-16.17  

1 ±12 15.9/-16.48 Flexural shear cracks were observed. 

1.5 ±18 15.9/-15.86  

2 ±24 15.3/-15.46 

Vertical cracks, indicating slip, formed at the 

interface of the column and footing and lap splice 

zone durin pulling and pushing cycles 

2.5 ±30 14.8/-14.36 

Crushing started at the interface of the column and 

footing at the compression zone 

3 ±36 14.1/-13.31  

3.5 ±42 13.6/-11.03 

Concrete cover spalled at the north side of the 

column at the compressive zone. Concrete crushed 

at the south side of the column 

4 ±48 12.7/-10  

4.5 ±54 11.6/-8.32  

5 ±60 9.95/-6.82 

Specimen underwent excessive deformation out of 

its axis and test was ended by decreasing axial load. 

 

 

Figure 7.6 : Test setup with measurement system used in obtaining moment-curvature 

relationship (Goksu, 2012). 
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The calculation of the moment-curvature relationships are performed assuming that 

plane sections remain plain. Moment is calculated by using Eq. (7.1) taking into 

account the second-order effects. In the equation, P is the lateral load, H is the column 

height, N is the axial load, and e is the eccentricity due to horizontal displacement of 

the column, subjected to lateral load, P. 

 . .M P H N e    (7.1) 

For the calculation of moment-curvature relationships, the average curvature values 

were obtained in 20 mm, 150 mm and 300 mm above the footing. Curvatures were 

calculated by dividing the obtained strains from the LVDTs to the distance between 

the LVDTs (Eq. (7.2)). 

 1 2

11 12

x
b X X

 


 
     (7.2) 

 

Average experimental moment-curvature relationships obtained for critical sections of 

the specimen X0-REF1 are presented in Figure 7.  For the calculation of moment-

curvature relationships, the average curvature values obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.7, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5
 (1/ mm), while the 

curvatures measured in 0-20 mm height are in the order of 3.10-3
 (1/ mm). According 

to Figure 6.12, it is of interest to note that the damage is accumulated especially in 20 

mm height of the member from top of the base. 
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Figure 7.7 : Moment-curvature relationships obtained for a) 0-20 mm, b) 20-150 mm, 

c) 150-300 mm gauge lengths (Goksu, 2012). 

According to the data from the straingauges on the starter bars of the X0-REF1, the 

maximum strain while pushing was 0.0008, measured from the straingauge at +200 

mm above the footing for P=13.63 kN at 0.035 drift ratio; the maximum strain while 

pulling was -0.0004, measured from the straingauge at +100 mm above the footing 

when P=-11.91 kN at -0.0025 drift ratio. According to the data from the straingauges 

on the longitudinal bars of the X0-REF1, the maximum strain while pushing was 

0.0003, measured from the straingauge at +400 mm above the footing when P=12.67 

kN at 0.04 drift ratio; the maximum strain while pulling was -0.0008, measured from 

the straingauge at +200 mm above the footing when P=-6.82 kN at -0.05 drift ratio. 

Strain distribution of the starter bars and longitudinal bars of X0-REF1 while pushing 

and pulling are shown in Figure 7.8 and Figure 7.9, respectively. As seen from Figure 

7.8 and Figure 7.9, the strain values did not reach yield strain. 
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Figure 7.8 : Strain distribution of the starter bars of X0-REF1 a) while pushing, b) 

while pulling (Goksu, 2012). 

 

Figure 7.9 : Strain distribution of the longitudinal bars of X0-REF1 a) while pushing 

b) while pulling (Goksu, 2012). 

 

7.2 X26-REF2  

X26-REF2 was the reference specimen which was exposed to accelerated corrosion 

process and there was no rehabilitation/retrofitting application. Test was examined at 

26.7.2011. Axial load of the specimen was 124 kN, and test was performed 

displacement-controlled.  

No cracks were observed while loading to target displacements of  ±3 mm (0.25% drift 

ratio), after ±3 mm (0.25% drift ratio) target displacement, some vertical cracks were 

observed. First flexural cracks was observed at both sides of the specimen (A-north, 

A-south) with 0.1 mm width during loading to target displacement ±6 mm (0.50% drift 

ratio). The view of the specimen X26-REF2 after -0.50% drift ratio is shown in Figure 

7.10. 
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a)         b)  

Figure 7.10 :  a) North, and b) South view of the X26-REF2 specimen after target 

displacement ±6 mm (-0.50% drift ratio). 

During loading to target displacement -9 mm (drift ratio -0.75%) second flexural crack 

was observed at interface of the column and footing. The view of the specimen X26-

REF2 after target displacement -9 mm (drift ratio -0.75%) is shown in Figure 7.11. 

a)        b)  

Figure 7.11 : a) North, and b) South view of the X26-REF2 specimen after target 

displacement -9 mm (-0.75% drift ratio). 

Some cracks were occurred after acceleration corrosion process along the column 

transverse and longitidunal bars. These cracks was marked with green marker on the 

pictures. During loading to target displacement -12 mm (-1% drift ratio), size 

increasing of these cracks and propagation of existing cracks were observed.  X26-

REF2 after target displacement -12 mm (drift ratio -1%) is given in Figure 7.12.  
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Figure 7.12 : Cracks because of transverse and longitudinal bars after target 

displacement -12 mm (-1% drift ratio). 

During loading to target displacement of -18 mm (drift ratio -1.50%) flexural cracks 

(K-south, L-south, M-south, F-north, G-north, H-north, I-north, J-north, K-north, H’-

south, I’-south, J’-south, K’-north), vertical cracks (N-south, O-south)  and 

propagation of existing cracks (A-north, B-north, E-north, A-south, B-south, B’-south, 

E’-south, A’- north, D’-north, E’-north, H’-north, J’-north) were observed.  X26-REF2 

after target displacement -18 mm (drift ratio -1.5%) is given in Figure 7.13. 

a)  b)  

Figure 7.13 : a) North, and b) South view of X26-REF2  after target displacement -18 

mm (-1.50 % mm drift ratio). 

During loading to target displacement of -24 mm (drift ratio -2.00%) flexural cracks 

(K’-south(0.1 mm), P-south(0.1 mm), R-south(0.3 mm)), shear cracks (L-north(0.7 

mm), M-north(0.1 mm), N-north(0.4 mm), vertical cracks (N-south, O-south)  and 

propagation of existing cracks (A-north(0.3 mm to 0.6 mm), B-north(0.2 mm to 0.5 

mm), C-north(0.1 mm to 0.3 mm), D-north(0.1 mm to 0.2 mm), A-south(0.7 mm to 
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0.8 mm), I-south(0.1 mm to 0.2 mm), M-south(0.1 mm to 0.2 mm), O-south(0.1 mm 

to 0.3 mm), I’north(0.1 mm to 0.2 mm), K’north(0.3 mm to 0.4 mm), I’south(0.4 mm 

to 0.5 mm), E’-south(1.4 mm to 2.1 mm), A’-south(0.1 mm to 0.2 mm), B’-south(0.2 

mm to 1.2 mm)) were observed. X26-REF2 after target displacement -24 mm (drift 

ratio -2%) is given in Figure 7.14. 

a)  b)  

Figure 7.14 : a) North, and b) South view of X26-REF2  after -2.00 % mm drift ratio. 

During loading to target displacement of -30 mm (drift ratio -2.50%) flexural cracks 

(O-north(0.2 mm), P-north(0.1 mm)), shear cracks (L’-south(0.2 mm)), vertical cracks 

(S-south(0.2 mm)), crushing on cracks (D’-north, B’-south, D’-south, E’-south, I’-

south) and propagation of existing cracks (B-north(0.5 mm to 0.6 mm), G-north(0.1 

mm to 0.2 mm), H-north(0.2 mm to 0.3 mm), J-north(0.2 mm to 0.3 mm), K-north(0.7 

mm to 0.8 mm), L-north(0.7 mm to 5 mm), M-north(0.1 mm to 0.5 mm), N-north(0.4 

mm to 2.3 mm),  A-south(0.8 mm to 1.1 mm), B-south(0.1 mm to 5.5 mm), D-

south(0.1 mm to 0.3 mm), E-south(0.1 mm to 0.4 mm), I-south(0.2 mm to 9 mm), K-

south(0.1 mm to 0.3 mm), M-south(0.2 mm to 0.8 mm), O-south(0.3 mm to 5 mm),  

G’north(0.1 mm to 0.5 mm), F’south(0.1 mm to 0.6 mm), J’-south(0.1 mm to 0.3  

mm)) were observed. X26-REF2 after target displacement -30 mm (drift ratio -2.5%) 

is given in Figure 7.15. 
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a)   b)  

Figure 7.15 : a) North, and b) South view of X26-REF2  after -2.50 % mm drift ratio. 

During loading to target displacement of -36 mm (drift ratio -3.00%), longitudinal bars 

of the specimen were buckled due to excessive axial load.  North, and south view of 

X26-REF2  after experiment end was given in Figure 7.16. 

a)  b)  

Figure 7.16 : a) North, and b) South view of X26-REF2  after experiment finished. 

Summary of the seismic behavior of specimen X26-REF2 is shown in Table 7.2. 
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Table 7.2 : Summary of the seismic behavior of X26-REF2. 

Drift 

Ratio (%) 

δ 

(mm/mm) P (kN) 
Observations 

0.1 ±1.2 5.70/-5.20 No crack was observed. 

2.5 ±3 12.20/-10.80 Some little vertical cracks observed. 

0.5 ±6 18.9/-15.7 Small diagonal crack at South side 

0.75 ±9 23.0/-20.5 Flexural shear cracks were observed. 

1 ±12 24.9/-24.2  

1.5 ±18 26.5/-27.10  

2 ±24 27.70/-24.40 

Vertical cracks, shear cracks formed at the 

interface of the column and footing and lap splice 

zone during pulling and pushing cycles 

2.5 ±30 22.2/-17.0 

Buckling of longitidunal bars started. Concrete 

cover crushed. 

3 ±36 10.1/-13.31 Test ended. 

Force-displacement relationship of X26-REF2 is presented in Figure 7.17. In this 

figure, P is applied lateral load and P0 is the theoretical lateral load capacity of the 

specimen determined without considering the effect of corrosion. First flexural crack, 

first shear crack, first vertical crack, yielding of starter bar, crushing of concrete cover, 

spalling of concrete cover, fracture of starter bar, maximum strain on the starter bar 

and maximum strain on the longitudinal bar are marked on the figure. As seen from 

Figure 7.17, strength loss was observed. 

 

Figure 7.17 : Lateral load versus displacement for X26-REF2. 
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Average experimental moment-curvature relationships obtained for critical sections of 

X26-REF2 are presented in Figure 7.18. For the calculation of moment-curvature 

relationships, the average curvature values which were obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.18, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5 (1/ mm), while 

the curvatures measured in 0-20 mm height are in the order of 3.10-3 (1/ mm). 

According to Figure 7.18, it is of interest to note that the damage is accumulated 

especially in 20 mm height of the member from top of the base according to the 

moment-curvature relationships. 

a)  

b)  
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c)  

Figure 7.18 : Moment-curvature relationships obtained for a) 20 mm, b) 150 mm, c) 

300 mm gauge lengths. 

According to the data from the straingauges on the starter bars, the maximum strain 

while pushing was 0.00184, measured from the straingauge at +100 mm above the 

footing when P=28.5 kN at 0.02 drift ratio; the maximum strain while pulling was -

0.00158, measured from the straingauge at +100 mm above the footing when P=-15.54 

kN at -0.02 drift ratio; the maximum strain while pushing was 0.00235, measured from 

the straingauge at +200 mm above the footing when P=20.08 kN at 0.03 drift ratio; the 

maximum strain while pulling was -0.00129, measured from the straingauge at +200 

mm above the footing when P=-0.77 kN at -0.025 drift ratio.  According to the data 

from the straingauges on the longitudinal bars of the X26-REF2, the maximum strain 

while pushing was 0.0005, measured from the straingauge at +100 mm above the 

footing when P=12.69 kN at 0.03 drift ratio;  the maximum strain while pulling was -

0.00116, measured from the straingauge at +100  mm above the footing when P=-

26.95 kN at -0.02 drift ratio.  Strain distribution of the starter bars and longitudinal 

bars of X26-REF2 while pushing and pulling are shown in Figure 7.19 and Figure 

7.20. As seen from Figure 7.19 and Figure 7.20, the strain values of starter bars reach 

yield strain while pushing.  
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a)   

b)  

Figure 7.19 : Strain distribution of the starter bars of X26-REF2 a) while pushing, b) 

while pulling. 
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b)  

Figure 7.20 : Strain distribution of the longitudinal bars of X26-REF2 a) while 

pushing, b) while pulling. 

7.3 X26-M  

X26-M is the rehabilitated specimen which was rehabilitated after exposed to 

accelerated corrosion process. Test was examined at 6.2.2012. Axial load of the 

specimen was 124 kN, and test was performed displacement-controlled. After 

rehabilitation process some vertical and horizontal shrinkage cracks were occurred on 

the surface of the specimen.These cracks marked with green marker on the concrete 

surface. The view of the specimen X26-M before the starting of test was shown in 

Figure 7.21. 

 

Figure 7.21 : The view of the specimen X26-M before the starting of test 
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No cracks were observed while loading to target displacements of ±3 mm (0.25% drift 

ratio), at target displacement -3 mm (-0.25% drift ratio), first flexural cracks (A’-south, 

0.15 mm) was observed. First cracks at interface of the column and footing was 

observed while during loading to target displacement 6 mm (0.5% drift ratio).  

During the loading cycle for target displacement ±9 mm (drift ratio ±0.75%) vertical 

cracks (A-north, 0.3 mm, B’-south, 0.5 mm) observed on concrete surface of 

longitudinal bars and second flexural crack(B-north, 0.1 mm, C’-south, 0.9 mm) was 

observed at interface of the column and footing. The view of the specimen X26-M 

after target displacement -9 mm (drift ratio -0.75%) is shown in Figure 7.22. 

a)  b)  

Figure 7.22 : a) North, and b) South view of X26-M after -0.75 % mm drift ratio. 

During the loading cycle for target displacement ±12 mm (drift ratio ±1%) vertical 

cracks (A’-north (0.05 mm), A-south (0.3 mm), B-south(0.05 mm)) and propagation 

of existing cracks (A-north (0.3 mm to 0.7 mm), B-north(0.1 mm to 0.15 mm), A’-

south (0.1 mm to 0.05 mm), B’-south (0.5 mm to 0.85 mm), C’-south (0.9 mm to 0.7 

mm)) was observed. The view of the specimen X26-M after target displacement -12 

mm (drift ratio -1%) is shown in Figure 7.23. 
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a)   b)  

Figure 7.23 : a) North, and b) South view of X26-M after -1.00 % mm drift ratio. 

During the loading cycle for target displacement ±18 mm (drift ratio ±1.5%) any new 

cracks was not occurred on concrete surface and propagation of existing cracks A-

north (0.7 mm to 2.7 mm), A-south (0.3 mm to 0.2 mm), A’-north (0.05 mm to 0.1 

mm),  B’-south (0.85 mm to 1.50 mm), C’-south (0.7 mm to 0.6 mm)) was observed. 

The view of the specimen X26-M after target displacement -12 mm (drift ratio -1.5%) 

is shown in Figure 7.24. 

a)  b)  

Figure 7.24 : a) North, and b) South view of X26-M after -1.50 % mm drift ratio. 

 

During the loading cycle for target displacement ±24 mm (drift ratio ±2%),first shear 

cracks C-south (0.6 mm), vertical cracks B’-north (0.25 mm), D’-south (0.9 mm), E’-

south (0.2 mm), crushing on concrete surface crack (C’-south) and propagation of 
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existing cracks A-north (2.7 mm to 6 mm), B-north (0.15 mm to 0.05 mm), A-south 

(0.2 mm to 0.7 mm), B-south (0.05 mm to 0.1 mm), A’-north (0.1 mm to 0.2 mm),  

B’-south (1.50 mm to 1.60 mm)) was observed. The view of the specimen X26-M after 

target displacement -12 mm (drift ratio -2%) is shown in Figure 7.25. 

a)   b)  

Figure 7.25 : a) North, and b) South view of X26-M after -2.00 % mm drift ratio. 

During the loading cycle for target displacement ±48 mm (drift ratio ±4%), 

propagation of existing cracks A-north (13 mm), B-north (0.4 mm), C-north (0.5 mm), 

A-south (5.4 mm), B-south(0.5 mm), C-south(0.35 mm), B’-north (1.50 mm) , A’-

south (0.1 mm), B’-south (1.6 mm), C’-south (13 mm),  D’-south (1.4 mm ), E’-south 

(0.1 mm ) was observed. The view of the specimen X26-M after target displacement -

12 mm (drift ratio -4%) is shown in Figure 7.26. 

a)  b)  

Figure 7.26 : a) North, and b) South view of X26-M after -4.00 % mm drift ratio. 

After target displacement ±54 mm some cracks on the concrete surface was started to 

crushing and spalling, it contunied until target displacement -84 mm, after target 
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displacement ±84 mm test was ended due to fallen load capacity. The view of the 

specimen X26-M after test ended is shown in Figure 7.27. 

a)   b)  

Figure 7.27 : a) North, and b) South view of X26-M after the test finished. 

Summary of the seismic behavior of specimen X26-M is shown in Table 7.3. 

Table 7.3 : Summary of the seismic behavior of X26-M. 

Drift 

Ratio (%) 

δ 

(mm/mm) P (kN) 
Observations 

0.1 ±1.2 8.00/-9.30 No crack was observed. 

2.5 ±3 16.20/-16.90 First flexural cracks was observed. 

0.5 ±6 24.90/-25.50 

First flexural crack at column-footing interface 

was observed 

0.75 ±9 30.3/-29.2  

1 ±12 31.7/-30.0 Flexural shear cracks were observed. 

1.5 ±18 33.4/-31.1  

2 ±24 33.0/-26.6 

Crushing started at the interface of the column 

and footing at the compression zone 

2.5 ±30 29.7/-24.0 

Crushing started at the interface of the column 

and footing at the compression zone 

3 ±36 25.3/-22.5  

3.5 ±42 24/-22 

Concrete cover spalled at the south side of the 

column at the tension zone 

4 ±48 23.0/-19.5  

4.5 ±54 22.1/-18 

Concrete cover spalled at the north side of the 

column at the compressive zone. Concrete 

crushed at the south side of the column 

5 ±60 21.5/-17.1  

6 ±72 19.5/-16.8  

7 ±84 14.6/-14.0 

Specimen underwent excessive deformation out 

of its axis and test was ended by decreasing axial 

load. 
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Force-displacement relationship of X26-M is presented in Figure 7.28. First flexural 

crack, first shear crack, first vertical crack, yielding of starter bar, crushing of concrete 

cover, spalling of concrete cover, fracture of starter bar, maximum strain on the starter 

bar and maximum strain on the longitudinal bar are marked on the figure. As seen from 

Figure 7.28, strength loss was observed. 

 

Figure 7.28 : Lateral load versus displacement for X26-M. 

Average experimental moment-curvature relationships obtained for critical sections of 

X26-M are presented in Figure 7.28. For the calculation of moment-curvature 

relationships, the average curvature values which were obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.28, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5 (1/ mm), while 

the curvatures measured in 0-20 mm height are in the order of 3.10-3 (1/ mm). 

According to Figure 7.28, it is of interest to note that the damage is accumulated 

especially in 20 mm height of the member from top of the base according to the 

moment-curvature relationships. 
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a)  

b)  

c)  

Figure 7.29 : Moment-curvature relationships obtained for a) 20 mm, b) 150 mm, c) 

300 mm gauge lengths. 
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According to the data from the straingauges on the starter bars, the maximum strain 

while pushing was 0.00182, measured from the straingauge at +100 mm above the 

footing when P=32.14 kN at 0.02 drift ratio; the maximum strain while pulling was –

0.00095, measured from the straingauge at +100 mm above the footing when P=--

30.14 kN at -0.01 drift ratio; the maximum strain while pushing was 0.00297, 

measured from the straingauge at +200 mm above the footing when P=33.46 kN at 

0.015 drift ratio; the maximum strain while pulling was -0.00155, measured from the 

straingauge at +200 mm above the footing when P=-28.33 kN at -0.01 drift ratio.  

According to the data from the straingauges on the longitudinal bars of the X26-M, the 

maximum strain while pushing was 0.00069, measured from the straingauge at +100 

mm above the footing when P=-6.45 kN at -0.07 drift ratio;  the maximum strain while 

pulling was -0.00028, measured from the straingauge at +100  mm above the footing 

when P=-16.72 kN at -0.0025 drift ratio; the maximum strain while pushing was 

0.00046, measured from the straingauge at +200 mm above the footing when P=31.79 

kN at 0.01 drift ratio;  the maximum strain while pulling was -0.00034, measured from 

the straingauge at +200  mm above the footing when P=-23.12 kN at -0.005 drift ratio. 

Strain distribution of the starter bars and longitudinal bars of X26-M while pushing 

and pulling are shown in Figure 7.30 and Figure 7.31. As seen from Figure 7. 30 and 

Figure 7.31, the strain values of starter bars reach yield strain while pushing.  
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b)  

Figure 7.30 : Strain distribution of the starter bars of X26-M a) while pushing, b) 

while pulling. 

a)  

b)  

Figure 7.31 : Strain distribution of the longitudinal bars of X26-M a) while pushing, 

b) while pulling.  
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7.4 X47-M-CFRP1 

X47-M-CFRP1 is the both rehabilitated/retrofitted specimen which was rehabilitated 

after exposed to accelerated corrosion process, then the specimen was retrofitted with 

1-layer CFRP. Test was examined at 22.3.2012. Axial load of the specimen was 124 

kN, and test was performed displacement-controlled. The view of the specimen X47-

M-CFRP1 before the starting of test was shown in Figure 7.32. 

 

Figure 7.32 : The view of the specimen X47-M-CFRP1 

There were no observed crack on the surface of the specimen X47-M-CFRP1 during 

the experiment. Wrapping of the specimen X47-M-CFRP1 prevent the cracks on the 

surface but all damage was accumulated at the base of the specimen. This type of 

damage may be quite disadvantageous since the distribution of plastic deformations 

through the potential plastic hinge length is prevented.  

First flexural crack was observed at interface of the column and footing, during loading 

to target displacement 3 mm(drift ratio 0.25%). During the loading to target 

displacement -54 mm(drift ratio -4.00%)  tearing at the CFRP was observed at +10 

mm height due to the crushing of the wrapped concrete. During the loading to target 

displacement 84 mm(drift ratio 7%) one of the starter bar was ruptured.  

Summary of the seismic behavior of specimen X47-M-CFRP1 is shown in Table 7.4. 
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Table 7.4 : Summary of the seismic behavior of X47-M-CFRP1. 

Drift 

Ratio 

(%) 

δ 

(mm/mm) P (kN) 

Observations 

0.1 ±1.2 7.80/-12.20 No crack was observed. 

2.5 ±3 16.10/-20.50 

First flexural crack at column-footing interface 

was observed. 

0.5 ±6 21.7/-27.6  

0.75 ±9 24.2/-30.7  

1 ±12 25.4/-32.5  

1.5 ±18 26.8/-34.5  

2 ±24 28.5/-35.3  

2.5 ±30 28.7/-34.5  

3 ±36 28.4/-33.8  

3.5 ±42 27.8/-34.2  

4 ±48 26.9/-33.0  

4.5 ±54 26.0/-33.5 

Separation of CFRP at the interface of the 

column and footing at the compression zone.  

5 ±60 25.3/-30.2  

6 ±72 25.2/-30.9  

7 ±84 23.0/-19.9 Starter bar ruptured.  

Force-displacement relationship of X47-M-CFRP1 is presented in Figure 7.33. 

Yielding of starter bar, yielding of longitudinal bar, fracture of starter bar, maximum 

strain on the starter bar and maximum strain on the longitudinal bar are marked on the 

figure. As seen from Figure 7.33, strength loss was observed.  

Average experimental moment-curvature relationships obtained for critical sections of 

X47-M-CFRP1 are presented in Figure 7.34. For the calculation of moment-curvature 

relationships, the average curvature values which were obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.34, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5 (1/ mm), while 

the curvatures measured in 0-20 mm height are in the order of 3.10-3 (1/ mm). 

According to Figure 7.34, it is of interest to note that the damage is accumulated 

especially in 20 mm height of the member from top of the base according to the 

moment-curvature relationships. 
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Figure 7.33 : Lateral load versus displacement for X47-M-CFRP1. 
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b)  

c)  

Figure 7.34 : Moment-curvature relationships obtained for a) 20 mm, b) 150 mm, c) 

300 mm gauge lengths. 
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straingauge at +100 mm above the footing when P=22.92 kN at 0.07 drift ratio;  the 

maximum strain while pulling was 0.0000867, measured from the straingauge at +100  

mm above the footing when P=-32.45 kN at -0.01 drift ratio; the maximum strain while 

pushing was -0.0001457, measured from the straingauge at +200 mm above the 

footing when P=22.92 kN at 0.07 drift ratio;  the maximum strain while pulling was 

0.0000867, measured from the straingauge at +200  mm above the footing when 

P=21.71 kN at 0.005 drift ratio. Strain distribution of the starter bars and longitudinal 

bars of X47-M-CFRP1 while pushing and pulling are shown in Figure 7.35 and Figure 

7.36. As seen from Figure 7. 35 and Figure 7.36, the strain values of starter bars reach 

yield strain while pushing.  

a)   

b)  

Figure 7.35 : Strain distribution of the starter bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 
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a)  

b)  

Figure 7.36 : Strain distribution of the longitudinal bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 

7.5 X43-M-CFRP2 

X43-M-CFRP2 is the both rehabilitated/retrofitted specimen which was rehabilitated 

after exposed to accelerated corrosion process, then the specimen was retrofitted with 

2-layer CFRP. Test was examined at 15.2.2012. Axial load of the specimen was 124 

kN, and test was performed displacement-controlled. The view of the specimen X43-

M-CFRP2 before the starting of test was shown in Figure 7.37. 
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Figure 7.37 : The view of the specimen X43-M-CFRP2 before the starting of test 

There were no observed crack on the surface of the specimen X43-M-CFRP2 during 

the experiment. Wrapping of the specimen X43-M-CFRP2 prevent the cracks on the 

surface but all damage was accumulated at the base of the specimen. This type of 

damage may be quite disadvantageous since the distribution of plastic deformations 

through the potential plastic hinge length is prevented.  

First flexural crack was observed at interface of the column and footing, during loading 

to target displacement -3 mm(drift ratio -0.25%). During the loading to target 

displacement 48 mm(drift ratio 3.50%) one of the starter bar was ruptured. Summary 

of the seismic behavior of specimen X43-M-CFRP2 is shown in Table 7.5. 

Force-displacement relationship of X43-M-CFRP2 is presented in Figure 7.38. 

Yielding of starter bar, yielding of longitudinal bar, maximum strain on the starter bar 

and maximum strain on the longitudinal bar are marked on the figure. As seen from 

Figure 7.38, strength loss was observed. 

 

 



68 

Table 7.5 : Summary of the seismic behavior of X43-M-CFRP2. 

Drift Ratio 

(%) 

δ 

(mm/mm) P (kN) 
Observations 

0.1 ±1.2 12.6/-9.8 No crack was observed. 

2.5 ±3 21.9/-18.1 

First flexural crack at column-footing interface 

was observed. 

0.5 ±6 29.3/-24.6  

0.75 ±9 32.4/-26.9  

1 ±12 33.6/-27.5  

1.5 ±18 35.4/-29.6  

2 ±24 35.5/-30.1  

2.5 ±30 34.5/-31.3  

3 ±36 33.5/-30.8  

3.5 ±42 34.6/-30.0  

4 ±48 32.7/-20.0 Starter bar of the specimen was ruptured.  

4.5 ±54 32.5/-18.5 

Separation of CFRP at the interface of the 

column and footing at the compression zone.  

 

Figure 7.38 : Lateral load versus displacement for X43-M-CFRP2. 

Average experimental moment-curvature relationships obtained for critical sections of 

X43-M-CFRP2 are presented in Figure 7.39. For the calculation of moment-curvature 
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relationships, the average curvature values which were obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.39, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5 (1/ mm), while 

the curvatures measured in 0-20 mm height are in the order of 3.10-3 (1/ mm). 

According to Figure 7.39, it is of interest to note that the damage is accumulated 

especially in 20 mm height of the member from top of the base according to the 

moment-curvature relationships. 
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c)  

Figure 7.39 : Moment-curvature relationships obtained for a) 20 mm, b) 150 mm, c) 

300 mm gauge lengths. 

According to the data from the straingauges on the starter bars, the maximum strain 

while pushing was -0.0005258, measured from the straingauge at +100 mm above the 

footing when P=18.3 kN at 0.04 drift ratio; the maximum strain while pulling was 

0.00079614, measured from the straingauge at +100 mm above the footing when P=-

30.97 kN at -0.03 drift ratio; the maximum strain while pushing was -0.000288832, 

measured from the straingauge at +200 mm above the footing when P=22.04 kN at 

0.0025 drift ratio; the maximum strain while pulling was 0.003811283, measured from 

the straingauge at +200 mm above the footing when P=-5.46 kN at -0.045 drift ratio.  

According to the data from the straingauges on the longitudinal bars of the X43-M-

CFRP2, the maximum strain while pushing was -0.0001830, measured from the 

straingauge at +100 mm above the footing when P=20.69 kN at 0.045 drift ratio;  the 

maximum strain while pulling was 0.00007818, measured from the straingauge at 

+100  mm above the footing when P=-26.95 kN at -0.0075 drift ratio; the maximum 

strain while pushing was -0.000088, measured from the straingauge at +200 mm above 

the footing when P=21.38 kN at 0.0025 drift ratio;  the maximum strain while pulling 

was 0.0001553867, measured from the straingauge at +200 mm above the footing 

when P=-29.61 kN at -0.015 drift ratio. Strain distribution of the starter bars and 

longitudinal bars of X43-M-CFRP2 while pushing and pulling are shown in Figure 

7.40 and Figure 7.41. As seen from Figure 7. 40 and Figure 7.41 the strain values of 

starter bars reach yield strain while pushing.  
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a)   

b)  

Figure 7.40 : Strain distribution of the starter bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 
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b)  

Figure 7.41 : Strain distribution of the longitudinal bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 

 

7.6 X44-M-CFRP3 

X44-M-CFRP3 is the both rehabilitated/retrofitted specimen which was rehabilitated 

after exposed to accelerated corrosion process, then the specimen was retrofitted with 

3-layer CFRP. Test was examined at 1.3.2012. Axial load of the specimen was 124 

kN, and test was performed displacement-controlled. The view of the specimen X44-

M-CFRP3 before the starting of test was shown in Figure 7.42. 

 

Figure 7.42 : The view of the specimen X44-M-CFRP3 before the starting of test. 
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There were no observed crack on the surface of the specimen X44-M-CFRP3 during 

the experiment. Wrapping of the specimen X44-M-CFRP3 prevent the cracks on the 

surface but all damage was accumulated at the base of the specimen. This type of 

damage may be quite disadvantageous since the distribution of plastic deformations 

through the potential plastic hinge length is prevented.  

First flexural crack was observed at interface of the column and footing, during loading 

to target displacement 3 mm(drift ratio 0.25%). All the damages was observed at 

interface of the column and footing. During the loading to target displacement 30 

mm(drift ratio 2.50%) one of the starter bar was ruptured and load was get down a 

little bit. During the loading to target displacement 60 mm(drift ratio 5.00%) second 

starter bar was ruptured too. At this point, cracks at the interface of the column and 

footing was  measured as 2 cm. Summary of the seismic behavior of specimen X44-

M-CFRP3 is shown in Table 7.6. 

Table 7.6 : Summary of the seismic behavior of X44-M-CFRP3. 

Drift 

Ratio (%) 

δ 

(mm/mm) P (kN) 
Observations 

0.1 ±1.2 10.90/-9.90 No crack was observed. 

2.5 ±3 20.80/-17.60 

First flexural crack at column-footing interface 

was observed. 

0.5 ±6 26.6/-23.2  

0.75 ±9 29.4/-25.1  

1 ±12 30.6/-26.8  

1.5 ±18 32.3/-29.2  

2 ±24 32.5/-30.8  

2.5 ±30 26.4/-32.4 First starter bar was ruptured.  

3 ±36 25.4/-32  

3.5 ±42 26.1/-31.1  

4 ±48 25.9/-31.6  

4.5 ±54 22.3/-30.1 

Separation of CFRP at the interface of the column 

and footing at the compression zone.  

5 ±60 17.3/-30.4 

Second starter bar was ruptured. Due to downed 

load P, experiment was over.  

Force-displacement relationship of X44-M-CFRP3 is presented in Figure 7.43. 

Yielding of starter bar, yielding of longitudinal bar, maximum strain on the starter bar 

and maximum strain on the longitudinal bar are marked on the figure. As seen from 

Figure 7.43, strength loss was observed. 
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Figure 7.43 : Lateral load versus displacement for X44-M-CFRP3. 

Average experimental moment-curvature relationships obtained for critical sections of 

X44-M-CFRP3 are presented in Figure 7.44. For the calculation of moment-curvature 

relationships, the average curvature values which were obtained for the ranges of 0-20 

mm, 20-150 mm and 150-300 mm heights above the footing were taken into account. 

As seen from Figure 7.44, the curvature values of the member measured in 20-150 mm 

and 150-300 mm height above the support are in the order of 5.10-5 (1/ mm), while 

the curvatures measured in 0-20 mm height are in the order of 3.10-3 (1/ mm).  
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b)  

c)  

Figure 7.44 : Moment-curvature relationships obtained for a) 20 mm, b) 150 mm, c) 

300 mm gauge lengths. 

According to the data from the straingauges on the starter bars, the maximum strain 
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straingauge at +100 mm above the footing when P=20.69 kN at 0.045 drift ratio;  the 

maximum strain while pulling was 0.00007818, measured from the straingauge at 

+100  mm above the footing when P=-26.95 kN at -0.0075 drift ratio; the maximum 

strain while pushing was -0.000088, measured from the straingauge at +200 mm above 

the footing when P=21.38 kN at 0.0025 drift ratio;  the maximum strain while pulling 

was 0.0001553867, measured from the straingauge at +200 mm above the footing 

when P=-29.61 kN at -0.015 drift ratio. Strain distribution of the starter bars and 

longitudinal bars of X43-M-CFRP2 while pushing and pulling are shown in Figure 

7.45 and Figure 7.46. As seen from Figure 7.45 and Figure 7.46, the strain values of 

starter bars reach yield strain while pushing.  

a)   

 

b)  

Figure 7.45 : Strain distribution of the starter bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 
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a)  

b)  

Figure 7.46 : Strain distribution of the longitudinal bars of X47-M-CFRP1 a) while 

pushing, b) while pulling. 
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8.  OVERALL EVALUATION OF TEST RESULTS 

The test results are outlined through hysteretic load-displacement loops, envelopes of 

these relationships, moment curvature diagrams, energy dissipation capacities and 

damage mechanisms. The hysteretic lateral load displacement relationships and their 

envelopes are presented in Figure 8.1 and Figure 8.2, respectively. The second order 

effect is taken into consideration for the lateral load-drift ratio relationships of the 

column specimens in Figure 8.2. 

 

Figure 8.1 : The envelopes of lateral load-drift ratios for the specimens without 

consideration of the second order effect. 

As seen in Figure 8.1 and Figure 8.2, the strength of the specimen X0-REF1 is the 

lowest among the other specimens. The reference specimen, X0-REF1, without 

corrosion could not reach its theoretical flexural capacity. This, together with 

information on yielding of longitudinal bars(strain-distribution graphs)  point out that 

slip dominated the overall behavior of the specimen X0-REF1 due to substandard 

construction and detailing (low concrete compressive strength, plain reinforcing bars 
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and insufficient lap-splice length). The specimens with corroded reinforcing bars 

reached their theoretical capacity, which was determined by considering the cross-

sectional areas of the corroded reinforcing bars, which are less than the theoretical 

capacity calculated considering the uncorroded reinforcing bar cross-sectional areas. 

The strength of the specimen X26-REF2 is higher than that of X0-REF1 due to 

corrosion. The corrosion products increased the friction between reinforcing bar and 

concrete leading to an enhancement in bond characteristics in case of plain reinforcing 

bars and this caused more efficient utilization of longitudinal reinforcement. However, 

since the specimens were constructed with extremely low quality concrete and 

inadequate spacing of transverse reinforcing bars, this increase in strength caused 

buckling of the longitudinal reinforcing bars causing a sudden significant strength loss 

upon exceeding the drift ratio of 2%.  

 

Figure 8.2 : The envelopes of lateral load-drift ratios for the specimens with 

consideration of the second order effect. 

The rehabilitated specimen, X26-M, performed better in terms of strength with respect 

to X0-REF1 due to prevention of slip of reinforcing bars and usage of high strength 
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surface of the plain reinforcing bars was still effective for increasing the bond between 

concrete and reinforcement. The rehabilitated specimen, X26-M, also performed better 

in terms of displacement capacity with respect to X26-REF2. As the specimens were 

subjected to high axial load during testing, concrete cover of the specimen X26-REF2 

crushed and eventually spalled before starter reinforcing bars reached yield stress due 

to extremely low compressive strength of concrete. However, the starter reinforcing 

bars of the rehabilitated specimen, X26-M, yielded before concrete cover crushed 

resulting from high compressive strength of concrete cover due to high strength of the 

structural repair mortar. Consequently, the rehabilitated specimen, X26-M behaved in 

a remarkably ductile manner.  

The retrofitted specimens, X47-M-CFRP1, X43-M-CFRP2 and X44-M-CFRP3 

experienced an enhancement in terms of strength due to external confinement provided 

by the CFRP sheets, regardless of the significant cross-section loss of reinforcing bars 

due to corrosion. The confinement, which was provided by CFRP sheets, improved 

the bond resistance of the lap-spliced reinforcing bars, retarded the damage of the 

concrete as well as buckling of reinforcing bars. It should be noted that there was no 

evidence of concrete distress like crushing or spalling during the autopsy after the test. 

However, wrapping with CFRP sheets decreased the ductility after two number of 

layers and also CFRP sheets prevent the cracks on the surface but all damage was 

accumulated at the interface of the column and footing. This type of damage may be 

quite disadvantageous since the distribution of plastic deformations through the 

potential plastic hinge length is prevented. Also when the number of wrapping layers 

increase, the neutral axis of the column section slide to crushed concrete side, and it 

cause to longer reinforcement strain. As a result of this starter bars of these specimens 

were ruptured. Neutral axis of the specimens at maximum moment load is given in 

Table 8.1 and Figure 8.3 with ruptured bars.  

Table 8.1 : Neutral axis of the specimens at maximum moment load (Distance from 

middle of the column section) 

 X0-REF1 X26-REF2 X26-M X47-M-CFRP1 X43-M-CFRP2 X44-M-CFRP3 

Neutral 

Axis (mm) -31.7 -37.95 114.5 119.7 124.5 126.9 
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a)  b)  c)  

d)  e)  f)  

Figure 8.3 : Neutral axis and section of specimens at maximum moment load (a) X0-

REF1, b) X26-REF2, c) X26-M, d) X47-M-CFRP1, e)X43-M-CFRP2, 

f)X44-M-CFRP3. 

Energy dissipation capacities of the specimens, calculated as the area enclosed by the 

hysteresis loops is presented in Figure 8.4. As seen in the Figure 8.5, the energy 

dissipation capacity of the reference specimen, X0-REF1, is the lowest due to slip 

induced pinching.  The energy dissipation capacity of the specimen X26-REF2 is 

higher than that of the specimens X0-REF1 and X26-M until 2% drift ratio, however 

the sudden failure of concrete and buckling of longitudinal bars at around 2% drift 

ratio prevented higher energy dissipation. Retrofitted specimens, X47-M-CFRP1, 

achieved the maximum hysteretic energy dissipation capacity due to wide hysteresis 

loops then followed by X43-M-CFRP2 and X44-M-CFRP3.  

 

Figure 8.4 : Calculation of energy dissipation capacity. 
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Figure 8.5 : Energy dissipation capacity of the specimens. 

According to both energy dissipation capacities and autopsy pictures of the specimens, 

it can be said that X47-M-CFRP1 could not achieved the maximum hysteretic loads 

on Figure 8.1 and Figure 8.2 positive side due to local corrosion damage on the starter 

bars of this specimen.  

The variation of ratios of residual plastic displacements (δres) to the displacements at 

which unloading began (δun) with respect to drift ratios are presented in Figure 8.6. 

As seen in this figure, δres/δun ratios for the specimen X26-REF2 are remarkably 

higher with respect to the specimen without corrosion, X0-REF1, and the specimens, 

which were rehabilitated/retrofitted, X26-M, X47-M-CFRP1, X43-M-CFRP2 and 

X44-M-CFRP3. It is also important to note that X44-M-CFRP3 has higher δres/δun 

ratio due to X26-REF2 until drift ratio 2% but, 2.5% drift ratio one of the starter bar 

of X44-M-CFRP3 ruptured and it prevented to residiual displacement at the end of the 

cycle. Relatively smaller (δres/δun) ratios obtained for X0-REF1 is attributed to the 

slip dominated behavior, whereas smaller residual displacements exhibited by the 

rehabilitated and retrofitted specimens can be explained through retarding of damage 

due to the contribution of repair mortar and CFRP confinement, respectively. 
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Figure 8.6 : The variation of residual displacement for the specimens. 
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c)  

 

 

d)  

e)  

Figure 8.7 : Strain distribution of starter reinforcement at a) 1%, b) 2%, c) 3% d)%4 

e)%5 drift ratios. 
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The displacement ductility factor μδ is defined as the ratio between the ultimate 

displacement, δu and maximum displacement, δmax. The ultimate displacement is 

defined as the displacement corresponding to the displacement at which the applied 

load dropped to 85% of the maximum load. If the displacement ductility factors are 

compared which is given in Table 8.2, it can seen that the best displacement ductility 

is calculated in X0-REF1 and worst one is calculated in X26-REF2. Higher 

displacement ductility factors show that specimen can achieve higher displacement 

without a decrease in their strenght. However, ultimate displacement value for X0-

REF1 is taken as 41.7 which is failure displacement of that specimen because 85% 

load drop of maximum load was not observed in test. 

Table 8.2  : Displacement ductiliy of the specimens. 

Specimens 
Pmax 

(kN)  

δmax 

(mm) 

0.85×Pmax 

(kN)  

δu 

(mm) 
µδ 

X0-REF1 16.29 8.66 13.85 41.7 4.82 

X26-REF2 27.13 23.66 23.06 27.64 1.17 

X26-M 31.23 20.05 26.54 31.15 1.55 

X47-M-CFRP1 25.7 24.36 21.84 45.84 1.88 

X43-M-CFRP2 33.56 18.54 28.53 45.45 2.45 

X44-M-CFRP3 30.81 18.16 26.19 27.33 1.5 
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9.  CONCLUSIONS AND RECOMMENDATIONS 

Corrosion is a widespread problem of the existing buildings especially in Turkey 

which have built with substandard quality. A particular problem like as corrosion that 

there is no uniform results on experiments, it is needed to do tests for two or more 

specimens. However, it is too hard to achieve these experiments due to high costs and 

attribute of this study is considered as master degree thesis. For this reason, based on 

the results of limited number of reversed cyclic lateral loading tests on substandard RC 

columns with corroded plain reinforcing bars and extremely low strength concrete, the 

following conclusions/observations can be listed, 

- The substandard columns built with extremely low quality concrete and plain 

reinforcing bars cannot reach their theoretical flexural capacity due to loss of bond 

between concrete and reinforcement. For this reason, the strength and displacement 

capacity of such columns are remarkably limited (X0-REF1). 

- A certain level of corrosion causes increase of friction between the bars and 

concrete leading to better bond and enhanced strength. On the other hand, since the 

substandard columns were built with extremely low quality concrete and stirrups with 

large spacing between them, increased load resistance caused buckling of the 

longitudinal bars with a remarkable negative impact on drift capacity (X26-REF2). 

- Rehabilitation of corrosion damaged column with repair mortar enhanced the 

strength of the damaged column significantly, whereas ductility was only slightly 

improved with respect to corrosion damaged column (X26-M with respect to X26-

REF2).  

- Rehabilitation and retrofitting using CFRP sheets enhanced both strength and 

ductility of the corrosion damaged column significantly up to a limit(X47-M-CFRP1 

negative side with respect to X26-M).  

- However, wrapping of substandard RC columns with corroded plain reinforcing 

bars and extremely low strength concrete with more than two layer of CRFP reduced 

ductility due to corroded reinforcement bar sections and elongation request of bars 

while equalizing the section stability(X26-M-REF2 with respect to others, X47-M-

CFRP1 with respect to X43-M-CFRP2 and X44-M-CFRP3).  It should be noted that 
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before any CFRP application, elongations of bars and statement of concrete should 

calculate carefully otherwise retrofitting with CFRP could also reduce both strength 

and ductility of substandard columns with corroded reinforcement due to rupture risk 

of corroded bars. 

- Even CFRP increases both strength and ductility, local corrosion damages on the 

reinforcements can affect end reduce the behavior of specimen (X47-M-CFRP1 

positive side). 

 

Consequently, the presented rehabilitation/retrofitting technique is promising even for 

corrosion damaged substandard columns built with extremely low quality concrete. 

Considering the huge corrosion problem in Turkey for existing old structures which 

were built without complying the seismic codes, these findings are valuable for 

enhancing the seismic performance of these buildings. For further development, 

studies on different retrofit techniques utilizing different affordable materials and 

techniques can be carried out.  
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APPENDICES 

APPENDIX A: Reinforcing cage of specimens. 

APPENDIX B: The views of specimens. 
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APPENDIX A  
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Figure A.1 : Reinforcing cage of the first type specimens (south side). 
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Figure A.2 : Reinforcing cage of the first type specimens(south side). 
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APPENDIX B 

a)    b)  

Figure B.1 : a) North, and b) South view of X0-REF1  after -0.50% mm drift ratio. 

a)    b)  

Figure B.2 : a) North, and b) South view of X0-REF1  after -0.75% mm drift ratio. 

a)    b)  

Figure B.3 : a) North, and b) South view of X0-REF1  after -1.00% mm drift ratio. 
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a)    b)  

Figure B.4 : a) North, and b) South view of X0-REF1  after -1.50% mm drift ratio. 

a)    b)  

Figure B.5 : a) North, and b) South view of X0-REF1  after -2.00% mm drift ratio. 

a) b)  

Figure B.6 : a) North, and b) South view of X0-REF1  after -2.50% mm drift ratio. 

b)  
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a)    b)  

Figure B.7 : a) North, and b) South view of X0-REF1  after -3.00% mm drift ratio. 

 

a)   b)  

Figure B.8 : a) North, and b) South view of X0-REF1  after -3.50% mm drift ratio. 

 

a)   b)  

Figure B.9 : a) North, and b) South view of X0-REF1  after -4.00% mm drift ratio. 
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a)   b)  

Figure B.10 : a) North, and b) South view of X0-REF1  after -4.50% mm drift ratio. 

a)    b)  

Figure B.11 : a) North, and b) South view of X0-REF1  after -5.00% mm drift ratio. 

 

a)    

Figure B.12 : a) North, and b) South view of X26-REF2  after -0.25% mm drift 

ratio. 
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a)  b)   

Figure B.13 : a) North, and b) South view of X26-REF2  after -0.5% mm drift ratio. 

 

a)  b)   

Figure B.14 : a) North, and b) South view of X26-REF2  after -0.75 % mm drift ratio. 

a)  b)   

Figure B.15 : a) North, and b) South view of X26-REF2  after -1.00 % mm drift ratio. 
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a)    

Figure B.16 : a) North, and b) South view of X26-REF2  after -1.50 % mm drift ratio. 

 

a)    

Figure B.17 : a) North, and b) South view of X26-REF2  after -2.00 % mm drift ratio. 

a) b)  

Figure B.18 : a) North, and b) South view of X26-REF2  after -2.50 % mm drift ratio. 
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a) b)  

Figure B.19 : a) North, and b) South view of X26-REF2 after -3.00 % mm drift ratio. 

 

a) b)  

Figure B.20 : a) North, and b) South view of X26-REF2 after -3.50 % mm drift ratio. 

 

a) b)  

Figure B.21 : a) North, and b) South view of X26-M after -0.10 % mm drift ratio. 
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a)  b)  

Figure B.22 : a) North, and b) South view of X26-M after -0.25 % mm drift ratio. 

 

 

a )  b)  

Figure B.23 : a) North, and b) South view of X26-M after -0.50 % mm drift ratio. 

a)  b)  

Figure B.24 : a) North, and b) South view of X26-M after -0.75 % mm drift ratio. 
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a)  b)  

Figure B.25 : a) North, and b) South view of X26-M after -1.00 % mm drift ratio. 

a)  b)  

Figure B.26 : a) North, and b) South view of X26-M after -1.50 % mm drift ratio. 

 

a)  b)  

Figure B.27 : a) North, and b) South view of X26-M after -2.00 % mm drift ratio. 
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a)  b)  

Figure B.28 : a) North, and b) South view of X26-M after -2.50 % mm drift ratio. 

 

a)  b)  

Figure B.29 : a) North, and b) South view of X26-M after -3.00 % mm drift ratio. 

 

a)  b)  

Figure B.30 : a) North, and b) South view of X26-M after -3.50 % mm drift ratio. 
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a)  b)  

Figure B.31 : a) North, and b) South view of X26-M after -4.00 % mm drift ratio. 

 

 

a)  b)  

Figure B.32 : a) North, and b) South view of X26-M after -4.50 % mm drift ratio. 

a)  b)  

Figure B.33 : a) North, and b) South view of X26-M after -5.00 % mm drift ratio. 
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a)  b)  

Figure B.34 : a) North, and b) South view of X26-M after -6.00 % mm drift ratio. 

 

a)  b)  

Figure B.35 : a) North, and b) South view of X26-M after -7.00 % mm drift ratio. 

 

a)  b)  

Figure B.36 : a) North, and b) South view of X26-M after the test finished. 
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a)  b)  

Figure B.37 : a) North, and b) South view of X26-M-CFRP1 after -0.10% mm drift 

ratio. 

a)  b)  

Figure B.38 : a) North, and b) South view of X26-M-CFRP1 after -0.25% mm drift 

ratio. 

a)  b)  

Figure B.39 : a) North, and b) South view of X26-M-CFRP1 after -0.5% mm drift 

ratio. 
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a)   b)  

Figure B.40 : a) North, and b) South view of X26-M-CFRP1 after -0.75% mm drift 

ratio. 

a)   b)  

Figure B.41 : a) North, and b) South view of X26-M-CFRP1 after -1.00% mm drift 

ratio. 

a)  b)  

Figure B.42 : a) North, and b) South view of X26-M-CFRP1 after -1.50% mm drift 

ratio. 
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a)  b)  

Figure B.43 : a) North, and b) South view of X26-M-CFRP1 after -2.00% mm drift 

ratio. 

a)  b)  

Figure B.44 : a) North, and b) South view of X26-M-CFRP1 after -2.50% mm drift 

ratio. 

a)  b)  

Figure B.45 : a) North, and b) South view of X26-M-CFRP1 after -3.00% mm drift 

ratio. 
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a)  b)  

Figure B.46 : a) North, and b) South view of X26-M-CFRP1 after -3.50% mm drift 

ratio. 

a)  b)  

Figure B.47 : a) North, and b) South view of X26-M-CFRP1 after -4.00% mm drift 

ratio. 

a)  b)  

Figure B.48 : a) North, and b) South view of X26-M-CFRP1 after -5.00% mm drift 

ratio. 
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a)  b)  

Figure B.49 : a) North, and b) South view of X26-M-CFRP1 after -5.00% mm drift 

ratio. 

 

a)  b)  

Figure B.50 : a) North, and b) South view of X26-M-CFRP1 after -6.00% mm drift 

ratio. 

 

a)  b)  

Figure B.51 : a) North, and b) South view of X26-M-CFRP1 after -7.00% mm drift 

ratio. 
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a)  b)  

Figure B.52 : a) North, and b) South view of X26-M-CFRP1 after test finished. 

a)  b)  

Figure B.53 : a) North, and b) South view of X43-M-CFRP2 after -0.10% mm drift 

ratio. 

a) b)  

Figure B.54 : a) North, and b) South view of X43-M-CFRP2 after -0.25% mm drift 

ratio. 
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a)  b)  

Figure B.55 : a) North, and b) South view of X43-M-CFRP2 after -0.5% mm drift 

ratio. 

 

a)  b)  

Figure B.56 : a) North, and b) South view of X43-M-CFRP2 after -0.75% mm drift 

ratio. 

a)  b)  

Figure B.57 : a) North, and b) South view of X43-M-CFRP2 after -1.00% mm drift 

ratio. 
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a) b)  

Figure B.58 : a) North, and b) South view of X43-M-CFRP2 after -1.50% mm drift 

ratio. 

 

a)  b)  

Figure B.59 : a) North, and b) South view of X43-M-CFRP2 after -2.00% mm drift 

ratio. 

 

a)  b)  

Figure B.60 : a) North, and b) South view of X43-M-CFRP2 after -2.50% mm drift 

ratio. 
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a)  b)  

Figure B.61 : a) North, and b) South view of X43-M-CFRP2 after -3.00% mm drift 

ratio. 

 

a)   b)  

Figure B.62 : a) North, and b) South view of X43-M-CFRP2 after -3.50% mm drift 

ratio. 

 

 

a) b)  

Figure B.63 : a) North, and b) South view of X43-M-CFRP2 after -4.00% mm drift 

ratio. 
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a)   b)  

Figure B.64 : a) North, and b) South view of X43-M-CFRP2 after -5.00% mm drift 

ratio. 

 

a)   b)  

Figure B.65 : a) North, and b) South view of X43-M-CFRP2 after test finished. 

 

a)   b)  

Figure B.66 : a) North, and b) South view of X44-M-CFRP3 after -0.10% mm drift 

ratio. 
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a)  b)  

Figure B.67 : a) North, and b) South view of X44-M-CFRP3 after -0.25% mm drift 

ratio. 

a)   b)  

Figure B.68 : a) North, and b) South view of X44-M-CFRP3 after -0.5% mm drift 

ratio. 

a)   b)  

Figure B.69 : a) North, and b) South view of X44-M-CFRP3 after -0.75% mm drift 

ratio. 
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a)   b)  

Figure B.70 : a) North, and b) South view of X44-M-CFRP3 after -1.00% mm drift 

ratio. 

 

a)  b)  

Figure B.71 : a) North, and b) South view of X44-M-CFRP3 after -1.50% mm drift 

ratio. 

a)  b)  

Figure B.72 : a) North, and b) South view of X44-M-CFRP3 after -2.00% mm drift 

ratio. 



121 

 

 

a)   b)  

Figure B.73 : a) North, and b) South view of X44-M-CFRP3 after -2.50% mm drift 

ratio. 

 

a)   b)  

Figure B.74 : a) North, and b) South view of X44-M-CFRP3 after -3.00% mm drift 

ratio. 

a)   b)  

Figure B.75 : a) North, and b) South view of X44-M-CFRP3 after -3.50% mm drift 

ratio. 
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a)   b)  

Figure B.76 : a) North, and b) South view of X44-M-CFRP3 after -4.00% mm drift 

ratio. 

 

a)  b)  

Figure B.77 : a) North, and b) South view of X44-M-CFRP3 after -5.00% mm drift 

ratio. 

a)   b)  

Figure B.78 : a) North, and b) South view of X44-M-CFRP3 after test finished. 
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