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VISCOELASTOPLASTIC MODELING OF ARTERIAL TISSUE 

SUMMARY 

The great majority of diseases in the (western) world, such as atherosclerosis and 
degeneration of intervertebral discs are diseases of soft tissues. Hence, the 
multidisciplinary field of soft tissue research is of crucial scientific, medical and 
socioeconomic importance. The fast progress in the developments of hardware and 
software facilities makes it possible to thoroughly investigate biological soft tissues 
and their pathologies on a computational basis. Since soft tissues are biological 
materials, which fulfill mechanical purposes and adapt to their mechanical 
environment (growth, remodeling and morphogenesis), it is of fundamental 
importance to identify the complex interactions of mechanical and biological 
responses. 

This work has aimed at setting the foundations of a non-linear material model for 
arterial viscoelastoplasticity. The model accounts for the composite structure of the 
vessel and its complex passive mechanical response to loading conditions. Long term 
property changes of arterial structure have been modeled with a damage model. It 
can easily be extended to remodeling phenomenon which also accounts for 
adaptation of the structure to long-term steady-state changes in the loading 
conditions such as chronic hypertension. Much work has been done in the literature, 
but hardly few have been extensively studied with diverse experimental data. 

The initiation of the study has been pointed out to be a section where the basics of 
arterial anatomy, the cardiovascular system have been presented. The important facts 
about the arterial structure, such as its collagenous fibrous composite structure, 
layered composition and its consequences have been presented. Some examples from 
previous work on the subject have been presented and the current work has been 
positioned over the intention that the others have not presented. 

A brief of continuum mechanics has been presented to make the terminology clear. 
Then, the material models have been proposed from simple viscoelastic formulations 
to a damage-softening viscoelastoplastic formulation, where the prestress effects 
have also been considered within the constitutive framework. Demonstrative analysis 
with estimate material parameters have been presented to inspect in detail whether 
the proposed model behaves in accordance with the expectations and with full 
compatibility with solid mechanics basics and thermodynamic restrictions on 
constitutive modeling. 

The study has been enhanced with an extensive testing system for controlled 
synchronous and discrete application of combined inflation/extension/torsion loads 
on tubular specimens, enhanced with high speed optical deformation measurement 
systems. The test setup has been implemented in the Strength of Materials and 
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Biomechanics Laboratory at Istanbul Technical University, Faculty of Mechanical 
Engineering.  

Analytical formulations suitable to application of parameter estimation studies for 
specimens under combined inflation/extension/torsion loads on thick-walled 
cylindrical tubes have been presented. In vitro experiments have been carried out 
with lamb arterial segments, which have been treated by plastic surgeons, and with 
looping the secondary branches, a watertight (quasi) cylindrical test specimen has 
been obtained. Parameter fitting procedures have been carried out on experimental 
data to the extent that the experimental system allowed reasonable and useful data to 
feed into the optimization algorithm for parameter estimation. 

The work concludes with a summary of basic outcomes of the material’s models 
abilities and comments on the outcomes and data obtained from the parameter 
estimation studies. It has been commented that the model is very compatible for 
determining viscoelastoplastic behavior of arterial segments, and more generally for 
estimating behavior of fibrous composites that exhibit geometrical and material 
nonlinearity to the extent that the loading conditions are in-phase. Based on the 
outcomes of the studies, some comments on future research topics have also been 
presented. 
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DAMAR DOKUSUNUN VİSKOELASTOPLASTİK MODELLENMESİ 

ÖZET 

Dünyadaki ekonomik, bilimsel ve tıp açısından oldukça önemli ve gözlemlenme 
oranı yüksek olan arteroskleroz ve disk dejenerasyonu gibi hastalıklar, temelde 
yumuşak doku hastalıkları olarak adlandırılabilirler. Bu bağlamda, disiplinler arası 
bir araştırma konusu olan yumuşak dokularda araştırma, sosyoekonomik olarak 
gittikçe büyüyen bir önem arz etmektedir. Donanım ve yazılım olanaklarındaki hızlı 
gelişmeler, yumuşak dokuların ve ilgili patolojilerin sayısal olarak detaylı şekilde 
modellenebilmesine olanak tanımaktadır. Yumuşak dokular da, çeşitli mekanik 
özellikleri haiz ve mekanik dış ortam uyaranlarına göre (büyüme, yeniden 
modelleme, morfojenez) kendilerini uyarlabilindiklerinden dolayı, biyolojik ve 
mekanik etkileşimlerin bilinmesi ve belirtilmesi çok büyük önem taşımaktadır. 

Bu çalışma kapsamında, damar dokusu için viskoelastoplastik bir malzeme 
modelinin temellerinin oluşturulması amaçlanmıştır. Model, damar cidar yapısının 
kompozit özelliklerini içermekte ve çok eksenli yükleme durumlarına göre karmaşık 
pasif mekanik cevap mekanizmasını kapsamaktadır. Bir (elastik) hasar (damage) 
mekanizması ile malzemenin zamanla mekanik özelliklerinin değiştiği (yumuşama 
gösterdiği) dikkate alınmıştır. Model, kronik hipertansiyon gibi yüklenme 
şartlarındaki uzun vadeli değişimlere uyumu tasvir eden “yeniden yapılanma” 
(remodeling) özelliklerinin eklenebileceği modüler bir şekilde tasarlanmıştır. 
Literatürde bu konuda oldukça fazla sayıda çalışma olmasına rağmen, deneysel 
verilerle desteklenen modeller yok denecek kadar azdır.  

Çalışmanın başlangıcı olarak, kardiyovasküler sistem ve damar anatomisi hakkında 
bilgiler sunulmuştur. Bu esnada, yapının kollajen fibrillerden oluşan sarmal kompozit 
ve katmanlı yapısı hakkında ayrıntılar sunulmuş ve bu yapının katı mekaniği 
açısından getirdiği sonuçlar hakkında yorumlar yapılmıştır. Literatürde bulunan daha 
önceki çalışmalardan örnekler verilmiştir. Böylelikle, bu çalışmada sunulan modelin 
diğer modellerin zayıf taraflarına göre konumlandırılması yapılmıştır.  

Daha sonraki bölümlerde, ilk olarak terminoloji ve temel kavramları açıklamak için 
kısa bir sürekli ortamlar mekaniği özeti sunulmuştur. Daha sonra, temel viskoelastik 
bir malzeme formülasyonundan başlayarak adım adım en genel hal olan hasar 
mekanizmalı viskoelastoplastik malzeme modelinin elde edilmesi 
gerçekleştirilmiştir. Bu model elde edilirken, damar yapısı üzerindeki öngerilmelerin 
de modele konulması hakkında gerekli altyapı hazırlanmıştır. Yaklaşık malzeme 
parametreleri ile örnek yükleme koşulları ile analizler gerçekleştirilmiş ve öngörülen 
modelin beklentilerle ve katı mekaniğinin temelleri ve termodinamik sınırlamaları ile 
uyumlu olup olmadığı incelenmiştir. 

Çalışma daha sonra deneysel bir sistem kurulumu, tanıtımı ve bu sistemle 
gerçekleştirilmiş deneysel çalışmalarla geliştirilmiştir. İstanbul Teknik Üniversitesi 
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Makina Fakültesi Mukavemet ve Biyomekanik Laboratuarı kapsamında bir test 
düzeneği kurulmuştur. Bu düzenekle, silindirik test numunelerine senkron yükleme 
yapabilecek, fakat bağımsız kontrollu bir iç basınç/eksenel kuvvet/burulma momenti 
uygulama imkanı sağlanmıştır. Deney düzeneği, yüksek hızlı optik deformasyon 
ölçüm sistemi ile desteklenmiştir. 

Testlerden elde edilen verilerin incelenmesine yönelik olarak analitik 
formülasyonlarla elde edilmiş ve kalın cidarlı eksenel simetrik tüp olarak modellenen 
damar üzerinde birleşik iç basınç, eksenel zorlanma ve burulma zorlanması 
yüklenmeleri için genel yüklenme/deformasyon ilişkileri çıkartılmıştır. Koyun 
pulmoner arterleri ile in-vitro deneysel çalışmalar gerçekleştirilmiştir. Bu 
numunelerin, plastik cerrah yardımı ile ikincil branşman damarları dikilerek su 
sızdırmazlığı sağlanmış ve neredeyse eksenel simetrik hale getirilmiştir. Çeşitli 
optimizasyon teknikleri kullanılarak, parametre tahmini yapmaya uygun olan 
deneysel verilerden malzeme katsayıları tahmini gerçekleştirilmiştir.  

Çalışma, öngörülen malzeme modelinin ve deneysel çalışmalardan elde edilen 
bilgilerin bir özeti ile sonuçlanmaktadır. Burada ortaya konmaktadır ki, yüklenmeler 
aynı fazda olduğu müddetçe, sözkonusu model, yeterli başarı ile deneysel verilere 
uygunluk sağlamaktadır. Elde edilen sonuçlar ışığında ayrıca ileriye yönelik 
araştırma konuları hakkında kısa bir yol gösterme ortaya konulmuştur. 
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1. INTRODUCTION 

The great majority of diseases in the (western) world, such as atherosclerosis and 

degeneration of intervertebral discs can be classified as problems with soft tissues. 

Thus, the soft tissue research is of crucial scientific, medical and socioeconomic 

importance as one of the most complex multidisciplinary field of science. The fast 

development in hardware and software resources now makes it possible to 

thoroughly investigate biological soft tissues and their pathologies on a 

computational basis. As being biological materials, which fulfill mechanical 

purposes and adapt to their mechanical environment (growth, remodeling, etc…), it 

is of fundamental importance to identify the complex interactions of mechanical and 

biological responses. 

In order to achieve clinically meaningful results to contribute to development of 

clinical techniques and devices as well as engineering skills, focusing an engineering 

“eye” to biological structures requires:  

• A comprehensive experimental database of the material to be modeled,  

• A mathematical model that captures the essential mechanical characteristics 

• An efficient numerical model with the aim to study the effects of medical 

treatments subject to certain procedural parameters in a robust and reliable 

way since as in other fields of applied mechanics the computational approach 

offers an essential alternative in situations where experiments are either too 

costly or even impossible. 

This work has aimed at setting the foundations of a non-linear material model for 

arterial viscoelastoplasticity with damage softening. The model accounts for the 

composite structure of the vessel and its complex passive mechanical response to 

loading conditions. Long term failure of arterial structure has been modeled with a 

rate-dependent plasticity model. The strain (and respectively, time) dependent 
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softening is also accounted for, by means of a damage accumulation model. Both 

characteristics have been modeled to capture the anisotropic response at all stages. 

The model, thus, can easily be extended to remodeling phenomenon which also 

accounts for adaptation of the structure to long-term steady-state changes in the 

loading conditions such as chronic hypertension. Much work has been done in the 

literature, but hardly few have been extensively studied with diverse experimental 

data.  

The study proposed within this work also aims to be a guide to non-linear 

experimental data evaluation and conducting experiments with large-deforming 

composite materials under multi-axial loading conditions. Also, viscoelasticity has 

been considered and dynamical tests have been conducted for parameter estimation. 

By now, many of the methods employed within this thesis have not been applied to 

problems in fields of either engineering or biomechanics.  
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2. THE CIRCULATORY SYSTEM AND ARTERIAL PHYSIOLOGY  

2.1. The Artery: Anatomical Basics 

This study is concerned with the in vitro passive behavior of arteries. Hence, in vivo 

effects such as the vasa vasorum, nerve control, humoral control, interferences due to 

perivascular connective tissue etc. and effects through boundaries of neighboring 

organs are not discussed.  

By composition, arteries are roughly subdivided into two types: elastic and muscular. 

Elastic arteries have relatively large diameters and are located close to the heart (e.g., 

the aorta and the carotid and iliac arteries), while muscular arteries are more 

peripheral (for example, femoral, celiac, cerebral arteries). Some arteries exhibit 

morphological structures of both types. Attention is focused on the microscopic 

structure of arterial walls composed of three distinct layers, the intima (tunica 

intima), the media (tunica media) and the adventitia (tunica externa). The 

constituents of arterial walls, which are important to researchers interested in 

constitutive issues from a mechanical perspective, are discussed and emphasized. 

Figure 2.1 shows a sketch of a healthy elastic artery. 

The intima is the innermost layer of the artery. It is just a single layer of endothelial 

cells lining the arterial wall and resting on basal lamina. The subendothelial layer, 

whose thickness varies with topography, age and health condition is almost not 

present in healthy young muscular arteries. In healthy young individuals, the intima 

is very thin and is assumed not to be of negligible importance to the solid mechanical 

properties of the arterial wall. However, its the mechanical contribution may become 

significant with age, in the form arteriosclerosis; the deposition of fatty substances, 

calcium, collagen fibers, cellular waste products and fibrin. 

The media is the middle layer of the artery (see Figure 2.1). It is a complex three-

dimensional network of smooth muscle cells, elastin and collagen fibrils. According 

to [1] the fenestrated elastic lamina separates the media into a varying number of 
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well-defined concentrically fiber-reinforced medial layers. This structure is important 

in generating assumptions during constitutive modeling. It is separated from the 

intima and adventitia by the internal elastic lamina and external elastic lamina, 

respectively. Existence of elastic lamina decreases toward the periphery (as the size 

of the vessels decreases) so that elastic lamina is hardly present in muscular arteries. 

Consequently, this structure is not present in cerebral blood vessels, where aneurysm 

development is a major problem.  The orientation of and close interconnection 

between the elastic and collagen fibrils, elastic lamina, and smooth muscle cells 

together constitute a “composite material structure” with a continuous fibrous helix 

[2] with a small pitch angle with respect to the tangential horizon. Thus the fibrils in 

the media are almost circumferentially oriented, and give the media its high strength, 

resilience and the ability to resist loads in both the longitudinal and circumferential 

directions. 

The adventitia is the outermost layer of the artery (see again figure 2.1) and consists 

mainly of fibroblasts and fibrocytes (cells that produce collagen and elastin), a 

ground substance and thick bundles of collagen fibrils forming a complex fibrous 

tissue. It is surrounded continuously by loose connective tissue. The thickness of the 

adventitia depends strongly on the type (elastic or muscular) and the physiological 

function of the blood vessel and its topographical site. In cerebral blood vessels there 

is virtually no adventitia. The wavy collagen fibrils are arranged in helical structures 

and serve to reinforce the wall. They contribute significantly to the stability and 

strength of the arterial wall at high blood pressure levels than normal situation. 

Consequently, the adventitia is much less stiff in the load-free configuration [3].  
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Figure 2.1 : The cross section schema of a healthy young artery [4] 

 

 

Figure 2.2 : The cross section of a healthy lamb pulmonary artery 
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2.2. Mechanical Basics on Arterial Physiology 

The cardiovascular network is a complex architecture of blood vessels that carry 

blood to and from various organs. The blood vessels may be named based on their 

sizes, function and proximity to the heart.A typical classification discriminates these 

structures into one of the 7 categories as listed in Table 2.1 and visualized in Figure 

2.3. A scheme of the path of blood flow is as shown in the Figure 2.4 [5]. 

Table 2.1: Characteristics of various types of blood vessels 

Vessel Aorta Artery Arteriole Capillary Venule Vein V.Cava 

Wall 
Thickness 2mm 1mm 20µm 1µm 2µm 0.5mm 1.5mm 

Lumen 
Diameter 25mm 4mm 30µm 8µm 20µm 5mm 30mm 

 

 

Figure 2.3 : Classification of blood vessels according to their size and pressure they 
carry [5] 
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Figure 2.4 : Schematic illustration of blood circulation (A) and a layout of the 
arterial system in the human body (B) [5] 

2.2.1. Mechanics of Arterial Wall  

Each constitutive framework and determination of its associated set of material 

parameters in biological structures require detailed studies on the particular material 

of interest, since the model’s reliability is strongly correlated to the completeness of 

available experimental data, which may have been obtained via appropriate in vivo 

tests or from in vitro tests that simulate the real loading conditions in a corresponding 

physiological environment. In practice, in vivo tests are much more preferable 

because the vessel is observed under real life conditions. However, in vivo tests have 

major limitations because of, for example, the influence of hormones and neural 

control or non-applicability of engineering techniques required. Data sets from the 

complex material response of arterial walls subject to simultaneous (or discrete) 

cyclic inflation, axial extension and twist can only be measured in an in vitro 

experiment. Only with such data sets can the anisotropic mechanical behavior of 

arterial walls be described completely [6]. In addition, in in-vitro experiments the 
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contraction state (active or passive) of the muscular media has to be determined, 

mostly with the aid of appropriate chemical agents. 

2.2.2. Mechanical Tests on Arterial Tissue 

The early work [7] is one of the best examples for pure inflation tests of straight 

artery tubes, which is the most common two dimensional test, where shear 

deformations are not considered. Since arteries do not change their volume (within 

the physiological range of deformation [8]), they can be regarded as incompressible 

materials.  

Based on the works done by then is that, by means of the incompressibility constraint 

it is possible to determine the mechanical properties of three-dimensional specimens 

from two-dimensional tests. Uniaxial extension tests on arterial patches (strips) 

provide basic information about the material, but they are certainly not sufficient to 

quantify completely the anisotropic behavior of arterial walls, nor the uniaxial 

extension tests on small arterial rings [9,10]. 

In general, a segment of vessel shortens on removal from the body, as was first 

reported in [11]. Each non-axisymmetric arterial segment (such as a bifurcation or a 

segment with sclerotic changes) under combined inflation and axial extension 

develops significant shear stresses (in the θZ plane, namely) in the wall. This yields 

the result that, in order to properly mimic the shear properties of arterial walls shear 

tests are required. In shear tests either the angle of twist of an arterial tube subjected 

to transmural pressure, longitudinal force and torque [12] or the shear deformation of 

a rectangular arterial wall specimen subjected to shear forces is measured. 

Another classification over mechanical tests might be developed with respect to the 

strain rates applied (quasi-static or dynamic) and to whether the loading is performed 

cyclically or discontinuously (such as creep tests). 

It has been known for many years that the load-free configuration of an artery is not 

a stress-free state [12,13], and a load-free arterial ring contains inherent residual 

stresses (and strains). It is of crucial importance to incorporate such effects in order 

to predict reliably the state of stress in an arterial wall. This issue has been the aim of 

many experimental investigations such as bending tests on blood vessel walls in [14]. 
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Disregarding for a moment the loading conditions, the mechanical behavior of 

arteries depends on physical and chemical environmental factors, such as 

temperature, osmotic pressure, pH, partial pressure of CO2 and O2, ionic and 

monosaccharide concentration. In ex vivo conditions the mechanical properties are 

altered due to biological degradation. These issues should also be considered during 

in-vitro testing conditions to the extent that they are thought to be important in the 

model created to examine a specific phenomenon. Details on environment-controlled 

tests are summarized in [15]. 

2.2.3. Mechanical Response of Arterial Tissue to External Loads 

Circumferential strip of the media subjected to uniaxial cyclic loading and unloading 

demonstrates stress softening, which occurs during the first few load cycles and 

diminishes with increasing  number of cycles. Limit is a nearly repeatable cyclic 

behavior, when the biological material is said to be 'pre-conditioned'. Depending on 

the type of artery considered, the material behavior may be regarded as (perfectly) 

elastic (proximal)or viscoelastic (distal).  

Figure 2.6 demonstrates a schematic of a typical uniaxial stress-strain curve for 

circumferentially dissected arterial strips (from the media) in passive condition[16] 

From the figure one can conclude that the cyclic loading and unloading, associated 

with softening effects, lead to a pre-conditioned material which behaves (perfectly) 

elastical or viscoelastical around an equilibrium (nearly repeatable cyclic 

behavior).up to point I. Loading up to point II leads to inelastic deformations. 

Additional loading and unloading cycles display softening again until point III is 

reached. Then, the material again exhibits (perfectly) elastic or viscoelastic response. 

The thick solid line indicates the (approximate) engineering response of the material. 

It should be noted that, in strip tests, the continuity of the collagen fibrils are 

destroyed, and care should be taken while considering the plastic deformations 

regarding fiber slip within base ground material, which might be an artificial issue 

imposed by the test method. 
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Figure 2.5 :  Schematic diagram of typical uniaxial stress-strain curves for 
circumferential arterial strips (taken from [16])  

As indicated in Section 2.2.1 the composition of arterial walls varies along the 

arterial tree, which is sure to induce a systematic dependence of the shape of the 

stress-strain curve for a blood vessel depending on its location over the 

cardiovascular network [17]. But, the general mechanical characteristics exhibited by 

arterial walls are more or less the same and in order to explain the typical stress-

strain response of an arterial wall of smooth muscles in the passive state (i.e. when 

the resistance of wall is purely governed by elastin and collagen fibers), Figure 2.5 is 

more than sufficient. Note that the curves in Figure 2.5 are schematic, but based on 

experimental tension tests performed as to [16]). 

Referring to Figure 2.5 again, it can be stated that, arteries are highly deformable 

composite structures and show the nonlinear stress-strain response with a typical 

(exponential) stiffening effect at higher pressures. This stiffening effect, almost 

common to all biological tissues, is based on the rearrangement of wavy collagen 

fibrils, which also leads to the characteristic anisotropic mechanical behavior of 

arteries. Early works on arterial anisotropy (see, for example, [8]) considered arterial 

walls to be cylindrically orthotropic. Loading beyond the viscoelastic domain 

(indicated by point I in Figure 2.5), far outside the physiological range of 

deformation, often occurs during mechanical treatments such as percutaneous 

transluminal angioplasty (see [20]), or natural cases where material degeneration is 
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accompanied by, for example, hypertension. In the strain range up to point II in 

Figure 2.5, the viscoelastic deformation in an arterial layer is accompanied with 

inelastic effects (elastoplastic and/or damage mechanisms) leading to significant 

changes in the mechanical behavior, where overstretching involves dissipation, 

captured by the area between the loading and unloading curves. Hence, starting from 

point II, additional cyclic loading and unloading again displays softening, which 

again vanishes with the number of load cycles. At point III the material exhibits a 

(perfectly) elastic or viscoelastic behavior. However, unloading initiated from point 

III returns the arterial (medial) strip to an unstressed state with non-vanishing strains 

remaining, these being responsible for the change of shape. [19,20]  
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3. BASICS OF NON-LINEAR CONTINUUM MECHANICS 

3.1. Kinematics Preliminaries 

In finite deformation continuum mechanics, the main kinematic quantity is the 

deformation gradient tensor, which is the local mapping of a differential line element 

Xd  in the reference configuration to the element in the deformed configuration xd . 

Thus, by  using the definition ( )t,Xxx =  

XFx dd =  (3-1) 

and if there is no deformation,  

IF =  (3-2) 

where I is the second-order identity tensor: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

I  (3-3) 

When a deformation step, say, (1) is followed by say, step(2), then step(2) takes the 

deformed line segment of step(1) as reference. Thus as the gradient for the total 

deformation (process) 

( )XFFx dd 12=  (3-4) 

XFFx dd 12=  (3-5) 

12FFF =  (3-6) 

is obtained. Loosely speaking, the tensor of the preceding deformation step is placed 

to the right of the following. 

Any deformation can be considered to be a combination of 
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a) An orthogonal rigid body rotation followed by some stretch VRF =  

b) Some stretch following some orthogonal rigid body rotation RUF =  

These decompositions enable the evolution of so-called left ( V ) and right ( U ) 

stretch tensors.  

In the (total) Lagrangian concept, the Right Cauchy-Green stretch tensor ( F  is to the 

right of TF ) is defined as 

FFC T=  (3-7) 

which is, equivalent to 

UURURUC TTT ==  (3-8) 

Thus, the Right Cauchy-Green stretch tensor is independent of rigid body rotations, 

and is an objective measure of deformations at a point, since 

IRR =T  

Identically satisfied for orthogonal rotations. Notice also that 

IC =  (3-9) 

if there is no deformation. The Lagrangian Strain is defined as 

( )ICE −=
2
1  (3-10) 

In the limit of complete volumetric collapse,  

( )IE −→
2
1  (3-11) 

can be obtained as the limit. 
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The volumetric change of a differential volume element is defined as the volume 

ratio, denoted as  

( )Fdet=J  (3-12) 

or 

( )Cdet2 =J  (3-13) 

since 

( ) 1det =R  (3-14) 

identically.  

Setting 1=J  during some deformation process imposes the incompressibility 

constraint on the deformation.  

Figure 3.1 : The Deformation Gradient [21] 

F  
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3.2. The Concept of Stress  

Force is considered by many to be an intuitive concept. Its precise definition is not 

quite straightforward. Force, within this study, is considered to simply be the action of 

one body on another, thus a vectorial push or pull. There are two general types of 

forces of utmost interest:  

• Body forces, such as gravity or electromagnetic forces, which act on all 

material particles in a body without physical contact,  

• Surface forces, such as a pressure or frictional forces, which act through 

physical contact on a body through its bounding surface.  

 

Figure 3.2 :  Visual representation of Traction Vectors 

Many forces act on a material through a surface area, it is very useful to define a 

traction vector T(n) as follows; 

( )

da
df

a
f

a
n =⎟

⎠
⎞

⎜
⎝
⎛

Δ
Δ

= →Δ 0limt  (3-15) 

Where df  is a differential force vector and da  a differential area, both defined in tβ , 

with da  having an orientation given by the outward unit normal vector n. The term 

t0 

n0 

dA 

 

Reference configuration 

t 

n 

da 

 

Current configuration 

2e  

3e  

1e  
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dadf n)(t=  will prove convenient below in the definition of multiple measure of 

stress. Now Cauchy’s postulate can be introduced in the form  

( )nxtt ,, t=  (3-16) 

),,(00 NXtt t=  (3-17) 

In these expressions, 

• t represents the Cauchy traction vector (force measured per unit surface area 

defined in the current configuration) with n as the unit outward normal.  

• t0 represents the first Piola-Kirchhoff traction vector which represents a force 

measured per unit surface area defined in the reference configuration.  

Using the introduced traction vectors Cauchy’s stress theorem can be stated as 

( ) ( )nσt txntx ,,, =  (3-18) 

( ) 00 ,),,( nPt tXNtX =  (3-19) 

There σ  denotes a symmetric spatial tensor field called the Cauchy stress tensor. P is 

called the first Piola-Kirchhoff stress tensor. Newton’s third law of action can thus be 

stated as 

( ) ( )nxtnxt −−= ,,,, tt  (3-20) 

),,(),,( 0000 nXtnXt −−= tt  (3-21) 

which leads directly to relating between σ  to P, using Nanson’s formula connecting 

line elements in the different configurations expressed as 

dAJda T−= F  (3-22) 

Combining (3-18) to (3-22) leads to the following relations: 

( ) dAtdat ),,(,, 00 nXtnxt = , (3-23) 
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( ) ( ) dAtdat 0,, nXPnxσ = , (3-24) 

( ) ( )dAtdat ,, XPxσ = , (3-25) 

TJ PFσ 1−= , (3-26) 

TJ −= σFP . (3-27) 

It can be shown that σ  is symmetric (with the aid of balance laws) and P is not 

symmetric in general and follows the rule 

TT FPPF =  (3-28) 

In nonlinear analysis, in general two more definitions of stress tensors are frequently 

used. These are the Kirchhoff stress tensor τ  which differs from the Cauchy stress 

tensor by the volume ratio J and is defined by  

στ J=  (3-29) 

and the second Piola-Kirchhoff stress tensor S which does not admit a physical 

interpretation in terms of surface tractions, but is defined in the reference (fixed) 

configuration enabling a position suitable for the formulation of constitutive 

equations, especially for solid materials. The second Piola-Kirchhoff stress tensor can 

be obtained “pull-back” operation and is expressed as 

T−−= τFFS 1  (3-30) 

Other relations also hold between S, σ  and P like 

TT SPFσFFS === −−− 11  (3-31) 

TJ FSFσ 1−=  (3-32) 

FSP = .  (3-33) 
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3.3. Basic Postulates of Continuum Mechanics [22-24] 

There are five basic postulates in continuum mechanics: 

1. Conservation of mass 

2. Conservation of linear momentum 

3. Conservation of angular momentum 

4. Conservation of energy 

5. The entropy inequality 

3.3.1. Conservation of Mass 

In non-relativistic physics, which is concerned here, mass cannot be produced or 

destroyed. Thus, it is assumed that during a motion there are either mass sources or 

mass sinks, so that the mass m of a body is a conserved quantity. Hence, if a particle 

has certain mass in the reference configuration it must stay the same during a motion 

∫∫ =
t

dvdV
ββ

ρρ
0

0  (3-34) 

where 0β  and tβ  denote reference and current domains (volumes). 0ρ  is called the 

reference mass density and ρ  is called the spatial mass density. The spatial mass 

density, also known as the density in the motion, depends on coordinate and time 

throughout the body. In contrary, 0ρ  is time-independent and is only associated with 

the reference configuration of the body. If the density does not depend on geometrical 

position, the configuration is said to be homogeneous. 

Using the relation, 

dVJdVdv Fdet==  (3-35) 

the local formulation of the conservation of mass can be written as 

Fdet0 ρρρ == J  (3-36) 
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(3-36) deals with the reference density as a time independent quantity. Then, the 

continuity equation can be derived as 

( ) 0=+= vdivJ
Dt
D ρρρ &  (3-37) 

where xv &=  denotes the velocity and vJdivJ =&   

3.3.2. Balance of Linear Momentum 

Conservation of linear momentum requires that the time rate of change of the linear 

momentum (i.e., mass times velocity for all particles) of a body must balance all the 

forces (body plus surface) that act on the body. Inferred from this definition, it is 

concluded that forces act on a deformed (current) configuration. Accordingly, the 

linear momentum equation is, in common practice, derived using spatial approach, 

though referential form of many equations are preferred in constitutive formulations. 

The spatial form is then given as 

( )∫∫∫ ∂
+=

ttt

dadvdv
dt
d n

βββ
ρρ tbv     (3-38) 

where v is the velocity, and b and t are the actual body force (defined per unit mass 

since mass remains constant) and traction vector that act on the body in the current 

configuration. To get a form ( ) 0... =∫ dv  for all (deformed) configurations, which 

yields a local form, the order of the time differentiation and volume integration on the 

left hand side are interchanged and the current differential volume is eliminated in 

favor of JdV . Thus 

( )∫ ∫∫ ==
0β ββ

ρρρ
tt

dvdVJ
dt
ddv

dt
d avv  (3-39) 

and following is acquired. 

0
00

=⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ + ∫∫ JdVtr

dt
ddV

dt
dJJ

dt
d vLvv

ββ
ρρρρ  (3-40) 

Applying the divergence theorem to (3.38), 
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( ) ∫∫∫ ∇==
∂∂ ttt

dvdadan

βββ
σntt . (3-41) 

the spatial form of the linear momentum equation becomes 

( ) 0=−∇−∫
t

dv
β

ρρ bσa      t   β∀  (3-42) 

And thereby the point wise field equation, in direct and Cartesian notation, is  

abσ ρρ =+∇ ,     jj
i

ij ab
x

ρρ
σ

=+
∂

∂
. (3-43) 

This is the most natural and thus the most familiar form of the linear momentum 

equation; called the equation of motion. If the acceleration is zero (or negligible), then 

the equation above is called the equilibrium equation. 

Configuring everytihing in the reference configuration yields 

( )∫∫∫ ∂
+=

000
000 βββ

ρρ dAdVdV
dt
d Ntbv , (3-44) 

where ( )N
0t  is the traction vector defined in reference configuration in terms of the 

actual surface forces that act on the body in the current configuration. This time, the 

differentiation and integration can be interchanged directly because the reference 

volume dV is constant. Hence, using the definition for the first Piola-Kirchoff stress 

tensor and the divergence theorem, equation 3-43 can be written as 

( ) 0
0

000 =−∇−∫ dV
β

ρρ bPa      0     β∀  (3-45) 

from which the local form of the equation is gathered as 

abP 000 ρρ =+∇ ,     jj
A

Aj ab
X
P

00 ρρ =+
∂

∂
 (3-46) 

It is not hard to infer that the referential form is not as “natural” as the spatial form, 

but the formulation is simpler since the reference configuration does not change with 

time. The two relations are similar and, of course, can be obtained one from the other. 
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3.3.3. Conservation of Angular Momentum 

Conservation of angular momentum requires that the time rate of change of the total 

momentum of the body must balance the applied moments. Hence, in referential form, 

( ) ( ) ( )( )∫∫∫ ∂
×+×=×

000
00 βββ

ρρ dAdVdV
dt
d NTxvxvx      (3-47) 

is given. Following details in the literature, the balance of angular momentum ensures 

that 

TT FPF.P =     (3-48) 

i.e., the Cauchy stress tensor is a symmetric quantity. 

Tσσ =  (3-49) 

Following the definition of the second Piola-Kirchhoff stress tensor S in equation    

(3-32). 

TSS =  (3-50) 

can also be gathered. Contrary to the above definitions, the first Piola-Kirchhoff stress 

tensor P is not symmetric in general as can be inferred from equation 3-33  

In practice, balance of angular momentum provides little information for the 

formulation of a boundary value problem, but restrictions on constitutive relations in 

terms of σP,  or S ; in the form of enforced symmetries. 

3.3.4. Conservation of Energy 

This is namely “the first law of thermodynamics”. This law asserts that the time rate 

of change of the total energy of a body (kinetic plus potential being accounted for via 

body forces) must balance the rate at which work is done on the body (via volumetric 

and/or surface heating). Since this work is aimed at isothermal processes throughout 

this work, one shall not need to invoke the energy equation. Nevertheless, for 

completeness the referential form of the energy equation is 
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g
dt
d

dt
d T

0000 : ρερ +∇−= qFP  (3-51) 

where ε  is the internal energy density (defined per unit mass), 0∇  denotes the 

referential gradient, 0q  the referential heat flux vector, and g heat addition defined per 

unit mass.  

3.3.5. Entropy Inequality 

Entropy inequality is also known as the second law of thermodynamics. The 

referential form of the equation is 

01: 00
0

≥∇−+⎟
⎠
⎞

⎜
⎝
⎛ +

Ψ
− T

dt
d

dt
dT

dt
d T qFP

ρ
μ  (3-52) 

where  

Ψ  is the stored energy per unit volume 

T  is the temperature 

0ρ is the mass density in reference configuration 

μ  is the specific heat 

0q is the referential heat flux vector 

For an isothermal process with no heat transfer, the equation above degenerates to 

0:0 ≥+
Ψ

−
dt
d

dt
d T FPρ  (3-53) 

This reveals that the second law of thermodynamics can provide important 

information even for isothermal, mechanical processes. A material model should 

exactly behave compatible to the second law of thermodynamics. This ensures the 

constitutive equations be stable (and realistic). The second law of thermodynamics is 

essential to the development of constitutive relations for all hyperelastic, 

viscohyperelastic and viscohyperelastoplastic materials. 
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4. THE VISCOELASTIC MODEL FOR TRACING PASSIVE ARTERIAL 

DEFORMATIONS 

4.1.1. Some Previous Studies on Arterial Material Models 

An adequate constitutive model for arteries which incorporates the active state 

(contraction of smooth muscles) was proposed recently by Rachev and Hayashi [25], 

but such behavior is quite out of the scope of this study. The active mechanical 

behavior of arterial walls is governed mainly by the intrinsic properties of elastin and 

collagen fibers and by the degree of activation of smooth muscles.. 

The passive mechanical behavior of arterial walls is quite different than the 

aforementioned active and is governed mainly by the elastin and collagen fibers. The 

passive state of the smooth muscles may also contribute to the passive arterial 

behavior but the extent of this contribution is not yet known, and is completely 

disregarded. Most constitutive models proposed for arteries describe the artery as a 

macroscopic system. Furthermore, most of these models are designed to capture the 

response near the physiological state and in this respect they have been successfully 

applied in fitting experimental data. The most common potentials (strain-energy 

density functions) are of exponential type, although polynomial and logarithmic forms 

are also used. 

Some of the constitutive models proposed use the biphasic theory to describe arterial 

walls as hydrated soft tissues[26]. Less frequently, models account for the specific 

morphological structure of arterial walls. One attempt to model the helically wound 

fibrous structure is provided by Tozeren [27], which is based on the idea that the only 

wall constituent is the fiber structure. However, this is a significant simplification of 

histology. 

A model byWuyts et al. [28] assumes that the artery is only composed of media, and 

wavy collagen fibrils are embedded in concentrically arranged elastin/smooth-muscle 

membranes, in agreement with the histology with collagen fibrils having a statistically 
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distributed initial length which may be stretched initially with a very low force but 

then is linearly elastic. Though the model in [28] incorporates some histological 

information, the artery is considered as a tube reinforced by circularly oriented 

collagen and elastin fibers, which does not model the real histological situation. 

Most of the constitutive models treat the arterial wall as a single layer, but a number 

of two-layer models have been proposed in the literature. Two-layer models which 

include anisotropy are those due to, for example, Von Maltzahn et al. [29], Demiray 

[30] and Rachev [31]. However, the emphasis of the latter paper is on stress-

dependent remodeling. 

The Mooney-type and Ogden-type models are first isotropic hyperelastic models 

which are commonly used for elastomers and soft tissues. These models are also  

widely integrated within commercial finite element software. Ogden and Mooney 

type models are based on stretch ratios. However, for arterial tissues, these models are 

failed to determine fiber-reinforced material behavior. The Mooney materials used in 

soft tissue modeling is of the form 

( ) ( ) ( )( )3333 2122110 −−+−+−= IIcIcIcψ  (4-1) 

2
3

2
2

2
11 λλλ ++=I  (4-2) 

2
3

2
2

2
12

−−− ++= λλλI  (4-3) 

and the Ogden model is in the form; 

( )∑
=

−++=
n

ii

iii 3321
ααα λλλψ  (4-4) 

where, ψ  stands for the strain energy density functional, I  for the strain invariants 

and λ  for the principal stretch ratios, the other symbols being indices or material 

coefficients. Details to these models can be found in literature, since they have been 

extensively captured in modeling of rubber structures and similar.  

Vaishnav et al [32] proposed and compared three different multi-axial forms of strain 

energy density function ψ  to describe the 3D anisotropic behavior of canine thoracic 
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aorta. They explicitly enforce incompressibility rather than via a Lagrange multiplier 

embedding. Briefly, each ψ  is taken to be a polynomial function of the Green strains, 

but contained different number of material parameters. Overall a seven parameter 

relation was discussed to yield the best. It is of the form 

3
7

2
6

2
5

3
4

2
32

2
1 ZZZZZZZZZZ EcEEcEEcEcEcEEcEcW ++++++= ΘΘΘΘΘΘΘΘΘΘ  (4-5) 

In their paper they determined the values from global equilibrium and thereby 

accounted for transmural variations in stress and strains. Differences in the two sets of 

parameter values prompted Vaishnav and colleagues to conclude that the thick walled 

approach was preferred, a conclusion that is generally held today. 

Another proposal by Holzapfel and Wiezsacker [33] promotes a combined polynomial 

exponential form of ψ  for passive aorta. Specifically, they suggested that 

( ) ( )1
2
130 −+−= Q

C ecIcψ  (4-6) 

32 +== EC trtrIC  (4-7) 

RRZZZZRRRR EEcEEcEEcEcEcEcQ 654
2

3
2

2
2

1 222 +++++= ΘΘΘΘΘΘΘΘ  (4-8) 

Here 0c  and c values are parameters having the units of stress, whereas the other 

parameters are non-dimensionless.  

Demiray and Vito [30] also presented such results for passive aorta. Using a Lagrange 

multiplier approach and based on biaxial data, they suggested the following form of 
ψ  

( ) ( ) ( ) )1]111(exp[
2 333222111 −−+−+−= CcCcCcc

Mediaψ  (4-9) 

for the media, where the subscripts 1 and 2 on the components of C denote in-plane 
components ( Z,Θ ) however, the third one denotes the out of plane component R . 
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In contrast they suggested 

)1)]3((exp[
2

−−= CAdv Iα
α
βψ  (4-10) 

For the adventitia, where βα ,  are material parameters and 

32 +== EC trtrIC  (4-11) 

Choung and Fung [34] suggested a 3D exponential form of ψ . It is 

Qce
2
1

=ψ  (4-12) 

where ψ is defined per unit initial volume and Q is 

( ) ( ) ( )22
9

22
8

22
7

654
3

3
2

2
2

1

      

222

RZZRZZRR

RRZZZZRRZZRR

EEcEEcEEc

EEcEEcEEcEcEcEcQ

++++++

+++++=

ΘΘΘΘ

ΘΘΘΘΘΘ  (4-13) 

notice that this postulate does not satisfy 0=ψ  at the state of zero strain. 

Takamizawa and Hayashi  [9] reported that Fung type exponential forms of ψ  

describe better the passive behavior of carotid arteries than polynomial forms. Also 

including residual stresses in their data analysis, In [9] a logarithmic form of ψ  has 

been suggested 

)1ln( Qc −−=ψ  (4-14) 

ZZZZ EEcEcEcQ ΘΘΘΘ ++= 3
2

2
2

1 2
1

2
1  (4-15) 

as a slightly better descriptor of carotid behavior than an exponential form.  

Von Malzahn et al [29] showed that the following exponential pseudo strain-energy 

function described well the behavior of both the adventitia and media of bovine 

carotid arteries 

)1]2(exp[
2
1

3
2

2
2

1 −++= ΘΘΘΘ ZZZZ EEcEcEccψ  (4-16) 
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Kasyanov and Rachev [25] present the mechanical behavior of human carotid arteries 

tested via finite inflation, extension and torsion. Following Vaishnav, 

incompressibility has been directly enforced and postulated 

)]([]1[ 22
10971

8
ΘΘΘΘ ++++−= ΘΘ

ZZZZ
EcQ EEcEceEcecψ  (4-17) 

ZZZZZZZZ EEcEEcEcEEcEcQ 2
6

2
5

2
43

2
2 ΘΘΘΘΘΘΘΘ ++++=  (4-18) 

G.A. Holzapfel, T.C. Gasser and R. W. Ogden [3] proposed a multilayer material 

model including fiber orientations. Details of this model is also applied in section 4.6 

of this thesis, but in short, they state that the total strain energy can be decomposed 

into a homogeneous (due to ground elastin) and fiber (due to helically wound collagen 

fibers) component, for which a different behavior models can be adopted. 

),()(),,( 64121 III anisoiso ψψψ +=AAC  (4-19) 

( )3
2 1 −= Ic

isoψ  (4-20) 

}1])1({exp[
2 6,4

2
2

2

1 −−= ∑
=i

ianiso Ik
k
kψ  (4-21) 

4.2. General Assumptions of proposed Material Model: 

1) The artery is a mono-layer (orthotropic) fiber-reinforced thick-walled tube 

2) This orthotropic behavior is due to two families of collagen fibers in elastin 

matrix. 

3) Both the viscoelastic and pure elastic kinematics are finite 

4) The structure is viscoelastic, thus dissipative. 

5) The deformation procedure followed is purely isothermal. 

6) The structure exhibits long-term damage behavior 

7) Only passive mechanical properties are modeled 
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8) The elastic properties are in form of HyperElasticity 

9) The material is incompressible. 

10) Permanent (plastic) deformations are due to fiber slip within ground material 

11) Plasticity is rate-dependent. 

4.3. Kinematics for Materials Exhibiting Intermediate Configurations 

If some “known” or “assumed” intermediate configuration can be mentioned during 

the deformation, the deformation gradient can be assumed to get multiplicatively 

split over two phases, as to general applied practice in finite plasticity, where the 

“intermediate stress free configuration” is the main point of many theories: 

veFFF =  (4-22) 

where eF  is the elastic deformation after some evolving (viscous / viscoelastic) 

deformation vF , which can be regarded as an intermediate (and fictious) (stress-free) 

configuration within here. The phrases in parenthesis imply that those terms can be 

valid or invalid as to the theoretical layout of the model. In applications of 

multiplicative decomposition of the deformation gradient to plasticity, the 

intermediate configuration is assumed to be “stress-free” after unloading the 

material, whereas in a 3-element viscoelastic solid similar to one in Figure 4.2, this 

might not be the case unless stress-relaxation experiments are carried out. However, 

the “evolving” character of this configuration is similar in both assumptions. A 

scheme of the hypothesis is given in Figure 4.1 
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Figure 4.1 : The Multiplicative decomposition [21] 

The material time-rate of each deformation gradient tensor is defined as 

LFF =&  (4-23) 

vvv FLF =&  (4-24) 

eee LFF =&  (4-25) 

where “ L ” are the velocity gradient tensors that relate the material time rates of 

deformation gradients to each, respectively. Thus,  

vveveeveveve FLFFLFFFFFFLFLFF +=+=== &&&  (4-26) 

( )veeveeee LLFLFLFLF +=+=  (4-27) 

( ) 1−+= evee FLLFL  (4-28) 
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is obtained. This enables transformations among deformation rate gradient tensorial 

variables appropriately as required.  

One important concept that rises with the multiplicative decomposition is the so-

called “plastic” spin, in multiplicative plasticity. In the notation represented here for 

viscoelastic deformations,  

[ ]T
e

T
v

T
eevev FLFFLFΩ −− −= 1

2
1  (4-29) 

reads, which is defined as the spin of the substructure defined on the intermediate 

configuration with respect to the reference configuration. The reason that this 

quantity is named here as “plastic spin” is that it is a very common concept in 

plasticity and the notion is straightforwardly the same. Other variables to be defined 

are the Total Lagrangian Strain 

( )IFFE −= T

2
1  (4-30) 

and the Lagrangian Viscous (intermediate) Strain 

( )IFFE −= v
T

vv 2
1  (4-31) 

Transformations among each quantity is possible: 

( ) ( )( )IFIΓFIFFFFE −+=−= ve
T

vve
T

e
T

v 2
2
1

2
1  (4-32) 

vve
T

v EFΓFE +=  (4-33) 

The elastic strain, defined with reference to the viscously-deformed (intermediate) 

state is shifted along with the viscous deformation. Thus, with respect to the 

intermediate configuration, the strains are simply summed up, in spite the viscous 

strain turns Eulerian.  

vev
T

v ΓΓEFF +=−− 1   (4-34) 
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( ) ( )ICIFFΓ −=−= ee
T

ee 2
1

2
1  (4-35) 

( ) ( )11

2
1

2
1 −−− −=−= vv

T
vv BIFFIΓ  (4-36) 

4.4. The Fiber Orientation Matrix 

A broad range of composite materials can be regarded as fiber-reinforced continua, 

where, at least the cross-sectional dimensions of the fibers are of orders lower scale 

than the model of interest (similar to continuum definition in fluid dynamics). 

Considering the fiber types, various sub-types can be defined as long-fiber 

composites and short fiber composites. The latter can also be subdivided into 

anisotropic and isotropic types, but is beyond the concept of arterial physiology, 

where, helically wound long collagen fibrils are of main interest. In such models, the 

main input to material models are the fiber orientations in a reference state. 

Following [37], the mathematical representation of fiber-related quantities have 

developed rapidly, as in his study a method that enabled mathematical isotropy to 

model anisotropic materials have been developed.  

4.4.1. The Representation of Reference Configuration 

Let the two sets of fibers be aligned with respect to the ( )ZR ,,Θ  undeformed 

coordinates of the tube as  

[ ]44
0
4 0 ϕϕ CosSin=m  (4-37) 

[ ]66
0
6 0 ϕϕ CosSin=m  (4-38) 

with 4a  and 6a  defining the direction of the fiber sets 4 and 6 respectively. (The 

reason for naming families as “4” and “6” will be made clear later.)  

The angles “ϕ ” are given with respect to the longitudinal axis of the hollow 

cylinder. 
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The normals to these directions are defined as 

[ ]44
0
4 0 ϕϕ SinCos−=n  (4-39) 

[ ]66
0
6 0 ϕϕ SinCos−=n  (4-40) 

The director’s matrix for each family of fibers, can be defined as the dyads [37,4]: 

( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗=

2
444

44
2

4
0
4

0
4

0
4

0
0

000

ϕϕϕ
ϕϕϕ

CosSinCos
SinCosSinmmM  (4-41) 

( )
( ) ⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗=

2
666

66
2

6
0
6

0
6

0
6

0
0

000

ϕϕϕ
ϕϕϕ

CosSinCos
SinCosSinmmM  (4-42) 

Remember that these tensor quantities are defined with respect to the reference 

configuration, with superscript “0” indicating that they are defined in the reference 

configuration, and their norms are unity. 

4.4.2. The Stretch of Fibers 

As the material is subjected to some state of stress, it will (hopefully) deform. Thus, 

the fibers will be re-aligned. This shifts the director’s matrices: 

0
4

0
44 mFmFM vv

v ⊗=  (4-43) 

( ) ( ) ( )bvavab
v 0

4
0
44 mFmFM =  (4-44) 

( ) ( ) ( ) ( )mbmvkakv
0
4

0
4 mFmF=  (4-45) 

( ) ( ) ( ) ( )mb
T

vmkakv FmmF 0
4

0
4=  (4-46) 

T
vv

v FMFM 0
44 =  (4-47) 

Similar tensor algebra can be carried out for other quantities.  
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Thus, the fiber directions with respect to reference configuration, after some viscous 

deformation vF  is given by  

T
vv

v FMFM 0
44 =  (4-48) 

T
vv

v FMFM 0
66 =  (4-49) 

The fiber directions with respect to reference configuration, after some total 

deformation F  is given by  

TT
e

T
vve

T
e

v
e

x FFMFFMFFFMFM 0
4

0
444 ===  (4-50) 

TT
e

T
vve

T
e

v
e

x FFMFFMFFFMFM 0
6

0
666 ===  (4-51) 

Note that, the norms of vM  and xM  are no more unity. 

In general, the initial directions of fiber families (in the arterial tissue) are known 

from material. The others are tracked with the deformation, with the aid of the 

formulations presented. 

4.5. The Constitutive Layout 

4.5.1. Thermodynamics 

For isothermal processes, the entropy inequality is expressed as (recall from section 

3.3.5): 

0: ≥Ψ− &&ES  (4-52) 

where, S  is the II. Piola – Kirchhoff Stress Tensor, E& is the Lagrangian strain rate 

(work conjugate to stress) and Ψ& is the rate of energy stored per volume within the 

body. 

Now a model for the material behavior is to be chosen for accurate application of the 

general concepts to special case. A 3-element non-linear viscoelastic solid is 

assumed: 
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Figure 4.2 : The 3-Element Solid Model (Poynting-Thomson Viscoelastic Solid) 

where the orange hatches denote spring elements and the blue box represent the 

dissipative dashpot. According to this model,  

• The strain energy can be summed up to be due to the pure elastic part and the 

viscoelastic part,  

• The deformation is two-fold, thus the model behaves compatible with the 

multiplicative decomposition assumption,  

• The dissipation is incorporated within the context of the dashpot element 

(blue). 

Due to the natural decomposition veFFF = , one is free to choose 2 variables among 

3. Possible choices are to select F  and eF  ; F  and vF  ; and eF and vF . The 1st choice 

is not useful, since for pure elasticity, one will have two (identical) quantities that 

differ from unity during deformation; it is not liked to have very-dependent variables 

in equations. The 2nd choice is in practice good, but the equations get cumbersome 

when total deformations are involved. Thus, choosing eF as the main and vF  as the 

evolving deformation is (among the three choices) seems the most logical. This 

means that, in terms of strains, the Lagrangian elastic strain with respect to the 

intermediate configuration and the Lagrangian Viscous (Internal Variable Like) 

Strain with respect to the original configuration will be used as the variables. 

eF  

vF  

vF  
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vve
T

v EFΓFE +=  (4-53) 

ve
T

vvve
T

vve
T

v
T

vv FΓFFLΓFFΓLFEE &&& +++=  (4-54) 

Furthermore, the total energy stored in the material can be assumed to be the sum of 

energies stored in the springs. Thus, based on the additive decomposition of the total 

strain energy, 

( ) ( )vvee EΓ Ψ+Ψ=Ψ  (4-55) 

Q
Qv

v
e

e

&&&& :::
∂
Ψ∂

+
∂

Ψ∂
+

∂
Ψ∂

=Ψ E
E

Γ
Γ

 (4-56) 

0:::: ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Ψ∂

+
∂

Ψ∂
+

∂
Ψ∂

− Q
Qv

v
e

e

&&&& E
E

Γ
Γ

ES  (4-57) 

where Q  is any arbitrary parameter. It will be made clear later that, it is associated to 

internal damage variable that will be correlated to softening effects and variables 

related to plastic deformations.  

Leaving the Q parameter aside for now, using the total Lagrangian strain rate from 

definition for the stress power in detail, 

( ) 0: ≥Ψ−+++ &&&
vve

T
vve

T
v

T
vve

T
vv FLΓFFΓLFFΓFES  (4-58) 

( ) 0≥Ψ−+++ &&&
vve

T
vve

T
v

T
vve

T
vvtr FLΓSFFΓLSFFΓSFES  (4-59) 

( ) 0≥Ψ−+++ &&
ve

T
vv

T
v

T
vvee

T
vvv

T
vvtr LΓSFFLSFFΓΓSFFDSFF  (4-60) 

The procedure in the paper [38] uses a different rate formulation other than employed 

here, and they presumably incorporate that traces of e
T

v
T

vv ΓLSFF  and ev
T

vv ΓLSFF  

are equal. But to that extent, the underlying assumptions are not laid. For the most 

general case, this is only satisfied if it is said that the viscoelastic intermediate 

deformation is spin-free. That is, the intermediate deformation is assumed to have a 

kinematic constraint over: 
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[ ]T
e

T
v

T
eevev FLFFLFΩ −− −= 1

2
1  (4-61) 

This concept has been adopted in many areas in multiplicative deformation plasticity, 

as stated before, and many details can be found in the book by Lubarda [35]. Setting 

the “spin” to zero 

[ ]T
e

T
v

T
eevev FLFFLF0Ω −− −== 1

2
1  (4-62) 

Rearranging, 

( ) e
T

e
T

v
T

eeve
T

e FFLFFLFF0 −− −= 1  (4-63) 

one obtains 

e
T

vve CLLC0 −=  (4-64) 

The following steps are rather straightforward arrangement of the variables 

( ) ( ) 0
2
1

2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ −+−++ &&&

vve
T

vve
T

v
T

vve
T

vvtr FLICSFFICLSFFΓSFES  (4-65) 

( ) ( ) 0
2
1

2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ −+−++ &&&

ve
T

vve
T

v
T

vvve
T

vvtr LICSFFICLSFFFΓSFES  (4-66) 

( ) { } { } 0
2
1

2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ +−+++ &&&

v
T

vv
T

v
T

vvve
T

vve
T

v
T

vvve
T

vv trtr LSFFLSFFLCSFFCLSFFFΓSFES

 (4-67) 

( ) { } { } 0
2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ −+++ &&

v
T

v
T

vve
T

vve
T

v
T

vvve
T

vvv
T

v trtr FDSFLCSFFCLSFFFΓSFFDSF (4-68) 

After canceling relevant terms 

( ) { } 0
2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ ++ &&

ve
T

vve
T

v
T

vvve
T

v trtr LCSFFCLSFFFΓSF  (4-69) 

and using the vanishing spin 
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( ) { } 0
2
1

≥Ψ−⎟
⎠
⎞

⎜
⎝
⎛ ++ &&

ve
T

vvve
T

vvve
T

v trtr LCSFFLCSFFFΓSF  (4-70) 

which reads 

( ) 0≥Ψ−+ &&
ve

T
vve

T
vvtr LCSFFΓSFF  (4-71) 

Now one can return to more primitive formulations, for better understanding of the 

issue. Rather than the decomposition (4.56), let 

T
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v

v
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e

e F
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Γ
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&&
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& ::
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Ψ∂
+

∂
Ψ∂

=Ψ  (4-72) 

For the second term involving vΨ  
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Then 
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Using the identity 

T
v

v

v
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=
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Ψ∂  (4-75) 
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 (4-76) 

is obtained. Using the argument that in pure elasticity no dissipation occurs and the 

deformation is path-independent and reversible [23] 

e

eT
vv Γ

SFF
&∂
Ψ∂

=  (4-77) 

and the dissipation inequality is 
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Let the dissipation be related to some potential, and turn the system into an equality 
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Arranging the last term 
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The result then reads 
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Investigating further,  
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Now it is obvious that, the last two terms in the parenthesis are symmetrical, while 

first is not. Decomposing it into symmetrical and anti-symmetrical parts leads 
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Using that plastic spin is zero again, the term in the right hand side vanishes 

identically, which leads  
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Then, 
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Since the negative-signed terms are symmetrical and trace of a tensor equals trace of 

its transpose 
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Arranging terms in groups of vL  and T
vL  reads 
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As to the most general case, the leading terms of vL  and T
vL should be 

independently equal to zero, which implies their sum is also zero. Then, 
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is obtained, as the evolution equation for the model proposed. 

4.6. The Material-Specific Constitutive Laws 

4.6.1. General Considerations 

For examining one structure’s behavior using mathematical models, the constitutive 

laws should be stated. For the statements proposed in Section 4.5 and related, there is 

a hidden fact that the strain energy Ψ  should be an isotropic function of its 

arguments. For anisotropic materials, this requirement is generally not obtainable at 

hand and is a strong restriction over the form of Ψ . However, for the case where 

fiber reinforced materials are represented by means of structural “alignment” tensors 

for specific families of fibers, this strong requirement holds [23, 37]. 

For any isotropic material, it is known that, the strain energy density function can be 

represented by the function 

( )321 ,, IIIΨ=Ψ  (4-97) 

where, the 321 ,, III are invariants of the deformation field, and can be represented as 

the eingenvalue polynomial’s coefficients for deformation: 

032
2

1
3 =−−− III λλλ  (4-98) 

Since it has been stated that the arterial tissue is incompressible 

( ) 1det3 == CI  (4-99) 
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and a Lagrange multiplier is introduced into the equations of stress. Thus, 

( )21, IIΨ=Ψ  (4-100) 

holds for isotropic materials. Details can be sought for basics within the Mooney-

Rivlin materials concept widely discussed in literature, such as [23]. 

The addition of the (symmetric) structural tensors into the behavior of the system 

brings in additional invariants that account for fiber stretches, fiber-matrix 

interactions and fiber-fiber interactions. The whole list of invariants is then [3,37]: 

( ) ( )IEC +== 21 trtrI  (4-101) 

( )( ) ( )22
2 CC trtrI −= ,  (4-102) 

with IEC += 2  hereafter and  

( ) 1det3 == CI  (4-103) 

for incompressible materials 

CM :0
44 =I   (4-104) 

for the square of stretch of fibers aligned in direction [ ]44
0
4 0 ϕϕ CosSin=m  

20
45 : CM=I   (4-105) 

due to interactions between fiber and ground matrix  

CM :0
66 =I  (4-106) 

for the square of stretch of fibers aligned in direction [ ]66
0
6 0 ϕϕ CosSin=m  

20
67 : CM=I  (4-107) 

due to interactions between fiber and ground matrix 

0
6

0
48 : MM=I  (4-108) 
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due to cross-fiber interaction and  

( )0
6

0
49 MCMtrI =  (4-109) 

tripled-interaction among every constituent 

Notice that C  here is of no relation to statements above, it just demonstrates the 

stretch for any given F . 

When coordinate frame indifference is of interest also for the strain-rates, which is 

the basis for viscoelastic formulations, additional set of invariants can be introduced. 

For the sake of simplicity and to have an idea of broadness of choices, the following 

is a list of invariants that are related with the deformation rates, in groups with 

respect to 

a) Pure effects of rate of deformation  

( )C&trJ =1  (4-110) 

( )2
2 2

1 C&trJ =  (4-111) 

( )C&det3 =J  (4-112) 

b) Effects of rate of deformation over fibers  

CM &:0
4 =J  (4-113) 

20
5 :CM &=J  (4-114) 

c) Coupling of isotropic deformation with deformation rate  

( )CC &trJ =6  (4-115) 

( )2
7 CC &trJ =  (4-116) 

( )CC &2
8 trJ =  (4-117) 
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( )22
9 CC &trJ =  (4-118) 

d) Coupling of anisotropic deformation with deformation rate  

( )CCM &0
10 trJ =  (4-119) 

( )20
11 CCM &trJ =  (4-120) 

( )CCM &20
12 trJ =  (4-121) 

Notice that in these expressions C& , C  and 0M  refer to arbitrary rate of right 

Cauchy-Green Tensor, right Cauchy-Green Tensor and Fiber Orientation Tensor 

respectively, which are not related to tensors somewhere within this text. 

It is worth mentioning that, the rate-related invariants listed above are valid for 

transversely isotropic materials where only one preferred direction (family of fibers) 

exists. In the case of (orthotropic) anisotropy with two families of fibers, additional 

invariants that include coupling effects among fibers are to exists, but are beyond the 

scope of this text. 

Notice that these invariants are obtained using the fiber direction tensors that are 

“stretch” related. It will, in section 4.6.4 be shown that a “shearing” related 

formulation is also possible exhibiting the same mathematical properties. 

As a concluding remark, then, the strain energy density function for such a composite 

is then a function of all these invariants, in general. 

4.6.2. The Specific Material Model 

However, for the sake of simplicity, and not to diversify much from the literature, it 

is assumed, in this study, that  

( )6421 ,,, IIIIΨ=Ψ  (4-122) 

only. 
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More specifically, the pure elastic and viscoelastic stored energies are assumed to be 

of the form: 

( ) ( ) ( )
⎥⎦
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e
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 (4-123) 
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 (4-124) 

where, the material constants are eC1 , eC2  and eα  for the pure elastic deformations 

and vC1 , vC2  and vα  for internal state variable evolutionary model. The two sets of 

constants can be chosen to be the same, but the deformation invariants cannot be 

equalized. To cope with the partial derivatives, the chain rule is always applied. 
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This motivation implies that any constitutive relation in finite elasticity has a 

“constitutive derivative” followed by a “kinematic derivative”.  

By definition, 

( ) 1:22:: 0
4

0
4

0
44 +=+== MEIEMCM vv

vvI  (4-127) 

( ) 1:22:: 0
6

0
6

0
66 +=+== MEIEMCM vv

vvI  (4-128) 

holds. Since, the elastic deformation is imposed upon (viscoelastic) intermediate 

deformation (configuration), the fiber stretches are no more identified by 0
iM tensors 

with having norm of unity. Thus one has to normalize these directors to unity norm 

to get the effective stretch: 

( ) 1:22:: 4
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Thus, it can be re-written 

1:212 +=+
v
i

e
v
ie

i M
ΓMε  (4-131) 

and may get furbished to  

e
i

e
iI ε21 =−  (4-132) 

and similarly 

1:212 0 +=+ iv
v
i MEε  (4-133) 

v
i

v
iI ε21 =−  (4-134) 

Thus, the fourth and sixth invariants, in structural mechanics point of view, can be 

regarded as twice the normal strain in the (preferred) direction of alignment (of 

fibers). 

4.6.3. The “Constitutive Derivatives” 

For the proposed material constitutive equation, the required constitutive derivatives 

can be obtained as follows: 
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∂
∂

vE
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4 2M
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Now one can rewrite the equations: 
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4.6.4. The “Flow Rule” 

Considering the equation of evolution 
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it is explixit that the model is closed since  

0: ≥
∂

Φ∂
v
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E
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 (4-145) 

for any deformation rate vE& . As long as the dissipation inequality is satisfied, the 

choice of the potential function Φ  is arbitrary.  

Considering the effects due to anisotropy, a choice for the potential can be such that 

it is related to the resolved shear over the fibers, where due to this shear some flow 

occurs between the matrix and the fiber. This is a similar concept that is first used in 

single crystal plasticity theory, which indicates the Schmid resolved shear stress over 
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an active slip system. Letting the fiber directions are known, one can calculate the in-

plane shear (strain) as: 

0
4

0
44 mEn v=γ  (4-146) 

for fiber layout 4, which is a scalar. A visual representation of the concept layout 

here is schematically provided in Figure 4.3. 

 

Figure 4.3 : The In-Plane Shear 

On the other hand, shear deformation is not, in general case, a symmetrical quantity. 

Thus, decomposition into symmetric and anti-symmetric components is possible. 

Rewriting 

( )0
4

0
44 : mnE ⊗= vγ  (4-147) 

and decomposing 
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is obtained. Defining 
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0
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0
44 :: ΩEDE vv +=γ  (4-154) 

is refurbished. The rate of shear is then 

( )0
4

0
44 : ΩDE += v

&&γ  (4-155) 

with respect to the reference configuration. Since vE&  is symmetric, and for the 

aforementioned special choice of the shear rate calculation, 0
4Ω  has the special form  

0: 0
4 =ΩEv

&  (4-156) 

is identically ensured, thus it readily follows 

0
44 : DEv

&& =γ  (4-157) 

Notice that the initial orientations are not to be updated, as the formulation is 

Lagrangian with respect to the reference configuration. Letting this assumption to be 

valid for both families of fibers, one can let a postulate for dissipation potential to be 
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where 0
4D  and 0

6D  are the symmetric tensors denoting dilatational shear, and η  is 

viscosity parameter. These are a-priori known quantities. Thus the derivative is 

captured as 
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 (4-159) 

which indicates a behavior similar to that of a linear viscous fluid if η  is constant. 

Recalling the evolution equation, 
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the form can then be expressed as 
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the structural matrices being defined in (4-149). Under these assumptions laid out so 

far, Φ and 
vE&∂

Φ∂  are (again) isotropic functions of their arguments; thus symmetry 

properties are still valid, though our material (and flow rule) is anisotropic 

(orthotropic)! 

On the other hand, since the stress is a tensorial variable, and anisotropy in the sense 

of structural tensors yield “coupled” terms of tensor components, including the effect 

of base material within the model is a mathematical workaround for well-posedness 

of the problem, besides the fact that it is mostly the muscular base that contributes to 

the viscous effects. 

Assuming additive contribution of each effect over the potential Φ , such effects can 

be easily accounted for. One can modify 

( )2
6

2
42

1 γγη && +=Φ f  (4-162) 
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to include terms related to dissipation within base material itself. To avoid the 

interference of the Lagrange multiplier to the evolution equation, an assumption that 

is also consistent with the known postulate that incompressible flows are in nature 

deviatoric, the potential can be extended as 

( ) ( ) ( )[ ]vvGSf devdev EE &&&& :
2
1

2
1 2

6
2

4 ηγγη ++=Φ  (4-163) 

which is quite straight forward. The shear-rate expressions due to fiber orientations 

are deviatoric in nature since  

( ) ( ) 00
6

0
4 == DD trtr   (4-164) 

Explorations with non-linear anisotropy are also possible with the proposed model. A 

similar choice to that of the forms postulated for the strain energy functional would 

be an exponential form as 
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where rate-stiffening or softening can easily get modeled. Notice that with 
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the required derivative for substitution of the potential expression can be obtained. 
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5. EXPRESSIONS FOR THICK-WALLED TUBE MODEL OF ARTERIAL 

STRUCTURE 

5.1. The Basic Kinematics 

In non-linear mechanics, the common practice for obtaining closed-form analytical 

expressions for quantities is by assuming a deformation mode, a method which is 

named as “Prescribed Kinematics Approach”. 

Regarding that the structure is NOT prestressed for the beginning, (Prestress can also 

be incorporated within the damage model by some way, as it will be made clear in 

Section 9) the kinematics for axial tension, inflation and simple torsion of a thick 

walled tube as follows.  

As the first step, the first mapping is due to the viscoelastic deformations, that maps 

the reference coordinates ( )ZR ,,Θ  to intermediate configuration ( )ζνρ ,,  as 

( )Rρρ = ; Zϕν +Θ= ; ZΛ=ζ  (5-1) 

Things to notice are that the radial distribution of radius deformation is not uniform, 

thus the model is thick-walled. But the axial stretch is, as that of a tensile test at a 

universal testing machine, is uniform throughout the wall thickness. The deformation 

gradient is then obtained as follows: 
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The mapping from intermediate ( )ζνρ ,,  to final configuration ( )zr ,,θ  is as follows: 

( )ρrr = ; φζνθ += ; λζ=z  
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The deformation gradient for this step is then obtained as follows: 
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after laying out the major quantities, it is possible to obtain all the others: 
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Setting the incompressibility constraints  

( ) ( ) ( ) 1detdetdet === ve FFF  (5-5) 

1=Λ
∂
∂

RR
ρρ  (5-6) 

Λ
=

∂
∂

ρ
ρ R
R

 (5-7) 

( )2222 1 RB −
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and similarly  
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Thus, one can obtain the radial coordinate transformations.  



 53 

The legend is as follows: 

B is the outer radius at the initial configuration 

β is the outer radius at the intermediate (viscously deformed) configuration 

Λ is the axial stretch at the intermediate (viscously deformed) configuration 

b  is the outer radius at the final configuration 

λ  is the axial stretch at the final configuration with respect to the intermediate one. 

The formulae (5-5) to (5-10) imply that, due to the incompressibility constraint, a 

point’s radial travel to deformed coordinates is known, if its position with respect to 

the outer diameter at the current and previous configurations, along with the axial 

stretch is known. 

5.2. The Strain Expressions 

Recalling 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Λ

Λ

=

00

0

00

ρϕρ
ρ

R

R

vF  (5-11) 

the Lagrangian strain components can be calculated.  
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Notice the nonlinear correlation among torsion and the axial strain. Thus our model 

is able to detect second order effects as desired. Also this implies that a torsional load 

has some effects in the axial stress / strain, whichever is not controlled. 

In the formulations above, based on the special properties of the decomposition of 

total deformation gradient and the specific material model, ρ , Λ  and ϕ  are the 

parameters to evolve; they cannot be directly measured. The total strain, on the other 

hand is more complex: 
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The coupling between different parameters gets, as seen, much more complicated. 

However, they are still second order, since torsion angles are of order “0” while 

stretches are of order “1”. 

The elastic strain is obtained similarly. The formulae read 
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in matrix notation.  

The strain-rate for the intermediate configuration is also obtained via 
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which is also symmetric, and in the form of vE , since it is the material time 

derivative of the intermediate deformation with respect to the fixed undeformed 

configuration. 
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The same result can also be obtained via using the velocity gradient vL , though 

vL has extra terms due to the non-vanishing material derivatives of the base vectors 

in cylindrical coordinates [39]. 
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5.3. External Quantities 

In any experimental system, besides recording the deformations, the loading 

condition is also known. The parameter identification process thus can be carried out 

for a given material model, as long as the stress-external load relations are known, so 

that there is a common base of meeting two branches of “numbers”: The 

measurement branch with loads & deformations is matched with the theory & 

parameters branch. 

In the model of thick walled tube for a segment of artery within the scope of this 

study is subjected to three (independent) external loads, namely: (1) the internal 

hydraulic pressure; (2) the axial stretching force on the segment and (3) the torque 

applied on the segment. Thus, these quantities have to be identified using stress 

components obtained from theory. 

Since the structure deforms as loads are applied, one now has to switch to Eulerian 

framework, where real quantities of stress values are tracked, unlike the way done 

while deriving the constitutive framework, where the strain energy functionals were 

expressed in terms of Lagrangian quantities mainly (for sake of simplicity there). 

5.3.1. The Equations of Equilibrium 

From the balance of linear momentum, well-known for (incompressible) materials is 

the equation of motion recalled from Section 3.3.2 

abσ ρρ =+∇  (5-21) 

in Eulerian frame. In case that the body forces (applied acceleration, gravity, other 

magnetic & centrifugal components) are negligible, the tensorial form of equation of 

equilibrium reads 

0=∇σ  (5-22) 

where the gradient is also with respect to the deformed coordinates. Transformations 

between Lagrangian and Eulerian expressions are always possible, but the simplicity 

then blows up. 
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Knowing what has been neglected (the body forces), and as to the kinematics’ and 

symmetry assumptions, it can said that the strain and the stress field, is now only a 

function of r (or R). Thus, the scalar expressions for the tensorial equation of 

equilibrium are  

0=
−

+
∂

∂
rr

rrrr θθσσσ  (5-23) 

( ) 01 2
2 =

∂
∂

θσ rr
rr

 (5-24) 

( ) 01
=

∂
∂

rzr
rr

σ  (5-25) 

with the non-zero components. Integrating the last two equations yield 

2
1

r
d

r =θσ  (5-26) 

r
d

rz
2=σ  (5-27) 

where 1d  and 2d  are constants. Since the current framework is based on “prescribed 

kinematics”, these equations determine what tractions are required on the faces to 

maintain the prescribed deformation. Or, if the circumferential and axial components 

of the tractions on the inner and outer surface of the are known, then the associated 

values of these shear components can be calculated. Whereas it is nearly impossible 

to ascertain the tractions on the adventitial surface in vivo, which result from 

perivascular coupling, the tractions on the intimal surface can be calculated from the 

hemodynamics. Indeed, at the intima rzσ must be equal and opposite of the axially 

directed shear stress in the blood at the wall, a quantity that is known to be very 

important in vascular mechanics. Conversely, tractions on the intimal surface due to 

endovascular balloon catheters are problematic to evaluate. To the luck devoted to 

researchers, in most in vitro experiments designed to study wall properties, (since 

there is no considerable flow) the shearing components of the traction vector are 

negligible, hence 
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01 =d  (5-28) 

02 =d  (5-29) 

and the only “non-identically-zero” equation of equilibrium is 

0=
−

+
∂

∂
rr

rrrr θθσσσ  (5-30) 

5.3.2. An Addendum to the Functional Form of Ψ 

The above statements (5-26) to (5-29) also impose an indirect restriction on the form 

of the strain energy density functions to be proposed for the arterial tissue. Consider 

a polynomial type expression of Ψ  in terms of strain components: 

...233 ++++=Ψ zzzzz dEEcEbEaE θθθθθ   (5-31) 

As long as Ψ  is formed as the sum of an explicit expression for each component, 

and the parameter for each strain component appearing in the functional form of Ψ is 

not (experimentally) determined, the validity of that specific form of Ψ  is restricted 

to the state where that term does not dominate or exist for the deformation thus 

occurrence of the relevant stress component(s); i.e. it works under the strict 

assumptions of the experimental setup. 

A formulation in terms of different invariants, thus enables complex coupling effects 

on different loading conditions, that can occur (for example in a finite element 

analysis) to get reflected as a contribution to the change of strain energy of structure. 

Thus, unlike polynomial formulations, which are of course more explicit to solve, 

invariant formulations are much more useful for generalization into modeling of 

complex phenomenon. 

Following this approach, for our model, despite incorporating this ability for 

generalization, imposes another type of restriction on form. Setting rzσ  and θσ r  to 

be identically zero, implies that 
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to be identically zero. Thus, for the model to work in the general case, Ψ should not 

explicitly depend on ΘRE   and RZE  [39]. This setting, in physical world, has an 

explicit meaning: The model implies that, arterial tissue behaves like layers of very 

thin tubes, among which shear stress is not transferred, thus does not occur, in the 

θr  and rz  directions. These frictionless layers form a network forming the tissue, 

and any shearing load (i.e. the hemodynamic intimal shear) is beared in terms of 

(axial) strain and stress components. 

at this stage, it is also useful to recall the anatomical properties of the arterial tissue 

provided briefly in Section 2.1. 

5.3.3. The Explicit Terms of Cauchy Stress Tensor 

Since, most of the stuff following is based on the statements above, it should be of 

great interest to visualize the components of the Cauchy Stress tensor in terms of 

components of 
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Excluding the p terms of incompressibility, since  
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it readily follows 
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where “–p” terms in diagonal denote the incompressibility constraint being 

introduced. 

It is worth to note that members of σ  and τ  fully depend on r for a thick-walled 

formulation. 

5.3.4. The Internal Pressure – Stress Relations 

Internal pressure is the boundary condition to stress components in the inner radius: 

Knowing that it is the negative radial stress at the inner surface of the tube wall, the 

equilibrium equation in the radial direction, namely;  

0=
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∂
rr

rrrr θθσσσ  (5-38) 

can be used to find internal pressure. Integrating by r, 
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r
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is obtained where r is the radial coordinate and a is the inner radius in the final 

configuration of the artery. With irr Pa −=)(σ  and 0)( =brrσ , 

( )∫ −=
b

a rri dr
r

P 1σσθθ  (5-40) 
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is gathered as the first explicit expression between geometric measures and applied 

loads. It should be noted that due to incompressibility, the geometric relations 

( )2222 1 RB −
Λ

=− ρβ  (5-41) 

( )2222 1 ρβ
λ

−=− rb  (5-42) 

hold, which state that a  and b  are not independent. 

5.3.5. The Axial Force – Stress Relations 

In general, the net axial force is given by 

∫=
b

a zzAX rdrF σπ2  (5-43) 

which is the integral (signed arithmetic total) of axial stress over the cross section. 

Knowing that, due to incompressibility,  

zzzz p σσ +−=  (5-44) 

is imposed. Thus substituting this expression into the axial force equation 
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Using the equation of equilibrium in the radial direction, and decoupling the 

Lagrange multipliers, 
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Substituting yields 
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Since ( ) 0=arrσ  since irr Pa −=)(σ  and ( ) 0=brrσ since on outer surface ( ) 0=brrσ  

and pressure is identically 0, 

( ) 02 =
b

arrr σ  (5-53) 

and 

( )∫ −−=−
b

a rrzziAX rdraPF σσσππ θθ22  (5-54) 

or identically 

( )∫ −−=−
b

a rrzziAX rdraPF σσσππ θθ22  (5-55) 

since the Lagrangian multiplier (pressure) term vanishes within the parenthesis. 

Setting  

2aPFN iAX π−=  (5-56) 

and call N  the “reduced axial force”. In fact, what is read from an axial thrust 

transducer connected to an end of the arterial segment is some sort of “reduced axial 

force”, but not with respect to the deformed diameter of the artery but considering 

the diameter of the inner connection interface. Thus, the revised the formula is: 
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where TR  is introduced as the diameter of the rigid connection of the arterial 

segment to axial thrust transducer. Then, recalling 

2
TiAX RPFN π−=  (5-58) 

one have the expression 
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for relating what is read from the axial thrust transducer to stress components. Notice 

that this equation, to our knowledge, is not given explicitly in the literature by now.  

The term ( )22
TRa − , at the beginning of an experimental sequence, might not be of 

importance, since it tends to zero as pressure vanishes, but with the large deformation 

of artery under inflation, it becomes quite sound.  

5.3.6. The Torque – Stress Relations 

Since for shear components, not much is related to issues with incompressibility, the 

torque formulation is rather straightforward 

∫=
b

a zb drrM 22 θσπ  (5-60) 

indicating the torque as the distance-weighted total of shear stress in the θz  (cross-

section of artery) plane. Notice again that a  and b  are not independent. 

5.4. Scalar Equations of State 

Using these expressions; the evolution laws and the stress equation can be 

transformed into scalar equations. 
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5.4.1. An Alternative Formulation 

Having for the II.Piola-Kirchhoff stress: 
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Since all the quantities have been obtained in terms of Cauchy stress components in 

the previous section, a conversion is required. For the incompressible case, 
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The equation of evolution is 
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This equation can be used as the evolution tracker; one can use it for deriving the 

viscous deformation vF  (intermediate configuration), with known inputs from total 

deformation. Eliminating 
e
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Γ∂
Ψ∂  in between is another possibility: 
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Recalling 
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one substitutes all into the Cauchy stress equation 
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Finally the two identical equations are derived, with T
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for the Cauchy Stress Tensor. Since these two equations are identical, one can also 

interpret the coefficients among different parts of the formulae. Notice that the 

viscous effects and the elastic effects are decoupled if the former formulation (5-63, 

5-64) is readopted.  
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6. BASICS OF PLASTICITY 

6.1. Introduction 

The materials that go beyond some limit of a comparison parameter (strain, stress) 

may exhibit irreversible deformations, as the loading condition reverts to original 

state where the observations have begun. This phenomenon is called as “plastic 

deformations” of a (solid) body in continuum mechanics [35]. In classical plasticity, 

macroscopic variables play the key role in initiation of plastic deformation, i.e. the 

stress state at a point, or the stress state, etc … Thus, no motivation is captured from 

the internal substructure of the material. These internal substructures can be said to 

be the dislocation distribution in metallic materials, the crystal orientations and 

orientation of inter-crystal surfaces at the micro-scale, deformation-related 

orientation of initially-homogeneous structures, such as dislocation and crystal 

arrangement in sheet metal forming.  

In biological structures, the macro-scale theory of plasticity is more pleasant in the 

sense of finding a geometrical guide form micro-scale, since, especially in soft 

tissues, the materials are predominantly fiber-reinforced, continuum-to-macroscale 

organizations. Thus, non-local theories may apply to them.  

The non-local theories are mostly related to the single crystal plasticity theories 

developed in the literature, where, in classical engineering materials, the slip is 

assumed to take place over some preferred slip directions, in the form of smooth 

shearing [35]. In fiber reinforced (biological) materials, the slip directions are 

assumed to be that of the fibers, thus enabling preferred permanent shearing due to 

some criteria. 

In a recent paper by Holzapfel [40], this has been indicated that failure of soft 

biological tissue is not accompanied with non-recoverable deformations only. Such 

examples include (damage based) softening of the left ventricular myocardium of a 

rat but no changes in the unloaded segment length after overstretching the material. 
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A hypothetical explanation of these two contrary mechanical behaviors of soft 

biological tissues under failure (i.e. yielding and softening) was given by two 

competing factors of a connective tissue:  

(i) if collagen fibrils have to carry high tensile stress they need to be large in 

diameter in order to maximize the density of inter-fiber covalent cross 

links, and  

(ii) in order to capture non-recoverable creep after removal of the load, the 

tissue needs sufficient inter-fiber cross links. This can be achieved by 

numerous collagen fibrils small in diameter such that the surface area per 

unit mass increases. 

which has been reported in [40] to yield  

(i) that damage in connective tissue incorporating thick collagen fibrils, is 

mainly governed by a relative sliding mechanism of collagen fibrils, and 

non-recoverable creep evolves. Hence, it is suggested that the matrix 

material is responsible for the plastic deformation. In this case the 

mechanical response may be described by the theory of plasticity, which 

is one goal of the present work.  

(ii) damage evolves in connective tissue incorporating thin collagen fibrils 

due to breakage of collagen and collagen cross-links. This failure pattern 

is clearly addressed to damage mechanics, and is another goal of this 

work. 

The mechanics of evolving damage has been addressed in Section 7, and this section 

is devoted to the permanent deformations that (arterial) fiber-reinforced continuum 

exhibits under different circumstances. 

6.2. Crystal Plasticity 

In the crystal plasticity theory, slip is assumed to occur before the material exhibits 

any elastic deformation that bears the applied stress. Thus, the multiplicative 

decomposition, in the formal manner, is assumed to hold. The demonstrative sketch 

in Figure 6.1 [35] assumes a such decomposition, and illustrates how the mechanism 
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works. Figure 6.2 demonstrates the path of loading and unloading curves for an 

elasto-plastic deformation, and the mechanism hypothetical multiplicative 

decomposition is assumed to occur, which is in the sense completely different than 

the real world.  

 

Figure 6.1 : Illustration of Crystal Plasticity theory based on multiplicative 
decomposition. The terminology here is due to [35] 

Mostly in engineering, the concept of “intermediate stress-free configuration” is not 

traceable by a typical loading/unloading experiment. That is because, the 

intermediate configuration is assumed to evolve before the structure bears load, but 

in a tensile experiment, let’s say, the path is vice versa: the plastic deformation takes 

place after some elastic deformation happens and a “limit value” is violated. Thus, in 

real world, the apparent intermediate configuration is Eulerian (as it follows the 

current deformation and stress state) and not stress-free. The theory, turns the 

procedure vice versa, and traces the unloading path. [41] recalls both formulations, 

and comments on the duality (equivalency) of each with respect to the other for a 

wide spectrum of material configurations. 
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In crystal plasticity to be adopted here, the parameters to mention to completely 

describe a (phenomenological) model are 

a) The slip directions 

b) The accumulated shearing angle 

c) The resolved shear stress (Schmid’s Law) 

d) The shear rate and normality of flow 

e) The yield condition and its evolution (hardening, etc..) 

 

 

Figure 6.2 : The experimentally obtainable elasto-plastic loading/unloading curve 
for a material and the visualization of the multiplicative decomposition 
concept.  
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Figure 6.3 : The slip directions in single crystal [42] 

6.2.1. The Slip Directions 

The assumption within this thesis is that the plastic deformation occurs between the 

ground substance (elastin) and the collagen fibrils that bear tensile loads within the 

arterial structure. Thus, the normal to the slip direction is fiber direction, and its 

normal is the normal of fiber being the in plane (θZ) component. This assumption is 

valid due to the facts that, the constitutive restrictions defined in Section 6.3 enforce 

such a shearing to occur, as well as that the fibers are in plane, and no radial 

component is expected to occur. 

6.2.2. The Resolved Shear Stress (Schmid’s Law) 

This law states that for a given axial load in a sample, as long as the slip direction 

and the normal to the slip plane is known, the shear in that slip system can be defined 

to be, as in Figure 6.3, 

λφστα coscos=  (6-1) 

In tensorial notation, the resolved shear is given by the inner trace of the stress tensor  

( )nmσ ⊗= :ατ  (6-2) 

where m and n indicate the fiber direction and the slip normal respectively 
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Normally, in plasticity theory, σ , the Cauchy Stress is not used due to 

thermodynamics. The stress quantity that is resolved to shear stress to check for yield 

conditions is called the Mandel Stress tensor. This tensor arises as another quantity 

through (which is in general not a symmetric tensor) the entropy equation, and for 

thermodynamic rules to be satisfied (positive entropy production, or positive 

dissipation), the yield should follow the Mandel Stress and relevant quantities. 

6.2.3. The Yield  

Plasticity theory assumes that there is some criteria that prohibits permanent 

deformation before some limit condition is triggered or violated. In stress-space 

theories, this condition is a stress surface in the (stress) space.  

If the resolved shear on a specific slip system goes beyond the yield stress, plastic 

flow occurs. In rate-independent theories, the flow is resistance-free, i.e. it takes 

place and goes on without any resistance. Mathematically speaking, the rate-

independent theories the plastic arc length (the path plastic deformation has 

followed) are differential equation systems of order one in time with respect to the 

post-yield stress state, resulting in explicit equations of evolution in time. In rate-

dependent theories, the relation is not as simple, and some formulations do not 

explicitly include a yield condition, but a rather smooth transition zone. The rate-

dependency in plastic flow rate, on the other hand due to inclusion of viscosity-like 

parameters in formulations, include a “length-scale” in formulations, that avoid 

artificial geometry dependence. The latter effect is observed in finite-element 

analysis as “mesh-size sensitivity”, which is an issue discussed in detail in [43]. 

6.2.4. Plastic Hardening of Material 

The yield condition is said to be isotropic if it is independent of any direction. The 

most well-known yield conditions of Tresca (maximum-shear) and Von-Mises 

(maximum distortion energy) criterion are the best to achieve an illustrative example.  

If the aforementioned yield surface moves within plastic deformation in the stress 

space, (i.e., the yield condition / yield stress changes with ongoing plastic 

deformation) then the material’s behavior is said to change with the deformation 

history. This motion influences a constitutive hardening or softening with ongoing 
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increasing plastic deformation. It is worth to mention that, damage models 

incorporate only “elastic” softening of structure. As the accumulation of damage 

increases (by some quantitiy), the material constitutive behavior changes and it gets 

less resistant to external loads. Plastic hardening/softening is neither geometric 

softening, where due to geometrical relations the load /deflection behavior of a 

structure gets instable (consider a self-inflating balloon under constant pressure) nor 

damage related softening where the internal structure of the material changes and 

responds different within the elastica. Simple paraphrases of various hardening rules 

have been stated in the following titles. Details on the model can be sought in [35] 

and references therein. 

 

The material is loaded up point s. Then as hardening occurs, follows the path “k” if kinematic 
hardening occurs, “i” if isotropic hardening occurs and “c” if combined hardening occurs. The 
relevant representations of the yield surface in stress space is given on the right as fk, fi and fc 
respectively, with f0 indicating the initial yield surface. 

Figure 6.4 : Visual Representation of Different Material Constitutive Models under 
Plastic Deformations. [35] 
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No Hardening: If the initial yield surface (f0 in Figure 6.4) in the stress space does 

neither translate nor scale with accumulating plastic deformations, the material is 

said not exhibiting any hardening behavior.  

Isotropic Hardening: If the yield surface in the stress space expands symmetrically 

with accumulating plastic deformation, then the material is said to exhibit isotropic 

hardening behavior (See Figure 6.4). 

Kinematic Hardening: If the yield surface in the stress space translates with 

accumulating plastic deformation, then the material is said to exhibit isotropic 

hardening behavior (See Figure 6.4). This concept mainly is formulated using back-

stress variables, and is best observed in “Bauschinger Effect” of metal tests. 

Combined Hardening: This is a mixed case where isotropic and kinematic hardening 

effects are coupled. In Figure 6.4, the yield surface after a mixed / combined 

hardening is recalled with fc. 

In the plasticity of fiber reinforced material of interest within the scope of this thesis, 

it has been assumed that the “plastic” constitutive behavior each family of fiber is 

independent of each other, and does not have correlation in terms of hardening 

behaviors. Thus, a multisurface plasticity model with no latent hardening is adopted, 

as detailed in Section 6.3 

6.2.5. The shear Rate and Normality of Flow 

After some yield condition occurs, it should be noted that the yield occurs in the 

direction of pulling. The statement in a more legal terminology would be “in the 

normal of the yield surface”. This is called the “consistency condition” and ensures 

that the plastic flow maximizes the dissipation (which is also automatically said to be 

positive by this assumption).  

The shear rate, under the formulations presented here, is related to the stress state for 

the rate dependent plasticity, counterpart of the Kuhn-Tucker consistency conditions 

for rate-independent plasticity. 
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6.2.6. The Accumulated Shear Angle 

Plasticity is a dynamical process, which accumulates in time. For rate-independent 

plasticity, where the shear angle over the preferred directions are only functions of 

the current (local) stress (or strain) state, the evolution of accumulated plastic 

deformation can be correlated to a (monotonically increasing) component (such as 

force, pressure, etc..). Nevertheless, especially for rate dependent models, these 

assumptions cannot easily verified. Thus, the accumulated shear on each slip system 

∫=
t

dt
0

αα γγ &  (6-3) 

has to be evaluated for all active slip systems. The accumulated shear on a slip 

system, besides being for tracking the deformation, is also important in tracking the 

evolution of hardening and tracking of the yield condition. 

6.3. The Specific Plasticity Material Model for Arterial Tissue: 

In investigating the plastic deformations of arterial tissue, a rate-dependent two-

surface anisotropic model has been adopted with combined hardening. The model 

has been verified to be stable in the sense of geometrical inputs (for example, finite 

element mesh dependence). Details of the model have been presented in [43] 

The rate dependency of the proposed model is based on the relation 

( )
k

g
a ⎥

⎦

⎤
⎢
⎣

⎡
=

α

α
αα

τ
τγ sgn&&  (6-4) 

where a&  is the proportionality material coefficient to shear rate, ατ  is the resolved 

shear stress over the slip direction, αg  is stress-counterpart estimate of the relevant 

slip system strain hardness, or in other words reference yield stress as a function of 

accumulated shearing and k is the rate-dependence sensitivity exponent, as which 

tends to infinity, guides the model to become less and less rate dependent, and at the 

limit lets the model resolves to rate-independent plasticity. 

 



 75 

The slip system strain hardness can be given with a formula   

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+=
∞

∞ αα γ
0

0
00 tanh

gg
hgggg  (6-5) 

where  

• 0g  is the initial hardness 

• ∞g  is the maximum hardness when 0=
∂
∂

α

α

γ
g  

• 0h  is the initial hardening, at 0=αγ  

• ∫=
t

dt
0

αα γγ &  the accumulated shearing on the slip system 

• 0>αg , 0>a& , 00 >h  are the bounds to material parameters. 

In the above expressions and the following ones throughout the plasticity 

considerations, α  index stands for each active slip system, or more explicitly the 

fiber families as noted by “4” and “6” throughout this text. The model features that 

• the inter-fiber hardening is not present (no latent hardening is considered) 

• the overall behavior is anisotropic multisurface plasticity 

• the flow rule always ensures positive dissipation for each slip system.  

A sample visualization of the strain-hardening model is provided in figure X. The 

sample data has been prepared the material parameters kPag 150 = , kPag 45=∞  and 

kPah 150= . The model resolves into a no hardening model with ∞g  is being set to 

0g , or a linear hardening model for proper estimates of 0h . 
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Figure 6.5 : Representative Behaviour of Selected Plastic Hardening Model 

6.3.1. The Kinematics of Crystal Plasticity 

In crystal plasticity, the relation between the overall deformation and the slip in each 

slip system is proposed in the form 

( )∑ ⊗=
α

αααγ nmL &p  (6-6) 

where  

ppp FLF =&  (6-7) 

or 

( ) 1−= ppp FFL &  (6-8) 

is the plastic velocity gradient, pF  is the deformation gradient due to plastic 

deformation, pF&  is its material time rate and the (-1) in the power standing for the 

inverse. 



 77 

In rate-independent plasticity models, the expression (S) above should be 

accompanied by the Kuhn-Tucker consistency conditions, or its equivalent equality, 

but for rate-dependent model proposed above, there is no explicit need for such 

“conditions” as they are embedded in the accumulation of shear (rate). 

The resolved shear stress on each fiber family, namely ατ  is calculated at the 

Eulerian configuration with respect to the plastic deformation. Thus, assuming the 

multiplicative decomposition 

( ) pFFF *=  (6-9) 

where *F  stands for any other deformation that follows over the configuration 

generated (fictive) plastic deformation. Letting Σ denote the Mandel Stress tensor is 

defined the resolved shear stress is defined as 

( ) ( )ααατ mnΣ ⊗= :dev  (6-10) 

where αn  is the fiber normal (slip normal) in the θZ plane and αm  is the fiber 

direction (slip direction). It is worth to note that the slip directions should be updated 

with ongoing plastic deformation. Thus, the system is Eulerian with respect to 

plasticity in sense. Naming 

ααα mnS ⊗=0  (6-11) 

as the initial slip directions in the material (before plastic deformation, in the 

reference configuration) 

( ) T
pp

p FmnFS ααα ⊗=  (6-12) 

( ) pdev αατ SΣ :=  (6-13) 

reads. The similar thoughts can be applied to the velocity gradient, so 

( )∑∑ ⊗==
α

ααα
α

αα γγ T
pp

p
p FmnFSL &&  (6-14) 
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6.4. Numerical Approximation to Analytical Expressions: 

The main problem with classical plasticity applications is that, most formulations 

require explicit formulation of the problem when analytical solutions are not 

obtainable and numerical calculations become a “must”. However, within the 

proposed concept, there is the option of forming an implicit algorithm for updating 

the plastic deformations. 

Recalling 

( ) 1−= ppp FFL &  (6-15) 

and 

( )∑∑ ⊗==
α

ααα
α

αα γγ T
pp

p
p FnmFSL 00&&  (6-16) 

and letting the backward approximation 

( ) ( )
t

npnp
p Δ

−
= −1

FF
F&  (6-17) 

hold, where subscript “n” denotes the current time step, “n-1” denotes the previous 

time step. Thus, for the velocity gradient at the current time step,  

( ) ( ) ( ) ( )
np

npnp

np t
11 −−

Δ

−
= F

FF
L  (6-18) 

is obtained. Then the following reads: 

( ) ( )( ) ( )
( )

k

n

n
nn g

a
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

α

α
αα

τ
τγ sgn&&  (6-19) 

( ) ( ) ( ) ( )[ ]⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ+

−
−+= −

∞
∞∞ nnn t

gg
hgggg ααα γγ &1

0

0
0 tanh  (6-20) 

( ) ( ) ( ) ( )( )
n

T
pnpnn dev FnmFΣ 00: ααατ ⊗=  (6-21) 



 79 

Combining 
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(6-22) 

is obtained. Rearranging the update equation 

( ) ( ) ( ) ( ) ( )
tt

npnp

np
npnp

Δ

−
=

Δ

− −

−−−

1
111

FFI
F

FF
 (6-23) 

( ) ( ) ( ) ( ) ( )( ){ }∑ ⊗Δ=− −

−
α

αααγ
n

T
pnpnnpnp t FnmFFFI 001

1
&  (shortened)  (6-24) 

is obtained.  

This equation is fully dependent on the current plastic deformation gradient ( )
npF , 

thus ( )nαγ&  and the previous known variables ( )
1−npF  and ( ) 1−nαγ . The formulation is 

obtained in a fully implicit manner, which is required for experimental data 

evaluation, where the time step tΔ  is prescribed to an extent which in general not as 

low as an explicit method would be able to handle, and for unconditional stability. 

6.5. Addendum for Cylindrical Coordinates: 

The expressions provided above hold exactly for any Cartesian coordinate system. 

For cylindrical coordinates, some details should be made clear. 

Let the plastic deformation gradient be 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
∂
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=

λ

φ

00

0

00

r
R
r

R
r

pF  (6-25) 
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in physical terms. (Basis ( ) ( )ZRzr eeeeee ,,,, Θ⊗θ  ) Notice that the terminology of 

mapping is general and not related to that represented in Section 5. 

Differentiating in the usual manner, for cylindrical coordinates does not hold since, 

θθee && =r  and ree θθ
&& −= . Thus, tensor notation and curvilinear base vectors 

( )zr ggg ,, θ  should be used instead. Details can be found in [39] , but the important 

parts are summarized as follows. 

Using the tensor derivative rules using Christoffel Symbols, it is obtained that  

( )

⎥
⎥
⎥
⎥
⎥
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pF   (6-26) 

and 

( )
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⎥
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⎦
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pL  (6-27) 

in physical terms (Basis ( ) ( )ZRzr eeeeee ,,,, Θ⊗θ  ). 

Remembering equation (6-16) above, the flow rule proposed only relates 
R
r& , λ&  and 

( )φφ rr &&+  terms from pF&  via pL  to plastic flow. But there is the problem with the 

term in pF  (and pL ) that, 
Θ∂

∂z  is not identically zero. It can be shown that, under the 

assumptions aforementioned, the deviator of unsymmetrical Mandel Stress tensor, in 

the most general case, can be given as 
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Moreover, the shear strain velocity gradient is, explicitly  

( )( )( ) ( )( )( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=⊗+⊗

dc

ba
T

pp
T

pp

LL
LL

0
0

000
0
4

0
46

0
4

0
44 FmnFFmnF γγ &&  

where 0=bL , 0=cL  is only satisfied if the conditions 

γγγ &&& =−= 64  (6-29) 

( ) 03,2 =pF  (6-30) 

is identically satisfied. Otherwise, non-axisymmetrical deformations (due to          

Θ∂
∂z  terms that will arise from the expansion (6-6)) will arise enforcedly. Thus, for 

the 
Θ∂

∂z  term to vanish, the only way is to prevent any shear loading within the scope 

of this study. 

Considering the shear-loading case above, that bears a necessity for disturbing the 

axisymmetry assumption, which is one of the main underlying assumptions of the 

analytical formulation for data evaluation and performance testing of a material 

model that has been developed elastoplastic framework, there is no torsion in the 

axisymmetric tube model hereafter considered regarding plastic deformations. Under 

these circumstances, the governing system again gets independent of Z, and is solved 

accordingly.  

It is worth to note that the aforementioned shear plasticity introduces warping in the 

cross section of the arterial tissue. 
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7. THE SOFTENING OF TISSUE AND THE “DAMAGE RULE” 

Recalling Figure 2.5 in Section 2.2.3, which is a schematic of load-deformation 

curve for a circumferential strip of the media subjected to uniaxial cyclic loading and 

unloading. The pronounced stress softening is evident during the first few load cycles 

which diminishes with the number of load cycles, when the biological material is 

said to be 'pre-conditioned' 

Now if one returns to the main dissipation inequality, that has been presented for 

pure viscoelastic behavior, 

0:::: ≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Ψ∂

+
∂

Ψ∂
+

∂
Ψ∂

− Q
Qv

v
e

e

&&&& E
E

Γ
Γ

ES  (7-1) 

one can no more bother the aim of the parameter Q . For the case presented, Q  is the 

measure of damage accumulated.  

For damage to occur, loosely speaking, some springs should not be able to resist as 

much to the applied load onto as they should, getting extrapolated from their initial 

characteristics of constitutive behavior. This phenomenon can be incorporated into 

the proposed material model by letting the “evolving” part (the spring of the Kelvin 

element) of the material behave in some softening way. Thus, the accumulating 

deformation described by vE , or more preliminarily vF , will exhibit viscoelastic 

behavior with damage accumulation, or in other words “elastic softening”.  

Summing up all, it is postulated that there is damage associated with vΨ : 

( ) ∞Ψ−=Ψ vv Q1  (7-2) 

where Q  stands for the damage accumulated in the model so far, and Q <1.  
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This formulation results in 

( )[ ] ∞∞ Ψ−=Ψ−
∂
∂

=
∂
Ψ∂

=
∂
Ψ∂

vv
v Q

QQQ
1  (7-3) 

This represents some sort of decoupled representation for damage. Following 

common practice in damage mechanics,(see, for example [44]) , a damage evolution 

surface is introduced: 

( ) 0, =+Ψ=−Ψ−=Ψ ∞∞∞ DDDs vvv  (7-4) 

This recalls the evolution of the yield surface in plasticity. D  is the measure of 

damage accumulated. Now, for increasing ∞Ψv , the damage accumulates if the (yield) 

surface is “touched”. That, in mathematical terms, says 

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ >Ψ=+Ψ=Ψ

=
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Otherwise
Ds

D vvv

@0
00@ &U&

&  (7-5) 

This means that damage follows ∞Ψv
&  for 0>Ψ∞

v
&  and otherwise nothing happens. 

Following [44], let 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∞Q
QD 1ln1

δ
 (7-6) 

as the damage accumulation rule. This leads to 

Q
Q
DD &&

∂
∂

=  (7-7) 

and 

QQ
QD

Q −
=
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&
&

δ
11  (7-8) 

which, after rearranging yields 

( )DeQQ δ−
∞ −= 1  (7-9) 
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In this model, δ  and ∞Q are the only material parameters, where ∞Q denotes the 

maximum possible damage the material can bear, where δ signifies a “damage 

saturation” parameter. 

Going back to the original evolution equation, one obtains, after re-arranging the 

formulation with respect to strain rate 

( ) ( ) ∞
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Ψ
∂
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−
∂
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−=
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v

vv

v

v

v QQQ
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11  (7-10) 

and the equation of evolution (7-1) is refurbished to 
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and nothing else in the formulation is altered. Since one has 0≥Q&  and 0≥Ψ∞
v  

always, this model satisfies the dissipation inequality. The remaining is to choose 

how to set the evolution equation for Q . It can be set such that it behaves like a von-

Mises-like equivalent strain parameter per fiber direction. Thus, 

( ) ( ) ( ){ }−−= tDItD v ,1max α ; ( ) 00 =D  (7-12) 

is a suitable evolution model. The stated model above  

• is anisotropic and multi-criteria based 

• does not incorporate latent effects within softening  

• can easily be extended to include non-linearity in the damage evolution  

Notice once more that, vIα is only related to the deformation of the Kelvin element. 

Altering the value of  ( )Δ−vIα  would result in different aspects. In a manner like 

( )Δ−vIα ; 1>Δ  (7-13) 

the damage accumulation is triggered only after some pre-deformation.  
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8. THE ELASTOPLASTIC FRAMEWORK FOR ARTERIAL TISSUE 

It is of best practical importance to set again a 1-D layout of analogy for the 

visualization of material’s behavior, as in Figure 8.1. 

 
Red hatches indicate springs, the blue hatch is the viscous dissipation (dashpot), and the red circle 

denotes plastic deformation element. 

Figure 8.1 : The 1D Analogy to Elastoplastic Constitutive Model. 

Applying the multiplicative decomposition again as it can be gathered from the 

figure, and one can write 

pve FFFF =  (8-1) 

where pF  denotes for the plastic deformations, vF  for viscoelastic properties and eF  

for elastic components. Setting the dissipation inequality 

0: >−ψ&&ES  (8-2) 

and letting the time rate of strain energy 

pF  

vF  

eF  

F  

vF  
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along with 
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and its decomposition into components as 
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with the rate defined as 
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incorporating 
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T

ee FDFΓ =& , vv
T

vv FDFΓ =& , pp
T

pp FDFE =&  (8-10) 

finally reads initially as 
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and followed by 
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or more precisely 
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as the main dissipation inequality. Knowing (postulating) that  

( ) ( )vvee ΓΓ ψψψ +=  (8-14) 

only the plastic rate of stored energy diminishes, thus 

0=
∂
∂

=
∂
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p

p

p ΓΓ
ψψ  (8-15) 

is obtained. 

Following the spin-free configurations at intermediate steps to let the equations be of 

symmetric tensorial quantities as a kinematic constraint,  

0Ω =p , 0Ω =v  (8-16) 

is applied.  
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The steps follow in a fashionable manner: 

( )

( ) ( )
( )

0

2

2

1 ≥

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+

+++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−−+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−

T
v

T
v

T
ppve

T
p

T
ppvve

T
vp

T
pp

v
T

vv
vv

v
v

T
v

T
ppv

e
T

e
e

e
e

T
e

T
v

T
ppve

QQtr

LFSFFFΓ

LSFFΓFΓFDSFF

DF
ΓΓ

FFSFFF

DF
Γ

FFFSFFFF

ψψ

ψ

 (8-17) 

[ ]{ } ( )

( )[ ]{ }
0

2

12 ≥

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

+++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−
∂
∂

−−++

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−

T
p

T
ppvve

T
v

v
T

vv
vv

v
vsym

T
v

T
ppve

e
T

e
e

e
e

QQtr

LSFFIΓFΓF

DF
ΓΓ

FFSFFFIΓ

DF
Γ

Fσ

ψψ

ψ

 (8-18) 

These arrangements lead to the following quantities: 
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for the Cauchy Stress component, or its II. Piola – Kirchhoff equivalent 
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for the equation of viscoelastic and damage evolution which is exactly similar in the 

sense of the pure viscoelastic model, 
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and will be adopted accordingly and  
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for the plastic dissipation inequality; or equivalently the form 
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which holds for the proposed material model implicitly, with the definition of the 

Mandel Stress tensor as 
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9. MODELING PRE-STRESS IN ARTERIAL TISSUE  

9.1. Introduction 

It is known that the arteries are prestressed structures. An illustrative laboratory work 

is given in Figure12.8. 

The prestress is discovered as the dissected artery demonstrates a reduction in length 

and an axial cut at a point throughout a segment of dissected artery yields a “lune” 

shaped stress-free wall. These can be modeled as an axial pre-stretch and pre-

bending of the stress-free arterial wall structure to form a closed circular arterial tube 

segment. 

9.2. Application to Constitutive Framework 

From a kinematics point of view, the prestress can be thought as an elastic pre-

deformation, under which the damage-coupled viscoelastic load-driven behavior of 

the artery is accounted for. Thus, the multiplicative decomposition can further be 

developed to include prestress effects: 

pvm FFFFF 0=  (9-1) 

where 

pve FFFF =  (9-2) 

also reads. Thus, within the model, the elastic strain is assumed to have two 

components: 

• The prestrain component that is due to developing substructure of the tissue 

and is constant 

• The mechanical strain due to external loads over the prestrain. 
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The 1D graphical analog of the model finally reads as 

 
Red hatches indicate springs, the blue hatch is the viscous dissipation, and the red dot denotes plastic 

deformation element. 

Figure 9.1 : The 1D Analogy of the Prestrained Viscoelastoplastic Model. 

Here, the deformation tensor 0F is a measure of prestretch (and prestress relatively). 

Regarding what is stated as the assumptions of prestretch, the physical elements of 

the 0F  deformation gradient tensor can be evaluated as 
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where 

( )00 RRR = ; 
0Θ
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π ; 0ZZ oλ=  (9-4) 

are the coordinate transformations. Incompressibility is again assumed to hold, so 

that  
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mF  

pF  

vF

0F  

eF  

F
vF



 92 

said to satisfy. 

Regarding thermodynamics, and noticing that the time derivative of prestretch is zero  

00 =F&  (9-6) 

the only effect of prestretch is on the stress values. With 

Considering 
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Recalling  the strain components of each deformation step relevant to our analysis as 
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 93 

The main question then degenerates into a form to decouple the total elastic 

response. From previous experience, it is clear that the decomposition of the elastic 

deformation content will only effect the terms related with 
e

e

Γ∂
∂ψ . 

The initiation of procedure can be given in the form of partial derivatives 
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Thus, in index notation 
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Getting rid of the denominator, 
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is obtained, after multiplication of both sides by naδ  which reads, 
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and more simplifies as follows: 
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Returning to tensor form 
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is accomplished. Forming { } 1
0

−FCm  and multiplying from left lets 

e
e

m Γ
Γ

FCFI &

0
0

11
02

1
∂
∂

= −− ψη  (9-29) 

which can be “trace”d to yield 

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

= −−
e

e
mtr Γ

Γ
FCF &

0
0

11
02

13 ψη  (9-30) 

Consequently, the equivalent terms can be given as 

e
e

me
e

e Γ
Γ

FCFΓ
Γ
F

F
Γ

Γ
&& :

6
1:::

0
0

11
0

0

0

0

0 ∂
∂

=
∂
∂

∂
∂

∂
∂ −− ψψ  (9-31) 

which, after summing up reads 

e
e

m
T

m

e
e

e

e Γ
Γ

FCFF
Γ

FΓ
Γ

&& :
6
1:

0
0

11
00

1
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂ −−−− ψψψ  (9-32) 

as the elastic rate of energy. Assuming an additive decomposition 

( ) ( )mme ΓΓ ψψψ += 00  (9-33) 

a further reduction is possible which yields 

em
T

m

m
e

e

e Γ
Γ

FCFF
Γ

FΓ
Γ

&& :
6
1:

0

0
0

11
00

1
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

=
∂
∂ −−−− ψψψ  (9-34) 

as the final form. 

Letting IF =0  evidently recovers 0
Γ

=
∂
∂

0

ψ , which lets em FF =  and the original 

equations are recovered. 
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10. SUMMARY OF CONSIDERATIONS STATED 

To sum up what has been stated by now, everything is in Table 10.1 – 10.3. 

Table 10.1: The Equations of State  

Constitutive 

Relations 

( ) ( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −++−=Ψ −− 23 112

11
64

neenee II
e

e
ee

e eeCIC αα
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( ) ( ) ( )
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1 2
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(exponential) 
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1 64 η

α
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Equation of 
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∂
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Table 10.2: The Equations of Plasticity and Damage Evolution  

Damage 
Accumulation 
Model 

⎟⎟
⎠

⎞
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∞
δ
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eQQ 1  
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Table 10.3: Physical and Derived Quantities 

Load/ 

Deformation 

Relations 

( )∫ −=
b

a rri dr
r

P 1σσθθ  

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −−+−= ∫

b

a rrzziT rdrPRaN σσσπ θθ222  

∫=
b

a zb drrM 22 θσπ  

Incompressibility 

Considerations 
( ) ( ) ( )∫ −−+

Γ∂
∂

+Γ=
r

a rri
e dr

r
Prp 112 σσ

ψ
θθ

ρρ
ρρ  

Thus the system can be solved for  

• the material parameters running an optimization process 

• for applied loads to obtain deformation states 

 for the system given above. 
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11. SOME SOLUTIONS TO PROPOSED MATERIAL MODEL 

In this section, some (forward) solutions have been presented to the combined 

axisymmetric loading of a cylindrical uniform tube, using 

• the material models that have been presented in the previous sections 

• approximate representative material parameters 

• predefined combinations of internal pressure, axial force and torsional 

moment 

• different static and dynamic loading scenarios 

to have an insight about how the model behaves (the tube deforms) under various 

assumptions and to validate if the behavior is compatible with expectations and solid 

mechanics. 

11.1. Analysis without Plastic Deformations 

11.1.1. Pure Elasticity 

Table 11.1: Material Properties Used for Pure Elasticity Material Model Analysis in 
Section 11.1.1 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

0.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 
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Figure 11.1 :Pure Elastic Strain vs. Time Graphs under Cyclic Loading at 1Hz 

Initially, pure elastic loading has been considered. Under no torsional load, the 

pressure and the axial force has been made to fluctuate at 1 Hz. The figures 11.1-11.3 

and A-1.1 to A-1.6 provide the loading protocols, the load-strain diagrams and the 

strains on the outer surface and variation of various quantities with time and within 

the wall thickness. The material properties for the analysis are provided in Table 11.1 
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Figure 11.2 : Pure Elastic Strain vs. Load Graphs under Cyclic Loading at 1Hz  

As expected from a thick-walled tube theory, and in parallel with the theoretical 

underpinnings that have been stated so far, the radial distribution of axial stress 

without the existence of shear is uniform, whereas tangential stress varies highly 

within the wall thickness; being highest in the inner surface. Also, it can be captured 

that the radial stress variation is in complete accordance with the theory, always zero 

on the outer surface and negative of the internal pressure at the inner surface. Thus, 

thin walled approximations to arterial modeling can be concluded to be regarded as 

over-simplifications to investigating issues that are related to quantities of “inner” 

type such as stress and plastic deformations. 
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Figure 11.3 :Pure Elastic Load vs. Time Graphs under Cyclic Loading at 1Hz 
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11.1.2. Pure Elasticity with Softening 
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Figure 11.4 :Strain vs. Time Graphs under Cyclic Loading at 1Hz under Pure 
Elasticity with Softening Effects 

Second model is exactly similar to the pure elasticity model, but there is the 

softening effect included. It is captured that the stress values record about 17% and 

7% higer in the tangential and axial directions respectively. The load-deformation 

baths are also altered. No dissipation is observed, despite the fact that under biaxial 

loading conditions, the load-deformation paths exhibit a transient loop. Figures 11.4 

– 11.6 and A-2.1 to A-1.6 represent the relevant quantities and their variations within 

the wall thickness and with time. The material properties for the analysis are 

provided in Table 11.2. 
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Table 11.2: Material Properties Used for Pure Elasticity with Softening Effect in 
Section 11.1.2 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

0.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 
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Figure 11.5 :Strain vs. Load Graphs under Cyclic Loading at 1Hz under Pure 
Elasticity with Softening Effect 
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Figure 11.6 : Load vs. Time Graphs under Cyclic Loading at 1Hz under Pure 
Elasticity with Softening Effect 

 



 106 

11.1.3. Isotropic Viscoelasticity 

The investigation of effects of occurrence dissipation has been achieved with this 

model. It has been checked whether the expected lag and load-strain curves are 

achieved, which are well-known for materials with dissipative characteristics. No 

softening has been considered. The dissipation has been assumed to rise due to rate-

dependency effects only due to the isotropic content of the material (modeled) (i.e., 

due to dissipative effects within the base material). 

Table 11.3: Material Properties Used for Isotropic Viscoelasticity Model Analysis in 
Section 11.1.3 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

10.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

It is of considerable importance to denote that the stress distribution is again follows 

a thick-walled approach especially in the tangential direction; and the viscous effects 

have the impact over axial stress values. The tangential stress values, in contrary, 

seem to decrease. Figures 11.7 – 11.9 and A-3.1 to A-3.6 represent the relevant 

quantities and their variations within the wall thickness and with time. The material 

properties for the analysis are provided in Table 11.3. 
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Figure 11.7 : Strain vs. Time Graphs under Cyclic Loading at 1Hz under Isotropic 
Viscoelasticity 
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Figure 11.8 : Strain vs. Load Graphs under Cyclic Loading at 1Hz under Isotropic 
Viscoelasticity 
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Figure 11.9 : Load vs. Time Graphs under Cyclic Loading at 1Hz under Isotropic 
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11.1.4. Nonlinear Viscoelasticity 

Contrary to the isotropic dissipation model, a low-effect anisotropic dissipation 

model has been implemented. It has been seen that the fiber-direction dissipative 

effects contribute to the behavior of the model in a compatible way with the isotropic 

dissipation model.  

The material properties for the analysis are provided in Table 11.4. 

Table 11.4: Material Properties Used for Nonlinear Viscoelasticity Analysis in 
Section 11.1.4 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

0.005 3.0 0.09   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

 

Notice the slight difference in pressure-tangentail strain curve. Aslo, the material 

behavior, as expected, exhibits a steady loop for the load-deformation curves, 

indicating the dissipative behavior.  

Figures 11.10 – 11.12 and A-4.1 to A-4.6 demonstrate the characteristics of behavior 

of the model proposed with non-linear viscoelastic effects. 
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Figure 11.10 :–Strain vs. Time Graphs under Cyclic Loading at 1Hz using 
NonLinear Viscoelasticity Model 
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Figure 11.11 :–Strain vs. Load Graphs under Cyclic Loading at 1Hz using 
NonLinear Viscoelasticity Model 
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Figure 11.12 :Load vs. Time Graphs under Cyclic Loading at 1Hz using NonLinear 
Viscoelasticity Model 
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11.1.5. Isotropic Viscoelasticity with Softening 

The investigation of dissipation and its consequences on damage evolution has been 

achieved with this model.  

It has been checked whether the expected lag and load-strain curves are achieved, 

which are well-known for materials with dissipative characteristics. The dissipation 

has been assumed to rise due to rate-dependency effects only due to the isotropic 

content of the material (modeled).  

The material properties for the analysis are provided in Table 11.5. 

Table 11.5: Material Properties Used for Pure Isotropic Viscoelasticity Analysis  
with Softening Effect in Section 11.1.5 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

10.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.70 75.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

The model has been seen to capture both models’ characteristics represented in 

Sections 11.1.2 and 11.1.3. It is worth to indicate the transient loops due to softening 

of the material and the steady loops due to dissipative effects in all load-deformation 

curves. Also, the creep of the material at zero load is captured at the end of the 

loading cycle, thus every loop in all load-deformation curves are closed.  

Figures 11.13 – 11.15 and A-5.1 to A-5.6 demonstrate the characteristics of behavior 

of the model proposed with non-linear viscoelastic effects. 

 



 115 

 

0 2 4 6 8

−0.05

−0.04

−0.03

−0.02

−0.01

0

Tangential  Components

Time [s]

St
ra

in
 [
−

]

0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

Axial Components

Time [s]

St
ra

in
 [
−

]

0 2 4 6 8

−0.25

−0.2

−0.15

−0.1

−0.05

0
Radial Components

Time [s]

St
ra

in
 [
−

]

0 2 4 6 8
−1

−0.5

0

0.5

1
Shearing Components

Time [s]

St
ra

in
 [
−

]

� Plastic Strain Components � Elastic Strain Components 
� Viscoelastic Strain Components � Total Strain Components 

Figure 11.13 :Strain vs. Time Graphs under Cyclic Loading at 1Hz using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure 11.15 :Load vs. Time Graphs under Cyclic Loading at 1Hz using Isotropic 
Viscoelasticity Model with Softening Effects 
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11.1.6. Isotropic Viscoelasticity with Softening and Static Torsion. 

Effect of shearing on material behavior has been investigated. Damping and 

softening has been considered. The figures below provide the loading protocols, the 

load-strain diagrams and the strains on the outer surface and variation of various 

quantities with time and within the wall thickness. 
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Figure 11.16 : Strain vs. Time Graphs under Cyclic Loading at 1Hz over Static 
Torsion using Isotropic Viscoelasticity Model with Softening Effects 
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The material properties for the analysis are provided in Table 11.6. 

Table 11.6: Material Properties Used for Pure Isotropic Viscoelasticity Analysis  
with Softening Effect in Section 11.1.6 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

10.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.70 75.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

For fiber reinforced materials, it is known that when the plane of symmetry does not 

hold for loading conditions (such as a pressurized tube under torsion) the fiber 

stretches no more stay symmetrical. Adding a static torsion to the previous task 

represented in Section 11.1.5 is aimed at capturing the outcomes of disturbing this 

symmetry. The most critical outcomes that have been observed are can be stated to 

be the radial distribution of stress and strain in the longitudinal direction. 

Additionally, due to the presence of softening effects, the loading and unloading 

curves, besides the dissipative loops, differ greatly for the torsion-shear strain curve. 

Figures 11.16-11.18 and A-6.1 to A-6.8 point out graphically the relevant issues 

about unsymmetrical loading.  

Also, it is worth to mention that, though the torsional moment is kept constant, the 

shear strains fluctuate with variations in other external loads. 
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Figure 11.18 : Load vs. Time Graphs under Cyclic Loading at 1Hz over Static 
Torsion using Isotropic Viscoelasticity Model with Softening Effects 
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11.1.7. Isotropic Viscoelasticity with Softening and Dynamic Torsion over Static 

Pressure and Axial Force 

Effect of dynamic shearing has been investigated. Damping and softening has been 

considered. The figures 11.19 to 11.21 and A-7.1 to A-7.8 provide the loading 

protocols, the load-strain diagrams and the strains on the outer surface and variation 

of various quantities with time and within the wall thickness. 
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Figure 11.19 :Strain vs. Time Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects” 
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The material properties for the analysis are provided in Table 11.7. 

Table 11.7: Material Properties Used for Pure Isotropic Viscoelasticity Analysis  
with Softening Effect in Section 11.1.7 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

10.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.70 75.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

In this analysis, different from Section 11.1.6, the internal pressure and the axial 

force has been kep constant at some fixed level, and dynamic torsional moment has 

been applied over the tube model.  

The interesting outcomes have been recorded as the fluctuations in the axial and 

tangential (thus, respectively radial) strains during dynamic torsional loading, despite 

the other quantities have been kept fixed. These are related to properties with the 

non-linear couplings and coupling effects due to structural properties of fiber-

reinforced composites. 
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Figure 11.20 :Strain vs. Load Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects 
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Figure 11.21 :Load vs. Time Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects 
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11.1.8. Isotropic Viscoelasticity with Softening and Under Dynamic Inflation 

and Torsion with Static Axial Load 
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Figure 11.22 :Strain vs. Time Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects 
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Coupled dynamic loading protocol has been applied to see cross-effects among 

dynamic components. Damping and softening has been considered. The figures 

11.22 – 11.25 and A-8.1 to A-8.8 provide the loading protocols, the load-strain 

diagrams and the strains on the outer surface and variation of various quantities with 

time and within the wall thickness. 

The material properties for the analysis are provided in Table 11.8. 

Table 11.8: Material Properties Used for Pure Isotropic Viscoelasticity Analysis  
with Softening Effect in Section 11.1.8 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

10.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.70 75.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.0 1400 4400 150 10 

In this exercise, the coupling between dynamic inflation and shearing has been 

investigated.  

The phase lags are observed as usual and the dissipative loops in load-deformation 

curves exist. The radial variation of quantities are again observed. 
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Figure 11.23 :Strain vs. Load Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects 
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Figure 11.24 : Load vs. Time Graphs under Cyclic Loading at 1Hz with Torsion 
using Isotropic Viscoelasticity Model with Softening Effects 
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11.2. Analysis Incorporating Plastic Deformations 

Having investigated in Section 11.1 the elastic material behavior due to the 

constitutive and kinematics assumptions that have been laid within thescope of this 

study, it can be concluded that the (visco) elastic part of the model behaves as 

expected by both the solid mechanics’ view and the specific aims of the study. 

To investigate how the material responds when plasticity is added to the constitutive 

behavior, the following analysis have been conducted, whose details are provided in 

Sections 11.2.1 and 11.2.2. 

11.2.1. Elastoplasticity 

Table 11.9: Material Properties Used for Elastoplasticity Material Model Analysis in 
Section 11.2.1 

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

0.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.83 14 44 150 10 

Within the elastoplasticity concept, it has been assumed that no dissipation and/or 

softening is considered. But in the contrary, plastic dissipation (irreversible 

deformations) are enabled after some threshold level that is within the applied stress 

ranges, so that permanent deformations are observed at the end of the 

loading/unloading cycle. 
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The material properties for the analysis are provided in Table 11.9. 
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Figure 11.25 :Strain Components During an Elastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.1 

The hardening model proposed, with the provided material parameters are observed 

to work as desired, based on the findings from the results that tough the material 

deformation enables stress values to go up with plastic deformations, as the cross-

secitonal values change in favor of increasing stress, the plastic flow stops at a point 

and no more plastic deformation takes place. This issue is easily recovered in 

especially Figure 11.79, and through all the Figures 11.25 – 11.27 and A-9.1 to A-

9.9. 
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Figure 11.26 : Load-Deformation Curves During an Elastoplastic Analysis of 
Axisymetric Tube as to details provided Section 11.2.1 
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Figure 11.27 : Load-Deformation Curves During an Elastoplastic Analysis of 
Axisymetric Tube as to details provided Section 11.2.1 

 



 134 

11.2.2. Viscoelastoplasticity with Isotropic Damping 

The results provided in this section have been acquired form a completely similar 

scenario that has been presented in Section 11.1.2, but the only difference is said to 

be the existence of some damping on the material model. Some changes have taken 

place with respect to the induced effects, which are mostly delay related.  

The material properties for the analysis are provided in Table 11.10 , and the relevant 

outcomes of the analysis are provided in Figures 11.28 – 11.30 and A-10.1 to A-10.9. 
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Figure 11.28 :Strain Components During a Viscoelastoplastic Analysis of 
Axisymetric Tube as to details provided Section 11.2.2 



 135 

Table 11.10: Material Properties Used for Isotropic Viscoelasticity and Anisotropic 
Plasticity Analysis  

eC1  [kPa] eC2  [kPa] eα  [-]   
Elastic ψ  

23.243 6.627 3.894   
vC1  [kPa] vC2  [kPa] vα  [-]   

Viscous ψ  
23.243 6.627 3.894   

GSη  [kPa] fη  [kPa] fα  [-]   
Dissipation Φ  

15.005 0.0 0.0   

∞Q  [-] δ  [-]    
Damage Q  

0.0 0.0    
a&  [1/s] 0g  [kPa] ∞g  [kPa] 0h  [kPa] k  [-] 

Plasticity 
0.83 14 44 150 10 
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12. EXPERIMENTAL METHOD FOR PARAMETER ESTIMATION 

Any material model is useful when there is some (easy) way for determining its 

material parameters.  

12.1. The Experimental Setup 

The experiments for material parameter estimation have been carried out in the 

Laboratory of Strength of Materials and Biomechanics, Faculty of Mechanical 

Engineering, Istanbul Technical University. The facilities used and details on the 

experiments are provided below. 

Figure 12.1 : Laboratory of Strength of Materials and Biomechanics, Istanbul 
Technical University, Faculty of Mechanical Engineering 

12.1.1. Layout of the Setup and Measurement Principles 

The aim of the current work is to apply the arterial specimens independently 

controlled Axial/Torsional loads along with internal pressure and displacements in 

static or dynamic environments and record the deformation values due to these loads. 

For some experiments, it is also possible to run the system displacement controlled, 

but not strain controlled.  
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The following equipment have ben used throughout the experimental studies: 

• The mainframe MTS 858 Mini Bionix II Axial / Torsional System, with 3-

channel input and controller loops.  

•  50N/2Nm Axial/Torsional Loadcell (Novatech, Type F310UFR0H0 Serial 

No: 37669 )  

• 1-bar differential Pressure Transducer (HBM Model PD1, Δp = 1 bar, Serial 

No: 7909)  

• Positive Displacement Water Pump (FLUID-E-TECH Type MGP80 Serial 

No: 0385 

• Synchronous Servomotor with analogue Control (Sew-Eurodrive Controller 

Model MDX61B) to enable dynamic pressure application and control 

• HAAKE (Berlin) WaterBath System  

• Quasi-Static Image Capturing Cameras (ATV DOLPHIN Type DCD2.0 

Serial No: 00372751 and 00405555) 

• High-Speed Image Capturing Cameras (Photron Fastcam 1024PCI Serial No: 

145506109 and 145506110) 

• Optical Strain Calculation System (VIC3D2006 Software, LIMESS GmBH) 

• BOEWE Illumination Kit and Additional High-Performance Illumination of 

approximately 2000W total illumination power 

The connectors and the mounting system has been designed neatly in full symmetry 

where available to enable exact symmetrical mounting of the arterial specimen, and 

prohibit any interference among different quantities applied. The experimental 

system has been set up as sketched in Figure 12.2 and photographs are provided in 

Figures12.3 and 12.4.  
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Figure 12.2 : Layout of the Experimental Setup 

Throughout the experiments and numerical data evaluation : 

• Due to gravitational effects, the vertical variation of the pressure within the 

arterial specimen has been neglected. A sample height of approximetly 50 

mm and water density of 1 gr/cm3, results in less than 5 mbar pressure 

difference. At a minimum of 5 kPa internal pressure, the pressure is 

difference is less than 10% from top to bottom. 
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• The inertial effects of arterial wall during dynamic deformations have been 

neglected. 

• The inertial effects of water contained in the artery during dynamical 

deformation have been neglected. 

• Dissipation due to viscous effects of contained water has been neglected. 

• Specimen behavior measured around a point is assumed to be homogeneous 

 

Figure 12.3 : View of Testing System During Set-up with the High Speed Cameras 

12.1.2. Specimen Preperation 

In the experimental procedure, pulmonary arteries harvested from lambs have been 

used. The lamb were 12 months old on average. The vast availability of sheep 

pulmonary arteries have been the factor for choosing this specimen. The “raw” form 

of the arteries while being harvested from the slaughterhouse is given in Figure 12.5.  
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Figure 12.4 : View of Testing System with Illumination and Artery Mounted 

 

 

Figure 12.5 : Harvesting of Pulmonary Arteries by author. 
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The arteries then are treated by a plastic surgeon, and resulted in specimens as shown 

in Figure 12.6. In this step, the outer tissues other than the arterial wall, which are 

mainly fat, muscles and protective membranes, have been removed neatly. The most 

important part of this stage has been looping of the secondary branches that diverge 

from the main tube. Standart surgical ropes have been used during looping, to ensure 

the tightness. This enabled the application of internal pressure to the vessel with 

water. Being fixed to the connectors and then to the testing system, as in Figure 12.7, 

the specimens have been treated with contrast powder for optical strain 

measurements. 

Figure 12.6: The secondary branches on the lamb pulmonary artery that have been 
closed with the aid of Plastic Surgeon Burcak ERDINC, M.D. 
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Figure 12.7 : The Speckled Artery Connected to the Testing System. 

 

  

Figure 12.8 : A demonstration of PreStress in Arterial Tissue. 
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12.1.3. Experimental Loading Protocols for Specimens 

Within the theoretical model and the testing system, the following parameters are 

available for controlling 

• Axial Force 

• Internal Pressure 

• Torsional Moment 

• Axial Displacement of Crosshead 

• Torsional Rotation of Crosshead 

These quantities can either be fixed constant or time-varied. For a viscoelastic 

material,  

• Creep / relaxation behaviour 

• Response to Harmonic excitation 

are important loading protocols for determination of characteristics. 

An illustrative sequence of pictures from real tests are provided in Figure 12.9 to 

Figure 12.12, with the strains overlayed on deformation.  

The loading protocol is a complex axial/ torsional loading which has been presented 

in Section 12.3.4 
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Figure 12.9 :Sample pictures from a loading protocol and respective Axial 
Lagrangian Strain values superposed over deformed arterial specimen 

 

      

Figure 12.10 : Sample pictures from the loading protocol same in Figure 12.9 and 
respective Tangential Lagrangian Strain values superposed onto. 
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Figure 12.11 : Sample pictures from the loading protocol same in Figure 12.9 and 
respective Shearing Lagrangian Strain values superposed onto. 

12.2. Numerical Data Evaluation 

To run the data evaluation process, scalar equations of state are required to solve the 

differential equations of tensorial variables. 

The thing to notice is that, all the deformation measurements are carried on on the 

outer surface of the specimen mounted to the testing machine. However, the theory 

for a thick walled tube suggests integration of variables that vary with the radial 

coordinate. Thus, a relation should be established that propagates the “outer” 

deformation throughout the wall thickness. 

Using the definition 

( )( )
ρ

ρ rrFe =,2,2  (12-1) 

For the outer surface, this reads 

( )( )
β

βρ bbrFe === ,2,2  (12-2) 
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The incompressibility condition 

( )2222 1 ρβ
λ

−=−
e

rb  (12-3) 

furnishes and the tangential stretch becomes 
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rr

e

 (12-4) 

that depends only on r. Non dimensional forms can be obtained with 
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and simplifying it reads 
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If one lets 

Kb
=

β
  (12-6) 

and  

y
b
r

=   (12-7) 

( )[ ] 2/122 11 +−
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eλρ
 (12-8) 
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Further more, since the deformation is two-fold (i.e., there is the intermediate 

configuration), one needs the same procedure for also the viscoelastic intermediate 

deformation 

( )( )
R

RFv
ρρ =,2,2  (12-9) 

( )( )
B

BRFv
ββρ === ,2,2  (12-10) 

The incompressibility in this stage reads and furnishes 
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with the change of variables again Kb
=

β
 and y

b
r

=  again 

Similar procedures can also be carried out for shearing components: 

( )
b

bF vv
ρρϕ ==3,2  (12-14) 
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rb ϕβλρϕ
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( ) vev K
yK βϕλρϕ

2/1

2
2 11 ⎥⎦

⎤
⎢⎣
⎡ +−=  (12-16) 

The βϕ  values are measured directly. 

 It is easy to notice the high level of nonlinearity involved in these equations. But 

besides, there is the important fact that, if one knows the deformation and its 

discrimination among the two presumed stages of deformation, the variation of 

deformation along the wall thickness can be calculated, with the aid of 

incompressibility. Thus, the evolution equation needs only be solved at one point 

throughout the wall thickness. Readily, this point is chosen to be the outer surface, 

where the measured quantities for deformation are exactly known. 

12.2.1. Algorithm 

Any parameter estimation algorithm has a form of minimizing the error residual. 

What is employed here is somewhat the same thing, with additional cases that enable 

the specific model run. A simple flowchart of the parameter estimation algorithm is 

given in Figure 12.12. 

Unfortunately, no experiment in a single run can let the identification of material 

parameters in a non-linear model. For a model to be valid for a very extended rage of 

loading and deformation conditions, many combinations of stress-strain states should 

be traced with experiments. The simplest case of isotropic Mooney-Rivlin rubber is a 

well known example to this phenomenon, where, if biaxial tests are not conducted, 

the estimated material parameters may exhibit instable or over-stiff behaviour.  

Regarding the stated issue, an algorithm has been derived that would include many 

different loading protocols applied on the same specimen, to find a set of coefficients 

for one specimen with as many points in strain energy space as possible. 
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Figure 12.12 : Simple layout of algorithm 

The main problem in the proposed model is the multiplicative decomposition of total 

deformation. One should find how the deformation of either part has taken place. 

This needs the solution of a differential equation (nonlinear, first order in time) “as 

time goes by”.  

For experimental data, however, this is not possible due to the fact that digital 

sampling is discrete. Thus, the problem is formulated based on the deformation 

history, and the evolution of internal state variables are tracked, with  

( ) IF == 0tv  (12-17) 
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as the initial condition. Since the nonlinear differential equation of evolution can 

only be evaluated at discrete time points, the problem has been formulated as a 

solution of series of implicit equations for rate which is simply of the form 

( ) ( ) ( ) ( ) ( )( )ieiv
iviv

iv g
t

f FF
EE

F ,, 1 =⎟
⎠

⎞
⎜
⎝

⎛
Δ
− −  (12-18) 

with the material parameters unknown. 

The parameters input to the parameter estimation software are 

• The fiber angles for the two families of fibers 

• The initial radius and thickness values 

• The sample rates of the data files for (a)strains (b)loads 

The software  

• synchronizes the data in both files  

• makes any unit conversion if necessary 

• form strain and deformation gradient tensors 

automatically, and then starts the parameter estimation algorithm. 

The load estimation layout is two-fold: 

1. Solve the evolution equation and find the distribution of veFFF =  

a. Set 1−= j
v

j
v FF  as initial condition 

b. Solve ( )j

v
jj

e
1−= FFF  

c. Calculate j

j
v

j
vj

v tΔ
−

=
−1FFF&  and ( )j

v
T

vv
T

v
j

v FFFFE &&& +=
2
1  (Implicit) 
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e. Due to kinematics of deformation, the only independent terms are 

( )2,2e , ( )3,2e  and ( )3,3e , that turns the system into 3 equations in 3 

unknowns, that are namely ρ , ϕ  and Λ . 

f. Iterate until ( )2,2e , ( )3,2e  and ( )3,3e  are zero (less than tol.; i.e. 10-6). 

2. Calculate external load values using  

a. Stresses at a radial cross-section of the wall using 

i. the theoretical stress/strain relations 

ii. radial distribution of strains 

b. External applied loads with formulas via integrating as to formulae in 

Sections 5.3.4 to 5.3.6.  

As the “theoretical” and “experimental” loads are known, than the residuals can be 

calculated as  
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for each experimental data point. The w vector is the weights vector that 

homogenizes the orders of errors among different variables. In this study, they are 

adjusted so that they convert each difference to its Cauchy Stress Component - Von-

Mises Equivalent: 
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Notice that 2b and 2a  are the deformed outer and inner radii respectively, and vary 

with the deformation. The sum-of-square of residuals for a test is then again 

normalized to number of points in a test so that a test with many points does not 

“over-stiffen” the system.  

A detailed layout of the whole scheme is provided in Figure 12.13. The whole 

algorithm is employed in MATLAB software with using standard built-in 

optimization routines that use the Levenberg-Marquart algorithm.  

To ensure material stability (since L/M routines in MATLAB does not allow bound 

constraints) the material coefficients are normalized to “squares” of varying 

coefficients that lie in the range -1 to 1.  
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The “ ” color indicates the outer loop of residual optimization (parameter estimation), whereas the “ ” colored 

inner loop is nested loop of the numerical tracking of the evolution equation. 

Figure 12.13 : The flowchart of parameter estimation algorithm  
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12.3. Experimental Loading Protocols for Elastic Parameter Estimation 

12.3.1. Summary of Tests Performed 

Since the arterial tissue exhibits multi-dimensional behavior, it is a necessity that in 

the strain energy space, the experimental data should sweep as much points as 

possible. Thus, unlike isotropic engineering materials such as steel, brass, uniaxial 

tension tests are not capable of being complete in terms of defining the material’s 

behavior within any loading protocol. In nonlinear mechanics, multi dimensional 

tests have to be carried on (even for rubber, which is a (mostly) material of isotropy) 

to capture multi-dimensional stress/deformation behavior. Moreover, our material of 

interest is  

a) continuous fiber-reinforced composite  

b) tubular in shape  

c) “thick-walled” in the sense that at the beginning the diameter to thickness 

ratio is lower than 10%. 

Regarding these issues, a series of tests have been performed on the prepared 

specimens of sheep pulmonary arteries. The sample loading protocols that have been 

considered for parameter estimation are discussed in the next titles. It has to be 

mentioned that, since the artery is very weak with respect to torsional loading, 

especially at low loading ranges, the torsion control has been set to be angular 

displacement, whereas, the axial and pressure controls are used in “load-control” 

settings. The tuning of the MTS testing machine for best performance with the large 

deforming tissue has been performed before the real tests have been carried out. 

12.3.2. In-Phase Static Extension and Inflation for Elastic Parameter Estimation 

The initial procedure that has been carried on considered on determining elastic 

properties of the arterial wall. No prestress has been assumed to exist. Extension up 

to 10N and pressurizing up t0 15 kPa has been applied, and the loads were in phase. 

The iteration convergence is presented in Figures 12.14 – 12.16. 
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Iteration Plots for 72deg−Whole−Statik−S07  Scenario S07 at Coefficients: 
  C1e= 41.528    C2e=  0.247 Alphae= 24.475
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
 

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.15 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at an Intermediate Iteration as to 
12.3.2 
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Iteration Plots for 72deg−Whole−Statik−S07  Scenario S07 at Coefficients: 
  C1e= 38.838    C2e=  0.304 Alphae= 21.074
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
 

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.16 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.3.2 
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12.3.3. In-Phase Extension, Torsion Inflation for Elastic Parameter Estimation 

This time, effect via disturbing the fiber-orientation symmetry has been. considered 

on determining elastic properties of the arterial wall. No prestress has been assumed 

to exist. Extension up to 10N, angular displacement of the tube by 20 degrees and 

pressurizing up to15 kPa has been applied, and the loads were in phase. The iteration 

convergence is presented in Figures 12.17-12.19. 
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Iteration Plots for 72deg−Whole−Statik−S10  Scenario S10 at Coefficients: 
  C1e=527.081    C2e= 55.024 Alphae= 26.168
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
 

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.17 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Initial Iteration as to 12.3.3 
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Iteration Plots for 72deg−Whole−Statik−S10  Scenario S10 at Coefficients: 
  C1e= 19.739    C2e=  0.028 Alphae= 25.875
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
 

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.18 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at an Intermediate Iteration as to 
12.3.3 
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Iteration Plots for 72deg−Whole−Statik−S10  Scenario S10 at Coefficients: 
  C1e= 44.674    C2e=  0.027 Alphae= 18.743
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
 

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.19 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.3.3 
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12.3.4. Out-of-Phase Static Extension, Inflation and Torsion for Elastic 

Parameter Estimation 

To see how the material behaves under combination of different load application 

scenarios, a test has been carried on considered on determining elastic properties of 

the arterial wall with loads varying with a phase. No prestress has been assumed to 

exist. Extension up to 10N (Master signal – No Phase), angular displacement varying 

between -10 and +30 degrees (with a delay of 45 degrees in a load-unload cycle of 

approximately 40 seconds as 360 degrees) and pressurizing up to 15 kPa (with a 

delay of 135 degrees in a load-unload cycle of approximately 40 seconds) has been 

applied, and the loads were in phase. The iteration convergence is presented in 

Figures 12.20 – 12.22.  
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Iteration Plots for 72deg−Whole−Statik−S14  Scenario S14 at Coefficients: 
  C1e= 60.295    C2e= 15.543 Alphae= 26.138
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.20 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Initial Iteration as to 12.3.4 
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Iteration Plots for 72deg−Whole−Statik−S14  Scenario S14 at Coefficients: 
  C1e=145.418    C2e=  0.025 Alphae= 24.579
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000

� Experimental Deformation 
Gradient Component (Ft) 

� Axial Force Calculated 
using Theory  

� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
using Theory 

� Stretch of Fiber Family 4 to 
reach intermediate 
configuration (of I4v) 

� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.21 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at an Intermediate Iteration as to 
12.3.4 
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Iteration Plots for 72deg−Whole−Statik−S14  Scenario S14 at Coefficients: 
  C1e= 38.814    C2e=  0.020 Alphae= 20.654
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000

� Experimental Deformation 
Gradient Component (Ft) 
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� Experimentally Determined 
Values of Corresponding Data 
in the Plot 

� Deformation Gradient 
Component of Intermediate 
Config. (Fv) 

� Internal Pressue Calculated 
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� Deformation Gradient 
Component of Pure Elastic 
Configuration (Fe) 

� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.22 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.3.4 
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12.3.5. Out-of-Phase Static Extension, Inflation and Torsion for Elastic 

Parameter Estimation 

To see how the material behaves under combination of different load application 

scenarios, a test has been carried on considered on determining elastic properties of 

the arterial wall with loads varying with a phase.  

No prestress has been assumed to exist. Extension up to 17N (with a delay of 45 

degrees in a load-unload cycle of approximately 40 seconds as 360 degrees), angular 

displacement varying between -20 and +40 degrees (Master signal – No Phase) and 

pressurizing up to 22 kPa (with a delay of 135 degrees in a load-unload cycle of 

approximately 40 seconds) has been applied, and the loads were in phase.  

The iteration convergence is presented in Figures 12.23 – 12.25.  
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Iteration Plots for 72deg−Whole−Statik−S16  Scenario S16 at Coefficients: 
  C1e= 17.396    C2e=  6.456 Alphae= 26.138
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
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Gradient Component (Ft) 

� Axial Force Calculated 
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� Deformation Gradient 
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configuration (of I6v) 

Figure 12.23 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Initial Iteration as to 12.3.5 
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Iteration Plots for 72deg−Whole−Statik−S16  Scenario S16 at Coefficients: 
  C1e=  3.019    C2e=  0.028 Alphae= 25.585
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
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� Torsional Moment 
Calculated using Theory 

� Stretch of Fiber Family 6 to 
reach intermediate 
configuration (of I6v) 

Figure 12.24 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at an Intermediate Iteration as to 
12.3.5 
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Iteration Plots for 72deg−Whole−Statik−S16  Scenario S16 at Coefficients: 
  C1e= 69.526    C2e=  0.008 Alphae= 20.772
EtaGS=  0.000   Etaf=  0.000 Alphaf=  0.000

 Qinf=  0.000  Delta=  0.000
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Figure 12.25 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.3.5 
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12.3.6. Summary 

The summary of material parameters obtained by conducting elastic parameter 

estimation algorithm is presented in Table 12.1 

Table 12.1: Material Properties Obtained for Pure Elastic Model 

Loading 
Conditions 

eC1  [kPa] eC2  [kPa] eα  [-] 

12.3.2 38.838 0.304 21.074 

12.3.3 44.674 0.027 18.743 

12.3.4 38.814 0.020 20.654 

12.3.5 69.520 0.008 20.772 

It has been observed that, the proposed material model, under the kinematic 

assumptions aforementioned, fails to prove well if the loads in various axices are out 

of phase (i.e., they are independently applied) under the assumption of pure elastic 

deformations.  

It is of interest that, though the discrepancy between the test data and the analytical 

values exist, one should mention about the correlation between the material 

parameters. Several conclusions can be gathered, knowing that these tests have been 

performed sequentially on one specimen of artery for demonstrative purposes. 

• As more test are conducted on the artery, the material tends to get more 

“homogeneous”. 

• As more tests are conducted, fiber contribution decreases. 

Enhancements should be made to the testing system to capture the changes with the 

time. One idea should be running all the test procedures without stopping the tests in 

between different tasks so that up to failure, the whole data should be based on the 

initial “strain” values measured. Though it sounds logical, this approach is not useful 
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with the proposed material model, since for correct parameter estimation over 

different loading conditions, various tasks should be performed separately, each 

starting form a “stress-free” and “undamaged” configuration, for the evolution 

equation(s) to respond appropriately. 

12.4. Experimental Loading Protocols for Viscoelastic Parameter Estimation 

Similar to analysis that has been described in section 12.3, dynamical tests performed 

on arterial structures have been fed into the parameter estimation algorithm for 

determining the dissipative material parameters. 

The elastic parameters used for the viscoelastic parameter estimation are given in 

Table 12.2. These parameters are obtained from the same specimen on which the 

viscoelastic parameter estimation is conducted, using the pure elastic assumption as 

in section 12.3, 

Table 12.2:Material Properties Obtained for Pure Elastic Model 

Loading 
Conditions 

eC1  [kPa] eC2  [kPa] eα  [-] 

12.4.1 22.823 5.415 7.821 
12.4.2 18.571 14.278 4.744 
12.4.3 30.673 0.933 18.559 

 

Table 12.3: Material Properties Obtained for Viscoelastic Model 

Loading 
Conditions GSη  [kPa] fη  [kPa] fα  [-] 

12.4.1 0.012 9.869 7.821 
12.4.2 27.772 0.012 0.066 
12.4.3 26.163 0.378 0.066 
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Figure 12.26 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration for as to 
12.4.1 
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Figure 12.27 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.4.2 
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Figure 12.28 : Demonstration of Deformation Gradient Components, Comparison of 
Experimental and Theoretical Data at Convergence Iteration as to 
12.4.3 
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12.5.  Parameter Estimation Regarding Plastic Deformations and Damage 

Evolution 

It has been demonstrated in the previous titles that, both the model proposed and the 

algorithms developed so far work well in the context they have been postulated. 

There is a modular structure that enables separation of different contributions to 

material behavior and enables investigation of different parameters together or 

separately.  

It has been shown that, with “roughly estimated” parameters it is possible to run an 

analysis and get plastic deformations due to excessive loadings due to some criteria. 

Examples have been provided in Section 11.2, where plastic deformations and 

relevant stress analysis are discussed in detail. Though it is straightforward within the 

given context to run a test that will raise permanent deformations on arterial tissue, 

and obtain the material parameters to material model (or a part of it, as defined 

thereafter under different assumptions) given in Sections 7-10, it has been of no 

practical application within the study program of this study, and the test have not 

succeeded as expected. The faults that have been observed are: 

• Roughness of the Available Materials: Due to its vast availability, 

pulmonary arteries harvested from fresh limb of approximately 12 months 

have been used during tests. These arteries unfortunately had geometric 

irregularities (see figure 12.6) that did not enable a homogeneous deformation 

up to limit points of material’s available constitutive range. Thus, it has been 

impossible to get fully controlled axisymmetric plastic deformations.  

• Connections to testing system: The arterial specimens have been connected 

to the testing system as demonstrated in Figure 12.7, where plastic strips have 

been applied over the tissue to tighten and enable non-slipping and watertight 

structure for inflation, torsion and extension tests. However, this system at the 

limit of plastic deformations cause an “irregularity” for the plastic flow to 

begin where, the “analytical assumptions” do not hold, and at the areas of 

interest, successful plasticity cannot be obtained.  
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Future work can concentrate on running tests on plasticity with more “enhanced” 

specimens to meet the requirements of the testing for plasticity. Cartoid arteries from 

lamb, pig or human, if possible, where minimal or no branching is observed would 

be the best specimens to run tests on additionally, to overcome “end-effects”, a new 

installation system that would enable “zero stress” around the connector regions at 

the overloading conditions of arterial specimens should be designed. 

12.6. Comments on Parameter Estimation 

It has been demonstrated that a sequence of well-designed experiments should be 

conducted for efficient parameter estimation to models of non-linear materials.  

It has been shown that tests on even a single specimen might have different 

responses to same loading conditions, as the material becomes pre-conditioned as 

more tasks are applied upon. 

It can be concluded that, to be comparable, each repeated test should also be in the 

same “time space” to be comparable among specimens. 

Various loading protocols should be applied, and the response of material model to 

in-phase and out-of-phase multiaxial loading conditions should be investigated. 

It has been noticed that, the proposed material model does not cope well with the real 

world data when the loading applied is due to sources that are not in phase. It can be 

stated that this is a known limitation of the proposed model. Additional degrees of 

freedom can be added to the constitutive model applied to capture such behavior, 

such as enabling “compressibility”. From an engineering point of view, the model 

can be regarded as “capable” of modeling the arterial tissue in the sense that in the 

body, all the external loads are generated due to the “heartbeat”, and all are in phase.  

 



 177 

13. CONCLUSIONS 

A new material model that incorporates 

• the nonlinear deformation characteristics, 

• continuous fiber-reinforced material properties, 

• dissipative characteristics, 

• damage softening 

• plastic deformation capabilities, 

has been derived using standard arguments of continuum mechanics and 

thermodynamics. A novel test setup has been established for parameter estimation to 

nonlinear behaving materials, in terms of both deformation and constitutive behavior. 

Lamb pulmonary arteries, that have been fresh-grabbed from slaughterhouse has 

been used for experimental studies, and all the tests have been carried at 37 degree 

Celsius. The prescribed-kinematics analytical model of a thick-walled mono-layered 

tube has been applied to the specific case, and analytical expressions have been 

derived for calculating 

• Internal Pressure 

• Axial Force 

• Torsional Moment 

using (surface) strain data from real test specimens.  

The test data and the analytical expressions have been embedded in an optimization 

algorithm, where different aspects of the material behavior have been investigated. 

Tests have also been conducted to check the validity of the provided material model, 

with presumable characteristics. 
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Within the study, it has been captured that in the literature, little experimental data 

are provided for material parameter fitting to arterial tissues. This has triggered the 

fact that within the context of study, 

• A novel testing system for nonlinear tubes is to be set-up 

• A modular material model should be developed 

• A modular parameter estimation algorithm should be developed 

• A theoretical investigation of nonlinear dissipative behavior of large 

deforming materials with (stress-free) intermediate configuration  

should be carried on. 

It has been concluded that, the current model may fail in predicting response under 

out-of-phase loading. Parameter estimations under such circumstances have not 

proven to be successful. Enhancements to incorporate other effects that would yield 

in more accurate results are necessary, if the loading conditions are not like single-

phase “heart-beat”. The most probable option to represent in the model would be the 

existence of “compressibility”.  

Experiments on plastic deformations could not be conducted due to problems with 

the specimens and reasons due to connecting the specimens to the testing system 

discussed in detail in the experimental studies section. This is left as an open subject, 

though the model is capable of incorporating such effects into account very easily. 

Also, not to make things more complex, the effects of prestress, especially in the 

tangential direction has not been considered, and left open, though the framework of 

incorporating prestress and mechanical stress is presented on the theoretical basis. 

It has been seen that, from clinical and engineering points of view, the current model 

is clear enough to compete with the realistic modeling of viscoelastoplastic behavior 

of arterial tissues for in-phase loading conditions as in real life. This model, and 

everything that has been developed within the scope of this study is easily applicable 

to engineering materials, where nonlinear effects are of great importance, since no 

kinematical and constitutive simplification has been made other than 
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• assuming the material be incompressible 

• assuming that the intermediate configurations are spin-free  

Future studies are encouraged to incorporate  

• extension of remodeling triggered by stress and strain driven parameters, 

• experimental setups to cope with problems at “high-level” loading conditions 

• compressibility of material,  

• though hard to achieve good results; multi-layered analytical models,  

• extension of fiber constituents in the radial direction,  

• investigation of delaminating between media and adventitia. 

where a lot stay exists yet to get discovered. 
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ADDENDUM-A:STRESS AND STRAIN DISTRIBUTION IN VESSEL WALL 

A-1. Pure Elastic Material Model (due to Section 11.1.1) 
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Figure A-1.1: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz 
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Figure A-1.2: Variation of Axial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz 
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Figure  A-1.3: Variation of Radial Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz 
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Figure A-1.4: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz 
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Figure A-1.5: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz 
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A-2. Pure Elastic Material Model with Softening (due to Section 11.1.2) 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6 7 8

 

Time [s]

Time−Coordinate Diagram for Tangential Cauchy Stress [kPa]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

0

0.5

1

1.5

2

2.5

3
x 10

4

 

Figure A-2.1: Variation of Tangential Stress with Time and within Wall Thickness 
under Pure Elasticity with Softening Effect 
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Figure A-2.2: Variation of Axial Stress with Time and within Wall Thickness under 
Pure Elasticity with Softening Effect 
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Figure A-2.3: Variation of Radial Stress with Time and within Wall Thickness under 
Pure Elasticity with Softening Effect 
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Figure A-2.4: Variation of Axial Total Strain with Time and within Wall Thickness 
under Pure Elasticity with Softening Effect 
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Figure A-2.5: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Pure Elasticity with Softening Effect 
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Figure A-2.6: Variation of Radial Total Strain with Time and within Wall Thickness 
under Pure Elasticity with Softening Effect 
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A-3. Isotropic Viscoelasticity Model (due to Section 11.1.3) 
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Figure A-3.1: Variation of Tangential Stress with Time and within Wall Thickness 
under Isotropic Viscoelasticity 
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Figure A-3.2: Variation of Axial Stress with Time and within Wall Thickness under 
Isotropic Viscoelasticity 
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Figure A-3.3: Variation of Radial Stress with Time and within Wall Thickness under 
Isotropic Viscoelasticity 
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Figure A-3.4: Variation of Axial Total Strain with Time and within Wall Thickness 
under Isotropic Viscoelasticity 
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Figure A-3.5: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Isotropic Viscoelasticity 
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Figure A-3.6: Variation of Radial Total Strain with Time and within Wall Thickness 
under Isotropic Viscoelasticity 
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A-4. Nonlinear Viscoelasticity Model (due to Section 11.1.4) 
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Figure A-4.1: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using NonLinear Viscoelasticity Model 

 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6 7 8

 

Time [s]

Time−Coordinate Diagram for Axial Cauchy Stress [kPa]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

0

1

2

3

4

5

6

7

x 10
4

 

Figure A-4.2: Variation of Axial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz using NonLinear Viscoelasticity Model 
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Figure A-4.3: Variation of Radial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz using NonLinear Viscoelasticity Model 
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Figure A-4.4: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using NonLinear Viscoelasticity Model 
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Figure A-4.5: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz using NonLinear 
Viscoelasticity Model 
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Figure A-4.6: Variation of Radial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using NonLinear Viscoelasticity Model 
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A-5. Isotropic Viscoelasticity Model with Softening (due to Section 11.1.5) 
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Figure A-5.1: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using Isotropic Viscoelasticity Model 
and Softening 
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Figure A-5.2: Variation of Axial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz using Isotropic Viscoelasticity Model and 
Softening” 
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Figure A-5.3: Variation of Radial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz using Isotropic Viscoelasticity Model and 
Softening 
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Figure A-5.4: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using Isotropic Viscoelasticity Model 
and Softening 
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Figure A-5.5: Variation of Tangnt. Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz using Isotropic 
Viscoelasticity Model and Softening 
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Figure A-5.6: Variation of Radial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz using Isotropic Viscoelasticity Model 
and Softening 
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A-6. Isotropic Viscoelasticity Model with Softening and Static Torsion (due to 

Section 11.1.6) 
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Figure A-6.1: Variation of Shear Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects” 
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Figure A-6.2: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-6.3: Variation of Axial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-6.4: Variation of Radial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-6.5: Variation of Total Shear Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-6.6: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-6.7: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz over Static Torsion using 
Isotropic Viscoelasticity Model with Softening Effects 
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Figure A-6.8: Variation of Radial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz over Static Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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A-7. Isotropic Viscoelasticity Model with Softening and Dynamic Torsion over 

Static Pressure and Axial Force (due to Section 11.1.7) 
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Figure A-7.1: Variation of Shear Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz with Torsion using Isotropic Viscoelasticity 
Model with Softening Effects 
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Figure A-7.2: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-7.3: Variation of Axial Stress with Time and within Wall Thickness a 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-7.4: Variation of Radial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz with Torsion using Isotropic Viscoelasticity 
Model with Softening Effects 
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Figure A-7.5: Variation of Total Shear Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-7.6: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 



 207 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6 7 8

 

Time [s]

Time−Coordinate Diagram for Total Tangential Lagr. Strain [−]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

 

Figure A-7.7: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-7.8: Variation of Radial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects” 
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A-8. Isotropic Viscoelasticity Model with Softening and Under Dynamic 

Inflation and Torsion with Static Axial Load (due to Section 11.1.8) 
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Figure A-8.1: Variation of Shear Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz with Torsion using Isotropic Viscoelasticity 
Model with Softening Effects 
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Figure A-8.2: Variation of Tangential Stress with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects” 
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Figure A-8.3: Variation of Axial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz with Torsion using Isotropic Viscoelasticity 
Model with Softening Effects 
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Figure A-8.4: Variation of Radial Stress with Time and within Wall Thickness under 
Cyclic Loading at 1Hz with Torsion using Isotropic Viscoelasticity 
Model with Softening Effects 
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Figure A-8.5: Variation of Total Shear Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-8.6: Variation of Axial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-8.7: Variation of Tangential Total Strain with Time and within Wall 
Thickness under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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Figure A-8.8: Variation of Radial Total Strain with Time and within Wall Thickness 
under Cyclic Loading at 1Hz with Torsion using Isotropic 
Viscoelasticity Model with Softening Effects 
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A-9. Elastoplasticity Material Model (due to Section 11.2.1) 
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Figure A-9.1: Variation of Axial Stress with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 
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Figure A-9.2: Variation of Tangential Stress with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 
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Figure A-9.3: Variation of Radial Stress with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 

 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6

 
Time−Coordinate Diagram for Plastic Axial Lagr. Strain [−]

Time [s]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

 

Figure A-9.4: Variation of Axial Plastic Strain with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 
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Figure A-9.5: Variation of Tangential Plastic Strain with Time and within Wall 
Thickness During an Elastoplastic Analysis of Axisymetric Tube as 
to details provided Section 11.2.1 
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Figure A-9.6: Variation of Radial Plastic Strain with Time and within Wall 
Thickness During an Elastoplastic Analysis of Axisymetric Tube as 
to details provided Section 11.2.1  
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Figure A-9.7: Variation of Axial Total Strain with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 

 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6

 
Time−Coordinate Diagram for Total Tangential Lagr. Strain [−]

Time [s]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

Figure A-9.8: Variation of Tangential Total Strain with Time and within Wall 
Thickness During an Elastoplastic Analysis of Axisymetric Tube as 
to details provided Section 11.2.1 
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Figure A-9.9: Variation of Radial Total Strain with Time and within Wall Thickness 
During an Elastoplastic Analysis of Axisymetric Tube as to details 
provided Section 11.2.1 
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A-10. Viscoelastoplasticity Material Model with Isotropic Damping (due to 

Section 11.2.2) 
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Figure A-10.1: Variation of Axial Stress with Time and within Wall Thickness 
During anViscoelastoplastic Analysis of Axisymetric Tube as to 
details provided Section 11.2.2 
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Figure A-10.2: Variation of Tangential Stress with Time and within Wall Thickness 
During anViscoelastoplastic Analysis of Axisymetric Tube as to 
details provided Section 11.2.2 



 218 

4

4.5

5

5.5

6

6.5

7

7.5

8

x 10
−3

0 1 2 3 4 5 6

 
Time−Coordinate Diagram for Radial Cauchy Stress [kPa]

Time [s]

 

U
nd

ef
or

m
ed

 R
ad

iu
s 

[m
m

]

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

 

Figure A-10.3: Variation of Radial Stress with Time and within Wall Thickness 
During anViscoelastoplastic Analysis of Axisymetric Tube as to 
details provided Section 11.2.2 
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Figure A-10.4: Variation of Axial Plastic Strain with Time and within Wall 
Thickness During anViscoelastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.2 
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Figure A-10.5: Variation of Tangential Plastic Strain with Time and within Wall 
Thickness During anViscoelastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.2 
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Figure A-10.6: Variation of Radial Plastic Strain with Time and within Wall 
Thickness During anViscoelastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.2 
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Figure A-10.7: Variation of Axial Total Strain with Time and within Wall Thickness 
During anViscoelastoplastic Analysis of Axisymetric Tube as to 
details provided Section 11.2.2 
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Figure A-10.8: Variation of Tangential Total Strain with Time and within Wall 
Thickness During anViscoelastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.2 
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Figure A-10.9: Variation of Radial Total Strain with Time and within Wall 
Thickness During anViscoelastoplastic Analysis of Axisymetric 
Tube as to details provided Section 11.2.2 
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